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Abstract

We propose and characterize weighted-egalitarian values for cooperative

transferable utility games. Each weighted-egalitarian value divides the worth

of the grand coalition into two parts and allocates them through equality

and proportionality based on exogenous player weights. We characterize the

family of all weighted-egalitarian values by employing the standard axioms

of efficiency and linearity, in addition to two novel axioms: ω-ratio invariance

for symmetric players and symmetry in weights. We then show that relaxing

linearity to additivity and adding coalitional monotonicity results in a sub-

family of affine combinations of equal division and weighted division values.

Furthermore, using an axiom called monotonicity in weights, we characterize

the family of convex combinations of equal division and weighted division

values.
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(René van den Brink), funaki@waseda.jp (Yukihiko Funaki)

1 March 21, 2024



1. Introduction

Cooperative game theory deals with the allocation of a certain worth re-

sulting from the cooperation among players. Equality and proportionality

are often regarded as fairness criteria for allocating resources (e.g., Moulin

(2004) and Thomson (2019)). In various applications, it is natural to assume

that players have exogenous weights that measure differences in their negoti-

ation ability or importance (Kalai and Samet, 1987). This raises a question

about studying values (i.e. allocation rules) in cooperative games that con-

sider not only equality but, at the same time, also proportionality principles

that account for players’ weights.

The construction of values that naturally associate with the exogenous

weights of players was pioneered by Shapley (1953) with the introduction of

the weighted Shapley value, which allocates the Harsanyi dividends of each

coalition among its members proportionally to their positive weights. Simi-

larly, the weighted division (WD) values allocate the total worth among all

players proportionally to their weights (e.g., Béal et al. (2016) and Kongo

(2019)). Other weighted values based on proportionality principles include

the Harsanyi solutions (Derks et al., 2000), weighted coalition structure val-

ues (Levy and Mclean, 1989), weighted solidarity values (Calvo and Gutiérrez-

López, 2014), and weighted surplus division values (Kongo, 2019). In con-

trast, the equal division (ED) value is an extreme egalitarian value, that al-

locates the total worth equally among all players (e.g., van den Brink (2007),

van den Brink and Funaki (2009), and Casajus and Huettner (2014)). In

this paper, we explore a family of weighted values that offer a compromise

between proportionality and equality principles.

We introduce a family of values called weighted-egalitarian values, which

are constructed as follows. First, inspired by Zou et al. (2021), the worth of

the grand coalition is divided into two parts, each of which is determined by

a linear function of the worths of all coalitions. Next, one part is allocated

among all players proportionally to their importance, as given by exogenous

weights, and the other is allocated equally among all players. This allocation
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process demonstrates that the weighted-egalitarian values strike a balance

between egocentrism and egalitarianism. Applying different linear functions

can give rise to different values, including the WD and ED values. Our values

also allow for the possibility that a player with zero weight may receive a non-

zero payoff, which distinguishes them from other weighted division values,

except for the weighted surplus division values. This argument is supported

by the experimental evidence in De Clippel and Rozen (2022), which clearly

shows that a player who adds no value to any coalition (i.e., the null player)

may recieve a non-zero payoff.

To explore weighted-egalitarian values, we introduce three axioms that

evaluate the effect of the weights of players on the payoffs. The first one

is ω-ratio invariance for symmetric players, which states that the difference

between the payoffs of symmetric players and any other player’s payoff should

be in the same proportion to the difference between their weights. This axiom

is akin to ω-mutual dependence in Nowak and Radzik (1995), which states

that the payoffs of mutually dependent players (also symmetric players) are

in the same proportion to their weights. The second axiom is monotonicity

in weights, which states that the player with the larger weight among two

symmetric players should not receive less profit (or incur less cost) than the

other player. This ensures that greater returns or risks are accompanied

by greater weights. Note that these two axioms are variations of Shapley’s

symmetry axiom in the sense that they imply equal payoffs for symmetric

players with equal weights. Finally, to deal with the special case where all

weights are equal, we apply the symmetry in weights requirement that all

players get an equal payoff in that case.

We identify subfamilies of weighted-egalitarian values using the afore-

mentioned novel and standard axioms. Our first result characterizes the

whole family of weighted-egalitarian values by combining ω-ratio invariance

for symmetric players and symmetry in weights with the standard axioms

of efficiency and linearity. As mentioned before, the ED and WD values are

well-known examples of weighted-egalitarian values. We then focus on com-
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binations of these two values. Our second result characterizes a subfamily of

affine combinations of the ED and WD values by adding coalitional mono-

tonicity, as introduced in van den Brink (2007) to the axioms mentioned

above. This subfamily is identical to the family of convex combinations of

the WD and EWD values, where the EWD value assigns to every player the

average of the WD values of all other players. Our third result character-

izes the family of convex combinations of the ED and WD values by adding

monotonicity in weights. In this case, symmetry in weights is redundant.

This family considers a fixed weight system but flexible balance coefficients

and is closely related to the family of WD values in previous works such as

Béal et al. (2016) and Kongo (2019), where weight systems are flexible.

The rest of this paper is organized as follows. Section 2 covers basic

definitions and notation. In Section 3, we introduce the concept of weighted-

egalitarian values and three new axioms. Section 4 presents the axiomati-

zation of three subfamilies of weighted-egalitarian values. Finally, Section 5

concludes. All proofs are provided in Appendix.

2. Basic definitions and notation

A cooperative game with transferable utility, or simply a game, is a pair

(N, v), where N = {1, 2, . . . , n} is a finite set of players and v : 2N → R is

a characteristic function that assigns a real number v(S) to each coalition

S ⊆ N , satisfying v(∅) = 0. For each coalition S ⊆ N , its cardinality will be

denoted by |S| or s. We assume |N | ≥ 3. As we consider the set of players

N to be fixed, we represent a game by its characteristic function v. The class

of games with player set N is denoted by GN .

For any ∅ 6= T ⊆ N , the unanimity game uT is given by uT (S) = 1 if

S ⊇ T , and uT (S) = 0 otherwise; the standard game eT is given by eT (S) = 1

if S = T , and eT (S) = 0 otherwise. Players i, j ∈ N are symmetric in v ∈ GN

if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}. For v, w ∈ GN and a, b ∈ R,

the game av+ bw is defined by (av+ bw)(S) = av(S) + bw(S) for all S ⊆ N .

A weight system ω on N is a vector of real numbers ω = (ωi)i∈N such
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that
∑

k∈N ωk = 1 and ωi ≥ 0 for all i ∈ N . The set of all weight systems on

N is denoted by Ω.

A value on GN is a function ψ that assigns a single payoff vector ψ(v) ∈
RN to every game v ∈ GN . The number ψi(v) represents the payoff of player

i in game v.

The equal division (ED) value on GN is defined by

EDi(v) =
1

n
v(N),

for all v ∈ GN and all i ∈ N .

The weighted division value on GN associated with weight system ω (WDω)

is defined by

WDω
i (v) = ωiv(N),

for all v ∈ GN and all i ∈ N .

Note that ED = WDω for ωi = 1
n

for all i ∈ N . Abusing notation slightly,

we often use ψ instead of a weighted value, ψω, associated with weight system

ω.

3. Weighted egalitarian values and axioms

In this paper, we consider the following weighted values.

Definition 1. Suppose that

α(v) =
∑
S⊆N

αSv(S) (1)

is a linear function on GN where every αS, S ⊆ N , is a parameter in R. Given

a weight system ω, the weighted-egalitarian value on GN associated with ω is

defined by

ψω,αi (v) = ωiα(v) +
1

n

(
v(N)− α(v)

)
, (2)

for all v ∈ GN and all i ∈ N .
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We refer to the class of values defined by (2) for all linear functions α(v)

as the family of weighted-egalitarian values. The ED value is obtained when

α(v) = 0, the WD value is obtained when α(v) = v(N), and their affine

combination βWDi + (1−β)EDi = βωiv(N) + (1−β)v(N)
n

is obtained when

α(v) = βv(N). In our axiomatizations below, we will use one parametrized

axiom that depends on the weight system ω, but the function α does not

explicitly appear in the axioms.

First, we recall some known and desirable axioms of values.

• Efficiency. For all v ∈ GN , it holds that
∑

i∈N ψi(v) = v(N).

• Linearity. For all v, w ∈ GN and a, b ∈ R, it holds that ψ(av + bw) =

aψ(v) + bψ(w).

• Additivity. For all v, w ∈ GN , it holds that ψ(v +w) = ψ(v) + ψ(w).

• Symmetry. For all v ∈ GN and i, j ∈ N such that i and j are

symmetric in v, it holds that ψi(v) = ψj(v).

• Coalitional monotonicity. For all v, w ∈ GN and all i ∈ N such that

v(S) ≥ w(S) for all S ⊆ N with i ∈ S, it holds that ψi(v) ≥ ψi(w).

Efficiency, linearity, additivity, and symmetry are standard. Coalitional

monotonicity, introduced in van den Brink (2007), states that the payoff of a

player does not decrease if the worths of all coalitions containing this player

do not decrease.

In what follows, we introduce three additional novel axioms that formalize

how players’ payoffs are affected by their weights.

The first axiom, called ω-ratio invariance for symmetric players, depends

on the weights ω and states that if two players in a game have equal pro-

ductivity, then the ratio of their payoffs to other players is proportional to

their difference in weight. This imposes that players with equal productivity

receive the same payoff if and only if their weights are the same. In this

sense, this axiom is a weighted variant of Shapley’s symmetry axiom. Let

ω ∈ Ω.
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• ω-ratio invariance for symmetric players. For all v ∈ GN and all

i, j, k ∈ N such that i and j are symmetric in v, it holds that

[ψi(v)− ψk(v)](ωj − ωk) = [ψj(v)− ψk(v)](ωi − ωk).

The second axiom, called monotonicity in weights, states that if two play-

ers in a game have equal productivity, then the player with a larger weight

should not receive less payoff or incur less cost (The terms “profit” and “cost”

refer to v(N) ≥ 0 and v(N) ≤ 0, respectively). When all players have the

same weight, this axiom boils down to symmetry.

• Monotonicity in weights. For all v ∈ GN , all ω ∈ Ω, and all i, j ∈ N
such that ωi ≥ ωj and i, j are symmetric in v, it holds that ψi(v) ≥
ψj(v) if v(N) ≥ 0, and ψi(v) ≤ ψj(v) if v(N) ≤ 0.

Notice that ω-ratio invariance for symmetric players does not have any

bite when all weights are equal. Therefore, for that case we require a sym-

metry in weights axiom which states that if all players have the same weight,

then all players get the same payoff. Let ω ∈ Ω.

• Symmetry in weights. If ωh = 1
n

for all h ∈ N , then for all v ∈ GN ,

it holds that ψi(v) = ψj(v) for all i, j ∈ N .

We remark that we use symmetry in weights only in the first two of our

three characterizations.

4. Main results

We first provide an axiomatization of the family of weighted-egalitarian

values (for a given ω) involving ω-ratio invariance for symmetric players and

symmetry in weights.

Theorem 1. Let ω be a weight system. A value ψ on GN satisfies efficiency,

linearity, ω-ratio invariance for symmetric players, and symmetry in weights

if and only if there exists a linear function α : GN → R of the form (1) such

that ψ = ψω,α.
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The next result shows that adding coalitional monotonicity to Theorem

1 leads to a subfamily of affine combinations of the ED and WD values.

Notably, linearity can be weakened to additivity.

Theorem 2. Let ω be a weight system. A value ψ on GN satisfies efficiency,

additivity, ω-ratio invariance for symmetric players, symmetry in weights,

and coalitional monotonicity if and only if there exists β ∈ [− 1
n−1 , 1] such

that

ψi(v) = βωiv(N) + (1− β)
v(N)

n
, (3)

for all v ∈ GN and all i ∈ N .

Remark 1. Define the following modification of the WD value:

EWDi(v) =
1

n− 1

∑
j∈N\{i}

ωjv(N).

The family of values characterized in Theorem 2 can also be expressed as{
γWD + (1 − γ)EWD | γ ∈ [0, 1]

}
with γ = n−1

n
β + 1

n
. This formulation

clarifies that each member of the resulting family makes a trade-off between

egocentrism (γ) and altruism (1− γ). Specifically, the payoff ωiv(N) repre-

sents an egocentric allocation for player i, while the payoff 1
n−1

∑
j∈N\i

ωjv(N)

can be interpreted as an altruistic allocation for player i.

Remark 2. If symmetry is required in Theorem 2, then ω-ratio invariance for

symmetric players, symmetry in weights and additivity become redundant,

as follows from van den Brink (2007, Theorem 3.3) which shows that an

even weaker symmetry1 together with efficiency and coalitional monotonicity

axiomatize the ED value. Consequently, the weights ωi in (3) have no effect,

which implies β = 0 and thus ψ(v) = v(N)
n

.

1For all v ∈ GN such that all players in N are symmetric in v, there exists a c∗ ∈ R
such that ψi(v) = c∗ for all i ∈ N .
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Remark 3. As can be seen from the proofs of Theorems 1 and 2 in the

appendix, symmetry in weights is only used for the case when all weights are

equal. If we only consider weight vectors where not all weights are equal, then

the characterization results in Theorems 1 and 2 hold without symmetry in

weights.

The lower bound of the parameter β in Theorem 2 (i.e., − 1
n−1) may seem

innocuous2 as shown in Remark 1, but it leads to a counterintuitive result:

the player with the smaller weight among two symmetric players may recieve

a larger payoff than the other player. To avoid this, the next result uses

monotonicity in weights instead of symmetry in weights in Theorem 2 to

identify the family of convex combinations of the ED and WD values.

Theorem 3. Let ω be a weight system. A value ψ on GN satisfies efficiency,

additivity, ω-ratio invariance for symmetric players, monotonicity in weights,

and coalitional monotonicity if and only if there exists β ∈ [0, 1] such that

ψi(v) = βωiv(N) + (1− β)
v(N)

n
,

for all v ∈ GN and all i ∈ N .

Remark 4. Theorem 3 still holds when monotonicity in weights is limited

to the cases where the worth of the grand coalition is non-negative. This can

be replaced by a comparable principle that ensures each player’s payoff to be

weakly increasing with her weight. Specifically, for all v ∈ GN , i ∈ N , and

ω1, ω2 ∈ Ω such that v(N) ≥ 0 and ω1
i ≥ ω2

i , it holds that ψω
1

i (v) ≥ ψω
2

i (v).

Remark 5. We notice that Theorem 3 does not use symmetry in weights

anymore.

Remark 6. We show the independence of the axioms in Theorem 1.

2This lower bound is also present in some axiomatic results of parameter values, such

as the GUC-subfamily of rules in Bergantiños and Moreno-Ternero (2022, Theorem 2).
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(i) Not efficiency: The null value defined by ψi(v) = 0 for all v ∈ GN and

all i ∈ N .

(ii) Not linearity: The value defined by

ψi(v) = ωi +
1

n

[
v(N)− 1

]
, (4)

for all v ∈ GN and all i ∈ N .

(iii) Not ω-ratio invariance for symmetric players: The value defined by

ψi(v) =
(ωi)

2∑
j∈N(ωj)2

v(N), (5)

for all v ∈ GN and all i ∈ N .

(iv) Not symmetry in weights: The value defined by

ψi(v) =


i∑

j∈N j
v(N), if ωk = ω` for all k, ` ∈ N ;

1
n

for all k ∈ N, otherwise.
(6)

for all v ∈ GN and all i ∈ N .

Remark 7. We show the independence of the axioms in Theorems 2 and 3.

(i) Not efficiency: The null value.

(ii) Not additivity: The value defined by (4).

(iii) Not ω-ratio invariance for symmetric players: The value defined by (5).

(iv) Not symmetry in weights: The value defined by (6).

(v) Not monotonicity in weights in Theorem 3: The value defined by ψi(v) =
v(N)
n−1 −

ωiv(N)
n−1 for all v ∈ GN and all i ∈ N .

(vi) Not coalitional monotonicity: The value defined by ψi(v) = 2ωiv(N)−
v(N)
n

for all v ∈ GN and all i ∈ N .
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We note that Theorems 2 and 3 remain valid when coalitional monotonic-

ity is replaced with either non-negativity or grand coalition monotonicity, the

latter introduced in Casajus and Huettner (2014). Non-negativity requires

that for all v ∈ GN with v(N) ≥ 0, it holds that ψi(v) ≥ 0 for all i ∈ N ,

while grand coalition monotonicity requires that for all v, w ∈ GN such that

v(N) ≥ w(N), it holds that ψi(v) ≥ ψi(w) for all i ∈ N .

5. Conclusion

In this paper, we have introduced weighted-egalitarian values to account

for both weight proportionality and equality principles in the allocation of

the total worth. We have characterized the family of weighted-egalitarian

values, as well as two subfamilies: one consisting of some affine combinations

of the ED and WD values, and the other consisting of convex combinations

of the ED and WD values. These results offer valuable insights into weighted

values in cooperative games, which balance the principles of proportionality

and equality in resource allocation.

While some justifications have been proposed for additivity in the value

theory of cooperative games, it is often viewed as a technical requirement.

Consequently, a significant amount of literature is dedicated to axiomatic re-

sults that attempt to dispense with additivity. Although additivity is crucial

to our results, it would be interesting to explore alternative characterizations

that do not depend on it.

Appendix: proofs

Prior to presenting the proofs of our main results, we introduce a lemma

that characterizes the values of unanimity games which satisfy efficiency,

ω-ratio invariance for symmetric players, and symmetry in weights.

Lemma 1. Let ω be a weight system. A value ψ on the class of scaled una-

nimity games {auT}∅6=T⊆N , satisfies efficiency, ω-ratio invariance for sym-

metric players and symmetry in weights if and only if there exists a function
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g : UN → R such that

ψi(auT ) =
a

n
+ g(auT )(ωi −

1

n
), (7)

for all uT , a ∈ R, a 6= 0, and all i ∈ N , where UN is the class of all scaled

unanimity games on N .

Proof. It is straightforward to show that the value defined by (7) satisfies

the three axioms. To show the “only if” part, let ψ be a value that satisfies

the three axioms. We will derive the formula for ψi(auT ) for any auT ∈ UN .

First, notice that, if ωi = 1
n

for all i ∈ N , then by symmetry in weights

we immediately obtain that ψi(auT ) = a
n

for all i ∈ N , which coincides with

(7) for any function g(auT ).

Therefore, in the rest of the proof we assume that there exist i, j ∈ N

with ωi 6= ωj. We consider the following two cases.

(a) Suppose that players i and j are symmetric in auT , i.e., i, j ∈ T or

i, j ∈ N\T . Recall that |N | ≥ 3. For every k ∈ N\{i, j}, by ω-ratio

invariance for symmetric players,

[ψi(auT )− ψk(auT )](ωj − ωk) = [ψj(auT )− ψk(auT )](ωi − ωk).

Then,

ψk(auT )(ωi − ωj) = ψj(auT )(ωi − ωk)− ψi(auT )(ωj − ωk). (8)

Subtracting ψi(auT )(ωi − ωj) from both sides of (8) yields:

[ψk(auT )− ψi(auT )](ωi − ωj) = [ψj(auT )− ψi(auT )](ωi − ωk).

Since ωi 6= ωj, it follows that

ψi(auT )− ψk(auT ) =
ψi(auT )− ψj(auT )

ωi − ωj
(ωi − ωk). (9)
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Denote gji (auT ) =
ψi(auT )−ψj(auT )

ωi−ωj
. Since (9) also holds for k ∈ {i, j} (due

to the fact that k = i implies ωi − ωk = 0, and k = j implies ωi−ωk

ωi−ωj
= 1),

summing (9) over all k ∈ N yields:

nψi(auT )−
∑
k∈N

ψk(auT ) = gji (auT )
(
nωi −

∑
k∈N

ωk
)
.

Since
∑

k∈N ψk(auT ) = a (by efficiency), and
∑

k∈N ωk = 1 (by defini-

tion), it follows that nψi(auT )− 1 = gji (auT )(nωi − 1). Hence,

ψi(auT ) =
1

n
+ gji (auT )(ωi −

1

n
). (10)

Similarly,

ψj(auT ) =
1

n
+ gij(auT )(ωj −

1

n
). (11)

By substituting (10) and (11) into (9) and using gji (auT ) = gij(auT ), we

obtain that, for all k ∈ N \ {i, j},

ψk(auT ) = ψi(auT )− gij(auT )(ωi − ωk)

=
1

n
+ gji (auT )(ωi −

1

n
)− gji (auT )(ωi − ωk)

=
1

n
+ gji (auT )(ωk −

1

n
). (12)

Denote g(auT ) = gji (auT ). Take i, j, k ∈ N . Suppose without loss of

generality that ωi 6= ωk. (Notice that we assumed that |N | ≥ 3 and

ωi 6= ωj.) Then

gki (auT ) =
ψi(auT )− ψk(auT )

ωi − ωk

=
ψi(auT )− ψj(auT )

ωi − ωj
= gji (auT ) = g(auT ), (13)

where the second equality follows from ω-ratio invariance for symmetric

players.

From this, together with (10)-(12), we can conclude that (7) holds for

any k ∈ N .
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(b) Suppose that players i and j are asymmetric in uT . Suppose without loss

of generality that i ∈ T and j ∈ N\T . For every k ∈ T\{i}, by ω-ratio

invariance for symmetric players,

ψk(auT )− ψj(auT ) =
ψi(auT )− ψj(auT )

ωi − ωj
(ωk − ωj). (14)

Obviously, this equality also holds for k = i.

For every k ∈ (N\T )\{j}, by ω-ratio invariance for symmetric players,

ψk(auT )− ψi(auT ) =
ψj(auT )− ψi(auT )

ωj − ωi
(ωk − ωi). (15)

Obviously, this equality also holds for k = j.

Summing (14) over all k ∈ T , summing (15) over all k ∈ N \ T , adding

this all together and applying ω-ratio invariance for symmetric players,

gives ∑
k∈T

(ψk(auT )− ψj(auT )) +
∑
k∈N\T

(ψk(auT )− ψi(auT ))

=
∑
k∈T

ψi(auT )− ψj(auT )

ωi − ωj
(ωk − ωj) +

∑
k∈N\T

ψj(auT )− ψi(auT )

ωj − ωi
(ωk − ωi).

Using
∑

k∈N ψk(auT ) = a,
∑

k∈N ωk = 1 and gij(auT ) =
ψi(auT )−ψj(auT )

ωi−ωj
,

this is equivalent to

a− tψj(auT )− (n− t)ψi(auT ) = gij(auT )− tgij(auT )ωj − (n− t)gij(auT )ωi

⇔

a− tψj(auT )− (n− t)ψi(auT ) = gij(auT )(1− tωj − (n− t)ωi)

⇔
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a− t(ψj(auT )− ψi(auT ))− nψi(auT ) = gij(auT )(1− t(ωj − ωi)− nωi)

⇔ by definition of gij(auT )

a− tgij(auT )(ωj − ωi)− nψi(auT ) = gij(auT )(1− t(ωj − ωi)− nωi)

⇔

a− nψi(auT ) = gij(auT )(1− nωi)

⇔

ψi(auT ) =
1

n
+ gij(auT )(ωi −

1

n
)

Since, as in Case (a), we can show that gij(auT ) = gkj (auT ) for all i, j, k ∈
N , we obtain that (7) holds also in this case.

Proof of Theorem 1. It is easy to check that any value defined by (2) satisfies

the four axioms. To show the “only if” part, let ψ be a value that satisfies

the four axioms. By Lemma 1, there exists a function g such that, for all

a ∈ R, i ∈ N , and ∅ 6= T ⊆ N ,

ψi(auT ) =
a

n
+ g(auT )(ωi −

1

n
). (16)

If ωi = 1
n

for all i ∈ N then the result immediatley follows from symmetry

in weights.

Therefore, suppose that there exist i, j ∈ N with ωi 6= ωj.
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Since linearity implies ψi(auT ) = aψi(uT ), we obtain from (7) that

a

n
+ g(auT )(ωi −

1

n
) =

a

n
+ ag(uT )(ωi −

1

n
) for all i ∈ N.

Since there is at least one i ∈ N with ωi 6= 1
n
, this implies that

g(auT ) = ag(uT ). (17)

Then,

ψi(v) = ψi

 ∑
T⊆N,T 6=∅

∆v(T )uT


=

∑
T⊆N,T 6=∅

ψi (∆v(T )uT )

=
∑

T⊆N,T 6=∅

(
∆v(T )

n
+ g (∆v(T )uT )

)(
ωi −

1

n

)

=
v(N)

n
+

 ∑
T⊆N,T 6=∅

∆v(T )g(uT )

(ωi − 1

n

)
, (18)

where the first equality holds since every v ∈ GN can be expressed as

v =
∑

T⊆N,T 6=∅
∆v(T )uT where ∆v(T ) =

∑
S⊆T

(−1)|T |−|S|v(S), the second equal-

ity follows from linearity, the third equality follows from (16), and the last

equality follows from (17).

Denote h(v) =
∑

T⊆N,T 6=∅
∆v(T )g(uT ). Comparing (2) with (18), we only

need to show that there exist αS, S ⊆ N such that h(v) =
∑
S⊆N

αSv(S).

Let v, w ∈ GN and a, b ∈ R. Since ∆av+bw(T ) = a∆v(T ) + b∆v(T ) for

all T ⊆ N, T 6= ∅, we have h(av + bw) = ah(v) + bh(w). This shows that h

is a linear function on GN . Hence, h(v) is a linear function with respect to

(2n−1) parameters v(S), ∀S ⊆ N and S 6= ∅. Therefore, h(v) =
∑
S⊆N

αSv(S),

where every αS is a parameter in R.
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Proof of Theorem 2. The “if” part is obvious. To show the “only if” part, let

ψ be a value that satisfies the five axioms. Similar to Lemma 1, the combi-

nation of efficiency, ω-ratio invariance for symmetric players, and symmetry

in weights determines that there exists a function f : EN → R such that

ψi(ceT ) =

f(ceT )(ωi − 1
n
), if ∅ 6= T ( N ;

c
n

+ f(ceN)(ωi − 1
n
), if T = N,

(19)

for all eT , c ∈ R, c 6= 0, and all i ∈ N , where EN is the class of all scaled

standard games on N .

Since every v ∈ GN can be expressed as v =
∑

S⊆N,S 6=∅
v(S)eS, we have

ψi(v) = ψi

 ∑
S⊆N,S 6=∅

v(S)eS


=

∑
S⊆N,S 6=∅

ψi (v(S)eS)

=
v(N)

n
+

 ∑
S⊆N,S 6=∅

f (v(S)eS)

(ωi − 1

n

)
, (20)

where the second equality follows from additivity, and the third equality

holds by using (19).

Next, we will derive the formula for f(ceT ) by distinguishing two cases

with respect to T .

(i) Consider f(ceT ) for ∅ 6= T ( N . For the zero game v0 defined by

v0(S) = 0 for all S ⊆ N , efficiency and additivity imply ψi(v0) = 0 for

all i ∈ N . Without loss of generality, we assume c ≥ 0. By coalitional

monotonicity, we have that ψi(ceT ) = ψi(v0) = 0 for all i ∈ N\T ,

and ψi(ceT ) ≥ ψi(v0) = 0 for all i ∈ T . Efficiency then implies that

0 =
∑
i∈N

ψi(ceT ) =
∑

i∈N\T
ψi(ceT )+

∑
i∈T

ψi(ceT ) =
∑
i∈T

ψi(ceT ) ≥ 0, yielding

ψi(ceT ) = 0 for all i ∈ T . Hence, ψi(ceT ) = 0 for all i ∈ N , which, with

17



(19) implies f(ceT )(ωi − 1
n
) = 0. This equality holds regardless of the

sign of (ωi − 1
n
), and therefore we have f(ceT ) = 0.

(ii) Consider f(ceN). Let x1, x2 ∈ R. We have that x1+x2
n

+ f((x1 +

x2)eN)
(
ωi − 1

n

)
= ψi((x1 + x2)eN) = ψi(x1eN) + ψi(x2eN) = x1+x2

n
+

[f(x1eN) + f(x2eN)]
(
ωi − 1

n

)
, where both the first and last equalities

follow from (20), and the second equality follows from additivity of ψ.

This implies that f((x1 + x2)eN) = f(x1eN) + f(x2eN), showing that

f(xeN) is additive with respect to x.

We will show that f(xeN) is a linear function with respect to x. The

theory of additive functions (e.g. Theorem 5.2.1 in Kuczma (2009))

implies that f(ceN) = cf(eN) when c is rational. It remains to show

that f(ceN) = cf(eN) when c is irrational.

Let {sm} be a sequence of rationals which converge to c from below. By

coalitional monotonicity, ψi(smeN) ≤ ψi(ceN) for all i ∈ N , implying
sm
n

+ f(smeN)(ωi − 1
n
) ≤ c

n
+ f(ceN)(ωi − 1

n
). Hence,

c− sm
n

+ [f(ceN)− f(smeN)] (ωi −
1

n
) ≥ 0.

Then, limm→∞
[
c−sm
n

+ [f(ceN)− f(smeN)] (ωi − 1
n
)
]

= limm→∞[f(ceN)−
f(smeN)](ωi − 1

n
) = [f(ceN) − limm→∞ smf(eN)](ωi − 1

n
) = [f(ceN) −

cf(eN)](ωi− 1
n
) ≥ 0. This inequality holds regardless of whether ωi− 1

n

is negative or positive. It must be the case that f(ceN) = cf(eN).

Therefore, f(xeN) is a linear function with respect to x, and thus

f(ceN) = αNc where αN := f(eN) ∈ R.

Subsequently, it follows from cases (i), (ii) and (20) that

ψi(v) =
v(N)

n
+ αNv(N)(ωi −

1

n
).

Next, we show that αN must be a real number in [− 1
n−1 , 1]. Consider any

v ∈ GN such that v(N) ≥ 0. We have ψi(v) = v(N)
n

+ αNv(N)(ωi − 1
n
) ≥

18



ψi(v0) = 0, where the inequality follows from coalitional monotonicity. This

implies that 1
n

+ αN(ωi − 1
n
) ≥ 0. Since ωi ∈ [0, 1], we obtain that the upper

bound of αN is 1 (obtained when ωi = 0), and the lower bound of αN is − 1
n−1

(obtained when ωi = 1).

Taking β = αN yields the desired assertion.

Proof of Theorem 3. The “if” part is obvious. To show the “only if” part,

let ψ be a value that satisfies the five axioms. First, we show that ψ has the

form of (3). Note that in the proof of Theorem 2, symmetry in weights was

used only for the case where all weights are equal. The other axioms imply

that ψ has the form of (3) when there exist i, j ∈ N with ωi 6= ωj. When

ωi = ωj for all i, j ∈ N , monotonicity in weights boils down to symmetry. As

mentioned in Remark 2, symmetry, efficiency, and coalitional monotonicity

uniquely chareacterize ψ = ED, which also coincides with (3).

To show that β ≥ 0, we assume that v ∈ GN and i, j ∈ N are symmetric

players in v such that ωi ≥ ωj. By (3), we have ψi(v) − ψj(v) = β(ωi −
ωj)v(N). Then, by monotonicity in weights, we have β ≥ 0 whenever v(N) ≥
0 or v(N) ≤ 0.
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