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Abstract: I offer a way out of the Taubman-Goldberger controversy on the public policy 

(ir)relevance of heritability studies by arguing for a quasi-experimentally controlled 

comparison of the estimates that these studies provide. If the environments individuals are 

exposed to are under such control, changes in the genetic and the common environment 

(family) variance components underlying inter-individual differences can be ex-post 

informative regarding the evolvement of sources of inequalities in a population. Using 

administrative data from the Netherlands, I empirically illustrate this reappraisal of heritability 

studies by estimating two different gene-environment interactions in test scores from a high-

stakes national educational achievement test. 
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Heritability studies aim to quantify the extent to which inter-individual differences in a trait or 

observable characteristic can be explained by genetic differences in a certain population 

(Jencks 1980; Visscher, Hill and Wray 2008). For instance, heritability estimates of human 

height are typically above 80% in developed countries, with differences in environmental 

circumstances such as living standards explaining the remaining part of the variation 

(Polderman et al 2015; Silventoinen et al 2003). A steadily increasing number of studies shows 

that economic preferences (Benjamin et al. 2012; Cesarini et al. 2009a; 2009b; Wallace et al. 

2007) and socio-economic status indicators are also partly heritable (Benjamin et al. 2012; 

Bingley, Cappellari and Tatsiramos 2023; Branigan, McCallum and Freese 2013; Hyytinen et 

al. 2019; Polderman et al. 2015; Silventoinen et al. 2020; Van der Loos et al. 2013). 

The main reason provided for estimating the heritability of preferences and outcomes 

in economics is to quantify descriptively the relative importance of genetic and environmental 

sources of socio-economic inequalities, especially for their roles in explaining the proliferation 

of these inequalities through generations (Harden 2021; Mogstad and Torsvik 2023; Taubman 

1981). Nevertheless, debates about the policy relevance and information value of heritability 

estimates have been fierce and heated in economics from the onset. Early estimates of the 

heritability of educational attainment and income (Behrman and Taubman 1976; Taubman 

1976a; 1976b) were argued to “serve no worthwhile purpose” (Goldberger 1979, 346) and set 

aside with the suggestion that “the entire effort is misguided” (Goldberger 1978, 960) and that 

“no scientific purpose is served by the flood of heritability estimates” (Kamin and Goldberger 

2002, 83). Nevertheless, in sympathy with Goldberger’s position, thirty years after the 

Taubman-Goldberger debate (Goldberger 1979; Taubman 1981) Manski sighed: “The work 

goes on…”, “…but I do not know why” (Manski 2011, 89). 

Goldberger’s critique is that heritability estimates do not carry information regarding 

the possible impact of public policy on outcomes, and he vividly illustrates this argument with 

his now famous eyeglasses example (Goldberger 1979, Manski 2011): Even if myopia would 

be fully genetically determined, policy makers still have the possibility to intervene by 

distributing glasses and by doing so remediate the problem of bad eyesight. Therefore, 

“Heritability analysis is just not a guide for policy, not a short-cut around the detailed cost-

benefit analysis required for each specific policy proposal” (Goldberger 1979, 346). The 

eyeglasses example illustrates that heritability estimates are not informative regarding whether 

a policy intervention can change outcomes at the individual level, and that these estimates are 

only informative about the sources of inequalities in the environment from which the data were 

sampled (Hyytinen et al. 2019). 
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Mogstad and Torsvik (2023) recently pointed out that this limitation is not unique for 

heritability studies: “It is a general concern in empirical analysis that a parameter estimated on 

data from one population or in one environment may not generalize to other populations or to 

other environments” (Mogstad and Torsvik 2023, 351). In addition, information regarding the 

origins of a problem is also often not directly relevant to solving it. That genes influence 

myopia does not directly suggest eyeglasses as a remedy; the best way to avoid getting wet 

when it rains would be to stay home or bring an umbrella rather than trying to change the rainy 

weather (cf. Mogstad and Torsvik 2023, 351). Still, special caution seems needed (Harden 

2021; Meyer et al. 2023), because “...although it may in essence be true that heritability 

estimates are “fundamentally uninformative” (Manski 2011), it may not be unimportant for 

policy in practice.” (Stenberg 2013, 204). Heritability estimates may have a bearing on the 

development of policy depending on how they are interpreted: “...one may consider educational 

policy where a government must choose a pedagogic strategy and also choose how much 

resources should be allocated to compensate low achievers. Both these decisions could well be 

influenced by whether those who set the political agenda believe 60% of the variation in IQ is 

predominantly determined by genetic endowments, or whether they believe the 60% reflects 

only small genetic differences whose correlations with environments blow up the heritability 

estimate.” (Stenberg 2013, 204). Heritability estimates cannot be used to discriminate between 

these two explanations, and this is exactly why Goldberger discouraged the conduct of 

heritability studies: “...heritability estimates serve no worthwhile purpose. One might view the 

calculations as a harmless exercise, rather akin to other quaint econometric activities like 

finding the bias to order 1/T4 of the k-class estimator in a structural equation with two right-

hand side endogenous variables. Alternatively, one might recognize that the estimates are being 

put to just one use (however unintended and however unjustified), namely to discourage active 

socioeconomic policy by “demonstrating scientifically” that current inequalities are the 

inevitable dictates of nature. If so, the calculations are not harmless, and it may be a good idea 

to abandon the entire enterprise of estimating genetic variance components of socioeconomic 

achievement” (Goldberger 1979, 346). 

Relatedly, although virtually all estimated parameters in empirical research are subject 

to misinterpretation and misuse (cf. Mogstad and Torsvik 2023), Goldberger’s proposal to 

abandon the conduct of heritability analyses is particularly worth considering given the 

controversial history of social and behavioral genetics (Bliss 2018). For example, heritability 

estimates of IQ have been misused to justify prejudice or to discriminate groups (Jensen 1969; 

Herrnstein 1971; Herrnstein and Murray 1994), and outdated and flawed speculations in the 
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literature regarding a partial genetic cause of racial IQ gaps as well as decontextualized general 

findings on genetic influences are used today by White supremacists (Panofsky, Dasgupta and 

Iturriaga 2021). Such group comparisons fail to adequately acknowledge the profoundly 

different environments society has created for individuals of different minority groups (Harden 

2021; Meyer et al. 2013). I wholeheartedly share the concern of potential misuse of heritability 

estimates, and in the present reappraisal of heritability studies for their policy relevance I 

caution that its practical relevance is constrained by the exogenous nature of the environmental 

condition being used in the comparison of heritability estimates. Therefore, I specifically stress 

that this study and the statistical approach put forward in it cannot be used to motivate the 

comparison of heritability estimates across ethnic groups. 

Heritability studies not only estimate heritability, but also estimate the share of the 

variance in the analyzed outcome that can be attributed to environmental influences that are 

shared by siblings but which vary between families. Interestingly, irrespective of whether 

heritability estimates are deemed relevant for policy or not1, the policy relevance of the estimate 

for this common or shared (family) environment component seems beyond discussion 

(Wolfram and Morris 2023). For example, Nielsen and Roos (2015) note “it reflects the 

potential effect on educational attainment of raising the quality of the most disadvantaged 

family environments to the level of the most advantaged one; it thus represents an upper bound 

on improvement in the trait achievable by policy intervention within the existing range of 

environmental variation” (539). This notion, although not receiving much attention in the 

economics literature2, was arguably also the most interesting twist in the Taubman-Goldberger 

debate and where they eventually reached a common ground: While Taubman initially used to 

be concerned with the joint contribution of genes and the family environment to the variance 

in an outcome (“The total of family environmental and genetic effects will be labeled the family 

effect”; Taubman 1976b, 858), the debate with Goldberger made him reach the conclusion that 

“The decomposition is important for policy purposes, not in what it tells us about heritability 

but in what it tells us about the variation in (common) environment, which represents variation 

in opportunities” (Taubman 1981). Parents transmit to their children not only genes but also 

capital and social networks (Becker and Tomes 1979; Corak 2013) and equality of opportunity 

 
1 That genes are an important source of inequalities, and for instance matter for intergenerational transmissions 

(cf. Becker and Tomes, 1979; 1986), is not a discussion point in the Taubman-Goldberger debate. 
2 It is a rather prominent view in the sociology literature, see for instance also Engzell and Tropf (2019) and 

Knigge, Maas, Stienstra, De Zeeuw and Boomsma (2022). In the economics literature, this view is hardly put 

forward. For instance, surprisingly, it is not discussed in the review by Manski (2011); its mentioning in a footnote 

only by Hyytinen et al. (2013) seems to prove the point since this footnote is no longer present in the eventual 

journal publication (Hyytinen et al 2019) of this working paper. 
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is more limited in a population where the family environment determines to a larger extent 

socio-economic success (Roemer 1998). Indeed, Goldberger (1979) also notes that “we have 

policies that merely equalize opportunity: they reduce the common environment variance”. 

While the size of the common environment component is not informative about how easy or 

cost-effective it would be to eliminate inequalities by equalizing opportunities, it bears 

repetition in the economics literature that heritability studies can deliver an indicator for the 

presence of inequality of opportunity. However, as Goldberger (1979) already noticed, it is 

equally true that inequality reductions can also be achieved through different means than 

intervening in the family environment; For instance, “resources might be redistributed to those 

whose backgrounds put them at a disadvantage in the labour market” (Goldberger 1979, 345). 

Thus, merely using the estimate of the common environment as a static indicator of 

inequality of opportunity would still be subject to Goldberger’s critique that this estimate about 

“what is” does not tell anything about “what could be” (cf. Hyytinen 2019). In this study, I 

develop the literature by proposing that a controlled comparison of heritability estimates and 

of the common (family) environment variance component can be informative regarding the ex-

post evaluation of policy effects: While it can be considered relevant to understand for a given 

population how much of the variance in a trait is explained by genetic differences and common 

environmental differences (Taubman 1981; Harden 2021), exogenous sources of variation can 

be used to estimate the extent to which the contribution of genes and the common environment 

to inter-individual differences changes due to (policy-shaped) environmental conditions. For 

instance, stretching the eyeglasses example (Goldberger 1979; Manski 2011), estimating the 

sources of variation in effective sight before and after the extension of basic health insurance 

to cover reimbursement for eyeglasses could potentially show that the impact of familial 

resources (i.e., the common environment component) has decreased. 

I thus offer a way out of the Taubman-Goldberger controversy, by plotting their 

respective positions in a more general framework in which a policy-induced environmental 

change can be modelled. It does justice to the agreement reached in the Taubman-Goldberger 

debate (Taubman 1981; Goldberger 1979) concerning the distinction between genes and the 

family environment, as well as to Goldbergers’s and Manski’s (2011) position that the size of 

these components does net tell us anything about the possible impact of policy measures on an 

outcome. However, the change in these components across exogenous environments can be 

informative regarding the evolvement of sources of inequality in a population. To assess this 

change, I introduce the gene-environment (G×E) interaction model for twin studies (Purcell 

2002), an extension of the classical twin study (Knopik et al. 2018), in the economics literature. 
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Admittedly, this is not the introduction of an ex-ante “cost-benefit analysis required for each 

specific policy proposal” (Golberger 1979), but it does entail the introduction of a tool to 

evaluate whether the contribution of factors beyond an individual’s control (genes and the 

family background) to inter-individual differences has changed. Although this model captures 

only one specific measure of inequality of opportunity (cf. Ramos and Van de Gaer 2016), with 

equality of opportunity currently being a central concern in society I believe this assessment to 

be relevant and timely. 

I start by providing simulations based on the model developed by Purcell (2002) for 

G×E analysis to illustrate that policy-informative heritability studies need to consider more 

than just the standardized variance components (i.e., the proportions of variance explained by 

additive genetic effects A (or h2), common environment effects C (or c2) and unique 

environment effects E (or e2)) only. These relative proportions must be interpreted in 

conjunction with an assessment of the change in the unstandardized variance components 

because environments can influence the variance in the outcome variable significantly.3 Vice 

versa, solely assessing the unstandardized variance components does not suffice as a change in 

importance can only be assessed in a relative fashion (i.e., by the standardized variance 

components). To empirically illustrate this methodological insight further, I draw on large-

scale administrative data from the Netherlands to estimate the heritability of test scores by year 

of test (cf. Heath et al. 1985) and for pupils born just before and after the cut-off of October 1 

used to assign them in school classes. This policy-set rule causes exogenous variation in 

relative age within a school class, with longer-lasting effects on educational outcomes, non-

cognitive outcomes, and earnings, amongst others (Bedard and Dhuey 2006; Black, Devereux 

and Salvanes 2011; Cornelissen and Dustmann 2019; Oosterbeek, Ter Meulen and Van der 

Klaauw 2021; Van Aalst and Van Tubergen 2021). 

In sum, I propose that heritability studies can be used to assess the origins of socio-

economic inequalities (“what is”) as well as to assess changes in the (relative) importance of 

such origins (“what could be”) by exploiting exogenous sources of variation. That is, I revisit 

the Taubman-Goldberger debate by reappraising heritability studies in the economics literature 

for their ability to deliver an indicator for the presence and the development of inequality of 

opportunity and as a tool to ex-post (i.e., after the change in the environment having occurred) 

assess the impact of specific policy conditions on how sources of variation contribute to inter-

 
3 For this reason, stratification of a sample by environments into subsamples generally prohibits a proper 

comparison of (standardized) variance components obtained within these subsamples. 
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individual differences. In doing so, I amend the already rich toolbox of econometric methods 

for policy evaluations (Abadie and Cattaneo 2018) with Purcell’s (2002) gene-environment 

interaction model. Empirically, I show that inequalities in test scores from a Dutch high-stakes 

national test resulting from factors beyond an individual’s control (i.e., genes and the family 

environment) have decreased over the years 2006-2021. However, these factors are more 

important in explaining test scores for relatively younger pupils in a school class. 

 

I. Methods 

The intergenerational mobility literature often uses the Becker-Tomes (Becker and Tomes 

1979; 1986) model of human capital transmission to estimate to what extent differences in 

observed outcomes across individuals can be attributed to particular parental characteristics. 

The overall family background, however, can play a role in shaping outcomes of children 

through various genetic and environmental influences. The relative contribution of such factors 

can be evaluated by exploiting different levels of environmental and genetic relatedness 

between family members (Kilpi-Jakonen et al. 2024). For instance, Solon (1999) posits a basic 

model where outcome 𝑌𝑖𝑗 of individual j in family i is decomposed into a shared family 

component 𝑎𝑖 and an individual-specific component 𝑏𝑖𝑗: 

 𝑌𝑖𝑗 = 𝑎𝑖 + 𝑏𝑖𝑗. (1) 

In a sample of full siblings, since 𝑎𝑖 and 𝑏𝑖𝑗 are assumed to be independent, this implies that 

the variance in outcome 𝑌 (𝜎𝑌
2) can be decomposed into a shared family variance component 

𝜎𝑎
2, and a sibling specific variance component driven by idiosyncratic factors 𝜎𝑏

2. Therefore, 

the correlation in outcomes between sibling j and j’ provides the proportion of the variance that 

is due to shared factors:  

 
𝐶𝑜𝑟𝑟(𝑌𝑖𝑗 , 𝑌𝑖𝑗′) =

𝐶𝑜𝑣(𝑌𝑖𝑗,𝑌𝑖𝑗′)

𝜎𝑌
2 =

𝜎𝑎
2

𝜎𝑎
2+𝜎𝑏

2 . (2) 

Despite the important advances and broad range of empirical estimates in the intergenerational 

mobility literature, recent work still emphasizes the need to further unpack the black box of 

family background (Björklund and Jäntti 2020; Cholli and Durlauf 2022; Mogstad and Torsvik 

2023). Following the conventional notation in the behavioural genetics literature (Knopik et al 

2018), Equation 3 indeed decomposes the shared family component (𝑎𝑖) and individual-

specific component (𝑏𝑖𝑗) in Equation 1 into additive genetic influences (𝐴), common (shared) 

environmental influences (𝐶), and unique (non-shared) environmental influences (𝐸). Here, the 

common environment captures all family, community, social or neighbourhood factors that are 
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shared by a particular type of relative, and that are independent of the genetic factors. The 

unique environmental component is effectively the residual term capturing everything not 

explained by the genetic and common environmental factors: 

 𝑌 =  𝑎𝐴 +  𝑐𝐶 +  𝑒𝐸. (3) 

Under the assumption that the genetic and environmental influences are independent, the 

variance 𝜎𝑌
2 of outcome 𝑌 equals: 

 𝜎𝑌
2 = 𝑎2𝜎𝐴

2 + 𝑐2𝜎𝐶
2 + 𝑒2𝜎𝐸

2. (4) 

The fraction of the variance in outcome Y that can be attributed to the variance in additive 

genetics effects, 
𝑎2

𝑎2+𝑐2+𝑒2, equals the heritability h2 of outcome Y. By comparing covariances 

between relatives with varying degrees of genetic relatedness, the parameters in the model can 

be estimated. The covariance in Y between relative 1 and 2 equals: 

 𝜎𝑌1𝑌2
 =  𝑎2𝜎𝐴1𝐴2

+ 𝑐2𝜎𝐶1𝐶2
. (5) 

There is no unique environmental variance component in Equation 5 because the covariance 

between pairs of individuals for this component is assumed to be zero. Further assumptions 

about the genetic (𝜎𝐴1𝐴2
) and environmental (𝜎𝐶1𝐶2

) covariances between related individuals 

such as siblings, adoptive siblings, parent-child pairs, or other combinations are needed to 

estimate 𝑎2 and 𝑐2. Still, the most popular application of the model is the classical twin study 

in which genetically identical monozygotic (MZ) twins (for which 𝜎𝐴1𝐴2
= 1) are compared to 

dizygotic (DZ) twins who are as genetically equal as regular siblings. Under random mating of 

parents, an assumption that can be easily relaxed in the model (Knopik et al. 2018), 𝜎𝐴1𝐴2
=

0.5 for DZ twins. In addition, the classical twin study relies on the equal environments 

assumption, meaning that both twin types are assumed to be influenced by the common 

environment to the same extent. This assumption, implying 𝜎𝐶1𝐶2
= 1 for both MZ and DZ 

twins, has been criticized but appears to hold sufficiently broadly for educational outcomes to 

validate the model (Derks, Doland and Boomsma 2006; Evans and Martin 2000; Felson 2014; 

Mönkediek 2021).4 The equal environments assumption makes that, in the classical twin 

model, difference in outcomes covariances between MZ and DZ twins can only result from 

 
4 By complementing the classical twin model with information on the twins’ spouses and children, Bingley, 

Cappellari and Tatsiramos (2023) test and reject the equal environments assumption for educational attainment in 

a Danish twin sample. They find that MZ twins share their environments far more than DZ twins, and the 

differential correlation in educational attainment between the two twin types loads onto the genetic variance 

component suggesting this component to be overestimated in the classical twin model. This is an intriguing result, 

although this extension of the classical twin model could only be identified by imposing additional moment 

restrictions from between generations, i.e., covariances between parents and children and between twins (or co-

parents) and their niblings. In my current reappraisal of heritability studies, though, the size of the estimated 

variance components is of lesser importance (cf. Goldberger’s critique) than the change in variance components. 
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genetic differences. Substituting for the assumptions regarding genetic and environmental 

similarity of MZ and DZ twins into Equation 5 allows for a straightforward estimation of the 

variance components 𝐴 and 𝐶 (and by implication of 𝐸). For this reason, the classical twin 

study is often called the ACE model (Knopik et al. 2018). This model is visualized in Figure 

1a. 

A large number of twin studies has shown that genes significantly contribute to 

variation in important indicators of social status such as educational attainment, occupational 

status, and income (Polderman et al. 2015). Nevertheless, researchers increasingly 

acknowledge that the assumption that genetics and environmental factors operate additively is 

too strong (Plomin 1977; Turkheimer 2000; Rutter 2006) as complex interplays between 

genetic and environmental factors cannot be disregarded (Biroli et al. 2022; Heckman 2007; 

Hunter 2005). The ACE-M twin model, as developed by Purcell (2002), allows for moderation 

of the genetic, common environmental, and unique environmental effect by an observed 

environmental factor 𝑀: 

 𝑌 = (𝑎 + 𝑎′𝑀)𝐴 + (𝑐 + 𝑐′𝑀)𝐶 + (𝑒 + 𝑒′𝑀)𝐸. (6) 

This model, shown in Figure 1b, simplifies to the classical twin model in case 𝑎′, 𝑐′, and 𝑒′ are 

all equal to 0. The linear moderation in the model may subsequentially have bearing on the 

relative proportions of the variance components 𝐴, 𝐶, and 𝐸. For instance, the proportion of 

the variance explained by additive genetic effects (heritability ℎ2) varies as a function of 𝑀: 

 
ℎ2 =

(𝑎 + 𝑎′𝑀)2 

(𝑎 + 𝑎′𝑀)2 + (𝑐 + 𝑐′𝑀)2  + (𝑒 + 𝑒′𝑀)2
. (7) 

A famous application of the ACE-M model concerns the analysis of how parental socio-

economic status moderates the heritability of IQ (Turkheimer et al. 2003), with the results 

suggesting that the relative impact of genes on IQ is stronger in richer families while the relative 

impact of the common environment is stronger in poorer families. Nevertheless, the results 

obtained using the ACE-M are prone to bias if moderator 𝑀 itself is heritable (Van der Sluis, 

Posthuma and Dolan 2011): Endogenous sorting into environmental categories preempts the 

comparison of variance components across categories. For this reason, in my revisiting of the 

Taubman-Goldberger debate I stress the exogeneity of 𝑀.  
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 A 

 B 

Figure 1. The ACE–M twin model for gene-environment interaction analysis (Purcell 2002). 

Observed outcomes Y1 and Y2 for twin 1 and twin 2, respectively, are explained by (1) a 

constant term capturing the means, (A) additive genetic effects, (C) common environmental 

effects, and (E) unique environmental effects. In Panel A, the structural model assumes a 

genetic correlation rMZ = 1 for monozygotic (MZ) twins and rDZ = 0.5 for dizygotic (DZ) twins; 

the correlation between common environmental effects equals r = 1 for both types of twins. In 

Panel B, the structural model assumes a genetic correlation rOS = 0.5 for opposite-sex (OS) 

twins and rDZ = 1.0×(#SS–#OS)/#SS + 0.5×#OS/#SS for same-sex (SS) twins; the correlation 

between common environmental effects equals r = 1 for both types of twins. 
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Another significant challenge to properly implement the ACE-M model is that it requires large 

samples to be statistically well-powered, because most twin registries are relatively small (Hur 

et al. 2019). An adaption of the ACE-M model, however, facilitates the use of large-scale 

administrative data for it. Based on parental information and birth dates, it is relatively 

straightforward to identify twins within administrative data. National registries typically do not 

contain information on the zygosity of twins, but opposite-sex (OS) twins are all dizygotic. By 

relying on the assumption that same-sex (SS) and OS twins are equally alike among DZ twins, 

the average genetic correlation among SS twins can be approximated by 1.0×(#SS–#OS)/#SS 

+ 0.5×#OS/#SS (Atav, Rietveld and Van Kippersluis 2023; Calvin et al. 2012; Erola et al. 2022; 

Figlio et al. 2017; Pokropek and Sikora, 2015; Scarr-Salapatek 1971). That is, SS twins can be 

either monozygotic or dizygotic but by assuming a 1:1 sex ratio the average genetic relatedness 

within the set of SS twins can be approximated. At the expense of some statistical power, the 

comparison between OS and SS twins (Figure 1b) gives the same results as the comparison 

between MZ and DZ twins (Figure 1a). Still, the comparison between OS and SS twins requires 

the assumption of equal heritability across sexes, and thus a stronger equal environments 

assumption, i.e., SS twins and OS twins are influenced by the common (family) environment 

to the same extent. Moreover, with the sex ratio needed for the determination of genetic 

relatedness, analyses cannot be stratified by sex. 

The parameters (paths) in the ACE-M model can be estimated using maximum 

likelihood as implemented in the “umxGxE” function R package “umx” (Bates, Neale and 

Maes 2019). In line with the model visualized in Figure 1b, I adjusted this function for the 

comparison between OS and SS twins. An advantage of the maximum likelihood approach is 

that nested models in which one of more paths in the model are dropped (e.g., all moderating 

paths) can be readily compared in terms of fit with the data. By looking at the significance of 

the change in fit, the most parsimonious model given the fit between model and data can be 

determined. 

 

II. Results 

This section consists of two parts. First, I use simulations to present various forms of G×E 

interplay that can be detected using the ACE-M model. Thereafter, I use data from Statistics 

Netherlands to estimate G×E interplays in test scores from a Dutch national educational 

achievement test. 

A. Simulations 
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The ACE-M model (Purcell 2002) allows for non-equal variances at different levels of the 

moderating variable, which is important because the absolute magnitude of genetic effects and 

common environment effects may change and not only their proportional contribution to inter-

individual differences. With the environmental variable also allowing to moderate the effects 

of the common and unique environment, it is also possible that variance components change 

as function of the moderator while the variance remains equal at different levels of the 

moderating variable. Therefore, to properly assess G×E interplay, one cannot suffice by only 

looking at the change in standardized components because from these it is not clear which (i.e., 

the genetic, common environmental, or unique environmental) effect is moderated. However, 

one can also not suffice by looking at the raw variance components only, because a change in 

importance can only be assessed in a relative fashion. Therefore, both raw and standardized 

variance components need to be evaluated in conjunction. The statistical validity of the ACE-

M has been thoroughly studied (Purcell, 2002), but it is worth showcasing four main scenarios. 

Together, these scenarios illustrate why both raw and standardized variance components need 

to be evaluated in the model. Simulations have been conducted using the 

“umx_make_TwinData” and “umxGxE” functions of the R package “umx” (Bates, Neale and 

Maes 2019), and are based on 100,000 MZ and DZ twin pairs in each environment. 

In the first scenario moderator M does not impact the contribution of A, C, and E to 

inter-individual differences (Figure 2, Panel A). As a result, the relative proportions of A, C, 

and E (standardized moderation effects) do not depend on M. In the second scenario, moderator 

M impacts the raw moderation effects in the same proportional fashion (Figure 2, Panel B). As 

a result, despite changes in the raw variance components, the standardized moderation effects 

(i.e., the relative proportions of A, C, and E) do not depend on M. Together, the first and second 

scenario showcase that both standardized and unstandardized variance components need to be 

assessed when analyzing interactions in twin models. In the third scenario (Figure 2, Panel C), 

M does not moderate the impact of A but does so for C and E. With the contribution of A being 

constant over M, this scenario illustrates that a proper assessment of interactions in twin models 

comprises all three variance components simultaneously. This is further illustrated in the fourth 

scenario (Figure 2, Panel D). Here, M impact both the raw and standardized variance 

components of all three sources of variation in the model. 
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Figure 2. Results of simulations based on the ACE-M twin model for gene-environment 

interaction analysis (four scenarios). Moderator M (the environment on the x-axis) takes value 

0 or 1 depending on the twin pair being affected by an exogenous environmental change or not. 

Error bars represent 95% confidence intervals. 

 

B. Empirical results 

In this part, I draw on administrative data on the universe of the Dutch population from 

Statistics Netherlands (CBS). In these data, I determine twins as individuals sharing the same 

two parents and being born in the same year and the same month. The outcome variable is the 

score on a nation-wide standardized educational performance test (CITO) around the age of 12 

during the last year of primary education. This test is administered on three consecutive days 

in January or February. In combination with teacher advice, the result of this test is used to 

determine tracking placement in secondary school in the Netherlands. The CITO-elementary 
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test consists of multiple-choice items assessing four different intellectual skills: Language, 

Mathematics, Information Processing, and World Orientation. Total performance is a 

standardized score between 501 and 550 (Van Boxtel, Engelen and De Wijs 2010). Raw test 

scores are available for the years 2006-2021. In total, I have complete data on 28,862 twin pairs 

(57,724 individuals), from which 10,409 are OS and 18,453 are SS twin pairs. Figure 3 shows 

descriptive statistics by year of test and month of birth, both before and after standardization 

by sex and year of test to mean 0 and standard deviation 1.5 It can be seen (Figure 3, Panel A) 

that the mean of the raw CITO scores varies over the years, although not with a clear pattern. 

Data from the year 2019 are missing, because CITO tests were cancelled in that school year 

due to COVID-19 restrictions. Regarding month of birth (Figure 3, Panel B), CITO scores tend 

to decrease approximately linearly from October-September. The mean difference in raw CITO 

scores between these two months is 0.669 (p = 0.0005). Because of the variation over years 

and the comparison of OS and SS twins, I use the test scores standardized by sex and year of 

test in the heritability analyses. 

  

A B 

  

C D 

Figure 3. Mean CITO scores (raw scores in Panels A and B and standardized scores by sex 

and year of test in Panels C and D). Error bars represent 95% confidence intervals. 

 
5 It is possible, but not common, in Dutch primary schools to skip or re-take a class, depending on ability and 

teacher advice. For this reason, year of test is almost perfectly correlated with year of birth (r = 0.990). 
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The comparison of the standardized CITO scores between OS and SS twins results into 

standardized variance component estimates of 0.84 (A), 0.02 (C), and 0.14 (E). The estimate of 

the additive genetic components appears high, but is in line with earlier findings for CITO 

scores as found in the sample of the Dutch Twin Registry using the classical twin study design. 

That is, Bartels, Van Beijsterveldt and Boomsma (2009) find that 78–84% of the variance in 

CITO scores is explained by additive genetic effects while the remaining variance is accounted 

for by nonshared environmental effects. Similarly, De Vries et al. (2021) find estimates of 0.80 

(A), 0.00 (C), and 0.20 (E). De Zeeuw et al. (2016), as I do, find some evidence for an impact 

of the shared family environment: 0.74 (A), 0.08 (C), and 0.18 (E). In addition, they find that 

there is no evidence for gender differences in the underlying etiology of the CITO scores, an 

important assumption in my comparison of OS and SS twins. Finally, in a much smaller and 

likely more selected sample, Bartels, Rietveld, Van Baal and Boomsma (2002) find estimates 

of 0.57 (A), 0.27 (C), and 0.16 (E). Also in this study, no evidence of sex-differences in the 

heritability of CITO scores is found. 

 Next, I investigate moderation by year of test to assess the presence of a linear trend in 

the development of inequality and sources of inequality over time. Panel A of Figure 4 shows 

that while the unstandardized variance component A increases from 0.81 to 0.86 over the course 

of the years 2006-2021, this increase is hardly visible in its standardized variance component 

(0.829 to 0.835) due to the overall increase in the outcome variance from 0.98 to 1.03 over the 

analyzed period. For C and E, changes are visible both in the unstandardized and standardized 

variance components. Importantly, a loglikelihood-ratio test reveals that dropping the 

moderating paths from the model results in a significant drop in model fit (χ2 = 13.38, p = 

0.004). Thus, the inclusion of the moderating paths increases the fit between the data and the 

model. From the standardized variance components, I conclude that inequalities due to factors 

beyond an individual’s control (i.e., A and C) have decreased from 0.87 to 0.85. The common 

environment particularly has become less important in explaining the variance in CITO test 

scores (0.043 vs. 0.015). However, I note that further loglikelihood-ratio tests suggest that the 

most parsimonious model fitting the data equally good as the full model is a model without 

main effect and interaction effect for C (χ2 = 1.63, p = 0.444). The change in fit is, however, 

small.6 

  

 
6 Moreover, it should be considered that the loglikelihood-ratio test depends on the size of the analysis sample. 
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A 

 

B 

Figure 4. Results of the ACE-M model comparing CITO test scores (standardized by sex and 

year of test) of OS and SS twins. Panel A: Moderation by year of test; Panel B: Moderation by 

month of birth. Error bars represent 95% confidence intervals. 

 

Panel B of Figure 4 shows the ACE-M model estimates for moderation by month of birth. 

Because of the October 1 cut-off used to assign pupils in school classes, the month of birth 

variable is defined as October = 1, November = 2, … , September = 12. The slopes in the 

unstandardized subfigure line up well with the slopes in the standardized subfigure. Again, I 
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find using a loglikelihood-ratio test that dropping the moderating paths from the model results 

in a significant drop in model fit (χ2 = 25.82, p < 0.001). The inclusion of the moderating paths 

thus increases the fit between the data and the model. The standardized variance components 

suggest that factors beyond an individual’s control (i.e., A and C) contributing to CITO test 

scores differences are more important (0.83 vs. 0.89) for relatively younger pupils in a school 

class. The standardized variance of the additive genetic factor differs particularly (0.80 vs. 

0.88). Further loglikelihood-ratio tests suggest that the most parsimonious model fitting the 

data equally good as the full model is a model without main effect and interaction effect for C 

(χ2 = 0.89, p = 0.640). Again, the change in fit is negligible. In total, the results suggest that 

factors beyond the pupil’s control (genes and the family environment) are more important in 

explaining test scores for relatively younger pupils in a school class, questioning equality of 

opportunity. 

III. Conclusion 

My revisiting of the Taubman-Goldberger controversy and reappraisal of heritability studies is 

a response to Manski’s sigh why heritability studies are still being conducted (Manski 2011). 

Heritability studies can offer a description of the relative importance of genetic and 

environmental sources of socio-economic inequalities, but with Goldberger (1979) and Manski 

(2011) I agree that plain heritability estimates do not carry information value for public policy. 

The eyeglasses example keeps proving this point. However, going beyond the mere estimation 

of heritability, I argue for a quasi-controlled comparison of heritability estimates in the context 

of a G×E interplay model. By drawing on the ACE-M model for G×E interplay as developed 

Purcell (2002), I show that differences attributable to factors beyond an individual’s control 

(genes, and especially the family environment) can carry information value regarding the 

evolvement of inequality of opportunity. In my synthesis, I do justice to the agreement reached 

in the Taubman-Goldberger debate (Taubman 1981; Goldberger 1979) concerning the 

distinction between genes and the family environment. Moreover, fully in line with 

Goldbergers’s and Manski’s position, I abstain from “claims of “more important” or “less 

important”” (of genes vs. the environment) that, indeed, serve “no worthwhile purpose” 

(Manski 2011, 92). However, I do argue that the estimates heritability studies provide can carry 

information in their comparison with each other across exogenously determined (policy-

shaped) environments. In doing so, changes in the (standardized) variance components can be 

informative regarding the evolvement of sources of inequalities in a population and the 

proliferation of inequalities through generations (Atav, Rietveld and Van Kippersluis 2023; 

Mogstad and Torsvik 2023).  
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