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Abstract  

We analyse time-varying tolling in the stochastic bottleneck model with price-sensitive demand and 

uncertain capacity. We find that price sensitivity and its interplay with uncertainty have important 

implications for the effects of tolling on travel costs, welfare and consumers. We evaluate three fully 

time-variant tolls and a step toll proposed in previous studies. We also consider a uniform toll, which 

affects overall demand but not trip timing decisions. The first fully time-variant toll is the ‘first-best’ toll, 

which varies non-linearly over time and results in a departure rate that also varies over time. It raises the 

generalised price (i.e. the sum of travel cost and toll), thus lowering demand. These outcomes differ 

fundamentally from those found for first-best pricing in the deterministic bottleneck model. We call the 

second toll ‘second-best’: it is simpler to design and implement as it maximises welfare under the 

constraint that the departure rate is constant over time. While a constant rate is optimal without 

uncertainty, it is not under uncertain capacity. Next, ‘third-best’ tolling adds the further constraint to the 

second-best that the generalised price should stay the same as without tolling. It attains a lower welfare 

and higher expected travel cost than the second-best scheme, but a lower generalised price. All our other 

tolls raise the price compared to the no-toll case.  

In our numerical study, when there is less uncertainty: the second-best and third-best tolls achieve 

welfares closer to that of the first-best toll, and the three schemes become identical without uncertainty. 

As the degree of uncertainty falls, the uniform and single-step tolls attain higher welfare gains. Also, 

when demand becomes more price-sensitive, the uniform and single-step tolls attain relatively higher 

welfare gains. Our step toll would lower the generalised price without uncertainty but raises it in our 

stochastic setting. 
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1. Introduction  

Congestion is one of the greatest challenges facing cities worldwide. Congestion causes different 

kinds of disutilities, including loss of time and inconveniences due to rescheduling, unpredictability and 

uncertainty. Travel conditions may vary due to a combination of exogenous shocks, including weather 

conditions and traffic incidents, and endogenous demand responses to those shocks. Especially when 

those responses take the form of rescheduling—for example, by departing earlier to create time 

“buffers”—the analysis of congestion and policies to address it requires models that can deal with the 

dynamics of departure times, the impact of that on dynamic patterns of travel delays and the feedback of 

that upon behaviour, to obtain a consistent representation of stochastic dynamic equilibria that can be 

used for policy evaluation. That is what our paper aims to offer, studying policies to address dynamic 

congestion in a stochastic setting where travellers can respond in terms of departure time choice, but also 

travel choices more generally in the sense that we will consider price-sensitive demand. 

Our analysis employs the stochastic bottleneck model. We analyse different types of fully time-

variant tolling, uniform tolling, and step tolling all under uncertain capacity and price-sensitive demand. 

As discussed below, there is extensive literature on the untolled equilibrium of the bottleneck model with 

uncertain capacity. Only a few papers consider time-variant tolling, and none consider price-sensitive 

demand. As we will see, the interplay between uncertainty and price sensitivity has important effects and 

complicates analysis. The effects of time-variant tolling also differ from the effects of the deterministic 

model. Some papers have looked at uniform tolling, where the toll is constant (Lam, 2000; Zhu et al., 

2018; Jiang et al., 2021). In particular, Zhu et al. (2018) used a bottleneck model with uncertainty in the 

free-flow travel time that does not affect queuing. So, there is no interaction between uncertainty and the 

dynamics of congestion, and their model provides insights that are like those in the deterministic model, 

as the social optimum has no queuing. Conversely, in our model, the social optimum will have queuing 

when capacity is low. Our approach seems realistic but is difficult to analyse.  

The three fully time-variant tolls that we consider follow from earlier studies with fixed demand. 

The first follows Lindsey (1994, 1999), and we call it ‘first best’ because it attains an overall social 

optimum. The first best leads to a departure rate that weakly increases over the morning, and it raises the 

generalised price (i.e. the sum of travel cost and toll) compared to the untolled case. The first best has a 

smaller reduction in travel cost and a smaller welfare increase than under certainty: the former leaves the 

price unchanged and halves the average travel cost. This outcome has important implications for the 

political feasibility of tolling and its desirability vis-à-vis alternative policies such as capacity expansion, 

travel credits, and flexible working hours. Our results deviate from those for a deterministic bottleneck 

in ways comparable to results under dynamic flow congestion (Chu, 1999; Mun, 1999, 2003).  

Long et al. (2022) proposed what we call a ‘second-best time-varying toll’. It maximises welfare 

under the conditions that the departure rate is constant over time and the toll starts and ends at zero. This 

greatly simplifies the scheme's design for the researcher and government, and it matches what is optimal 

in the deterministic bottleneck model; however, as we will show, it is ‘second best’ under uncertain 

capacity as it lowers welfare compared to first-best pricing. We also extend the analysis of Long et al. 

(2022) by adding price-sensitive demand and optimising total demand in the second step of the analysis. 

Our third toll follows Xiao et al. (2015). We call it a ‘third-best time-variant toll’ because it adds an 

extra constraint to the second-best case: the generalised price should be at its untolled level. In fact, there 

is only one constant departure rate with a toll starting at zero and a price at its untolled level. Therefore, 

the third-best toll needs no maximisation of welfare. The third-best toll does not hurt users by raising the 

generalised price. In contrast, all our other tolls raise the price. This helps with the political and social 
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feasibility of tolling. However, this advantage comes with the downside of a lower welfare. This makes 

it important to see how large this welfare loss is and how much better off the consumer is. This allows us 

to determine if it may be worth it. Again, we extend Xiao et al.’s (2015) model by adding price-sensitive 

demand. There is a large literature on Pareto-improving tolls under certainty. See, for instance, 

Lawphongpanich and Yin (2010), Tan et al. (2016) and Hall (2018). As in our setting, adding price-

sensitive demand makes tolls that do not hurt users more challenging, and less beneficial for welfare.  

The analysis of uniform (time-invariant) and step tolling (where the toll changes only in discrete 

steps) is important. In reality, tolls are not fully time-variant; they are uniform—as in London—or at most 

have a few steps in them—as in Singapore and on some US pay-lanes and bridges. We will see that the 

combination of uncertainty and price-sensitive demand changes how these coarse tolls perform compared 

to first-best tolling. A uniform toll has no effect if demand is fixed: it cannot alter departure rates directly 

but only affects total demand. We use the ADL step toll of Arnott et al. (1990).  

Xiao et al. (2015) and Long et al. (2022) also considered single-step tolling, as did Jiang et al. (2022). 

However, they all used fixed demand. Under uncertain capacity, Yu et al. (2023) considered uniform 

tolling in conjunction with information provision. Jiang et al. (2021) and Zhu et al. (2018) analysed 

uniform tolling in a bottleneck model with an uncertain free-flow travel time. 

Our core policy contribution is the comparison of various tolling policies when considering the 

interplay of uncertainty in congestion and price-sensitive demand. The literature has focused on the 

second-best toll as the best realistically feasible. But how much worse does it perform than the first best? 

Is its ease of use worth the lower welfare? All our tolls, except the third-best, hurt consumers by raising 

the generalised price. So, the third best may be easier politically to implement. But how much lower is 

its welfare, and how much does it help consumers? All these are important questions, but also questions 

that are absent without the uncertainty. Moreover, with fixed demand, one can always set the toll so that 

it does not hurt users. So, again, the interaction between uncertainty and price-sensitive demand is vital. 

Real-world tolls vary in steps or are uniform. How do these tolls compare with the time-variant ones? 

And how does this differ from under deterministic congestion? It is important for policymaking to have 

the answers to these questions, also if the required models become too complex to allow for intuitive 

closed-form solutions. As this is the situation in our setting, we will complement and extend the analytics 

using numerical analyses. 

Our core methodological contributions are threefold: 1) We study time-variant tolling in the 

stochastic bottleneck model with uncertain capacity and price-sensitive demand; the interaction of these 

two will prove important and has been mostly ignored in the literature. Price sensitive demand lowers 

benefits from the second- and third-best cases because they equate the generalised price to the marginal 

social cost. 2) We present dynamic optimisation specifications to determine our settings using a 

Hamiltonian and optimisation in two steps. 3) The analysis of first-best tolling under price-sensitive 

demand and uncertain capacity is much more complex than it is for the second- and third-best tolls. But 

this complexity is needed to test if their relative ease of use for the regulator is worth it. We optimise 

using two steps. The first, comparable to the existing literature about fixed demand, involves optimising 

the departure rate and the toll pattern for a given number of travellers, using optimal control theory. This 

gives the optimal dynamic pattern given the number of users. The second step then optimises total demand 

and the starting level of the toll, whilst considering that for any total demand to be found, the optimal 

dynamic pattern from the first step will apply. This second step, which is vital when demand is price-

sensitive, has not been considered before and will be shown to have important implications. Note that the 

optimality conditions from these two analytical steps simultaneously characterize the full optimum and 

are therefore not to be understood as phased actions by the toll authority as occurs in multi-stage games. 
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Table 1: A comparison of our paper with the literature 

Citation 
Distribution of 

uncertainty  

Capacity is constant 

during the day 

Bottleneck; 

uncertain 

capacity 

Bottleneck; 

uncertain free-

flow time 

Price-sensitive 

demand 

First-best 

toll 

Second-best 

toll 

Third-best 

toll 
Step toll Uniform toll 

No-toll 

equilibrium 

Arnott et al., 

1991 

Two-point 

distribution 
Yes √ - - - - - - - √ 

Arnott et al., 

1996, 1999 
General distribution Yes √2 - √ - - - - - √ 

Lindsey,  

1994, 1999 

General & two-point 

distribution 
Yes √2 - - √ - - - - √ 

Long et al., 2022 General distribution Yes √ - - - √ √ √ - √ 

Xiao et al., 2015 Uniform distribution Yes √ - - - - √ √ - √ 

Jiang et al., 2021 General distribution  Yes - √ √ - - - - √ √ 

Jiang et al., 2022 Uniform distribution  Yes √ - - - - - √ - √ 

Zhu et al., 

2018 
Uniform distribution Yes - √ √ ̴1 - - - √ √ 

Yu et al., 

2023 

Two-point 

distribution 
Yes √ - √ - - - - √ √ 

Chu, 1999 None Yes - - √ √ - - √ √ √ 

Mun, 1999, 2003 None Yes - - √ √ - - - - √ 

Fosgerau and 

Lindsey, 2013 
General distribution No √ - - √ - - - - √ 

Hall and Savage, 

2019 
General distribution No √ - - √ - - - - √ 

Peer et al., 2010 
Two-point 

distribution 
No √ - - - - - - - √ 

This paper Uniform distribution Yes √ - √ √ √ √ √ √ - 

Note: 1 For a more limited ‘exogenous’ distribution of free-flow travel time, Zhu et al. (2018) analyse a time-variant toll that works the same way as in the deterministic bottleneck model, and this is the first-best in their setting.  

2 These authors also consider uncertain demand.  
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Table 1 shows how our work relates to the literature and how we extend it. It shows that no previous 

studies considered time-varying tolling in the stochastic bottleneck model with uncertain capacity under 

price-sensitive demand. Section 2 reviews the literature, including works we have not discussed above. 

Section 3 explains the setup. Section 4 derives the socially optimal ‘first-best’ toll and compares it to that 

of the deterministic model and to the second- and third-best tolls. Sections 5 and 6 look at the uniform 

and single-step toll. Section 7 conducts a numerical study. Section 8 concludes.  

 

2. Extended literature review 

Early works on uncertainty in the bottleneck model include Arnott et al. (1991, 1996, 1999) and 

Daniel (1995). Arnott and co-authors were primarily interested in the effects of information provision 

and Daniel in competition among airlines. A very large literature on uncertainty in the bottleneck model 

has built on them. Small et al. (2024), Small (2015) and Li et al. (2020), among others, provide extensive 

overviews.1 But few papers look at congestion pricing,2 and fewer still include price-sensitive demand. 

Instead, most studies have investigated untolled equilibrium or information provision. 

Zhu et al. (2018) analysed time-varying tolling under price-sensitive demand using a bottleneck 

model with uncertain free-flow travel time that does not affect queuing. This leads to an outcome similar 

to that in the deterministic setting, as queuing can be fully eliminated. In contrast, in our model, the social 

optimum has queuing in ‘bad’ states. Their model also misses the interaction between queuing and 

uncertainty. All this makes their model more tractable, but arguably less realistic, and yielding different 

policy implications as it makes tolling appear better for welfare and less harmful for consumers.  

Yu et al. (2023) considered information provision and uniform tolling under uncertain bottleneck 

capacity and price-sensitive demand. Lam (2000), Jiang et al. (2021) and Zhu et al. (2018) analysed 

uniform tolling in a bottleneck model with an uncertain free-flow travel time. Xiao et al. (2015), Jiang et 

al. (2022) and Long et al. (2022) also considered single-step tolling under fixed demand. The literature 

that is most directly related to our study looks at time-variant tolling in the stochastic bottleneck model 

but under fixed demand. This literature yields the first-, second- and third-best tolls, as previously 

discussed (see Lindsey, 1994, 1996, 1999; Xiao et al., 2015 and Long et al., 2022). Finally, Zhang et al. 

(2018) studied a bottleneck model where the capacity drops by a random value when congestion reaches 

a certain level of severity, and they analysed time-varying and step tolling. Their model is similar to that 

of Zhu et al. (2018)—who used an uncertain free-flow travel time—in that optimal tolling removes all 

queuing. This is not true under our uncertain capacity, thereby complicating the analysis and making 

tolling less beneficial. 

Uncertainty can take various forms in the bottleneck model. Previous studies have looked at: i) 

uncertain capacity (e.g. Arnott et al., 1991; Xiao et al., 2015; Long et al., 2022; Jiang et al., 2022); ii) 

uncertain demand (e.g. Fosgerau, 2010) iii) both uncertain capacity and demand (e.g. Arnott et al., 1996, 

1999) iv) uncertain arrival times at the bottleneck (e.g. Daniel, 1995); v) uncertain free-flow travel time 

(e.g. Zhu et al., 2018; Lam, 2000; Siu and Lo, 2009; Jiang et al., 2021); and vi) uncertainty in the demand 

 
1 There is also a large body of literature that considers static congestion (see Zhang et al. (2022) for a detailed review). To examine the interaction 

between information and pricing instruments, Verhoef et al. (1996) used the static model. They found that information and tolling are nearly 

perfectly complementary in the face of stochastic congestion. This finding has then been extended by also considering networks (Yang, 1999; 

Maher et al., 2005; Meng and Liu, 2011; Lindsey et al., 2014; Klein et al., 2018).  
2 Many papers have considered alternative policies to reduce congestion and uncertainty. These policies include information provision (e.g. 

Arnott et al., 1991, 1996, 1999; Liu and Liu, 2018; Zhu et al., 2019; Yu et al., 2021; Han et al., 2021; Yu et al., 2023); ride-sharing (Long et 
al., 2018; Li et al., 2022; Liang et al., 2023); on-demand buses (Ma et al., 2023); tradable credits (Zhang et al., 2022); flexible working hours 

(Xiao et al., 2014b); and merging rules (e.g. Xiao et al., 2014a). Fosgerau (2010) evaluated the relationship between the mean and variance of 

delays. Lindsey (2009) studied self-financing under random capacity and demand.  
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function such as a random demand intercept (Fu et al., 2018). For uncertainty in capacity, most papers 

assume—as we do—that capacity is uncertain but its realised value is constant throughout the peak. A 

few studies have variable capacity within the day due to, for example, an accident that is cleared after an 

hour or a rain shower. Exceptions include Fosgerau and Lindsey (2013), Peer et al. (2010), Hall and 

Savage (2019), and Schrage (2006).3  

We follow much of the literature in using a uniform distribution for the uncertainty, as this allows 

for more closed-form results. Xiao et al. (2014a, 2014b, 2015), Jiang et al. (2022) and Zhang et al. (2018) 

also used a uniform distribution. Arnott et al. (1991), Liu et al. (2020), and Yu et al. (2020, 2023) used 

two-point distributions, which seem more restrictive than a continuous distribution. Lindsey (1994, 1999), 

Long et al. (2022), Jiang et al. (2021) and Liu et al. (2023) used more general distributions. 

Most papers—like ours—assume that drivers are rational and that they consider their expected price. 

So, we abstain from considering risk aversion or bounded rationality. Li et al. (2008) considered risk-

aversion by adding the standard deviation of travel time to the user cost function, thus not only 

considering the expected cost. In Liu et al. (2020) and Jiang et al. (2022), users considered a linear 

combination of the mean cost and its variation. Siu and Lo (2009), Liu and Liu (2018), and de Palma and 

Fosgerau (2013) also considered risk aversion. Zhu et al. (2019) considered bounded rationality.  

Fully time-variant tolls are practically impossible to implement in reality. More realistic toll 

schedules are uniform tolls that are constant over the day or step tolls with one or a few discrete steps in 

the toll. In the deterministic bottleneck model, Arnott et al. (1993), Laih (1994), Lindsey et al. (2012) and 

Ren et al. (2016) proposed four different equilibrium models to examine such schemes. They differ in 

how to ensure that the generalised price is the same before and after the toll is lowered at time t-. The 

ADL model of Arnott and co-authors has a mass departure for arrivals after t-. However, the Laih model 

has separate queues for arrival before and after t- that do not interact. In the Braking model of Lindsey 

and co-authors, the first drivers who will arrive after t- brake and temporarily completely block the road 

to prevent having to pay the (higher) toll or be overtaken. Finally, Ren et al. (2016) developed a model 

in between the Laih and braking model, where there are separate queues but the queue for arrivals after 

t- hinders other drivers while not fully blocking the road. Van den Berg (2012) extended these models by 

adding price-sensitive demand and found that more steps can increase welfare gain and make consumers 

better off. Whilst considering uncertainty, Xiao et al. (2015), Long et al. (2022), Jiang et al. (2022), and 

Zhang et al. (2018) considered single-step tolling, but they used a fixed demand. The first three papers 

used the ADL equilibrium model, and the last one used the Laih model. 

We study the three proposed time-varying tolls for the bottleneck model with uncertain capacity 

whilst adding price-sensitive demand. As we will see, this complicates analysis and has important effects. 

We also study uniform tolling and step tolling using the ADL equilibrium model. Further, we use a 

uniform distribution of the service time of the bottleneck—that is, the inverse of capacity—and this 

uncertain capacity varies over days but is constant throughout the peak. 

 

 
3 The first three papers used the bottleneck model; the last one followed Henderson (1974) and had dynamic flow congestion. Fosgerau and 

Lindsey (2013) included a random incident chance, where an incident temporarily lowers capacity by a fixed amount. There is at most one 

incident per day. In Peer et al. (2010), at each point in time, there is a fixed chance of an incident that lowers capacity, the capacity then remains 

low for the rest of the day. In Hall and Savage (2019), there is a random threshold—which varies over the days—and if the queue gets larger 
than the threshold, the capacity drops. In Schrage (2006), accidents follow a Poisson process. When one occurs, it temporarily lowers capacity, 

which thereafter gradually restores. The probability of an accident is independent of the time since the last accident but increases with traffic 

flow. 
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3. Model set-up   

We assume that the bottleneck capacity is constant within a day but changes stochastically from day 

to day. We define the ‘service time’ of the bottleneck as 𝜙 = 1 𝑠⁄ , where s is the capacity. The service 

time follows a uniform distribution over an interval [𝜙𝑚𝑖𝑛 , 𝜙𝑚𝑎𝑥], and 𝑓(𝜙) = 1 (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)⁄  is the 

probability density function (PDF) of 𝜙. This definition simplifies the mathematics but makes equations 

less intuitive. Commuters are unaware of capacity realisation on a given day before departure. From their 

day-to-day travel, they learn about capacity distribution and make their departure time choices by 

minimising their expected generalised price (Arnott et al., 1996; Lindsey, 1999; Xiao et al., 2015; Long 

et al., 2022). As discussed in the literature review, a uniform distribution of uncertainty is common in the 

literature. Extending our setting to a general distribution is an intriguing avenue for future work.  

In the bottleneck model (Vickrey, 1969), commuters travel from home to work through the 

bottleneck. Without loss of generality, we assume that the free-flow travel time is zero. Thus, the travel 

time when departing at t equals the queuing time at the bottleneck 𝑞(𝑡, 𝜙), where 1 𝜙⁄  is the realised 

capacity. Let 𝜔(𝑡) denote the maximum service time so that there is no queue at t. Following Lindsey 

(1994, 1996), the queuing time is  

𝑞(𝑡, 𝜙) = {
𝜙 ∫ 𝑟(𝑥)

𝑡

𝑡̂
𝑑𝑥 − (𝑡 − 𝑡̂), 𝜙 > 𝜔(𝑡),

0, 𝜙 ≤ 𝜔(𝑡)
  (1) 

where 𝑡̂ is the time when the queue begins to increase from zero and r(t) is the departure rate that is the 

same for all capacity realisation as people depart without knowing what the capacity will be. For 

simplicity of notation, we assume that the departure rates are such that the queue starts to develop only 

once. This will prove true later on. The ω(t) is, for now, an unknown function, which we derive later 

using the explicit capacity distribution.   

The travel time cost for commuters departing at t is 

     𝐶𝑇𝑇(𝑡, 𝜙) = 𝛼 𝑞(𝑡, 𝜙).  (2) 

We define the schedule delay cost for commuters departing at t as:  

𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙)) = 𝛽 𝑚𝑎𝑥{𝑡∗ − (𝑡 + 𝑞(𝑡, 𝜙)), 0} + 𝛾 𝑚𝑎𝑥{(𝑡 + 𝑞(𝑡, 𝜙)) − 𝑡∗, 0},  (3) 

where 𝛼, 𝛽 and 𝛾 are the values of time, schedule delay early and late, respectively. The t* is the desired 

arrival time. Since capacity is stochastic, commuters departing at the same moment each day may 

experience different costs on different days. The expected travel cost at t is  

𝐸(𝐶(𝑡)) = ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙
𝜔(𝑡)

𝜙𝑚𝑖𝑛
+ ∫ [𝐶𝑇𝑇(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙

𝜙𝑚𝑎𝑥

𝜔(𝑡)
. (4) 

We remind the reader that 𝑓(𝜙) is the PDF of 𝜙 and 𝜔(𝑡) is the maximum service time for which no 

queue exists at t. The expected (generalised) price includes the travel cost and toll:  

𝑃𝑗(𝑡) = 𝐸 (𝐶𝑗(𝑡)) + 𝜏𝑗(𝑡),   (5) 

where j indicates the setting such as first best or untolled. In dynamic user equilibrium, this expected 

price should be constant over time during all used departure moments (and not lower at other times). In 

user equilibrium, this expected price should be equal to the marginal benefit as given by the inverse 

demand function. Users know the PDF of the service time (and thus the capacity and the resulting travel 

times), but they all depart before the capacity becomes known. The toll is independent of the state but 

can vary over time. Users know what the toll will be when they depart at time t.  
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When 𝑗 = 𝑁𝑇, we have no tolling and 𝜏𝑁𝑇 = 0. We also consider a uniform toll—indicated by UT—

that is constant throughout the peak and a step toll—indicated by ST—that varies in two discrete steps. 

Finally, we have three fully time-varying tolls. Our first-best toll is indicated by FB. The second-best toll 

is represented by SB and maximises welfare whilst imposing that the departure rate should be constant 

and that the toll should start and end at zero. It is adapted from Long et al. (2022). Finally, the third-best 

toll (adapted from Xiao et al., 2015) is denoted by TB. It adds a further constraint to the second-best toll, 

namely, that the generalised price must stay at its untolled level. Only one unique constant departure rate 

satisfies the three constraints of the third-best scheme. So, it needs no maximisation of welfare. The 

second-best toll needs maximisation, but the constant departure rate makes this much simpler than for 

the first-best toll. We extend the models of Long et al. and Xiao et al. by adding price-sensitive demand. 

Price-sensitive demand lowers the benefit from the second- and third-best tolls because they do not ensure 

that the generalised price equals the marginal social cost. Price-sensitive demand also makes a Pareto-

improving toll such as our third-best toll harder to be achieved.  

 The inverse demand function is 𝐷(𝑁), where N is the total demand. In user equilibrium, the expected 

price should equal the marginal willingness to pay as given by inverse demand: 𝑃𝑗 = 𝐷(𝑁𝑗). The demand 

is independent of the capacity realisation, as no user knows capacity before departing. The regulator has 

the same information as the users and sets the toll only knowing the PDF and not knowing what the actual 

state will be;4 hence maximising expected welfare or social surplus:  

𝑆𝑆𝑗 = ∫ 𝐷(𝑛)
𝑁𝑗

0
𝑑𝑛 − 𝑇𝐶𝑗,   (6) 

where 𝑇𝐶𝑗 is scenario j’s total expected travel cost of 𝐸 (𝐶𝑗(𝑡)) ∙ 𝑁𝑗. Hence, the regulator knows what 

demand will be if it adjusts the toll, what the departure rate will be, and what travel times will be in each 

state. But, like the users, for a given peak, the regulator does not know in advance what state will occur. 

 

4. Social optimum under price-sensitive demand and capacity uncertainty   

In the deterministic bottleneck model, the queue can be eliminated by a time-varying toll, and this 

achieves the social optimum in which the expected price remains unchanged vis-à-vis the no-toll 

equilibrium. As we will see, the toll in our stochastic bottleneck model will affect price and demand.  

The untolled equilibrium for stochastic bottleneck capacity has been extensively studied, so we do 

not discuss it in detail. See Xiao et al. (2015) for a derivation under the same assumptions as ours (except 

that demand is fixed), or see Arnott et al. (1996), Lindsey (1999) and Long et al. (2022) for related settings. 

The social surplus or welfare is  

 𝑚𝑎𝑥
𝑡𝑠,𝑡𝑒,𝑟𝐹𝐵(𝑡),𝑁𝑇𝑉

 𝑆𝑆𝐹𝐵 = ∫ 𝐷(𝑛)
𝑁𝐹𝐵

0
𝑑𝑛 − ∫ 𝐸(𝐶𝐹𝐵(𝑡))𝑟𝐹𝐵(𝑡)

𝑡𝑒

𝑡𝑠
𝑑𝑡, (7) 

where 𝑡𝑠 , 𝑡𝑒 , and 𝑟𝐹𝐵(𝑡) denote the first departure time, the latest departure time, and the first-best 

departure rate at t, respectively. Then, the expected price follows Eq. (5) with 𝑗 = 𝐹𝐵. We solve for the 

first-best social optimum using two steps. In the first step, for a given demand, we optimise the departure 

rate using dynamic optimisation and minimisation of the expected total social cost. The optimal departure 

 
4 Future research could explore information provision and possible state-dependent tolls. Yu et al. (2023) did this for flat tolling. They found 

that state-dependent tolls did hardly better than state-independent tolls while being much harder to implement. Capacity that varies over the 

day or information about road condition becoming available during the day (from, say, news reports) would also be interesting extensions. 

However, these extensions are difficult to model. Hence, explaining the limited existing research on this.  
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rate, in turn, implies how the toll should change over time: the toll’s pattern over time must be such that 

the expected price is constant over time. This step is similar to Lindsey (1994, 1999) in using optimal 

control theory,5 except for our service time following a uniform distribution. The step is also akin to 

Fosgerau and Lindsey (2013). In the second step, we optimise total travel demand, which in turn implies 

the starting level of the toll. This step also considers the effect of a change in total demand on the outcome 

of the first stage. The two steps should not be interpreted as phased actions by the toll authority, as is 

common in multi-stage strategic games. Instead, the steps only concern the analytical sequence in our 

optimisation. 

 

4.1. First step: analytics of optimising the departure rate and toll development over time 

In the dynamic optimisation, the departure rate 𝑟𝐹𝐵(𝑡) is the control variable. There are two state 

variables: 1) queuing time 𝑞(𝑡, 𝜙) from Eq. (1) and 2) cumulative departure 𝑅(𝑡), where 𝑑𝑅(𝑡) 𝑑𝑡⁄ =

𝑟𝐹𝐵(𝑡). In the first step, the problem can be reformulated as the following minimisation: 

 𝑚𝑖𝑛
𝑡𝑠,𝑡𝑒,𝑟𝐹𝐵(𝑡)

∫ 𝐸(𝐶𝐹𝐵(𝑡))𝑟𝐹𝐵(𝑡)
𝑡𝑒

𝑡𝑠
𝑑𝑡,  (8) 

subject to   

𝑑𝑞(𝑡,𝜙)

𝑑𝑡
= {

𝜙 𝑟𝐹𝐵(𝑡) − 1, 𝜙 > 𝜔(𝑡)

0, 𝜙 ≤ 𝜔(𝑡)
,  (9) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝑟𝐹𝐵(𝑡),       (10) 

where 𝑅(𝑡𝑠) = 0 and 𝑅(𝑡𝑒) = 𝑁𝐹𝐵 . Queue development depends on the capacity realisation, but the 

departure rate does not. 

Let 𝜇1(𝑡, 𝜙) and 𝜇2(𝑡) denote the ‘costate variables’ of 𝑞(𝑡, 𝜙) and 𝑅(𝑡), respectively. We set up 

the equations so that −𝜇2 is the marginal social cost (MSC) of the total departures at t, that is, how much 

higher the total cost will be when the total departures at t are higher. Similarly, 𝜇1(𝑡, 𝜙) is the shadow 

cost of queuing time when service time is ϕ (and thus capacity is 1/ϕ): it gives how much higher the total 

costs are when there is more queuing. The 𝜇1(𝑡, 𝜙) not only depends on departure time t but also on the 

capacity realisation and thus 𝜙. At any t, if 𝜙 is smaller (i.e. the capacity is larger), queuing will be shorter 

or even absent. 

The Hamiltonian function for the minimisation is6  

𝐻(𝑡) = 𝑟𝐹𝐵(𝑡) {∫ [𝛼𝑞(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙

𝜔(𝑡)

𝜙𝑚𝑖𝑛
} +

                      ∫ 𝜇1(𝑡, 𝜙) (𝜙 𝑟𝐹𝐵(𝑡) − 1) 𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ 𝜇2(𝑡)𝑟𝐹𝐵(𝑡).  (11) 

The optimality conditions are  

   
𝑑𝐻(𝑡)

𝑑𝑟𝐹𝐵(𝑡)
= 0 = ∫ [𝛼𝑞(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙

𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙

𝜔(𝑡)

𝜙𝑚𝑖𝑛
+

                    ∫ 𝜙𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ 𝜇2(𝑡)  (12) 

 
5 Yang and Huang (1997) used optimal control theory to analyse the deterministic bottleneck model, Mun (1999) to analyse his flow congestion 

model, Schrage (2006) and Yu et al. (2024) to analyse dynamic flow congestion. 
6 The Hamiltonian function may appear different than expected due to the integration over the uncertainty and the two possible outcomes: one 

with queuing and one without. Although (10) shows that there is a regime shift between these outcomes, there is no regime shift in the control 

variable rFB because it depends on the expected outcome before the capacity is known. This is also why the first constraint for queuing is 

integrated over ϕ, while the second constraint for total departures is not. Thus, 𝜇1(𝑡, 𝜙) depends on ϕ, whereas 𝜇2 does not.  
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𝑑𝜇1(𝑡,𝜙)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞
= {

−𝑟𝐹𝐵(𝑡) (𝛼 +
𝑑𝑆𝐷𝐶(𝑡+𝑞(𝑡,𝜙))

𝑑𝑞(𝑡,𝜙)
) , 𝑖𝑓 𝜙 ≥ 𝜔(𝑡)

0, 𝑖𝑓 𝜙 ≤ 𝜔(𝑡)
  (13) 

         
𝑑𝜇2(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
= 0.   (14) 

         H(ts) = 0                                 (15) 

 H(te) = 0                       (16) 

Here, the last two equations (15) and (16) are the transversality conditions to set the freely chosen times 

for the start and end of the peak: ts and te, respectively. The equations ensure that ts and te are chosen to 

minimise total cost. Further, equations (13) and (14) govern the motion of the state variables of queue 

length and cumulative departures at t, respectively. Moreover, Eq. (12) determines the path of the control 

variable of the departure rate 𝑟𝐹𝐵(𝑡). 

  

Proposition 1:  

The marginal social cost (MSC) is constant between ts and te, and it equals −𝜇2: 

MSC= −𝜇2 

        = ∫ [𝛼𝑞(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙

𝜔(𝑡)

𝜙𝑚𝑖𝑛
+

                             ∫ 𝜙 𝜇1(𝑡, 𝜙) 𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
,         𝑡 ∈ [𝑡𝑠 , 𝑡𝑒].             (17) 

Here, the first two terms give the expected private travel cost for a departure at t, and thus the expected 

marginal external cost (MEC) at t equals the last term: 

MEC(t) = ∫ 𝜙 𝜇1(𝑡, 𝜙) 𝑓(𝜙)𝑑𝜙 ≥ 0
𝜙𝑚𝑎𝑥

𝜔(𝑡)
.               (18) 

The MEC is the expected cost due to queuing imposed on later departures at t. The MEC is zero at ts and 

te, and non-negative in between. 

 

Proposition 2:  

Costate variable 𝜇1(𝑡, 𝜙) ≥ 0 is the shadow cost of queuing time. The variable is non-negative, weakly 

decreases over departure time, and is zero for the last departures at te.  

 

Proofs of Propositions 1 and 2: 

Eq. (17) for 𝜇2 directly follows from the f.o.c. for the departure rate in (12). That 𝜇2 should be constant over time 

between ts and te is clear from optimality condition (14). The first two terms in (17) are the expected private travel 

costs from (4). Given the problem set-up, −𝜇2  is the marginal social cost (MSC). By definition, the marginal 

external cost, MEC(t), is the difference between the private cost and MSC, and, thus, MEC(t) must equal the third 

term of eq.(17).  

That 𝜇1(𝑡) weakly decreases over time, follows from condition (13). For both f.o.c. (12) and transversality 

condition (16) to hold at te, it must be true that 𝜇1(𝑡𝑒 , 𝜙) = 0 for any capacity realisation.  

Finally, let us prove the non-negativity of MEC(t) and MEC(ts) = MEC(te)=0. As 𝜙, 𝜇1(𝑡, 𝜙) and 𝑓(𝜙) are 

non-negative, the MEC must be as well. Lastly, at ts, there will never be a queuing time as no queue has formed yet. 

This means that 𝜔(𝑡𝑠) = 𝜙𝑚𝑎𝑥 . Hence, at ts, we integrate in (18) over a zero range, which makes MEC(ts)=0. As 

we showed that 𝜇1(𝑡𝑒, 𝜙) = 0 for any 𝜙, from (18), we can derive 

 MEC(te) = ∫ 0 𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
 = 0.  
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This completes the proof of Propositions 1 and 2. □ 

 

Remark 1: 

That the shadow cost of queuing at the end of the peak is zero is logical. At 𝑡𝑒, all commuters have 

departed, and no later departures7 would be delayed by queuing regardless of the realised capacity. This 

outcome implies that no matter the capacity, the shadow cost of queuing at te is zero. Similarly, the earlier 

one departs, the more people one can harm by causing queuing. So, it is also logical that the shadow cost 

of queuing (weakly) decreases with the departure time and reaches zero at te.  

 

 Now, we search for the pattern of the toll. For the expected price to be constant over time and thus 

for the users to be in user equilibrium, the toll must vary just like the expected MEC:  

𝜏(𝑡) = ∫ 𝜙 𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
 + 𝜏0,                                                                                    (19) 

where 𝜏0 is the starting level of the toll at ts. Further, the toll must equal 𝜏0 at te. 

We can use all this to derive the optimal departure rate, which must equal 

𝑟𝐹𝐵(𝑡) = 1 𝜔(𝑡)⁄ , 𝑡 ∈ [𝑡𝑠, 𝑡𝑒],  (20)  

where again 1/𝜔(𝑡) is the minimum of the stochastic capacity for which there is no queue at t. Intuitively, 

once a queue starts to develop, it does not collapse to zero until the last departure, as stated by Lindsey 

(1994, 1999). Suppose 𝑡′ ∈ [𝑡𝑠, 𝑡𝑒] and 𝑟(𝑡′) > 1 𝜔(𝑡′)⁄ . Then there will always be an interval where the 

expected delay cannot dissipate efficiently. Conversely, if 𝑟(𝑡′) < 1 𝜔(𝑡′)⁄ , there will always be an 

interval in which capacity is not fully used.  

 

Proposition 3: 

The optimal departure rate 𝑟𝐹𝐵(𝑡) is non-decreasing over departure time: 
𝑑𝑟𝐹𝐵(𝑡)

𝑑𝑡
≥ 0.  

 

Proof of Proposition 3: The proof is given in Appendix B.1 because the proof is rather long and technical. 

 

Lemma 1:  

For our uniform distribution, we get the following departure rates at the start and end of the peak: 

𝑟𝐹𝐵(𝑡𝑠) = 1 𝜙𝑚𝑎𝑥⁄ ,  

𝑟𝐹𝐵(𝑡𝑒) = (𝛼 + 𝛾) (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛)⁄ .  (21) 

 

Proof of Lemma 1: 

From the proofs of Propositions 1 and 2, we have 𝜔(𝑡𝑠) = 𝜙𝑚𝑎𝑥 . Then, 𝑟𝐹𝐵(𝑡𝑠) = 1 𝜙𝑚𝑎𝑥⁄ . By differentiating Eq. 

(17), we have:    

𝜔(𝑡)𝜇1(𝑡, 𝜔(𝑡))
𝑑𝜔(𝑡)

𝑑𝑡
= ∫

𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
𝑑𝜙 − ∫ 𝛼𝑑𝜙

𝜙𝑚𝑎𝑥

𝜔(𝑡)
.

𝜔(𝑡)

𝜙𝑚𝑖𝑛
      

As mentioned above, 𝜇1(𝑡𝑒, 𝜔(𝑡)) = 0 at 𝑡𝑒. Then the right-hand side of the above equation equals zero at 𝑡 = 𝑡𝑒. 

The last departure time cannot be earlier than the work start time, otherwise, the last traveller will shift to depart at 

t* with less schedule delay cost. Thus, we have 𝑡𝑒 ≥ 𝑡∗ and 
𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
= 𝛾 at 𝑡𝑒. Then, for our uniform distribution, 

 
7 Of course, one would delay the departures at te, but this effect has a zero size since you integrate from te to the same time te.   
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we have 𝛾(𝜔(𝑡𝑒) − 𝜙𝑚𝑖𝑛) − 𝛼(𝜙𝑚𝑎𝑥 − 𝜔(𝑡𝑒)) = 0. The departure rate at te can be obtained as follows: 𝑟𝐹𝐵(𝑡𝑒) =

(𝛼 + 𝛾) (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛)⁄ . This completes the proof of Lemma 1. □    

 

Hence, at the start of the peak, the departure rate is low and equals the minimum capacity of 1 𝜙𝑚𝑎𝑥⁄ . 

The departure rate ends high, being above the ‘average’ capacity of 1/𝜙 = 2 (𝜙𝑚𝑎𝑥 + 𝜙𝑚𝑖𝑛)⁄  but below 

the maximum capacity. The optimal departure rate continuously increases over departure times during at 

least a part of the peak and will never decrease. There may be departure windows when drivers always 

or never experience queuing, implying that the departure rate 𝑟𝐹𝐵(𝑡) is constant over time in those ranges.  

The departure rate starts low, as it is more costly if an early departure causes queuing. The optimal 

departure rate ends high because, for late departures, there are few or no users who can be affected. This 

outcome is also implied by the pattern of the shadow cost of queuing: μ1(t,ϕ). 

 

4.2. Second step: setting total demand 

Our first-step results with a uniform distribution are consistent with those of Lindsey (1994, 1999) 

for a general distribution, but our explicit distribution allows for more explicit results. Lindsey used a 

two-point distribution in the second part of the paper, and that leads to specific results. The uniform 

distribution we assumed leads to similar results as those for other continuous distributions. We now turn 

to the second step, where we set the total number of users to maximise the reduced-form social surplus 

(which is conditional on the departure rate following the socially optimal pattern): 

𝑆𝑆𝐹𝐵 = ∫ 𝐷(𝑛)
𝑁𝐹𝐵

0
𝑑𝑛 − 𝑁𝐹𝐵𝐸(𝐶𝐹𝐵

∗ (𝑁𝐹𝐵)), 

where the superscript * in 𝐶𝐹𝐵
∗  indicates travel cost under the socially optimal departure rate. Maximising 

this objective with respect to NFB gives:  

D(NFB) = 𝐸(𝐶𝐹𝐵
∗ (𝑁𝐹𝐵)) + 𝑁𝐹𝐵

𝜕𝐸(𝐶𝐹𝐵
∗ (𝑁𝐹𝐵))

𝜕𝑁𝐹𝐵
=−𝜇2. (22)  

And thus, the inverse demand should equal the (expected) marginal social cost of −𝜇2.  

 

Proposition 4: 

The first-best toll at departure time t should equal the expected MEC(t), and it starts at ts at zero and 

ends at te at zero: 

            𝜏(𝑡) = ∫ 𝜙 𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
.                  (23) 

 

Proof of Proposition 4: 

The above equation means that the expected price should equal the marginal social cost in the optimum. This occurs 

when the toll equals the MEC(t), which starts and ends at zero. So, in the first step’s toll equation (19), the 𝜏0 must 

be zero, which gives us the above equation. For departure at ts and te, the MEC is always zero, no matter the capacity, 

and the expected price equals the expected generalised cost while the toll is zero. □ 

 

 This outcome is, of course, similar to the social optimum with a fixed capacity, where it is also 

optimal that the inverse demand equals the MSC and the toll equals MEC(t). However, in that case, the 

optimal departure rate equals the fixed capacity, whereas here the rate starts at the minimum capacity and 

then weakly increases to some final level that is in between the ‘average’ and the maximum. In the 

optimum, the peak is divided into different time windows: [𝑡𝑠, 𝑡1]; [𝑡1, 𝑡2]; [𝑡2, 𝑡∗]; and [𝑡∗, 𝑡𝑒]. They are 
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denoted as ‘Situations 1–4’, respectively. Commuters experience different levels of queuing, schedule 

delays, and prices in the various time windows. Because the details of the situations are rather technical, 

we discuss them in Appendix A.1. Using these details, we get the following results: 

Lemma 2: The cumulative departures are 𝑅(𝑡1) =
𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
, 𝑅(𝑡2) =

𝑡∗−𝑡𝑠

𝜙𝑚𝑎𝑥
 and 𝑅(𝑡∗) =

𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
+

𝑡∗−𝑡1

𝜔(𝑡∗)
.  

Lemma 3: In the social optimum, we have:  

𝑡𝑠 =
2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥𝑡∗−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)𝑡1

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
−

𝛾𝜙𝑚𝑎𝑥[𝛾(𝜙𝑚𝑎𝑥+𝜙𝑚𝑖𝑛)+2𝛼𝜙𝑚𝑎𝑥]𝑁𝐹𝐵

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
 (24) 

𝑡𝑒 =
2(𝛽+𝛾)(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)𝑡∗+(2𝛽+𝛾)𝛾(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)𝑡1

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
+

2𝛽𝜙𝑚𝑎𝑥(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)𝑁𝐹𝐵

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
 (25) 

 

Lemma 4: The tolls at the first and the latest departure time are zero. The expected price of the first 

commuter is 𝑃𝐹𝐵 = 𝛽(𝑡∗ − 𝑡𝑠). This is also the marginal social cost since an additional user departing 

before 𝑡𝑠 does not impose any costs on others.  

 

Proofs: Appendixes B.2 and B.3 prove Lemmas 2 and 3. The last lemma directly follows from the earlier analysis. 

 

To summarise, compared with the deterministic model, both the expected price and the total demand 

will change under tolling. Both departure rate and toll are now non-linear over time. The departure rate 

starts low at the start of the peak because it equals the minimum capacity; at the end of the peak, the rate 

is high but below the maximum capacity; in between these moments, the departure rate is non-decreasing, 

continuous and increasing for a range of departure times. Interestingly, this is the mirror image of the 

pattern without tolling: the untolled departure rate starts high, decreases in between, and ends low. All 

this differs from the deterministic bottleneck model, where first-best tolling leads to a constant departure 

rate and has the same price as the no-toll case.  

 

4.3. Analytical comparison with the no-toll equilibrium and other proposed time-varying tolls 

For the no-toll equilibrium, we use the results from Arnott et al. (1996, 1999), Linsdey (1994), Xiao 

et al. (2015), and Long et al. (2022) because our focus is on tolled equilibria. The analysis may be more 

complicated without tolling, as there are multiple cases of the no-toll equilibrium depending on the 

parameters, for example, with or without departure after t*. In contrast, in the social optimum, there are 

always departures after t* no matter what the parameters are.  

By adopting the results of Long et al. (2022), the first and the last departure times under the no-toll 

equilibrium when 𝜙 follows the uniform distribution are given as follows:  

(a) when there is departure after t*, 

𝑡𝑠
𝑁𝑇 = 𝑡∗ −

𝛼+𝛾

𝛽+𝛾
𝑁 [

𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥

2
−

𝛼(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)+(𝛼+𝛾)𝛼𝜙𝑚𝑖𝑛

(𝛼+𝛾)2(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)
] (26) 

𝑡𝑒
𝑁𝑇 = 𝑡∗ + 𝑁 [

𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛

(𝛼+𝛾)
−

(𝛼+𝛾)(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)

2(𝛽+𝛾)
+

𝛼(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)+(𝛼+𝛾)𝛼𝜙𝑚𝑖𝑛

(𝛼+𝛾)(𝛽+𝛾)(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)
] ; (27) 

(b) when there is no departure after t*, 

𝑡𝑠
𝑁𝑇 = 𝑡∗ − 𝑁𝜙̂   (28) 

𝑡𝑒
𝑁𝑇 = 𝑡∗,  (29) 
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where 𝜙̂ is obtained by solving equation 
1

𝜙̂
(

𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥

2
−

(𝜙̂)
2
−(𝜙𝑚𝑖𝑛)2

(𝜙𝑚𝑎𝑥)2−(𝜙𝑚𝑖𝑛)2) +
𝜙̂−𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
=

𝛼+𝛽+𝛾

𝛼+𝛾
. By 

comparing Eqs. (24)–(25) and (26)–(29), it becomes apparent that the departure timings under the social 

optimum differ from those under the no-toll equilibrium. Then, the price also changes under the social 

optimum, which differs from the results in the deterministic scenario.  

 The departure rate in the no-toll stochastic equilibrium is qualitatively the mirror image of the 

socially optimal rate. The untolled departure rate starts high, weakly decreases in between, and ends low. 

Numerical analysis by Xiao et al. (2015) shows that the rate may be flat in some periods, which we will 

also see in our numerical model for the first-best toll. We cannot analytically compare the prices in the 

no-toll and first-best equilibria. We will do this in the numerical model and find that no matter the 

parameters, the first-best toll has higher prices than the no-toll setting. 

All this is also vastly different from the deterministic bottleneck model, where the no-toll rate is flat 

with a downward jump for arrivals at t*. Moreover, the no-toll and first-best settings have the same prices 

in the deterministic model. The first-best toll in the stochastic model is concave over time, where it starts 

and ends at zero. Conversely, in the deterministic model, the toll is piecewise linear. Our stochastic 

bottleneck model thus has outcomes akin to dynamic flow congestion models (e.g. Agnew, 1977; Chu, 

1999; Mun, 2003). 

 Let us compare the two other time-variant toll models in the literature. Long et al. (2022) proposed 

a time-varying toll that maximises welfare under the conditions that the departure rate is constant over 

time and the toll starts and ends at zero. This toll may have the advantage of being easier to design and 

implement, as the departure rate is constant. However, as the socially optimal rate varies (see also Lindsey, 

1994, 1999), it must mean that their scheme has a lower welfare. Hence, we call it the ‘second-best’ time-

variant toll, as the constraints lower welfare to some extent. For the second-best time-varying toll, we can 

further derive the first and the last departure time for our uniform distribution by following Long et al. 

(2022):   

𝑡𝑠
𝑆𝐵 = 𝑡∗ −

𝑁

(𝛽+𝛾)𝑟𝑆𝐵
[

(𝛼+𝛾)

2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
(𝑟𝑆𝐵𝜙𝑚𝑎𝑥

2 +
1

𝑟𝑆𝐵
− 2𝜙𝑚𝑖𝑛) − 𝛼], (30) 

𝑡𝑒
𝑆𝐵 = 𝑡𝑠

𝑆𝐵 +
𝑁

𝑟𝑆𝐵
,  (31) 

where 𝑟𝑆𝐵 is the constant departure rate under the second-best toll. The rate is obtained by maximising 

the social surplus, given as follows: 

𝑆𝑆𝑆𝐵 = ∫ 𝐷(𝑛)
𝑁𝑆𝐵

0
𝑑𝑛 − 𝑇𝑇𝐶𝑆𝐵,  

where the total costs in the second best are: 

 𝑇𝑇𝐶𝑆𝐵 =
(𝛽+𝛾)(𝑡∗−𝑡𝑠

𝑆𝐵)
2

2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
(1 − 𝑟𝑆𝐵𝜙𝑚𝑖𝑛 + ln (𝑟𝑆𝐵𝜙𝑚𝑎𝑥)) −

𝛾−𝛽

2
𝑁(𝑡∗ − 𝑡𝑠

𝑆𝐵).  

Note that 𝑟𝑆𝐵 cannot be obtained analytically, which will be illustrated in the numerical study.      

Xiao et al.’s (2015) third-best toll adds an extra constraint to the second-best toll, namely, that the 

expected generalised price should be the same as in the untolled case. It thus adds another constraint; 

hence, we call it ‘third best’. By definition, the first and the latest departure time follow Eqs. (26)–(29), 

and the third-best toll has the same length of peak period as the no-toll equilibrium. The constant 

departure rate 𝑟𝑇𝐵 can be given as follows:   

(a) when there is departure after t*, 
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         𝑟𝑇𝐵 =
𝛼+𝛾

𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛
  (32) 

(b) when there is no departure after t*, 

        𝑟𝑇𝐵 =
1

𝜙̂
   (33) 

where 𝜙̂ is obtained by solving 
1

𝜙̂
(

𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥

2
−

(𝜙̂)
2
−(𝜙𝑚𝑖𝑛)2

(𝜙𝑚𝑎𝑥)2−(𝜙𝑚𝑖𝑛)2) +
𝜙̂−𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
=

𝛼+𝛽+𝛾

𝛼+𝛾
. 

Interestingly, the constant departure rate under the third-best toll scheme when there is departure 

after t* equals the optimal departure rate at 𝑡𝑒, that is, 𝑟𝑇𝐵 = 𝑟𝐹𝐵(𝑡𝑒). And we have the below result. 

 

Lemma 5:  

The length of the peak period under the first-best toll is longer than that under the no-toll equilibrium or 

the third-best scheme when there are departures after t*.  

 

Proof of Lemma 5 

From Eq. (26) and (27), it is evident that the length of the peak period under the no-toll equilibrium (and under 

the third-best scheme) is 𝑡𝑒
𝑁𝑇 − 𝑡𝑠

𝑁𝑇 =
𝑁

(𝛼+𝛾) (𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)⁄
 when there is departure after t*. From Proposition 3, 

the optimal departure rate is non-decreasing with t, and we have 𝑟𝐹𝐵(𝑡𝑒) = (𝛼 + 𝛾) (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛)⁄  at 𝑡𝑒. Thus, 

𝑟𝐹𝐵(𝑡) ≤ 𝑟𝐹𝐵(𝑡𝑒), when 𝑡 ≤ 𝑡𝑒. Define 𝑟𝐹𝐵
′  as the departure rate so that 𝑟𝐹𝐵

′ (𝑡𝑒
𝐹𝐵 − 𝑡𝑠

𝐹𝐵) = 𝑁 under the first-best toll. 

This indicates 𝑟𝐹𝐵
′ <𝑟𝐹𝐵(𝑡𝑒). The peak lengths compare as follows: 𝑡𝑒

𝐹𝐵 − 𝑡𝑠
𝐹𝐵 =

𝑁

𝑟𝐹𝐵
′ >

𝑁

𝑟𝐹𝐵(𝑡𝑒)
= 𝑡𝑒

𝑁𝑇 − 𝑡𝑠
𝑁𝑇 . □ 

 

As the third-best toll scheme is a constrained version of the second-best toll, it can, at most, do as 

well as the second-best scheme if the second-best would lead to the same price as no tolling. But, as we 

will see, this outcome only happens when there is no uncertainty in the capacity. The numerical model 

shows that the third-best toll always has lower prices than the second- and first-best cases, but it has a 

lower social surplus. Therefore, the third-best toll is preferable for users, making it more politically 

feasible to implement. All three time-variant tolls are non-linear and concave over time; hence, it can be 

difficult to implement all of them. 

 

Beyond these results, we were unable to find further insightful analytical solutions. We therefore put 

much effort in developing numerical solution and optimization methods, and use them extensively in 

Section 7 to gain further insights. The said complexity also explains why, so far, little work has been 

done on tolling under uncertainty., As the numerical results also show, effects can vary strongly with 

parameters. Naturally, the same would be true for analytical solutions if these were obtained. Although 

it is impossible to exhaust all possible function forms, the numerical studies provided new insights beyond 

those from the analytics. The comparison with the no-toll benchmark is especially tedious, as various 

types of no-toll equilibria may exist depending on the parameter values.  

5. Uniform toll  

The uniform toll is constant during the morning peak, and it does not give an incentive to change 

the departure patterns other than indirectly via changing total demand. Thus, this scheme may affect the 

total number of travellers; but, for a given number of travellers, the equilibrium is the same as without 
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tolling (Arnott, 1996; Long et al., 2022). However, these authors did not study uniform tolling. Yu et al. 

(2023) did look at step tolling. 

The expected price follows from eq. (5) with 𝑗 = 𝑈𝑇. The social surplus is  

𝑆𝑆𝑈𝑇 = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇).  (34) 

 

Proposition 5: 

The optimal uniform toll maximises objective (34) and implies a toll that equals the marginal external 

cost (MEC) given unaltered equilibrium scheduling behaviour, which differs from the first-best toll and 

is now constant over time: 

 𝜏𝑈𝑇 = 𝑁𝑈𝑇
𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
.                                                                                                                  (35)  

The optimal demand 𝑁𝑈𝑇 is found by equating MSC and inverse demand: 𝑃𝑈𝑇 = 𝐷(𝑁𝑈𝑇). Users choose 

their departure rate in the same way as they do in the untolled equilibrium.  

 

Proof of Proposition 5: 

Appendix A.2 gives the derivations of this proposition. □ 

 

This tolling regime has many possible cases depending on the parameters, just as with the case 

without tolling. The uniform toll cannot alter departure rates. It can only lower the total number of users 

so that the (averaged-over-time) MSC equals the inverse demand. Conversely, without tolling, the inverse 

demand equals the travel cost, which is lower than the MSC. Hence, we can be certain that, compared to 

the untolled setting, the uniform toll raises the expected price, lowers the total number of users, and 

shortens the peak. 

 

6. Single-step toll  

The single-step toll consists of a ‘time-variant’ step-up component that is applicable during the step-

tolling period in the centre of the peak and a time-invariant component that lasts the whole peak: 

𝜏𝑆𝑇(𝑡) = 𝜌𝑡 + 𝜇.  (36) 

Here, 𝜏𝑆𝑇(𝑡) is the toll at departure time t, and 𝜌𝑡 is the time-variant step part implemented from 𝑡+ to 

𝑡−. The 𝑡+ and 𝑡− are the start time and end time of the step-tolling period. 𝜇 is the time-invariant part 

implemented throughout the peak.  

Adapting Van den Berg’s (2012) procedure, we again optimise in two steps. In the first step, given 

the number of users, the time-variant part 𝜌𝑡 and the step-tolling period are obtained by minimising the 

total expected cost. In the second optimisation step, the total demand is set to maximise social welfare 

whilst considering the effect of the first step. This then implies the time-invariant part of the toll: 𝜇.   

Using fixed demand, Long et al. (2022) investigated the single-step toll in the stochastic bottleneck 

model, where the service time of the bottleneck follows a general distribution. If the step toll is 

implemented, commuters depart at a constant departure rate before 𝑡+. When the toll is lifted at 𝑡−, there 

will be a mass of commuters departing. Like Long et al. (2022), we use the ADL (Arnott et al., 1993) 

model with mass departures.  

In the first optimisation step, the results are the same as those found by Long et al. (2022) for a 
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uniform distribution. There are two cases under the single-step toll, depending on whether the peak ends 

at or after the preferred arrival time t*. Here, under the single-step toll, the peak ends after t* in Case I 

(Case 8.2 in Long et al. (2022)), and it ends at t* in Case II (Case 9.2 in Long et al. (2022)). For the second 

optimisation step, Appendix A.3 gives detailed derivations, and the results are summarised below.  

Following Long et al. (2022), the expected total social cost in Case I is:  

𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) = −
𝑊(𝜙⃡  )(𝑀(𝜙⃡  ))

2
(𝑁𝑆𝑇)2

4(𝛽+𝛾)2 +
(𝛼+𝛾)(𝜙̄−𝜙̃)𝛽(𝑁𝑆𝑇)2

𝛽+𝛾
. (37) 

Here, 𝜙 is the reciprocal of the average departure rate during the period from the departure time of the 

first commuter to the departure time of the first commuter who pays the toll. Further, 𝜙 is obtained by 

solving the following equation: 

           𝑀(𝜙)
𝑑𝑊(𝜙⃡  )

𝑑𝜙⃡  
+ 2𝑊(𝜙)

𝑑𝑀(𝜙⃡  )

𝑑𝜙⃡  
= 0,  

where 𝑊(𝜙) =
1

𝑌(𝜙⃡  )+
2

(𝛼+𝛾)𝜙̄
, 𝑌(𝜙) =

1

𝛼𝜙⃡  −(𝛼−𝛽)𝐻(𝜙⃡  )
, 𝐻(𝜙) = 𝜙̄ − 𝐺(𝜙) + 𝜙𝐹(𝜙), 𝐹(𝑥) =

𝑥−𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
, 

𝑀(𝜙) = 𝛽(𝛼 + 𝛾)(𝜙̄ − 𝜙̃)𝑌(𝜙) − 𝛽(𝛽 + 𝛾)𝐻(𝜙)𝑌(𝜙) + (𝛽 + 𝛾) +
2𝛽(𝜙̄−𝜙̃)

𝜙̄
, 𝐺(𝑥) =

𝑥2−𝜙𝑚𝑖𝑛
2

2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
, 

𝜙̃ = 𝐺 (
𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛

𝛼+𝛾
), and 𝜙̄ =

𝜙𝑚𝑎𝑥+𝜙𝑚𝑖𝑛

2
. These definitions follow from those presented by Long et 

al. (2022). As proved in their Proposition 16, 𝜙 is independent of 𝑁𝑆𝑇.  

Consequently, the total expected social cost in Eq. (37) is a function of travel demand. The total toll 

revenue is 

𝑇𝑅𝑆𝑇 = 𝜌𝑡  𝑁1 + 𝜇 𝑁𝑆𝑇 ,  (38) 

where 𝜌𝑡 =
𝑀(𝜙⃡  ) 𝑊(𝜙⃡  )𝑁𝑆𝑇

2(𝛽+𝛾)
 is the optimal time-variant step part of the toll and 𝑁1 = 𝑁𝑆𝑇 −

𝜌𝑡

𝑊(𝜙⃡  )
 is the 

number of travellers departing during the step-tolling period. The step part of the toll, 𝜌𝑡, is a function of 

travel demand. The average marginal external cost (MEC) is the difference between the average marginal 

social cost and the average travel cost. From Eq. (37), the average MEC is 

𝑀𝐸𝐶̅̅ ̅̅ ̅̅
𝑆𝑇 = −

𝑊(𝜙⃡  )(𝑀(𝜙⃡  ))
2
𝑁𝑆𝑇

4(𝛽+𝛾)2 +
(𝛼+𝛾)(𝜙̄−𝜙̃)𝛽𝑁𝑆𝑇

𝛽+𝛾
. (39) 

We obtain the optimal time-invariant part of the toll by equalising the average MEC and the average 

toll, that is 𝑀𝐸𝐶̅̅ ̅̅ ̅̅
𝑆𝑇 =

𝑇𝑅𝑆𝑇

𝑁𝑆𝑇
. Then, the optimal time-invariant part is 

𝜇 = 𝑀𝐸𝐶̅̅ ̅̅ ̅̅
𝑆𝑇 −

𝜌𝑡𝑁1

𝑁𝑆𝑇
=

(𝛼+𝛾)(𝜙̄−𝜙̃)𝛽𝑁𝑆𝑇

𝛽+𝛾
−

𝑊(𝜙⃡  )𝑀(𝜙⃡  )𝑁𝑆𝑇

2(𝛽+𝛾)
. (40) 

The expected price in Case I is 

𝑃𝑆𝑇 = −
𝑊(𝜙⃡  )(𝑀(𝜙⃡  ))

2
𝑁𝑆𝑇

2(𝛽+𝛾)2 +
2(𝛼+𝛾)(𝜙̄−𝜙̃)𝛽𝑁𝑆𝑇

𝛽+𝛾
. (41) 

From Eq. (41), the optimal demand under a step toll can be found using 𝑃𝑆𝑇 = 𝐷(𝑁𝑆𝑇). The results 

for Case II will be similarly obtained and are given in Appendix A.4 to save space.  

 

7. Numerical study  

Because the analytical results are not easy to interpret, we conduct a numerical study to compare the 
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different schemes, providing new insights beyond those from the analytics. In particular, we focus on 

how the various tolls compare in their effects on costs, consumers and overall welfare. Further, we 

perform extensive sensitivity tests to evaluate how robust these insights are. We use a uniformly 

distributed bottleneck service time as it is a common assumption, as discussed in the literature review.  

The first subsection will look at fixed demand, while the second examines price-sensitive demand. 

Fixed demand allows for a clearer comparison of departure rates and costs: otherwise, the number of 

users will differ between regimes, which complicates comparisons.   

Unless otherwise stated, we use the same values for unit cost parameters as those used by Long et 

al. (2022): 𝛼 = 6.4 $/h and ratios 𝛽/𝛼 = 0.609 and 𝛾/𝛽 = 3.9. The desired arrival time 𝑡∗ = 9 ℎ. These 

values and especially the ratios are highly common in the literature. Following Long et al. (2022), the 

mean bottleneck service time is 𝜙 = 1𝑠/𝑣𝑒ℎ, which implies an ‘average’ capacity of 3600 𝑣𝑒ℎ/ℎ. Let 𝑒 

be the spread of the service time range and 𝑒 =  𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛. Increasing the spread 𝑒 under the fixed 

mean bottleneck service time (i.e. 𝜙) makes the system more uncertain. When 𝑒 approaches zero, the 

model approaches the deterministic scenario.  

The inverse demand function is assumed to be linear: 𝐷(𝑛) = 𝑑0 − 𝑑1𝑛. The average demand 

elasticity is -0.4 (Van den Berg, 2012). When the capacity is at the mean value (i.e. the capacity is 1/𝜙), 

the number of commuters N is 5000 veh. under the no-toll scheme (Long et al., 2022). Calibrating this 

value implies 𝑑0 = 15.0893 and 𝑑1 = 0.0022 under this setting. Due to the uncertainty, the demand and 

price will change under the no-toll equilibrium when the elasticity changes.   

We numerically solve the ‘first-best’ toll based on analytical results and by discretising the departure 

time into time windows. Discretisation is a common way to numerically solve differential equations. It 

does not rely on Monte Carlo simulation, random draws, or sample paths. Our approach for the first-best 

case is akin to that of Yang and Huang (1997; 1998). To solve for the departure rates under the first-best 

toll, we start from the time window at te and then go backward to the start time window at ts. To achieve 

this solution, we use the results for situations I–IV from Appendix A. The rate is constant piecewise, and 

this approximation becomes ever more precise the more time windows there are.  

   

7.1. Numerical evaluation of different scenarios under fixed demand 

Long et al. (2022) proposed a ‘second-best’ time-varying toll that maximises welfare whilst having 

a constant departure rate and a toll starting and ending at zero. Xiao et al. (2015) introduced a ‘third-best’ 

time-varying toll that incorporates these aims and adds a further constraint that the expected generalised 

price (i.e. the sum of expected travel cost and toll) remains at its untolled level. In these previous works, 

the demand is fixed. Moreover, the time-varying toll schemes proposed in previous studies cannot achieve 

the system optimum. The ‘first-best’ toll of Lindsey (1999) achieves this optimum and leads to a 

departure rate that weakly increases over time.  

For a fair comparison with the literature, this section uses fixed demand. The next section adds price-

sensitive demand to this. Fixed demand allows for a clearer comparison of departure rates and costs.   

 We denote the spread in the service time by e, and a larger e means more uncertainty in the capacity. 

For different spreads, Fig. 1 plots the equilibrium departure rates under the no-toll and the first-, second- 

and third-best time-varying toll schemes.  

The departure rate in no-toll equilibrium is weakly decreasing over the departure time, while that 

under the first-best toll is weakly increasing. So, the first-best rate is qualitatively the mirror image of the 

untolled outcome. The intuition is that as time progresses, more travellers will have departed and fewer 

travellers will be delayed by queuing, meaning that the cost of queuing decreases over time. Thus, in the 

earliest departure period, the departure rate is constant and equals the minimum capacity to avoid high 



 

18 
 

queuing costs; subsequently, the rate starts to increase, before becoming constant again for the last 

departure period. During the early peak, capacity is underutilised unless the worst possible traffic 

conditions arise. These results are consistent with those of Lindsey (1994), who used a binary distribution, 

and Fosgerau and Lindsey (2013), who used a capacity that varies over the day. In line with our analytics, 

Fig. 1 shows that the optimal departure rate is constant after 𝑡∗, and is in between the ‘average’ capacity 

and the maximum capacity. Interestingly, when there is minimal uncertainty, the first-best departure rate 

after 𝑡∗ is the same as that under the third-best toll.  

The third-best time-varying toll keeps the price unchanged from the no-toll scheme, and the peak 

duration and timing are also the same. With our uniform distribution, the peak begins earlier and ends 

later in the social optimum than for the untolled case. Under the second-best time-varying toll, the peak 

is the longest due to a lower departure rate on average. Conversely, the third-best toll has the shortest 

departure window. Thus, compared with the no-toll case, both the first- and second-best tolls increase the 

price and peak duration under fixed demand, which differs from in the deterministic model.  

When spread 𝑒 decreases, so that there is less uncertainty, the departure rate under the first-best toll 

becomes more concentrated, and the rates of all three time-varying schemes approach the mean capacity, 

as illustrated in Fig. 1(d). A constant departure rate is only optimal when there is no uncertainty: in the 

limit, as the uncertainty disappears, all three regimes become the optimal toll of the deterministic model. 

 

        

(a) High uncertainty with a large spread of e =1.6 s/veh.           (b) Medium uncertainty with a medium spread of 𝑒=1 s/veh. 

       

(c) Low uncertainty with a small spread of 𝑒=0.5 s/veh.            (d) Very low uncertainty with a spread of 𝑒=0.2 s/veh. 

Fig. 1: Comparisons of equilibrium departure rates for four spreads of capacity. 

Note: The service time varies from 𝜙𝑚𝑖𝑛 to 𝜙𝑚𝑎𝑥 = 2 − 𝜙𝑚𝑖𝑛. Therefore, lowering the spread 𝑒 decreases uncertainty without altering the mean.  

 

Fig. 2 shows the toll, expected queuing cost, and expected schedule delay cost over departure time. 

All tolls start at zero. The third-best toll is much lower than the others and its peak is much shorter, which 

results in much higher travel times. In the graph, the first-best toll is higher than the second-best. But this 

result is not universal and depends on parameter levels: with low uncertainty, we obtain the opposite 

result (see Fig. C.1 in Appendix C). The first-best toll starts the earliest, regardless of the parameters.  

Queuing is not eliminated under uncertainty. It occurs during the earliest departure period in the 
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optimum, which is consistent with the analytics. However, subsequently, queuing is always possible. For 

the second- and third-best toll schemes, because of the constant departure rate, the expected queuing 

increases linearly over time. In the social optimum, expected travel time delays are low for much of the 

peak, but they sharply increase during the latter peak due to the sudden increase in the departure rate. 

This increase is more pronounced the more uncertain the capacity is. The mean schedule delay cost at the 

end of the peak is smaller than that at the beginning, as tolling will not eliminate all delays and the 

schedule delays need to be lower to compensate.  

 

           

(a) Toll                       (b) Mean queuing cost       (c) Mean schedule delay cost       

Fig. 2: Comparisons of toll, mean queuing cost and mean schedule delay when the spread is 𝑒 = 1.6 s/veh. 

 

Fig. 3 illustrates the effect of tolling over different degrees of uncertainty. When the spread 𝑒 in the 

service time increases, there is more uncertainty, and the price and expected levels of travel cost, queuing 

cost and schedule delay cost increase. Unlike in the deterministic model, the first-best toll raises the 

expected price from the untolled setting, and it decreases travel cost less in percentage terms. These 

effects are stronger the more uncertainty there is. 

As mentioned above, the third-best toll keeps the expected price unchanged from the no-toll case. 

In Fig. 3(a), the first- and second-best tolls raise the price. When there is more uncertainty, the first-best 

price is higher than the second-best price. The expected average travel cost under the optimal toll is by 

design at the minimum, while this is not necessarily true for queuing costs. The expected queuing cost 

under second-best tolling is lower than that under first-best tolling, as illustrated in Fig. 3(c). Fig. 3(d) 

shows that the average schedule delay is the lowest under the social optimum, and it is the highest under 

the second-best toll.     

 

                      

 (a) Expected price                                              (b) Average travel cost   
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         (c) Average queuing cost                                       (d) Average schedule delay cost 

Fig. 3: The effect of the spread, e, that measures the degree of uncertainty on (a) expected price, (b) 

average travel cost, (c) average queuing cost, and (d) average schedule delay cost.  

 

Along with the analysis above, we give some possible intuitive explanations concerning the results 

under the first- and second-best tolls. As shown in Fig. 1, the departure duration is the longest and the 

constant departure rate is the lowest under the second-best toll. The second-best toll spreads the 

departures greatly, so that queuing is lower while average schedule delays are larger. Compared to the 

first best, the second best is more effective at eliminating queues and less so at reducing schedule delays.  

 

To summarise, the first-best departure rate weakly increases over time, which is the mirror image of 

the untolled rate that weakly decreases. By design, the second- and third-best cases have constant rates. 

The second-best may be easier to design than the first-best, but this comes at the downsides of a higher 

price and travel cost. The third-best tolling keeps the expected price at the no-toll level, leading to much 

higher costs and thus lower welfare. It is debatable if the higher social acceptability of the third-best 

tolling is worth these downsides. 

 

7.2. Numerical evaluation of different scenarios under price-sensitive demand  

Now, we extend our analysis to price-sensitive demand. As argued, keeping demand fixed always 

facilitates the comparison of departure rates and costs (otherwise, the tolls indirectly affect the rates and 

costs by changing demand). However, price-sensitive demand has important effects, in particular, due to 

its interaction with uncertainty. Consequently, we extend the analysis of the second- and third-best tolls 

by optimising demand as a separate step. The previous works on them used fixed demand.  

 

7.2.1. Structures of different tolling schemes    

For two levels of uncertainty, Fig. 4 plots the uniform toll, single-step toll, first-best (FB) time-

varying toll, second-best (SB) toll and third-best (TB) toll with price-sensitive demand. The flat and step 

tolls are generally higher than the average toll of the time-varying schemes. As with the deterministic 

model, the marginal external cost is higher with coarser pricing, implying higher toll levels. For the step 

toll, the time-variant step part of the toll is lifted at some point; and at this moment, there is a mass 

departure of users. Finally, as with fixed demand, for high uncertainty, the first-best time-varying toll 

begins early and the average toll is higher than the corresponding level of the second-best toll; the reverse 

pattern of results hold with low uncertainty.   
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(a) High uncertainty due to a large spread: 𝑒 = 1.6 s/veh.  (b) Low uncertainty due to a small spread: e= 0.4 s/veh. 

Fig. 4: Different tolling schemes for two levels of uncertainty as measured by spread, e.  

Note: FB means first-best time-varying toll, SB means second-best time-varying toll, and TB means third-best time-varying toll. 

 

7.2.2. The effect of uncertainty as measured by the spread, e, of the service time  

To compare the efficiency of different tolling schemes with price-sensitive demand, we employ the 

index 𝜔𝑖
𝑆𝑆 that denotes the relative efficiency of scheme i, that is, its social surplus gain from the no-toll 

case relative to that of the first-best scheme: 

 𝜔𝑖
𝑆𝑆 = 100 ∙

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, 

where 𝑆𝑆𝑁𝑇, 𝑆𝑆𝐹𝐵 and 𝑆𝑆𝑖 denote the social surplus of the system under the no-toll case, first-best case 

and scheme i, respectively. The first-best toll has, by definition, a relative efficiency of 100, and the base-

case untolled equilibrium of 0. All our other policies are in between these values, and the number reveals 

the relative performance of the policy.8  

Fig. 5 shows how uncertainty affects demand, price, expected average travel cost, average toll, social 

surplus, and relative efficiency under different tolling schemes. There are kinks in the curves for the third-

best toll around a spread of e = 0.6 when the equilibrium pattern changes. Specifically, the peak ends at 

(after) the desired arrival time when the spread is smaller (larger) than the value of e.  

We make the following observations. First, travel demand decreases, and the expected price 

increases with 𝑒. The demand is highest and the price is lowest under the third-best toll, where they are 

the same as without tolling. With a larger spread and thus more uncertainty, the first- and second-best 

schemes raise the price more from the no-toll case, thus reducing demand more. There is only a moderate 

difference between the first- and second-best schemes, making the case that the relative ease of 

implementing the second-best tolling compared to the first-best tolling may be worth it. As with fixed 

demand, when spread e exceeds approximately 1, the price is higher and demand is lower under the first-

best toll than under the second-best toll; whereas the reverse holds when the spread is below 1.  

 Second, from Figs. 5(c)–(d), it can be seen that the average travel cost and toll increase with 𝑒. 

When there is low uncertainty, the average travel cost and toll under the third- and second-best schemes 

approach those under the first-best toll. For low uncertainty, the third-best toll has similar costs as the 

first- and second-best, but costs quickly increase with the degree of uncertainty, and even for moderate 

uncertainty, third-best tolling has much higher costs. The single-step and uniform tolls have much higher 

costs than the first best, but they perform relatively better when there is more uncertainty (i.e. the higher 

𝑒  is). For moderate uncertainty, the step toll has lower costs than the third-best toll; and for high 

 
8 It is possible for a policy to have an efficiency below 0 if it has a welfare below the base case. But none of our regimes do. 
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uncertainty, the third-best toll even performs similarly to the uniform toll. Fig. 5(d) shows that the average 

toll under the third-best scheme is always the lowest.  

Finally, Figs. 5(e–f) present welfare effects. More uncertainty (i.e. a higher 𝑒) reduces the relative 

efficiency of the second-best toll, but it always performs similarly to the first-best scheme. The third-best 

scheme has a lower welfare, and the difference is large for moderate and especially high uncertainty. Still, 

the third-best scheme always does better than the step toll, even though the average cost might be higher 

under the former. However, for a very high spread 𝑒 and thus high uncertainty, the difference between 

the two is minimal. The three time-varying schemes all approach the toll in the deterministic model as 

the uncertainty becomes zero. The uniform and step tolls have lower welfare levels than the first-best toll, 

but higher uncertainty makes them perform relatively better. So, the relative loss from a simpler tolling 

scheme is smaller when we include the realism of uncertainty. This reflects two things: 1) Lowering 

demand is more important in a highly uncertain environment, whereas it becomes increasingly difficult 

to reduce average travel times. 2) The uniform and flat toll are better at changing demand levels than 

lowering delays.  

   

   

                       (a) Demand                    (b) Expected price                   (c) Expected travel cost  

   

                (d) Average toll                       (e) Social surplus                       (f) Relative efficiency 

Fig. 5: Effect of spread, e, and, thus, uncertainty on outcomes under price-sensitive demand. 

Note: The relative efficiency of policy i is 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is the social surplus or welfare. 

 

Because tolling increases the expected price and has a lower welfare gain under uncertainty, it may 

be difficult to politically sell tolling. However, we also see that the third-best toll that keeps this price 

constant has a much lower welfare and higher travel costs. Thus, the latter option may not improve things. 

Uniform and step tolling are more realistic than time-variant tolls, and they perform relatively better when 

there is more uncertainty.  
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7.2.3. Effect of demand elasticity    

Fig. 6 illustrates how demand elasticity affects our schemes' demand, average travel cost and relative 

efficiency when the spread 𝑒 is 1.6. When the elasticity goes from -0.2 to -2, demand becomes more price 

sensitive. Compared to time-varying schemes, the performance of step-toll schemes is more sensitive to 

elasticity. The demand under the third-best toll is, by definition, the same as without tolling.  

According to Fig. 6, more price-sensitive demand means lower demand and average travel costs. 

Furthermore, there is little difference in demand between the first and second-best schemes. Demand 

under the third-best toll is always the largest. This might also result in the highest travel costs, especially 

when demand is more price sensitive.  

Finally, Fig. 6(c) illustrates that as demand becomes more price-sensitive, the relative efficiency of 

the step toll and uniform toll increases, while that of time-varying schemes remains similar. The 

efficiency of the single-step toll is higher than that of the third-best toll when demand is really price 

sensitive (i.e. the elasticity is below -0.8). Note again that the first-best scheme has, by definition, a 

relative efficiency of 100, and the base-case untolled equilibrium of 0. 

In contrast, when there is less uncertainty, the uniform and single-step tolls become less efficient, 

and their performance becomes inferior to that of time-varying schemes (see Fig. C.2 in Appendix C). 

This outcome arises because these coarse schemes are better at changing the total demand and worse at 

changing departure times. When demand becomes more price-sensitive, the step and flat toll become 

more efficient since it is more important to change demand then. With less uncertainty, the time-varying 

tolls perform relatively better because then the shift in the departure rates matters more.  

  

     

                    (a) Demand          (b) Average travel cost                   (c) Relative efficiency 

Fig. 6: Effect of elasticity on outcomes when the spread is 𝑒 = 1.6 s/veh.   

Note: The relative efficiency of policy i gives its welfare gain relative to first-best tolling and is 𝜔𝑖
𝑆𝑆 = 100

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is the social 

surplus or welfare. 

 

7.2.4. The effect of 𝜷/𝜶   

How the ratio 𝛽/𝛼 affects the price, average travel cost and relative efficiency is illustrated in Fig. 

7. Here, the value of time 𝛼 = 6.4$/h and the ratio of 𝛾/𝛽 remain unchanged. The ratio 𝛽/𝛼 varies from 

0.26 to 0.99 to ensure 𝛽 < 𝛼. With an increase of 𝛽/𝛼, queuing becomes less costly while experiencing 

schedule delays becomes more costly. Further, with an increase of 𝛽/𝛼, the price and average travel cost 

increase due to the increased value of schedule delay. Regardless of 𝛽/𝛼, the performance of the second-

best toll is close to that of the first-best. The price under the third-best toll is again always the lowest.  

Furthermore, with a lower value of schedule delay, the expected travel cost might be higher under 

the third-best scheme than that under the uniform toll (see Fig. 7(b)). Under these circumstances, queuing 

is relatively costly, indicating that the third-best scheme is poor at reducing queue delays.  
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                     (a) Expected price                  (b) Expected travel cost                         (c) Relative efficiency   

Fig. 7: Effect of 𝛽/𝛼 on outcomes when 𝑒 = 1.6 s/veh.   

Note: The relative efficiency of policy i is 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is its social surplus or welfare. 

 

7.3. Summarising the numerical analysis 

This section compares the socially optimal time-varying toll to second-best and third-best tolls that, 

by assumption, have a departure rate that is constant over time and start and end at zero. The third-best 

toll adds a further constraint, namely that the expected price should be the same as without tolling. We 

also examined a uniform toll—which is constant over time—and a single-step toll. To analyse all this, 

we extended existing models to include price-sensitive demand by adding a second step in the 

optimisation that optimises the total number of users. Previous works had fixed demand, and therefore 

could not look at the uniform toll, as that toll can only have an effect under price-sensitive demand. 

In the social optimum, the departure rate weakly increases over the morning. Further, in the early 

peak, the rate is constant over time and equals the minimum capacity. Subsequently, the rate increases 

over time, and, finally, in the latest part of the peak, it becomes constant again. This pattern differs greatly 

from that of the deterministic model, where the optimal departure rate is always constant. Conversely, 

the untolled outcome has a rate that is the mirror image of the optimal rate and weakly decreases over 

time. Unlike in the deterministic model, the first-best toll raises the expected price from the untolled 

setting, and it decreases travel costs and increases welfare less in percentage terms. These changes are 

stronger the more uncertainty there is. 

The second-best toll attains a welfare level that is somewhat lower than the first-best one, whereas 

the third-best toll attains a much lower welfare. The relative efficiencies of the second-best and third-best 

schemes fall with the degree of uncertainty as measured by the spread of the service time, whereas the 

price sensitivity has little to no effect. The uniform toll has a welfare that is much lower than that of the 

single-step toll. For most parameter ranges, the step toll, in turn, has a lower welfare level than that of the 

third-best toll; exceptions include when demand is highly price-sensitive or when uncertainty is high.  

As demand becomes increasingly price-sensitive, all schemes result in expected prices that are close 

to each other. The uniform toll has the highest price, followed by the single-step toll, then either the first-

best or second-best toll, and, finally, the third-best toll that has the same expected price as the no-toll 

scheme. Whether the first- or second-best toll has a higher price depends on multiple parameters, but 

their prices will be close to each other. The uniform and step tolls attain welfare levels close to those of 

the first-best toll when the price sensitivity or uncertainty increases.  
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8. Conclusion  

This study examines various tolling schemes in the stochastic bottleneck model with price-sensitive 

demand. We assume that the capacity is constant within a day but changes stochastically from day to day. 

We study three time-varying toll schemes, a uniform toll and a single-step toll. Our core contribution is 

doing so under uncertain capacity and price-sensitive demand. Previous works only looked at these 

aspects separately; however, we find that their interplay changes the results substantially. This approach 

is important for policymaking since the combined occurrence of them is likely in reality: travel time 

uncertainty is a fact of life in real transport systems. Solving the required models is, however, complex 

and does not result in a transparent analytical closed-form solution for the performance of alternative toll 

schedules, which is why we complemented our analytical work with extensive numerical modelling.  

In the stochastic bottleneck model, the first-best social optimum is decentralised by a time-varying 

toll and has a continuous departure rate that weakly increases over time. This outcome differs greatly 

from the deterministic model, where the optimal rate is constant over time. Our core methodological 

analytical contribution is solving for time-varying tolls and the step toll in two steps. In the first step, 

under a given demand, the departure rate is optimised, which implies the toll development over time. In 

the second step, the total demand is optimised, which implies the toll’s starting level.  

Compared with the first-best toll, the second-best time-varying scheme is simpler to derive and 

implement because it imposes that the departure rate is constant over time and the toll starts and ends at 

zero. This outcome is optimal in the deterministic bottleneck model, but it is second-best in our case. This 

imposition leads to a lower welfare than under first-best tolling, but our numerical study reveals that the 

difference is not large. The third-best time-varying scheme adds a further constraint that the expected 

generalised price should be the same as in the no-toll case. This additional constraint is optimal in the 

deterministic model, but it substantially lowers welfare and raises costs under uncertainty. When tolling 

increases the expected price and offers low welfare benefits under uncertain conditions, it may become 

difficult to sell politically. However, the third-best toll performs much worse than the first-best toll; thus, 

this option may not be the most desirable. 

The step toll has a welfare below that of the third-best toll for most parameter ranges. The uniform 

toll has a welfare that is well below that of the step toll. With more uncertainty or more price-sensitive 

demand, the uniform and step toll perform relatively better: they produce welfares and travel costs closer 

to those of the first best. This outcome increases the attractiveness of these realistic tolls and shows the 

importance of jointly considering uncertainty and price-sensitive demand.  

Our study can be extended in several directions. The first extension could be a consideration of other 

step-toll models because we used the ADL step-toll. How would adding more steps to the step toll alter 

outcomes? The second- and third-best tolls have the advantage of being simpler to design due to the 

constant departure rate. However, they still have tolls that vary non-linearly over time; conversely, in the 

deterministic model, the toll has a linear slope. How would such a simple and easy-to-implement linear 

toll perform?9 What toll would a profit-maximising road operator set? In the deterministic model, the 

operator uses the same toll pattern as the first-best toll but with a time-invariant markup added. Does the 

same hold with stochasticity? What happens if we consider large networks or different forms of 

congestion? What if demand is also uncertain or the uncertainty varies over the day (e.g. due to an 

accident that is cleared)? What about alternative policies to tolling, such as capacity expansion, working 

from home, flexible working hours, or travel credits? Finally, accounting for the effect of information is 

 
9 Chu (1999) analyses this for his dynamic flow congestion model without uncertainty. 
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important (Yu et al., 2021, 2023; Han et al., 2021; Verhoef et al., 1996). There are several interesting and 

important opportunities for further research on stochastic and congested transportation systems.  

Finally, as a policy conclusion, we find that in the stochastic bottleneck model, unlike in the 

deterministic one, the first-best socially optimal toll cannot remove all queuing and hurts consumers by 

raising the expected price from that of the untolled case. Moreover, the percentage welfare gain is lower 

in our stochastic model than it is in the deterministic bottleneck model, which is likely to make tolling 

harder to implement politically. Adding a constraint requiring the expected price to remain the same as 

without tolling may seem beneficial to users (before considering revenue-recycling); however, this 

approach substantially raises travel costs and lowers toll revenue and welfare. This highlights that the 

interaction between uncertainty and price sensitivity complicates the design of transportation policies and 

alters their effects. Moreover, in reality, there is uncertainty, making its consideration important.   
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Appendix A: Analytics for different toll schemes         

A.1 The expected generalised price in each time window in the social optimum   

Situation 1: [𝑡𝑠, 𝑡1]. During the period, commuters always experience schedule delay early and 

never experience queuing regardless of the realised capacity. The departure rate 𝑟𝐹𝐵(𝑡) = 1 𝜙𝑚𝑎𝑥⁄ , 

where 𝑡 ∈ [𝑡𝑠, 𝑡1]. The generalised price during [𝑡𝑠, 𝑡1] is:   

 𝑃𝐹𝐵(𝑡) = 𝛽(𝑡∗ − 𝑡) + 𝜏𝐹𝐵(𝑡) (A.1) 

https://papers.tinbergen.nl/24025.pdf
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Situation 2: [𝑡1, 𝑡2]. During the second period, commuters always experience schedule delay early. 

They experience queuing for some realisations of capacity. They experience queuing if 𝑞(𝑡, 𝜙) > 0, i.e., 

𝜙 > 𝜔(𝑡); otherwise, they do not. The generalised price during [𝑡1, 𝑡2] is:      

𝑃𝐹𝐵(𝑡) = 𝛽(𝑡∗ − 𝑡) + (𝛼 − 𝛽) ∫ 𝑞(𝑡, 𝜙)𝑓(𝜙)
𝜙𝑚𝑎𝑥

𝜔(𝑡)
𝑑𝜙 + 𝜏𝐹𝐵(𝑡) (A.2) 

Situation 3: [𝑡2, 𝑡∗] . Commuters possibly experience schedule delay either early or late, and 

possibly experience queuing depending on the realised capacity. They experience schedule delay late 

with queuing if 𝑡 + 𝑞(𝑡, 𝜙) > 𝑡∗, i.e., 𝜙 >
𝑡∗−𝑡1

𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄
; they experience schedule delay early with 

queuing if 𝑡 + 𝑞(𝑡, 𝜙) < 𝑡∗, i.e., 𝜔(𝑡) < 𝜙 <
𝑡∗−𝑡1

𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄
; they experience schedule delay early 

without queuing if 𝜙 < 𝜔(𝑡). The generalised price during [𝑡2, 𝑡∗] is:    

𝑃𝐹𝐵(𝑡) = ∫ 𝛽(𝑡∗ − 𝑡)
𝜔(𝑡)

𝜙𝑚𝑖𝑛
𝑓(𝜙)𝑑𝜙 + ∫ [𝛽(𝑡∗ − (𝑡 + 𝑞(𝑡, 𝜙))) +

𝑡∗−𝑡1
𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄

𝜔(𝑡)

𝛼𝑞(𝑡, 𝜙)] 𝑓(𝜙)𝑑𝜙 + ∫ [𝛾(𝑡 + 𝑞(𝑡, 𝜙)−𝑡∗) + 𝛼𝑞(𝑡, 𝜙)]𝑓(𝜙)
𝜙𝑚𝑎𝑥

𝑡∗−𝑡1
𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄

𝑑𝜙 + 𝜏𝐹𝐵(𝑡) (A.3) 

Situation 4: [𝑡∗, 𝑡𝑒]. Commuters always experience schedule delay late regardless of the capacity, 

and experience queuing for some realisations of capacity. They experience queuing if 𝑞(𝑡, 𝜙) > 0, i.e., 

𝜙 > 𝜔(𝑡), otherwise, they do not. The generalised price during [𝑡∗, 𝑡𝑒] is:     

𝑃𝐹𝐵(𝑡) = ∫ 𝛾(𝑡 − 𝑡∗)
𝜔(𝑡)

𝜙𝑚𝑖𝑛
𝑓(𝜙)𝑑𝜙 + ∫ [𝛾(𝑡 + 𝑞(𝑡, 𝜙)−𝑡∗) + 𝛼𝑞(𝑡, 𝜙)]𝑓(𝜙)

𝜙𝑚𝑎𝑥

𝜔(𝑡)
𝑑𝜙 + 𝜏𝐹𝐵(𝑡)  (A.4) 

 

A.2 Proof of Proposition 5 on the uniform toll  

The social surplus equals the total benefit minus total expected social cost. The total expected cost 

equals the expected travel cost multiplied by the number of users. Under the uniform toll, the social 

welfare needs to be maximised subject to the constraint that price equals the sum of mean travel cost and 

the toll. Therefore, the problem can be formulated as:    

 max 𝑆𝑆𝑈𝑇 = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇))  

 s.t. 𝐷(𝑁𝑈𝑇) = 𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) + 𝜏𝑈𝑇  

where the subscript “UT” denotes the uniform toll scheme. 𝑁𝑈𝑇 , 𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) and 𝜏𝑈𝑇  denotes the 

demand, expected travel cost of user and toll under the uniform toll, respectively. To find the optimal 

constant toll 𝜏𝑈𝑇, the following Lagrangian is maximised,  

 𝐿(𝑁𝑈𝑇, 𝜏𝑈𝑇, 𝜆) = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) + 𝜆(𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) − 𝜏𝑈𝑇)  

where 𝜆 is the multiplier. The first-order conditions are  

 
𝜕𝐿

𝜕𝑁𝑈𝑇
= 𝐷(𝑁𝑈𝑇) − 𝑁𝑈𝑇

𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
− 𝐸(𝐶𝑈𝑇) + 𝜆 (

𝜕𝐷(𝑁𝑈𝑇)

𝜕𝑁𝑈𝑇
−

𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
) = 0   

 
𝜕𝐿

𝜕𝜏𝑈𝑇
= −𝜆 = 0   

 
𝜕𝐿

𝜕𝜆
= 𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) − 𝜏𝑈𝑇 = 0   

These conditions imply that the toll is  
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 𝜏𝑈𝑇 = 𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) = 𝑁𝑈𝑇
𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
  (A.5)  

Therefore, the uniform toll is set such that the average marginal social cost equals the price, and thus the 

toll equals the average marginal external cost.    

 

A.3 Second step of the optimization of the single-step toll scheme  

In the first step of the optimisation, the step part of the toll is obtained by minimising the total social 

cost under the given demand. In the second step, the social welfare is maximised to find the optimal flat 

part of toll implementing during the whole peak. The problem can be formulated as follows,  

 max 𝑆𝑆𝑆𝑇 = ∫ 𝐷(𝑛)
𝑁𝑆𝑇

0
𝑑𝑛 − 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇)  

 s.t. 𝐷(𝑁𝑆𝑇) = 𝐴𝐶𝑆𝑇(𝑁𝑆𝑇) + 𝜌𝑆𝑇   

where the subscript “ST” denotes the single-step toll scheme. 𝑇𝐶𝑆𝑇 and 𝐴𝐶𝑆𝑇 denote the total expected 

social cost and the average expected travel cost under the step part of toll, respectively, and 𝐴𝐶𝑆𝑇 =
𝑇𝐶𝑆𝑇

𝑁𝑆𝑇
. 

𝜌𝑆𝑇 are defined as 𝜌𝑆𝑇 =
𝜌𝑡𝑁1

𝑁𝑆𝑇
+ 𝜇, where 𝜌𝑡, 𝜇, and 𝑁1 are the time-variant step part of the toll, time-

invariant part of toll and the number of users departing from 𝑡+ to 𝑡−, respectively.      

Here, similar to the procedure in Van den Berg (2012), in the first step, given the number of users, 

the time-variant part 𝜌𝑡 and the step tolling period are obtained by minimising the total expected social 

cost. The results of 𝑇𝐶𝑆𝑇, 𝜌𝑡 and 𝑁1 follow those in Long et al. (2022), and 𝑇𝐶𝑆𝑇 and 𝜌𝑡 are both the 

function of travel demand, as given in their study. In the second step, we use a Lagrangian to maximising 

the social welfare, since total expected travel cost and the step part of toll can be expressed as a function 

of travel demand. To find the optimal flat part of the toll 𝜇, the following Lagrangian is maximised,        

 𝐿(𝑁𝑆𝑇 , 𝜇, 𝜆) = ∫ 𝐷(𝑛)
𝑁𝑆𝑇

0
𝑑𝑛 − 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) + 𝜆(𝐷(𝑁𝑆𝑇) − 𝐴𝐶𝑆𝑇(𝑁𝑆𝑇) − 𝜌𝑆𝑇 )  

The first-order conditions are 

 
𝜕𝐿

𝜕𝑁𝑆𝑇
= 𝐷(𝑁𝑆𝑇) −

𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
+ 𝜆 (

𝜕𝐷(𝑁𝑆𝑇)

𝜕𝑁𝑆𝑇
−

𝜕𝐴𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
−

𝜕𝜌𝑆𝑇

𝜕𝑁𝑆𝑇
) = 0  

 
𝜕𝐿

𝜕𝜇
= −𝜆 = 0  

 
𝜕𝐿

𝜕𝜆
= 𝐷(𝑁𝑆𝑇) − 𝐴𝐶𝑆𝑇 − 𝜌𝑆𝑇 = 0  

These conditions imply that the optimal flat part of the toll can be given as follows,  

 𝜇 = 𝜌𝑆𝑇 −
𝜌𝑡𝑁1

𝑁𝑆𝑇
=

𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
− 𝐴𝐶𝑆𝑇 −

𝜌𝑡𝑁1

𝑁𝑆𝑇
  (A.6)  

The average marginal social cost is 𝑀𝑆𝐶𝑆𝑇 =
𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
. Therefore, Eq. (A.6)  can also be expressed as: 𝜇 =

𝑀𝑆𝐶𝑆𝑇 − 𝐴𝐶𝑆𝑇 −
𝜌𝑡𝑁1

𝑁𝑆𝑇
= 𝑀𝐸𝐶𝑆𝑇 −

𝜌𝑡𝑁1

𝑁𝑆𝑇
, where 𝑀𝐸𝐶𝑆𝑇  is the average marginal external cost. The 

optimal flat part of toll 𝜇 is set such that price equals the average marginal social cost. The optimal 

demand can be obtained from 𝐷(𝑁𝑆𝑇) = 𝑀𝑆𝐶𝑆𝑇.     
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A.4 The results in Case II for the single-step toll  

As given in Long et al. (2022), the expected social cost in Case II is:  

 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) = (𝑁𝑆𝑇)2𝜍(𝜙, 𝜙  )  

where 𝜍(𝜙, 𝜙  ) = 𝛽𝜙  − 𝑋(𝜙, 𝜙  ) [1 − 𝛽(𝜙 − 𝜙  )𝑌(𝜙) +
2(𝛽𝜙    −𝑋(𝜙⃡  ,𝜙    ))

(𝛼+𝛾)𝜙̄
− 𝑋(𝜙, 𝜙  )𝑌(𝜙)] , 𝑋(𝜙, 𝜙  ) =

𝛽𝜙    −(𝛼+𝛾)(𝐻(𝜙    )−𝜙    )

(𝛼+𝛾)[𝐻(𝜙⃡  )𝑌(𝜙⃡  )−𝐻(𝜙    )/𝑊(𝜙⃡  )]+(𝛼+𝛽+𝛾)[𝜙    /𝑊(𝜙⃡  )−𝜙⃡  𝑌(𝜙⃡  )]+1
. As defined in Long et al. (2022), 𝜙 and 𝜙   are the 

reciprocals of average departure rates during the period from the departure time of the first commuter to 

the departure time of the first commuter who pays the toll and during the period from the departure time 

of the first commuter who pays the toll to the end of the tolling period, respectively. 𝜙 and 𝜙   are obtained 

by 
𝜕𝜍(𝜙⃡  ,𝜙    )

𝜕𝜙⃡  
= 0 and 

𝜕𝜍(𝜙⃡  ,𝜙    )

𝜕𝜙    
= 0. The total toll revenue follows Eq. (38), where 𝜌𝑡 = 𝑁𝑆𝑇𝑋(𝜙, 𝜙  ) and 

𝑁1 = 𝑁𝑆𝑇 −
𝜌𝑡

𝑊(𝜙⃡  )
 in Case II. As proved in Proposition 20 by Long et al. (2022), 𝜙 and 𝜙   are independent 

of the number of users, and 𝑇𝐶𝑆𝑇 and 𝜌𝑡 depend on the demand. Hence, the average MEC in Case II is: 

 𝑀𝐸𝐶𝑆𝑇 = 𝑁𝑆𝑇𝜍(𝜙, 𝜙  ) (A.7)  

The optimal time-invariant part of the toll in Case Ⅱ is:  

 𝜇 = 𝑁𝑆𝑇 [𝜍(𝜙, 𝜙  ) − 𝑋(𝜙, 𝜙  ) (1 −
𝑋(𝜙⃡  ,𝜙    )

𝑊(𝜙⃡  )
)] (A.8)  

where 𝜇 > 0 in Case II. The generalised price in Case II is:   

 𝑃𝑆𝑇 = 2𝑁𝑆𝑇𝜍(𝜙, 𝜙  ) (A.9)  

From Eq. (A.9), the optimal demand under a step toll can be found by solving 𝑃𝑆𝑇 = 𝐷(𝑁𝑆𝑇). 

 

Appendix B: Proofs         

B.1 The proof of Proposition 3 

Proof. Differentiating Eq. (17), for our uniform distribution, we have   

𝜔(𝑡)𝜇1(𝑡, 𝜔(𝑡))
𝑑𝜔(𝑡)

𝑑𝑡
=

𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
(𝜔(𝑡) − 𝜙𝑚𝑖𝑛) − 𝛼(𝜙𝑚𝑎𝑥 − 𝜔(𝑡))  

For early departures, 
𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
= −𝛽 < 0 and the right-hand side of the equation is negative. Since 𝜔(𝑡) ≥ 0 

and 𝜇1(𝑡, 𝜔(𝑡)) ≥ 0, condition 
𝑑𝜔(𝑡)

𝑑𝑡
≤ 0 should be met. By 𝑟𝐹𝐵(𝑡) =

1

𝜔(𝑡)
, we have 

𝑑𝑟𝐹𝐵(𝑡)

𝑑𝑡
≥ 0.    

For late departures, 
𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
= 𝛾 > 0. Let 𝛹(𝑡) =

𝑑𝑆𝐷𝐶(𝑡)

𝑑𝑡
(𝜔(𝑡) − 𝜙𝑚𝑖𝑛) − 𝛼(𝜙𝑚𝑎𝑥 − 𝜔(𝑡)). Differentiating 

𝛹(𝑡) with respect to t, we have 𝛹 ′(𝑡) = (𝛼 + 𝛾)
𝑑𝜔(𝑡)

𝑑𝑡
.       

Suppose 
𝑑𝜔(𝑡)

𝑑𝑡
> 0, then we have 𝜔(𝑡)𝜇1(𝑡, 𝜔(𝑡))

𝑑𝜔(𝑡)

𝑑𝑡
≥ 0. Therefore, 𝛹(𝑡) ≥ 0, 𝛹 ′(𝑡) = (𝛼 + 𝛾)

𝑑𝜔(𝑡)

𝑑𝑡
>

0, and 𝛹(𝑡) monotonously increases with t. This also indicates that 𝛹(𝑡) cannot approach to zero at te. Since 

𝜇1(𝑡𝑒 , 𝜔(𝑡)) = 0 at te as, we have 𝛹(𝑡)|𝑡=𝑡𝑒
= 0. The two results contradict each other. This means the assumption 
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𝑑𝜔(𝑡)

𝑑𝑡
> 0 is not valid.  Therefore, 

𝑑𝜔(𝑡)

𝑑𝑡
≤ 0 should hold, and we have 

𝑑𝑟𝐹𝐵(𝑡)

𝑑𝑡
≥ 0.    

This completes the proof. □ 

 

B.2 The proof of Lemma 2 

Proof. The departure rate 𝑟𝐹𝐵(𝑡) = 1 𝜙𝑚𝑎𝑥⁄ , where 𝑡 ∈ [𝑡𝑠, 𝑡1] . Then, the cumulative departures at 𝑡1  is 

𝑅(𝑡1) = (𝑡1 − 𝑡𝑠) 𝜙𝑚𝑎𝑥⁄ . From the schedule delay experience during Situation 2 and Situation 3, the boundary 

condition for 𝑡2 is that commuters departing at 𝑡2 arrive exactly at 𝑡∗ when the realised capacity is the minimum, 

i.e., 𝜙 = 𝜙𝑚𝑎𝑥 . Then, we have 𝑅(𝑡2) = (𝑡∗ − 𝑡𝑠) 𝜙𝑚𝑎𝑥⁄ . The cumulative departures at 𝑡∗  is obtained by 

substituting 𝑡 = 𝑡∗ into Eq. (A.3) and (A.4), and then equalising the two equations.   

This completes the proof. □ 

 

B.3 The proof of Lemma 3 

Proof. By the definition of 𝜔(𝑡), we have 𝑞(𝑡𝑒 , 𝜔(𝑡𝑒)) = 0. i.e.,  

𝜔(𝑡𝑒) [𝑁𝐹𝐵 −
(𝑡1−𝑡𝑠)

𝜙𝑚𝑎𝑥
] − (𝑡𝑒 − 𝑡1) = 0  

In the optimum, 𝑃𝐹𝐵(𝑡𝑠) = 𝑃𝐹𝐵(𝑡𝑒), then we have 

(𝛼+𝛾)

2
𝑓(𝜙) (𝑁𝐹𝐵 −

𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
) ((𝜙𝑚𝑎𝑥)2 − 𝜔2(𝑡𝑒)) − 𝛾(𝑡∗ − 𝑡1) = 𝛽(𝑡∗ − 𝑡𝑠)  

Substituting 𝑓(𝜙) = 1 (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)⁄  and 𝜔(𝑡𝑒) = (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛) (𝛼 + 𝛾)⁄  into the two equations and 

rearrange them, the results can be obtained.   

This completes the proof. □ 

 

 

Appendix C: Numerical results under low uncertainty         

 

(a) Toll                    (b) Mean queuing cost       (c) Mean schedule delay cost       

Fig. C.1: Comparisons of toll, queuing cost and schedule delay cost with a small spread 𝑒=0.4 s/veh. 
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                    (a) Demand          (b) Average travel cost                   (c) Relative efficiency 

Fig. C.2: The effect of elasticity on the outcomes with a small spread 𝑒=0.4 s/veh. 
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