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Abstract

When comparing predictive distributions, forecasters are typically not equally in-
terested in all regions of the outcome space. To address the demand for focused fore-
cast evaluation, we propose a procedure to transform strictly proper scoring rules into
their localized counterparts while preserving strict propriety. This is accomplished
by applying the original scoring rule to a censored distribution, acknowledging that
censoring emerges as a natural localization device due to its ability to retain pre-
cisely all relevant information of the original distribution. Our procedure nests the
censored likelihood score as a special case. Among a multitude of others, it also
implies a class of censored kernel scores that offers a multivariate alternative to the
threshold weighted Continuously Ranked Probability Score (twCRPS), extending its
local propriety to more general weight functions than single tail indicators. Within
this localized framework, we obtain a generalization of the Neyman Pearson lemma,
establishing the censored likelihood ratio test as uniformly most powerful. For other
tests of localized equal predictive performance, results of Monte Carlo simulations
and empirical applications to risk management, inflation and climate data consis-
tently emphasize the superior power properties of censoring.

Keywords: Density forecast evaluation; Tests for equal predictive ability; Censoring; Like-

lihood ratio; CRPS.

1 INTRODUCTION

Over the past decades, probabilistic forecasts have garnered increasing attention across a
variety of disciplines, primarily because they provide a more comprehensive understanding
of the stochastic nature of a random variable under scrutiny than point forecasts (Dawid
1984). A cornerstone for the effective evaluation of such probabilistic forecasts is the
use of strictly proper scoring rules (Gneiting and Raftery 2007; Brehmer and Gneiting
2020; Patton 2020), which have been widely advocated for their ability to ensure fair
comparative assessments of different forecast methods. While the usefulness of regular
probabilistic forecasting is well-recognized and well-understood, various applications, such
as the assessment of large financial portfolio losses, inflation targets or temperature ranges,
require a focused, localized evaluation of predictive distributions.

In this paper, we introduce a natural localization mechanism for strictly proper scoring

rules that preserves strict propriety. By censoring (Bernoulli 1760; Tobin 1958) the ob-



servation and distribution before applying the original scoring rule, we find a sweet spot
between retaining and discarding information when focusing the original distribution to
a region of interest. Specifically, unlike existing approaches that employ conditional dis-
tributions, our method preserves the overall probability of receiving an observation in (or
outside) the target region, obviously relevant when comparing various candidate distribu-
tions focused on the same area. Moreover, within the region of interest, our mechanism
replicates the original distribution’s shape, which is particularly beneficial when evaluating
functionals specific to this region, like quantiles or conditional expectations. Our procedure
can be used to generate a multitude of strictly locally proper scoring rules. These include
as special cases the censored likelihood (CSL) score, proposed by Diks et al. (2011), and
the threshold weighted Continuously Ranked Probability Score (twCRPS), proposed by
Gneiting and Ranjan (2011), for weight functions for which Holzmann and Klar (2017a)
have shown that the twCRPS is strictly locally proper. On the other hand, for weight
functions for which the twCRPS is not strictly locally proper, our analysis delineates the
adverse consequences arising from this failure in localization, and provides a strictly locally
proper alternative.

The additional information retained by our censoring approach also translates into ad-
vantageous power properties of tests aimed to compare density forecasts on regions of in-
terest. We prove a generalization of the Neyman Pearson (1933) lemma, revealing that the
censored likelihood ratio leads to a Uniformly Most Powerful (UMP) test. By contrast, we
provide explicit evidence that the conditional likelihood (CL) score does not admit a UMP
test. Monte Carlo simulations and empirical applications analyze the power properties of
the Diebold and Mariano (2002) (DM) type test statistic, within the framework of Gia-

comini and White (2006), based on conditional vis-a-vis censored scoring rules. Censored



scoring rules enhance power in all three Monte Carlo experiments we have conducted. Sub-
stantial spurious power is observed solely for conditional scoring rules, which also falter in
terms of power when tails become proportional. In multiple empirical experiments, which
span financial, macroeconomic and climate data, we integrate the DM tests into the Model
Confidence Set (MCS) as proposed by Hansen et al. (2011). The MCSs resulting from cen-
sored scoring rules are typically much smaller than their conditional counterparts, aligning
with the power enhancements due to censoring displayed by the Monte Carlo results.

Our research contributes to the literature on focused scoring rules, initiated by the
weighted likelihood score of Amisano and Giacomini (2007). Diks et al. (2011) and Gneit-
ing and Ranjan (2011) sought to correct the (regular) impropriety of this scoring rule by
introducing the CL, CSL and twCRPS, respectively. Holzmann and Klar (2017a) substan-
tially advanced focused scoring rules, by generalizing the case of the CL score to construct
proportionally locally proper scoring rules, based on conditioning, from regular scoring rules
other than the logarithmic scoring rule. They also show that strict local propriety of the
ensuing scoring rules can be restored by adding an auxiliary weighted scoring rule, based
on an arbitrary strictly proper scoring rule for the probability of an observation landing
in the region of interest. Our work differs importantly from theirs by opting for censoring
rather than conditioning as localization mechanism. Through censoring, we enable the
direct application of the original scoring rule to the localized measure, thereby avoiding the
introduction of an auxiliary scoring rule and preserving the original Bregman divergence.
As detailed by Brehmer and Gneiting (2020, Theorem 1), the conditional scoring rules of
Holzmann and Klar (2017a) can also be viewed as an extension of the weighted likelihood
score refined through a ‘properization’ process. Consequently, properization is not a viable

mechanism for retaining strict propriety of the original scoring rule.



Our research also rests upon a substantial body of research concerning regular strictly
proper scoring rules and their associated divergence measures. While the formalization
of strict propriety was rigorously achieved by Gneiting and Raftery (2007), scoring rules
satisfying this property date back to at least the Quadratic Scoring rule of Brier (1950).
Literature in this domain has evolved from an initial focus on discrete settings to a more
general treatment. In this vein, we rely on the expanded frameworks of the Power (PowS,)
and PseudoSpherical (PsSphS,) families as advocated by Gneiting and Raftery (2007) and
Ovcharov (2018) rather than their discrete foundations and refer to Gneiting and Raftery
(2007) for foundational references. Additionally, scoring rules are inherently connected with
divergence measures; under the restriction of strict propriety, these measures are subsumed
under Bregman divergences (Dawid 2007; Ovcharov 2018; Painsky and Wornell 2020).
This effectively excludes f-divergences other than Kullback-Leibler divergence (Kullback
and Leibler 1951), distinguished for its favorable properties (Liese and Vajda 2006).

Interest in targeting specific regions of predictive distributions has surged across diverse
fields, underscored by analyses of extreme events in disciplines such as meteorology, clima-
tology, hydrology, finance, and economics (Lerch et al. 2017). In financial risk management,
attention is particularly concentrated on the left tail of return distributions, conforming
to mandated risk metrics like Value-at-Risk and Expected Shortfall (Cont et al. 2010;
Fissler et al. 2015). Analogously, in macroeconomics, concepts such as ‘Inflation-at-Risk’
and ‘Growth-at-Risk’ are emerging, signifying values that deviate significantly from bench-
marks established by institutions like Central Banks (Adrian et al. 2019; Lopez-Salido
and Loria 2020; Tacopini et al. 2023). In other scenarios, the emphasis might rest on the
central region or on another specific region of the distribution, often dictated by external

constraints or objectives. Examples range from optimizing growing conditions for specific



crops like tubers, to calibrating wind speeds for peak wind turbine performance, and regu-
lating blood sugar levels for effective diabetes management. They necessitate region-specific
performance evaluations aligned with the interest in particular outcomes. Accordingly, as
illustrated by Lerch et al. (2017), it is crucial to distinguish between strict propriety and
strict local propriety; failing to do so can result in misleading forecast results.

This paper is organized as follows. Section 2 provides the foundational concepts essential
for the subsequent analysis. Section 3 introduces the Censored Scoring Rule and establishes
its strict local propriety. This section also introduces the Z-Q-Randomization procedure,
proven to be equivalent to the Censored Scoring Rule, and showcases a variety of examples.
It concludes with a generalization of the Neyman Pearson lemma and the main results of the
simulation study. Section 4 discusses the empirical performance of our approach. Section 5
concludes. In accompanying Supplementary Material, we provide the proofs of our results,
derivations of the theoretical properties tabulated in Section 3, extensive details of the

Monte Carlo study, and full tables underlying the performance reported in Section 4.

2 SCORING RULES

2.1 Regular scoring rules

Consider a random variable Y : Q — Y from a complete probability space (2, F,P) to a
measurable space (), G). Denote by P a convex class of probability distributions on (Y, G).
A scoring rule S assigns numerical values (scores) to observations y € ) and distributions
F € P, through a mapping S : P x Y — RU {—o00} =: R. Following Holzmann and
Klar (2017a), we assume that a scoring rule S is measurable with respect to G and quasi-

integrable with respect to all P € P, for all F € P, and such that EpS(F,Y) < oo



and EpS(P,Y) € R,VP,F € P. The latter condition guarantees that the score divergence,
Dg(P||F) := EpS(P,Y)—EpS(F,Y), exists, and maps onto (—oo, oo]. Adhering to Gneiting

and Raftery (2007), a minimal requirement for S is that it is strictly proper.

Definition 1 (Strictly proper scoring rule). A scoring rule S : P xY — R is proper relative
to P if Ds(P||F) > 0, VP, F € P, and strictly proper if, additionally, Ds(P||F) = 0 if and

only if P=F, VP, F € P.

Equivalently, a score divergence is a divergence measure (see e.g., Eguchi, 1985) if and
only if S is strictly proper. For distributions on (Rd, B (]Rd)), where B()) denotes the Borel
o-algebra on ), this divergence is known to be a Bregman (1967) divergence under the con-
ditions listed by Ovcharov (2018). Two remarks are in place. First, distributions F € P are
compared in terms of their P-expected score differences, whence it follows that uniqueness
of members in P should formally be interpreted in terms of P-a.s. equivalence classes of P.
For ease of exposition, we omit technicalities about P-a.s. equivalence throughout. Second,
if there exists a o-finite measure p such that F' < p, VF € P, with < denoting absolute
continuity, then scoring rules and associated definitions and results can easily be formu-
lated relative to the class of induced p-densities f = %, also denoted by P, like classes of
distributions functions F'.

Gneiting and Raftery (2007) provide an extensive list of strictly proper scoring rules,
which can be divided into local scoring rules and distance-sensitive scoring rules (Ehm and
Gneiting 2012). We use the same distinction when discussing examples, yet allowing local
scoring rules to also depend on the density via a global norm of the density, and refer
to them henceforth as semi-local. In this subcategory, our focus lies on the Logarithmic
(LogS), Quadratic (QS) and Spherical (SphS) scoring rules, along with their extensions

to the Power (PowS,) and PseudoSpherical (PsSphS,) families. Our choice of distance-



sensitive scoring rules is confined to the Energy Scores (ES) subfamily, a subclass of the
class of strictly proper scoring rules given by Theorem 5 of Gneiting and Raftery (2007),

nesting the real-valued Continuously Ranked Probability Score (CRPS) as a special case.

2.2 Weighted scoring rules

Example 1 (The need to focus). Let Y be a random variable that follows a piecewise uni-
form distribution across the intervals A =[0,1), B = [1,2) and C = [2, 3], with probabilities
Ta, T and wc, respectively. Figure 1 displays the densities and distribution functions of
the true distribution P and two candidates F and G. Consider the CRPS, which is strictly
proper and has score divergence Deorps(F||G) = f03 (F(s)— G(s))st. From the right panel
of Figure 1 it is apparent that Derps(P||F) > Derps(P||G). However, if only observations
in B are pertinent, the ranking induced by Derps fails because F coincides with P on B,

that is, P(E N B) = F(EN B),YE € G, in contrast to G.
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Figure 1: Densities (left) and distribution functions (right) of distributions F, G and true dis-
tribution P, all piecewise uniformly distributed on [0, 3] but with different probabilities 7 :=
(ra,mp,mc). Specifically, m, = (1/5,2/5,2/5)', w; = (2/5,2/5,1/5)" and 7, = (1/5,3/5,1/5)".

As demonstrated by Example 1, it is imperative to adapt the scoring rule when partic-

ular outcomes are of importance. Otherwise, an excellent fit in non-critical regions of the



outcome space may obscure a poor fit in regions of actual relevance. Modeling the relative
importance of outcomes y € Y by a weight function w € W, with W consisting of all
G-measurable mappings w : Y — [0, 1], the question arises how to transform the original
scoring rule S given this weight function. We concur with the arguments put forward by
Holzmann and Klar (2017a) that the weighted scoring rule, S,,, must be localizing. Specif-
ically, for all outcomes, the variation in S,, should be solely dependent on changes in the

distribution within the region of interest {w > 0} := {y € Y : w(y) > 0}; see Definition 2.

Definition 2 (Localizing weighted scoring rule). A weighted scoring rule S, that is, a
map S.: P x Y x W — R such that S,(-,-) is a scoring rule for each w € W, is localizing

if for any P, F € P, w e W, it holds that

VE€G :Plw>0}NE)=F{w>0}NE) = S,(P,y) = S,(F,y), Yy e ).

If a weighted scoring rule is non-localizing, this may cause what we refer to as a local-

1zation bias, as illustrated by Example 2.

Example 2 (Localization bias). Revisit Example 1. Suppose that the region of interest

is B, with corresponding weight function w(y) = 1g(y). A prevalent weighted version
of the CRPS is given by twCRPS(F,y) fB ( — Lyo0)(s ))2ds, with score divergence
Duwcrps(P||F) = [5 (F( ))st; see Gneiting and Ranjan (2011). This weighted

variant of the CRPS is clearly non-localizing, for instance, because its value is influenced
by F(A), while F(A) is not implied by F(B), only the sum F(A) + F(C) is. Consequently,
the scoring rule depends on the distribution F outside B in a way that is not implied by F
restricted to B. Its failure to be localizing introduces a bias in evaluating distributions over
the region B. Indeed, by accounting for behavior of F and G on A (i.e., outside B) where

G is closer to P than F (see Figure 1), the twCRPS inappropriately favors G on B.



Example 3 (Improper localizing weighted scoring rule). We examine the weighted like-
lihood score wi(f,y) = log f(y)1p(y) proposed by Amisano and Giacomini (2007), in
the context of Example 1. Although the unweighted logarithmic scoring rule is strictly
proper and the weighted likelihood score is localizing, it is not locally proper, and still in-
appropriately favors G. Specifically, we have log g(y) > logp(y),Yy € B, which implies

Dot (P[[P) > Dui (P[|G).

Example 3 illustrates that localizing versions of strictly proper scoring rules are not
automatically proper for all weight functions. In light of this, we focus on the subclass of
localizing scoring rules that maintain this property. By construction, a localizing weighted
scoring rule cannot be strictly proper unless w(y) > 0,Vy € ). This is because any
distribution P equivalent to P on {w > 0} but different on {w = 0} will receive an
identical score. Nonetheless, as illustrated by Example 4 below, some notion of local
strictness remains advantageous. As recalled in the example, this is not achieved by the

family of weighted scoring rules

1
Su(F,y) = w(y)S(F,y),  dF = o—=dFy, (1)

analyzed in detail by Holzmann and Klar (2017a), where S is a regular scoring rule, dF,, :=
wdF is the weighted kernel of distribution F and F,, = J5(1 —w)dF. For indicator weight
functions, F# simplifies to a conditional distribution on the region of interest. Henceforth,

we refer to S% as a conditional scoring rule for general weight functions.

Example 4 (Proportionally locally proper). Consider the weighted scoring rule S% (F,y)
in Equation (1). This scoring rule is localizing and proper for weight functions for which
it remains a scoring rule (see Section 2.1). Yet, when revisiting Example 1 with w(y) =
15(y), we have that S5(F,y) = SL(G,y) = SL(P,y),Vy € B, since St cannot discrim-
inate between distributions that are proportional to each other on {w > 0}. Accordingly,

10



Dy (P[|F) =Dy (P||G) = 0, while only F coincides with P on B. In other words, the score
B B
divergence DS% of a candidate distribution and P is properly zero if, but not only if, the

candidate coincides with P on B, as is the case for F.

Motivated by Examples 2, 3 and 4, this paper posits the necessity for weighted scoring
rules to be strictly locally proper, as articulated in Definition 3. Compared to the defini-
tion of strict propriety (Definition 1), strictness is only required locally. More precisely,
equivalent distributions on {w > 0} must have weighted score divergence zero and, vice
versa, distributions at zero weighted score divergence of each other must be equivalent on

{w > 0}, the latter ruling out the ambiguities highlighted in Example 4.

Definition 3 (Strictly locally proper scoring rule). A weighted scoring rule S. : P x ) X
W — R is locally proper relative to (P, W) if it is localizing and S, (-,-) is proper for each

w € W. Furthermore, it is strictly locally proper relative to (P, W) if, additionally,

P({w>0}NE)=F{w >0} NE)VE € G > D, (P|F) =0, Yuw e W.

3 THE CENSORED SCORING RULE

To overcome issues such as the non-locality and non-strictness of the weighted scoring rules
discussed above, we propose to use censoring as focusing mechanism. Censoring (Bernoulli
1760) refers to the statistical concept used to model a variable under scrutiny whose value,
upon measurement or observation, is only partially known (Tobin 1958). More formally,
under censoring, for realizations of a random variable Y that occur in A€, the complement
of some A C ), it is only known that they are not in A. Realizations in A¢ are hence
indistinguishable under censoring and ‘A’ may therefore be viewed as a single realization

of the censored random variable. To avoid confusion, we label realizations in A¢ by ‘*’

11



rather than ‘A itself, which is nothing but an abstract event, interchangeable with ‘NaN’.

To facilitate censoring mathematically, we let ) and G both contain ‘x” and set F(x) = 0,
VE € P, the latter rendering a choice for w(x) € [0, 1] irrelevant. So, if one has some
random variable on a measurable space (X, .4) in mind, this measurable space is extended
to (¥,G) = (XU{x},0({A,*})), where o({A, }) denotes the smallest o-algebra containing

the collection {A, x}. The censored random variable

Y, YeA,
YIZ =
x, Y € A
then defines a map from a probability space (V,G,F) to (V,G), VF € P. Similar to the
conditional distribution in Example 4, we extend the definition of the distribution of Y3

from indicator functions w(y) = 14(y) to general weight functions w € W. Specifically, we

define the censored distribution as
dF’ .= dF,, + F,dé,, F, = /(1 — w)dF, weW, FeP, (2)
Yy

where d, denotes the Dirac measure at *, i.e., §,(E) = Lg(x).
In case F < u,VF € P, we may work with the pu-densities f € P instead, and their

associated (u + 0,)-densities
o =wfly+ Eul,,, weW, feP. (3)

A detailed proof of this result is deferred to Appendix B.1. Borowska et al. (2020) also
work with an explicit formulation of the censored density, albeit restricted to w(y) = 1 4(y),
coinciding with f%, in the context of maximum likelihood. To ease notation, we adopt the
subscript A instead of 14 when referencing indicator functions. The symbols ‘sharp’ (f)
and ‘flat’ (b) reflect their respective operations: conditioning sharpens the density on A by

a factor 1/(1 — F,), whereas censoring flattens the shape outside A into a point mass.

12



3.1 Censored scoring

Ideally, the censored scoring rule would be given by

SH(F,y) = S(F, ), (4)

as this would fully respect the forecaster’s specific choice of the regular scoring rule S. The
censored scoring rule given by Definition 4 below reduces to this definition for the indicator
weight function w(y) = 14(y). The censored scoring rule is also attractive for general weight
functions. This will be particularly clear from the randomization perspective provided in

Section 3.2, which yields a similar identity for general weight functions; see Equation (6).

Definition 4 (Censored scoring rule). Let S : P* x Y — R, P* = {F>,F € P,w € W},
denote a reqular scoring rule. Then, the corresponding censored scoring rule is given by the

mapS,b:PnyW—)]R,

Su(Fy) == w(y)S(Fr,y) + (1 —w(y))S(Fy, %),
where the censored distribution F°, is defined in Equation (2).
Theorem 1 establishes that the censored scoring rule is strictly locally proper.

Theorem 1. Suppose that the reqular scoring rule S is strictly proper relative to P°. Then,

the censored scoring rule S° in Definition 4 is strictly locally proper relative to (P, W).

Theorem 1 is a special case of the more general Theorem 2 below, hence its proof is
subsumed in the proof of Theorem 2. The assumption imposed in Theorem 1 ensures that
the regular scoring rule is well-defined with respect to mixed continuous-discrete distribu-
tions on measurable spaces extended by ‘x’. In Subsection 3.3, we will verify that this

assumption holds in the examples discussed.
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Let us provide some intuition for the result of Theorem 1. Given some weight function
w € W, it is clear that censoring maintains a one-to-one correspondence with the original
distribution on {w > 0}. This correspondence is invalidated by conditioning due to the
additional normalization of the weighted kernel. This difference is very explicit for indicator
weight functions since F, = F, while F& # F, on A. Because of this, only the censored
scoring rule allows for identifying the original distributions on {w > 0} when comparing
two candidates F and G. Consequently, the assumed strict propriety of the original rule
localizes to {w > 0} for the censored scoring rule.

Leveraging this intuition, one might conjecture that more general transformations to the
distribution that suitably replace the Dirac measure in Definition 4 by an arbitrary nuisance
distribution may also be performed, as long as the transformation remains independent of
the original distribution and ‘identifiable’ when comparing two candidate distributions.
The latter requirement, formalized by Assumption 1 below, ensures that the generalized

censored scoring rule in Definition 5 is still strictly locally proper.

Definition 5 (Generalized censored scoring rule). Let S : P° x ¥ — R denote a reqular
scoring rule and H C P a class of nuisance distributions. The associated generalized

censored scoring rule is given by the map Sb PxYXxWxH— R,

Sou(Fy) =w@)SF,uy) + (1 —w(y)EuSF, 4, Q), dF’, = dF, + F,dH,
where F?UH is referred to as the generalized censored distribution of F and H € H denotes

the distribution of the random variable Q).

Assumption 1. The weight function w € W and nuisance distribution H € H C P are
such that 3£ € G : F,(E) =0 and H(E) > 0, VF e P,H € H.

The following theorem, the proof of which is contained in Appendix A.1, establishes

the strict local propriety of the generalized scoring rule.

14



Theorem 2. Suppose that: (i) the reqular scoring rule S in Definition 5 is strictly proper
relative to P°, and (i) W and H are such that Assumption 1 is satisfied. Then, the
generalized censored scoring rule S° in Definition 5 is strictly locally proper relative to

(P,W,H).

We refer to H as a nuisance distribution since its sole role is to suitably allocate the
probability mass F,. Correspondingly, the rationale behind the choice of H is to add
as little information to the censored distribution as the regular scoring rule permits. For
example, the choice dH = dd, provides no information about the location of F,,, particularly
appropriate for semi-local scoring rules. Yet, when dealing with scoring rules based on
distribution functions, which are restricted to real numbers, the scoring rule demands
information about the location of F,,, e.g., incorporated by replacing 6, by d,, where r €
R?: see Section 3.3. Selecting &, as nuisance distribution in such cases easily upholds
Assumption 1 as a regularity condition, as it suffices to restrict to distributions without a
point mass at r and/or weight functions satisfying w(r) = 0. Additionally, with F(x) = 0
by definition, Assumption 1 is trivially met for dH = dd,, the choice of H in Theorem 1.

Finally, a corollary of Lemma A2 in the proof of Theorem 2 is that
Dy, (FIIC) = Ds(F, ), (5)

i.e., the censored score divergence from F to G is the score divergence of the corresponding
censored distributions. In particular, this means that we have identified a family of so-
called localized divergence measures, satisfying the properties of a divergence measure (see
Section 2.1) on {w > 0}. Indeed, if S is strictly proper, such that Dg is a divergence
measure, it follows that Dg, H(FHG) > 0, with strict equality if and only if F(E N {w >

0}) = G(EN {w > 0}), VE € G.

15



3.2 7, @-Randomization

The (generalized) censored scoring rule in Definition 4 (5) can alternatively be formulated
in terms of a randomization procedure. This is particularly appealing for general weight
functions for which it yields an identity similar to Equation (4) for indicator weight func-
tions. This procedure relies on an auxiliary random variable Z,,, indicating, conditional on

the realization y, whether the observation is censored or not. More specifically, we let
Ywa = QO(Y; Zw)v SO(Y7 Zw) =

where Z,|(Y = y) ~ BIN(1,w(y)). By working out the conditional expectation, it is
obvious that Y, = Ez,ve(Y, Zy,) coincides with the specification of the censored random
variable in Equation (2). For w(y) = 14(y), the random variable Z, degenerates to being
one if y € A and zero otherwise, so that Y} L= Y} with probability one. Correspondingly,

the Z-randomization definition of the censored scoring rule reads

So(F,y) =Ezyv=ySE2. yy.), (6)

which is equivalent to the censored scoring rule defined by Definition 4.

A similar line of reasoning holds for the generalized censored scoring rule. In addition
to the auxiliary random variable Z,,, we introduce an independent random variable () with
distribution H. Rather than labeling the observation as censored, we now take a random

draw from Q) if Z,, = 0, i.e., we define

b Y, ifZ, =1,
yw,H = (pw,H(ya Zw7 Q)a (Pw,H(y7 Zwa Q) =
Q. if Z,—=0.

As anticipated, the distribution of Yf}’H = Ez,vuPuwn(y, Zw, Q) coincides with the spec-

ification of FiuH in Definition 5. Additionally, the generalized censored scoring rule of

16



Definition 5 admits the Z, QQ-randomization representation

SZ;,H(Fa y) = EZU,I(Y:y),HS(FEU,m yzbu,H)7

which reduces to Equation (6) for H = 6,.

3.3 Examples

We now apply our censoring procedure to the regular scoring rules defined in Subsection 2.1.
Following the classification into semi-local and distance-sensitive scoring rules, we start by
localizing the former class.

Semi-local scoring rules. Together with the main characteristics of the LogS, PowS,
and PsSphS, families, Table 1 presents the localized versions of these families based on
conditioning, censoring and generalized censoring. As displayed in Table 1, each of the
regular families is strictly proper relative to P,, the class of p-densities with a finite L*-
norm, where a = 1 for LogS. Hence, one can easily verify their strict propriety with respect
to P as required for Theorems 1 and 2, since ||f2 |2 < 1+ ||f]|% < oo, Vf € Pq, Yw € W.

Upon comparing the censored and conditioned versions of the rules in Table 1, we notice
that the censored variants bear an isolated F,-dependent term, preserving the coverage
probability of {w = 0}. While preserving the likelihood F,, of being censored, Table 1
demonstrates that the semi-local censored scoring rules are independent of %, the label of
a censored observation. The generalized censored scoring rules in Table 1 extend these
findings. Specifically, these rules maintain invariance to the choice of the nuisance density
on {w = 0} upon normalization by the a-norm of h, i.e., to the class of densities h =
h/||h|la , where a = 1 for LogS. Since ||h||; = 1, this means that LogS is invariant to
the unnormalized choice of h, as can be seen from Table 1. Lastly, Table 1 includes the

localized divergence measures Dg, , which are all localized Bregman divergences since all
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