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Abstract

Energy efficiency improvements in low income housing are increasingly

used as a policy instrument to alleviate poverty. Our paper shows that

this may come at the expense of reduced environmental benefits. We fol-

low 125,000 Dutch low-income households during eight years and exploit a

quasi-experimental policy that diminished the heat losses in their homes.

We pay specific attention to the policy effects at the very left tail of the

income distribution. While the average after-policy reduction in natural

gas consumption for heating amounts to 22%, the poorest only save 16%.

We build and calibrate a microeconomic model explaining this pattern from

substitution between thermal comfort and other goods, and use it to com-

pute welfare trade-offs of the policies.
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1 Introduction

Many countries subsidize energy efficiency upgrades in low income housing (e.g.

insulation to reduce heat losses, solar panels and heat pumps for renewable

energy generation). These policies hinge on two interconnected goals. One is

carbon emission reduction and, as a consequence, environmental quality improve-

ment. This was for example the driving force behind the 2012 energy retrofitting

agreements within the Dutch social housing sector (Ministry of the Interior and

Kingdom Relations, 2012). The other goal is reducing the energy costs for low-

income households, and, as a consequence, reducing poverty. This second goal

has increased in importance lately, due to the high and peaking energy prices.

It is explicit in e.g. the Weatherization Assistance Program in the US, or the

UK’s Warm Front Home Energy Efficiency Scheme (see e.g. Fowlie et al. (2018)

and Sovacool (2015)). In this paper we exploit a large-scale quasi-experiment

and a microeconomic model to show that the two goals are competing: prior-

itizing energy efficiency upgrades for the poor comes at the expense of lower

environmental benefits.

Existence of a trade-off between poverty reduction and environmental sav-

ings hinges on the hypothesis that poor households’ energy consumption is less

responsive to home efficiency upgrades. To illustrate this hypothesis, take con-

sumption of heating services in the winter and the respective natural gas spend-

ing as an example. If a house suffers from large heat losses and the marginal

heating costs are high, residents optimally reduce their consumption of heating

services, by choosing for a lower indoor temperature in the winter. Due to the

binding credit constraints, the poor might sacrifice thermal comfort more than

average by accepting uncomfortably low temperatures or even not heating at

all. A heating efficiency upgrade (e.g. home insulation) reduces heat losses in

the house and lowers the marginal price of the heating. Following this upgrade,

all households re-optimize the consumption pattern towards an increase in the

indoor temperature. The poor will likely do this relatively more, because their

marginal benefits from one degree temperature increase are higher. A higher

increase in heating services consumption for the poor implies lower than average

gas and environmental savings.
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The re-optimization of the energy consumption pattern after home upgrades

is generally known in the literature as the ‘rebound effect’ (see e.g. Sorrell

and Dimitropoulos (2008) for a definition). The likely income heterogeneity in

this rebound was pinpointed as early as 2000 by Milne and Boardman (2000).

Later studies provided some empirical support to it by documenting lower energy

savings for the poor (Aydin et al., 2017; McCoy and Kotsch, 2021; Liang et al.,

2018). However, up to now there have been no large-scale studies that would

allow to gain insight into the welfare effects of the resulting trade-off between

poverty reduction, comfort improvement and environmental savings. Our paper

aims to fill this gap.

In this paper, we follow 125,000 Dutch low- and median income households

during eight years (2014-2021) and exploit a quasi-experimental policy that re-

duced heat losses in their homes. Heat loss reduction occurred through house

insulation retrofits: adding extra material to the walls and the roof. The quasi-

experiment takes advantage of a unique institutional setting involving a condi-

tionally random treatment assignment (conditional on observable housing char-

acteristics) and absence of self-selection. The households in our data live in social

housing, owned by the so-called housing associations - non-commercial entities

whose statutory duty is to provide housing to people with lower incomes.1 Since

2012 Dutch housing associations have been required by law to improve the en-

ergy efficiency of their housing stock.2 Due to the large size of the stock, it was

physically and economically infeasible to tackle all the houses simultaneously.

The dwellings to be treated in each year were thus selected by housing providers

based on observable housing characteristics (i.e. age, type and energy efficiency)

and on internal organization reasons, which were explicitly formulated and un-

correlated with the expected outcomes.3 Further, again by law, the insulation

1The social housing sector in the Netherlands is large en includes 2.2 million dwellings (30%

of the Dutch housing stock). It offers housing to people below the median income, at regulated

rent levels. In 2020 the income threshold to be eligible for social housing was around 40.000

euro gross yearly income.
2As a result the average energy efficiency in the Dutch social housing sector improved by

20% between 2016 and 2022 (Aedes 2016, 2020).
3For example, retrofits were synchronized with the timing of regular painting works in

buildings. In Section 3 we discuss the selection process at length and also provide a formal test
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retrofits were compulsory for all tenants of each tackled housing block, so that

people could not opt-out.

Using a two-way fixed effect panel regression (Angrist, 2008), we derive that

the treated households reduced natural gas consumption by 22% on average,

following the policy. This effect gradually increased in the first two years after

retrofit and leveled out after. For the households on the left tail of the income

distribution, which we are mostly interested in, estimated savings are up to one

third lower than the average.

To better understand the behavioural mechanisms and welfare implications

of the documented lower savings for the low-income people, we develop and

calibrate a quantitative consumer choice model. The key model features are:

(i) Households derive utility from thermal comfort and a composite good con-

sumption; (ii) Households spend income on natural gas for heating and on a

consumption good; (iii) There is a satiety level of thermal comfort. The model

predicts that the chosen indoor temperature and the resulting gas consumption

positively depend on income: in houses with bad heating efficiency, the poor

choose for an uncomfortably low level of thermal comfort. When the heating

efficiency of a home goes up due to a retrofit, households re-optimize their con-

sumption by increasing the optimal temperature. They substitute part of the

possible monetary savings for a higher thermal comfort. The marginal effect of

a unit degree temperature increase is higher the lower the income. So the tem-

perature increase after retrofit negatively depends on income while the resulting

gas savings positively depend on income.

We calibrate the model parameters to the observed pre-retrofit gas consump-

tion by income and the estimated gas savings from the quasi-experiment. The

calibrated model yields elasticities and outcomes that are in line with known

empirical stylized facts. The model is then applied to value the gas savings

from retrofits as well as comfort increase that treated households in the quasi-

experiment receive through re-optimizing temperature consumption. Results

suggest that, for the lowest incomes, up to 20% of the private benefits from in-

sulation occur through comfort improvement; for higher incomes it is only 5%.

of conditional randomness.
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Still, the total of the private benefits from reduction in gas consumption and

comfort increase is considerably smaller for the poor households as compared to

average.

The estimation and calibration results are robust to a host of different pa-

rameter values and modeling assumptions. We also provide additional insight

into other possible behavioural adjustments of the poor people after retrofit,

such as e.g. substitution between different heating sources, and do not find evi-

dence of these adjustments, at least in the four years after retrofit. Finally, we

use econometric and causal forest techniques (Athey et al., 2019) and a large

number of household and house variables present in our data, to study other

possible determinants of heterogeneity in the response to the retrofits.

Our paper is related to several streams of literature. First, we contribute to

the growing quasi-experimental literature on the effect evaluation of home energy

efficiency programs, see Gillingham et al. (2018) and Saunders et al. (2021) for

reviews. There are only few large scale quasi-experimental evaluations so far,

and even fewer focus on heating efficiency improvements: Fowlie et al. (2018)

and Allcott and Greenstone (2017) for US; Webber et al. (2015), Peñasco and

Anadón (2023), McCoy and Kotsch (2021) and Adan and Fuerst (2016) for UK.4

We add to the literature by performing a large-scale evaluation of the effects of

heating efficiency retrofits for a continental European country, the Netherlands,

in a setting that faces very few if any endogeneity concerns.

Our paper is further related to the literature on the energy efficiency gap

between the ex-ante engineering forecasts and the actual savings from retrofits,

and the possible behavioural explanations for this gap (the rebound effects). The

gaps were documented by, among others, Sorrell and Dimitropoulos (2008); Ger-

arden et al. (2015); Allcott and Greenstone (2017); Aydin et al. (2017); Fowlie

et al. (2018). See also a review in Peñasco and Anadón (2023). In this paper

we expand this literature with a theoretical model that not only offers an expla-

nation for the gap from the microeconomic premises, but also predicts income

heterogeneity in the size of the gap. We offer an empirical test for the suggested

4Liang et al. (2021) for Arizona, US and Davis et al. (2014) for Mexico are large scale

evaluations of the effects of electric appliances. Davis et al. (2020); Aydin et al. (2017); Hancevic

and Sandoval (2022) perform small size effect evaluations for Mexico, Netherlands, US.
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model, calibrate it and use it to compute broader welfare effects of the retrofits.

Yet another relevant stream of literature studies heterogeneity of energy

spending responses and the factors driving this heterogeneity. Several papers

support the hypothesis that low-income households’ energy savings from retrofits

are lower than average (e.g. Davis et al., 2014; Aydin et al., 2017; Liang et al.,

2018; McCoy and Kotsch, 2021),5 while Doremus et al. (2022) documents lower

responses of the poor to extreme temperatures. On the other hand, a frequently

found determinant of high responses is high energy use (Liang et al., 2018; Mc-

Coy and Kotsch, 2021). Most of these studies however have one of the two

following limitations: either no household level data are available and/or only

one type of heterogeneity is studied. In addition, people (and especially low-

income) tend to self-select out of retrofit programs (e.g. Fowlie et al., 2018).

Our paper uses a rich longitudinal and granular household dataset with data

available at household and individual level. The rich content of the data allows

to test for heterogeneity of the gas consumption responses in a large number of

household and home characteristics. Last but not least, the institutional setting

of our study excludes self-selection and opt-out.

Finally, we contribute to the public discussion on the welfare effects of the

energy-efficiency policies aiming to reduce the energy burden of low-income

households in social housing. Various studies in Western and Southern Eu-

rope argue that insulation retrofits can have positive effects on social welfare

and should receive more attention from decision makers (Avanzini et al., 2022;

Sdei et al., 2015; Walker et al., 2014). We provide new evidence on the costs and

benefits of targeting poor households with energy efficient home upgrades. We

show that policies targeting heating efficiency improvements to poor households

result in lower than average gas savings and thus forego possible environmental

benefits. Comfort improvements that low income households experience due to

retrofits compensate part of this loss.

The structure of the article is as follows. Section 2 introduces the theoretical

model explaining why the poor have lower responses to energy retrofits. Section 3

5On the contrary Hammerle and Burke (2022) finds that vulnerable households experience

a higher gas reduction after switching to electric heating.
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describes the institutional background, the sample and the data. Section 4

discusses the empirical methodology and identification and reports the main

results. Section 5 investigates heterogeneity of the treatment effect. Section 6

describes the calibration and calculates welfare effects. Section 7 concludes.

2 Theoretical Framework

In this section, we develop a simple consumer choice model in which a household

spends its income on consumption and heating. We solve the model, deriving

the optimal household consumption and the resulting indirect utility function.

Then, we decompose the welfare gain from an energy efficiency upgrade into a

thermal comfort component and a consumption component.

2.1 Model

Household utility is given by the following constant elasticity of substitution,

CES, specification:

u(x, θ)
def
=

(
(f1(x))

σ−1
σ + (f2(θ))

σ−1
σ

) σ
σ−1

,

where x ≥ 0 is the consumption of a composite good and f1(x) is a consumption

utility component, whereas θ ∈ [θ0, θ̄] is a thermal comfort measured by the

indoor winter temperature and f2(θ) is a thermal comfort utility component.

Parameter σ is the elasticity of substitution between the consumption utility

and the thermal utility components.

We assume that thermal comfort utility f2(θ) is an increasing and concave

function that reaches its maximum at some temperature θ̄. The idea behind

this assumption is that not only too low but also too high indoor temperatures

negatively affect individual wellbeing. As a result, the household never chooses

a value of θ beyond θ̄. We operationalize f2(θ) as a second degree concave

polynomial as follows:

f2(θ)
def
= (2θ̄ − θ)θ.

For consumption utility, we assume

f1(x)
def
= x
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for simplicity. Thus, the household utility is defined for x ≥ 0 and θ ∈ [θ0, θ̄] by

u(x, θ) =
(
x

σ−1
σ +

(
(2θ̄ − θ)θ

)σ−1
σ

) σ
σ−1

. (1)

The household earns income w and spends it on (x, θ). We normalize the price

for consumption to unity, px = 1. Thermal comfort is produced from natural

gas according to the production function:

θ = θ0 + qg,

where g > 0 is gas usage for heating, Parameter θ0 ≤ θ is a natural indoor winter

temperature, i.e., the temperature achieved without any additional heating and

q ≥ 0 is a home heating efficiency parameter. The higher is q, the less gas is

needed to increase the indoor temperature by one degree. We use an increase in

q from q = qL to q = qH > qL for modeling home heating efficiency upgrades.

The household buys natural gas at a market price pg > 0 so that the house-

hold budget constraint is given by:

x+
pq
q
(θ − θ0) = w. (2)

where 1
q (θ − θ0) is the annual gas use. Thus, all households face the same gas

price pg, and each household is characterised by parameters (q, w, θ0, θ̄, σ) and

chooses x ≥ 0 and θ ∈ [θ0, θ̄] to maximize utility (1) subject to budget constraint

(2).

2.2 Household Optimal Behaviour

The household maximizes its utility (1) over x ≥ 0 and θ ∈ [θ0, θ̄] subject to

the budget constraint (2). In the following proposition, we provide the solution

(x∗, θ∗) to this utility maximization problem, UMP.

Proposition 1 Let the critical income level w(q) be defined by:

w(q)
def
= (2θ̄ − θ0)θ0

(
pg

2q(θ̄ − θ0)

)σ

. (3)

Then:

1. If w ≤ w(q), then x∗(q, w) = w and θ∗(q, w)) = θ0.
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2. If w > w(q), then θ∗(q, w) is uniquely defined by:

0 = w − (2θ̄ − θ∗)θ∗
(

pg

2q(θ̄ − θ∗)

)σ

− θ∗ − θ0
q

pg, (4)

and

x∗(q, w) = w − θ∗ − θ0
q

pg. (5)

3. For w ≥ w(q), x∗(q, w) and θ∗(q, w) increase in w.

4. θ∗(q, w) increases in q, and it approaches θ̄ when q or w increase unbound-

edly.

The proof of the proposition is in Appendix A. For low income levels below w(q),

the optimal consumption is a corner solution where the household consumes no

gas and stays at the natural house temperature θ∗(q, w) = θ0. The household

spends then all its income w on the composite good, x∗(q, w) = w. For higher

income levels, w > w(q), the optimal consumption θ∗ is an interior solution

satisfying θ∗ ∈ (θ0, θ̄). Both thermal comfort θ and composite consumption x

are normal goods so that their consumption increases with income w.

Figure 1a illustrates Proposition 1. It shows the optimal indoor temperature

θ∗ as a function of income w for two values qL and qH of the heating efficiency

parameter q, with qL < qH . For the lowest income levels, the optimal thermal

comfort is at its natural level θ0. With rising income, the optimal thermal

comfort also rises and converges in the limit to the satiety threshold θ̄. With

the increase in q, the optimal thermal comfort starts to increase at lower income

levels.

The optimal gas consumption g∗(q, w) is determined by θ∗(q, w):

g∗(q, w) =
1

q
(θ∗(q, w)− θ0). (6)

In the following proposition, we provide a characterization of g∗(q, w).

Proposition 2 Optimal gas consumption g∗(q, w) has the following properties:

1. g∗(q, w)) = 0 for w ≤ w(q).

2. g∗(q, w) increases in w for w > w(q) and and converges to 1
q (θ̄− θ0) when

w increases unboundedly.
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Figure 1: Optimal thermal comfort θ∗ and gas consumption g∗.
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Notes: The lines show the optimal levels of indoor temperature respectively natural gas consumption

as a function of income (θ∗(w) respectively g∗(w)) as implied by the utility maximization problem

Equations (1) and (2). See Appendix A for the derivations.

The proof of the proposition is a straightforward application of the results of

Proposition 1 and is, therefore, omitted. Figure 1b illustrates Proposition 2. It

shows the optimal gas consumption g∗ as a function of income w for two values

qL and qH of the heating efficiency parameter q, with qL < qH . Since the graph

of g∗(qH , w) starts to increase at a lower income level w(qH) and converges to a

lower limit 1
qH

(θ̄ − θ0) than the graph of g∗(qL, w) does, the graphs necessarily

intersect. For income levels below w(qH), the optimal gas consumption is zero,

g∗(qH , w) = g∗(qL, w) = 0. For income levels w ∈ (w(qH), w(qL)), g
∗(qH , w) >

g∗(qL, w) = 0. For sufficiently large income levels, g∗(qH) < g∗(qL).

Summarising, when the heating efficiency of a house increases, all house-

holds re-optimize their consumption patterns, trading-off potential natural gas

savings against an increase in the level of thermal comfort. Households with a

sufficiently low income can even increase their gas consumption because they are

further away from the satiety threshold and, therefore, face a larger marginal

benefit of a unit temperature increase. High-income households, to the contrary,

decrease their gas consumption because for them, the marginal benefit of a unit

temperature increase is low. This results in lower gas savings for the poor, as

compared to the rich.
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2.3 Household Welfare

Let V (q, w) be indirect utility of the household:

V (q, w)
def
= u(x∗(q, w), θ∗(q, w)),

where u, θ∗, and x∗ are defined respectively by Equations (1), (4) and (6). Then,

the compensating variation CV for the change in heating efficiency q from q = qL

to q = qH , is implicitly defined by:

V (qH , w − CV ) = V (qL, w). (7)

Compensating variation CV is the household’s willingness to pay for the heat-

ing efficiency improvement and is, therefore, the monetary measure of the cor-

responding welfare gain. In other words, CV is the income effect of the heating

efficiency improvement. It is negative to the so-called Hicksian compensation of

the heating efficiency change:

∆H def
= −CV.

An alternative, yet imprecise measure of the same income effect is the Slutsky

compensation ∆S , which is defined as follows:

∆S def
= pxx

∗(qL, w) +
pg
qH

(θ∗(qL, w)− θ0)− w

= x∗(qL, w)− x∗(qH , w) +
pg
qH

(θ∗(qL, w)− θ∗(qH , w)).

By construction, (−∆S) equals the income of the household that remains after

the thermal upgrade from qL to qH if the household maintains the pre-upgrade

consumption levels x∗(qL, w) and θ∗(qL, w). Despite that −∆S is an imprecise

measure of CV , it can readily be decomposed into the effect on composite good

consumption:

−∆S
x

def
= x∗(qH , w)− x∗(qL, w), (8)

and the effect on thermal comfort consumption:

−∆S
θ

def
=

pg
qH

(θ∗(qH , w)− θ∗(qL, w)). (9)

In the following sections, we exploit quasi-experimental improvements in the

heating efficiency of Dutch houses to estimate g∗(q, w) as a function of income
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and heating efficiency. Then, in Section 7, these results are used to calibrate the

model Equations (1) and (2) and to compute CV and its approximate decompo-

sition into (−∆S
x ) and (−∆S

θ ). According to theory, ∆S ≥ ∆H and ∆H = −CV .

Hence, the sum of the effects (−∆S
x ) and (−∆S

θ ) does not exceed CV :

(−∆S
x ) + (−∆S

θ ) = −∆S < −∆H = CV,

so that the sum of these effects underestimates the exact income effect CV .

3 Quasi-experiment, data and sample

Before discussing the empirical model, we first introduce the quasi-experiment

and the data. We start with describing the institutional background of the Dutch

social housing as this is crucial for our identification strategy.

3.1 Dutch social housing: residents and dwellings

This study focuses on the households living in Dutch social housing. The social

housing sector in the Netherlands is large en includes 2.2 million dwellings (one

third of the Dutch housing stock). It offers housing at regulated rent levels to

households with an income below the median. In 2020 the threshold to be eligible

for social housing was around 40.000 euro yearly gross income per household (this

amounts to some 33.000 euro disposable income). However the income check is

only done once, when the renter signs a contract for a new dwelling. Therefore,

although the majority of social renters are low income people, also households

with incomes higher than the threshold live in the social dwellings. Figure 2a

shows the distribution of the social housing residents by income; our data offers

considerable variation by income on both tails (below the social minimum and

above the threshold), which we will use in our study.

Figure 2b plots households’ yearly natural gas consumption against their

disposable incomes, for the same households as in Figure 2a. As 75% of natural

gas consumed by a household per year, is spent on space heating and another

20% on hot water (Eurostat (2023)), we conclude that the insights of the Figure

are in line with the theoretical conclusions of the previous Section.6 On the one

6The theoretical conclusions from Section 2 hold for thermal comfort from both space heating
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Figure 2: Income and gas consumption in social housing 2016
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Notes: Figure (a) shows the distribution of the disposable income, for the residents of

social houses. The vertical line of the left indicates the median income of households

below the social minimum (this social minimum is computed by Statistics Netherlands,

its value depends on the household type). The vertical line of the right indicates the

maximum income threshold to enter social housing. Figure (b) shows a polynomial fit

(of degree 4) of household’s gas use against income, whereby income is measured in

percent of social minimum, in 2016.

hand, gas use increases in income. On the other hand, there is a diminishing

marginal effect. While the median gas consumption in the social housing lies

around 1270 m3/year, the poorest consume up to 10% less.

We turn now from the residents of social houses to the dwellings they live in.

The potential for energy and environmental savings in the social housing sector

is high. About two-thirds of the stock was built before 1993, according to the

low energy efficiency building standards of that time. Social housing owners -

the so-called housing associations - are required by the government to improve

the energy efficiency of these properties. Energy retrofits started with the 2012

convenant Social Sector which aimed at 33% CO2 savings by 2020. Until 2020

half a million homes was improved, still leaving one million homes to go.

Figure 3 plots the distribution of the social dwellings by energy efficiency

in 2016 and 2020, as measured by the European energy label. This label is

and hot water usage. Space heating comfort can be measured with indoor temperature at winter

while hot water comfort can be measured with water temperature. The model for hot water

comfort would be identical to the model for space heating, with a natural water temperature

and a satiety water temperature level.
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Figure 3: Energy efficiency in social housing
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Notes: The Figure reports the number of social houses in the Netherlands in millions,

by energy efficiency label, in 2016 and 2020. Source: Aedes (2016,2020).

derived from the thermal quality of the dwelling and is assigned to dwellings by

trained professionals after a technical inspection. The label takes elements such

as insulation quality, heating installation, (natural) ventilation and indoor air

climate, solar systems, and built-in lighting into account. The label is based on

a simple universal indicator of the energy consumption – the energy index, which

reflects the engineering projection of primary energy consumption under average

conditions. Labels ‘A-B’ are considered good, labels ‘E-F-G’ are considered bad

and need to be improved in the first place. Figure 3 shows that the share of the

labels ‘C’ to ‘G’ (medium to poor energy efficiency) fell between 2016 and 2020,

and the share of the labels ‘A’ and ‘B’ grew. This mostly happened through

retrofits - heating and electricity system upgrades.7 In this paper we will study

the effects of the heating efficiency upgrades applied to the dwellings of labels

ranging from ‘C’ to ‘G’.

3.2 Heating efficiency retrofits; quasi-experiment

One of the most frequent heating-efficiency retrofits in the social housing is in-

sulation of the building, whereby materials are added to the walls and the roof

in order to reduce the heat losses and the natural gas quantity required for

7New construction was another factor that affected this shift.

14



heating. Insulation is often seen as a prerequisite for many other energetic im-

provements. In this and next Sections we study the effects of the insulation

retrofits undertaken by the Dutch social housing associations in 2017-2019, on

the natural gas consumption of the social housing residents.8 Two character-

istics of these retrofits are important for our identification strategy and allow

for a quasi-experimental approach; we highlight these here. First, as discussed

above, the total number of old and energy-inefficient dwellings that qualified for

an insulation upgrade was very large in 2016. These houses could not be tackled

all simultaneously because of the financial and physical constraints. Therefore,

a selection rule to prioritize some houses above other was necessary. From dis-

cussions with renovation managers of a number of Dutch housing associations9

we learned that, during the study period, targeting was largely based on ob-

servable building characteristics (e.g. construction period, energy label), on the

one hand, and on organizational considerations, on the other hand. The latter

generally implied synchronizing the retrofit with the regular maintenance like

painting of exterior walls, replacement of lighting, pipes and tubes in the build-

ing.10 Regular maintenance is a cyclical process for which planning is known

for many years to go (e.g. painting is usually scheduled every 6 years, etc.) It

is performed by complex - a block of adjacent houses sharing the same building

year and similar technical characteristics. The timing of regular maintenance can

thus be assumed independent of and uncorrelated with the potential outcomes

of insulation retrofits.11 As a result, the assignment of the houses to treatment

can arguably be considered random, conditional on a few observable building

characteristics such as: construction year, energy efficiency and dwelling type.

The second useful feature of the social housing insulation retrofits is that

8Insulation retrofits in our data include roof, floor, facade insulation as well as replacing

window frames and glass for energy-efficient ones.
9We are grateful for these discussions to the experts of Bazalt Wonen, Elan Wonen, PreWo-

nen, Woonbedrijf.
10Recently, due to the rising energy prices, other criteria - like tackling poor households first

- have also been used in prioritizing insulation retrofits. This change is outside the (time) scope

of our study.
11Note that replacement of the boiler - an intervention that does affect gas usage - does not

fall under regular maintenance and follows an own cycle, which is often dwelling-specific.
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self selection in or out of retrofit was next to impossible for the tenants. By

Dutch law, if 70% tenants of a complex agree with the retrofit plans (and this

was mostly the case in social housing), individual tenants do not have a right

to opt out any more, even if they wish so. This means that the assignment to

treatment of households can be seen as conditionally random, and the treated

sample is representative for the social renters population in the country.12

The randomness of the treatment conditional on observed building character-

istics is an important identification assumption in the quasi-experimental fixed

effects panel regression method we aim to use. We will also formally test this

assumption in Section 3.4.

3.3 Sample and data

We exploit information on insulation retrofits performed by 128 Dutch social

housing associations in 2017-2019. The housing associations in the sample col-

lectively own about 1 million dwellings located in all regions of the country. Our

sample covers 40% of the total social housing stock and is representative for the

Dutch social housing sector.

We combine two data sets. The first one includes longitudinal dwelling-

level data on building characteristics, energy efficiency indicators and insula-

tion retrofit attributes for the years 2016-2021.13 The second, also longitudinal,

dataset contains restricted access microdata on household level made available

by Statistics Netherlands. These include socio-economic characteristics of the

households as well as their yearly consumption of gas and electricity for the years

2012-2021. Two datasets are merged on address level. This yields, for one mil-

lion houses, information on (1) structural house characteristics 2012-2021, (2)

retrofit incidence and retrofit characteristics 2016-2021, (3) resident household

characteristics 2012-2021 and (4) energy use 2012-2021.

Our main outcome variable is yearly gas consumption per dwelling in cubic

12We note that people could vote with their feet and relocate to another house if they did

not agree with the insulation retrofit. We will show formally that this did not happen.
13We thank engineering bureau Atriensis for sharing with us their Energy Monitor data, and

social housing associations Bazalt Wonen, Elan Wonen, PreWonen, Woonbedrijf for sharing

their expertise and additional data on retrofits.
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meters. The main covariate is the binary indicator of whether a dwelling was

retrofitted in or before a specific year. Further, as the type and size of the insula-

tion retrofit may differ by house, we derive a retrofit intensity index and include

it - in a standardized form - as a control.14 The intensity is a continuous variable

based on the engineering projections of the change in dwelling heating efficiency

after retrofit (i.e. change in the engineering projected log gas consumption). En-

gineering projections are conventionally made under the NEN 7120 guidelines

by the building performance software VABI, which is used by all housing asso-

ciations in our data. Figure 4 reports a histogram of the standardized retrofit

intensity. Other covariates included as controls are: house and household char-

acteristics (dwelling type, construction period, surface, energy efficiency of the

house, household type, number of persons, education, income, etc.) as well as

energy consumption before retrofit.

Figure 4: Distribution of retrofit intensity
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Notes: The figure shows the distribution of the retrofit intensity in the data sample used

in this paper. We define the retrofit intensity as the standardized projected gas savings.

The projected gas savings are the difference between pre- and post-retrofit projected log

gas consumption. Projected gas consumption is computed by the engineering building

performance model VABI.

To test the hypothesis about divergent responses of households on the left tail

of the income distribution, we make use of the poverty line and social minimum

14To fully grasp the effect of retrofit intensity, we will include the retrofit intensity as a

different order flexible polynomial in the regression, see Appendix D.
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indicators defined by Statistics Netherlands. The definition of the social mini-

mum is the ‘minimal amount one needs in order to cover basic personal needs’

(Statistics Netherlands). The amount is determined yearly and is derived from

the size of the social welfare benefits. It therefore depends on the composition

of the household. The poverty line is an amount that represents the same pur-

chasing power as the social welfare benefits in year 1979. It also depends on the

composition of the household. E.g. in 2017 the poverty line equaled a monthly

disposable income of 1 040 euro for a single person, 1 380 euro a one-parent

family with one child and 1 960 euro for a couple with two children. Using the

two indicators, we will distinguish four strata of poor households: those below

(i) 100%, (ii) 130%, (iii) 150% of the social minimum and (iv) households below

the poverty line.

3.4 Treatment and control group, descriptives

In the main analysis we will focus on single family dwellings that qualified for an

insulation retrofit in 2016, according to two criteria: building year before 1993,

energy label ‘C’ to ‘G’. We drop dwellings with missing data on energy efficiency

and energy use, student condominiums and dwellings without individual natural-

gas-based heating during the study period. The resulting study sample contains

124,300 single family dwellings, of which 13,409 belong to the treatment group

and 110,891 to the control group. The treatment group is defined as houses

which got an insulation retrofit between 2017 and 2019 and did not change tenant

between one year before and one year after the retrofit. The control group is

defined as dwellings that did not experience an energy efficiency upgrade between

2000 and 2021.

Table 1 reports the descriptive statistics for the treatment and control groups

in 2016, the year before the first treatment in the sample. We distinguish three

groups of characteristics: dwelling (panel A), household socio-economics (panel

B) and energy usage (panel C) and report the balancing tests. The socio-

economics are balanced well between treatment and control groups, while the

dwelling characteristics and energy usage are not. This is in line with the as-

sumption of the conditional random assignment to treatment based on dwelling
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characteristics (see Section 3.2). To test this assumption formally, we perform a

randomization test for covariate imbalance as suggested in e.g. Hennessy et al.

(2016). First, we regress the observed gas consumption in 2016 on the building

covariates. The residuals from this regression we call ”adjusted gas consump-

tion”. Then, we carry out the randomization test by calculating the test statistic

- the difference of means of adjusted gas consumption between treatment and

control groups. The test yields a statistic of −3m3 with a p-value of 0.35 (calcu-

lated over 10,000 random permutations), suggesting that the gas consumption

adjusted for building covariates is well-balanced. We therefore cannot reject the

null hypothesis that the (adjusted) gas consumption does not differ between the

control and treatment groups. In sum, socio-economics and energy use covariates

are balanced. This is consistent with the assumption that the treatment assign-

ment is determined by observed building characteristics only. We will account

for the imbalance in dwelling characteristics by controlling for them explicitly in

the empirical model.

4 Gas savings from retrofits: average and poor

4.1 Empirical model and identification

Our main empirical method is a two-way fixed-effect panel regression with year

and household/dwelling fixed effects. As the sample is defined to only include

households that lived in the dwelling at the time of the retrofit, the dwelling and

household fixed effects coincide. The baseline econometric specification is:

gi,t = Ri,t (α+ βSi) + δXi,t + γi + ϕTt + ui,t. (10)

Here gi,t is the (log) yearly gas consumption of household/dwelling i in year t.

The binary treatment variableRi,t takes value 1 in the years following retrofit and

value 0 before;15 Si is the retrofit intensity (see Section 3.3 for the definition); Xi

controls for time-varying observable characteristics of the household (e.g. size)

and dwelling (e.g. new boiler installed); γi are household/dwelling time invariant

fixed effects; Tt are year fixed effects and ui,t is the idiosyncratic error term.

15We will control separately for the retrofit year self because of the noise in the data - we do

not know in which month the retrofit was performed.
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Table 1: Comparison of treatment and control groups

Treatment Control p-value SMD VR

Panel A: Socio-economics

No. persons 2.13 2.09 0.00 0.03 1.10

No. children 0.63 0.58 0.00 0.06 1.11

No. seniors 0.51 0.51 0.68 0.00 1.00

Income (k euro) 26.63 27.43 0.00 0.07 0.89

Education high (0/1) 0.10 0.10 0.15 0.01 0.97

Migration background foreign (0/1) 0.22 0.20 0.00 0.05 1.07

Below 100% social min. (0/1) 0.03 0.03 0.62 0.00 0.98

Below 130% social min. (0/1) 0.27 0.26 0.46 0.01 1.01

Below 150% social min. (0/1) 0.38 0.37 0.06 0.02 1.01

Below poverty line (0/1) 0.08 0.08 0.85 0.00 1.01

Panel B: House characteristics

Surface (m2) 94.79 94.27 0.00 0.03 0.87

Constr. Period 1906-1939 (0/1) 0.06 0.07 0.00 0.05 0.83

Constr. Period 1940-1965 (0/1) 0.53 0.30 0.00 0.48 1.18

Constr. Period 1966-1976 (0/1) 0.38 0.32 0.00 0.13 1.08

Constr. Period 1977-1992 (0/1) 0.03 0.31 0.00 0.79 0.15

Energy label EFG (0/1) 0.45 0.26 0.00 0.40 1.28

Panel C: Energy use

Electricity (kWh) 2538.12 2601.39 0.00 0.05 0.95

Gas (m3) 1371.25 1270.60 0.00 0.21 1.07

Heating burden 0.05 0.04 0.00 0.18 1.10

No. houses 13409 110891

No. complexes 980 9957

No. housing associations 113 96

Notes: The table reports a balancing test between treatment and control dwellings. The

columns mean treated and mean control report the mean values of selected covariates.

The column p-value reports the p-value of a mean equality test between treatment and

control group. The column SMD reports the standardised mean difference between the

treatment and the control group. The column VR reports the variance ratio. SMD =

|X̄treated − X̄control|/
√(

S2
treated + S2

control

)
/2 and V R = S2

treated/S
2
control, where X̄ is

the sample mean and S2 is the sample variance. The balancing is considered good for

SMD smaller than 0.25 VR between 0.5 and 2 (Rubin, 2001; Stuart, 2010).
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We are in the first place interested in the coefficient α, which can be inter-

preted as the effect of a retrofit of average intensity in the post-insulation years.

This interpretation is possible because we standardized the retrofit intensity vari-

able. To allow for slow adjustment (e.g. because of learning), we also estimate

a model that includes dynamic yearly effects. For this we use a distributive lag

specification as, e.g. in Ossokina et al. (2022):

gi,t =
4∑

L=−5

Ri,t−L (αL + βLSi) + δXi,t + γi + ϕTt + ui,t. (11)

Finally, to study heterogeneity in the effects of insulation retrofist, we use a

two-way interaction to allow the coefficients to differ by stratum j ∈ J :

gi,t =

J∑
j=1

Ri,j,t (αj + βjSi) + δXi,t + γi + ϕTt + ui,t. (12)

4.2 Identification

Our main identification strategy is based on a fixed effects panel regression (An-

grist, 2008). To derive a causal effect of a heating efficiency improvement on

natural gas consumption, we use a treatment and a control group as defined in

Section 3.4. The internal validity of this approach hinges on the assumption

that the treatment assignment was random, conditional on observed dwelling

characteristics. Section 3.1 provided institutional arguments and Section 3.4 a

formal test to support the assumption. Including in the regression dwelling fixed

effects and dwelling time varying controls accounts for the imbalance in dwelling

characteristics.

Below we discuss a number of other possible identification concerns. The first

concern is related to the retrofit intensity. We argued above that, conditional on

the building characteristics, the assignment to the treatment can be seen as ran-

dom. The retrofit intensity S in Equation (10) is however not random. The 2012

energy agreements in the Dutch social housing sector (Ministry of the Interior

and Kingdom Relations, 2012) prescribed an improvement of energy efficiency at

least to a (high) energy label B. Consequently, the lower the initial energy effi-

ciency, the larger the assigned retrofit intensity would be, ceteris paribus. In the

econometric model, we account for the effect of the retrofit intensity by including
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it explicitly in the regression equation. The baseline specification Equation (10)

includes the retrofit intensity in a linear way. We also run alternative specifica-

tions with a flexible higher order polynomial in retrofit intensity, to allow for a

non-linear relationship, as well as a specification without retrofit intensity.

Still, in Equation (12) which studies heterogeneity of the treatment effect

by (socio-economic) group, one may be concerned about the possible correla-

tion between the retrofit intensity and specific socio-economic characteristics of

the household. If, for example, people with lowest income systematically get

larger retrofits, the treatment coefficient for this group may be biased. To tackle

this concern, we show that retrofit intensity is not correlated to socio-economic

variables nor to initial gas consumption. Table B1 in Appendix B reports the

estimation results from regressing the retrofit intensity on dwelling, income and

energy consumption characteristics of the households. As expected, the pre-

retrofit energy efficiency of the dwelling is negatively correlated with the retrofit

intensity. Socio-economic and gas consumption variables show either no statis-

tically significant or next to zero relationship with the retrofit intensity.

The second concern is related to the self-selection into/ out of the treatment

group. As discussed in Section 3.1, by law tenants could not opt out of the insu-

lation retrofit program while living in the dwelling. They could, however, avoid

the retrofit by moving out of the dwelling. Based on information obtained from

the experts working for housing associations and on institutional knowledge, we

do not expect that moving decisions of tenants are endogenous on the treatment,

for three reasons. First, social houses in the Netherlands are offered at a con-

siderable discount compared to the market rents, and the waiting lists are long

(Van Ommeren and Van Der Vlist, 2016). Second, rents are tenure-related: only

limited rent increases are allowed for incumbent tenants, while this rule does

not apply for new tenants. Moving house thus generally implies a considerable

upward jump in rent. Third, retrofits never have negative financial consequences

for the tenants: by law, rent increases associated to retrofits may not be larger

than the energy bill savings (see e.g. Ossokina et al. (2021)).

Still, we test whether there are indications that the decision to move is en-

dogenous on the treatment. We estimate a logit model with as dependent vari-
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able the indicator of moving out of the dwelling and as main independent the

treatment indicator. Controls are also included. The results are in Table B2 in

Appendix B. They show no evidence that retrofits are associated with higher

relocation frequencies. On the contrary, if anything, there might be a very small

negative effect of retrofits on the probability to move.

4.3 Empirical results

4.3.1 Average treatment effect

We start with reporting the yearly effects of insulation retrofits from Equa-

tion (11). These are plotted in Figure 5. As expected, the Figure shows no

statistically significant effect in five years before retrofit, and a gradual increase

in the absolute size of the effect after, from 19% gas savings in the first year to

22% in the years two to four. Note that the effect in the year of retrofit is not

informative, because we do not know the exact month in which the retrofit was

performed. In sum, households need (some) time to adjust their behaviour; this

adjustment process reaches its equilibrium quickly however.

Figure 5: Gas savings from retrofit: event study by year
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Notes: Plotted values are the coefficients of the interaction effect of the treatment

indicator with the year-to-retrofit, see Equation (11). Year -1 (vertical line) is the last

pre-retrofit year. The dashed lines represent the 95% confidence interval. Standard

errors are clustered at household level.

Table 2 reports the estimated average treatment effect (ATE) from Equa-
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tion (10). To account for the slow adjustment found in Figure 5, we control for

the year of retrofit and the year after with separate dummies. The results in

the table should thus be interpreted as the estimated effect in the years two-

four after retrofit. Columns (1) to (4) report different specifications: with or

without household/dwelling fixed effects and with or without household time-

varying controls.16 Our preferred specification (4) includes household and year

fixed effect, as well as household controls.

Table 2: Average effects of insulation retrofit on gas consumption

Dependent: log of yearly natural gas use (1) (2) (3) (4)

Retrofit (year ≥ 2) -0.149*** -0.228*** -0.228*** -0.218***

(0.004) (0.003) (0.004) (0.003)

Retrofit (year ≥ 2) × Retrofit index -0.058*** -0.077*** -0.100*** -0.078***

(0.004) (0.003) (0.004) (0.003)

No. obs. 963459 963459 959073 959073

No. treatment houses 13409 13409 13409 13409

No. control houses 110891 110891 110891 110891

R2 Adj. 0.021 0.822 0.144 0.826

Year fixed-effect X X X X

Household fixed-effect X X

Controls X X

Notes: The table shows estimates of four separate regressions. The dependent variable is

the log of gas consumption. Standard errors in parentheses are clustered at household level.

Statistical significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The main finding is that an insulation of average intensity reduces natural gas

consumption of households by about 22%. One standard deviation increase in

retrofit intensity reduces gas consumption by another eight percentage points.17

16Table C1 in Appendix C reports the full set of coefficients for the four specifications.
17In Appendix E we include retrofit intensity in different functional specifications, including

a flexible polynomial. The retrofit intensity effect is robust, the higher order terms are not

statistically significant.
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4.3.2 Effects for the poor and underlying mechanisms

Table 3 reports the estimated average treatment effect (ATE) for the poor house-

holds. Here Equation (12) was run four times with J = 2, including a two-way

interaction of the retrofit indicator with each time another poverty dummy indi-

cator, as defined in Section 3.3. In line with the theoretical model, we find that

the magnitude of the gas savings falls with income, more so on the very left tail

of the income distribution. The poorest (below 100% social minimum) show one

third smaller savings than the average; those below 130% of the social minimum

one tenth lower savings.

Table 3: Effects of retrofits for poor households

Baseline

Retrofit (year ≥ 2) −0.218 (0.003)∗∗∗

× Below poverty line 0.024 (0.011)∗∗

× Below 100% soc.min. 0.062 (0.016)∗∗∗

× Below 130% soc.min. 0.025 (0.006)∗∗∗

× Below 150% soc.min. 0.018 (0.006)∗∗∗

Notes: The table shows estimates of Equa-

tion (12) for 5 separate regressions. Coefficients

reported are two-way interactions. The symbol

× indicates an effect as compared to the refer-

ence level (non-poor). The dependent variable

is log of gas. Each regression includes controls,

household fixed-effects and year fixed-effects.

The sample size is 13409 treated and 110891

control units. Standard errors in parentheses

are clustered at household level. Statistical sig-

nificance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

The above analysis provides empirical support for the hypothesis that the

lowest incomes realize smaller gas savings after an insulation retrofit. The un-

derlying mechanism we hypothesized in the theoretical model is that poor house-

holds reoptimize their heating consumption patterns after retrofit more than

others, because their pre-retrofit heating consumption was relatively far from

the satiety threshold. Re-optimization of the heating consumption can however

take place through other channels too, next to gas heating. An obvious can-
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didate is electricity consumption. Our data allow to test for the existence of

substitution effects between gas and electricity after insulation retrofit. Some

5300 dwellings in the treatment sample got solar panels (amounting, on average,

to 2 000 kWh renewable electricity per year), simultaneously with the insulation.

We test whether these households differently responded to insulation than house-

holds without solar panels. If there is substitution between gas and electricity

in heating, we should see larger gas savings for the solar-households, as they can

make use of additional free solar energy at their disposal. Also, we should see a

rise in grid electricity consumption for the non-solar households. Table 4 reports

the results of running Equation (12) with two-way and three-way interactions of

treatment, solar and poverty indicators. We use as outcome variables both the

log gas consumption and the log grid electricity consumption.

Table 4: Effects of retrofits on gas and electricity, by solar panel availability

Dependent: log gas Dependent: log electricity

No solar Yes solar No solar Yes solar

Retrofit (year ≥ 2) −0.223 (0.003)∗∗∗ −0.237 (0.004)∗∗∗ 0.010 (0.004)∗∗∗ −0.286 (0.007)∗∗∗

× Below poverty line −0.005 (0.015) 0.053 (0.014)∗∗∗ 0.059 (0.013)∗∗∗ 0.033 (0.028)

× Below 100% soc.min. 0.054 (0.019)∗∗∗ 0.063 (0.025)∗∗ 0.037 (0.022)∗ 0.037 (0.039)

× Below 130% soc.min. 0.013 (0.008)∗ 0.041 (0.009)∗∗∗ 0.014 (0.008)∗ 0.006 (0.016)

× Below 150% soc.min. 0.011 (0.007) 0.027 (0.008)∗∗∗ 0.010 (0.007) −0.011 (0.015)

Notes: The table shows estimates of Equation (12) for 10 separate regressions. Coefficients reported are

two- and three-way interactions. The symbol × indicates an effect as compared to the reference level

(non-poor). The combination of the column and row name indicates the interaction (e.g. below poverty

line × Yes solar). The dependent variable is log of gas or log of electricity. Each regression includes

controls, household fixed-effects and year fixed-effects. The sample size is 13409 treated and 110891 control

units. Standard errors in parentheses are clustered at household level. Statistical significance: ∗∗∗p < 0.01;
∗∗p < 0.05; ∗p < 0.1.

Availability of solar electricity does not seem to have much effect on gas

consumption: the gas savings after retrofit are practically the same in the so-

lar and no-solar dwellings. In terms of grid electricity consumption however,

in no-solar dwellings we observe a small increase equal to 1 to 4%. A likely

explanation for this is the additional electricity demand due to the installation

of mechanical ventilation that is necessary to ensure sufficient air quality in
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well-insulated dwellings. The solar-dwellings, on the other hand, reduce grid

electricity consumption by almost 30% on average, which is in line with the lit-

erature. Concluding, we do not find convincing evidence of large substitution

effects between gas and electricity for heating purposes after insulation.18

Results of Table 4 provide additional insights into the working of the income

and substitution effects after insulation retrofits. The income effect implies that

households can use the monetary savings from retrofits to increase their con-

sumption of other goods. We do not observe evidence of this for electricity con-

sumption. The substitution effect implies that when electricity becomes more

affordable, households may start to obtain part of their thermal comfort through

electricity instead of gas, effectively reducing further their gas consumption (e.g.

by buying electric space heaters). Households may perceive that solar panels

make electricity more affordable. Our results however show that solar panel

installations hardly change the effect of insulation retrofits on gas use.

4.4 Robustness checks

We have subjected the results of Table 3 to a range of sensitivity analyses, see Ap-

pendix D. First, we re-estimate the model of Equation (12) for various subsam-

ples, allowing the retrofit effect to differ by: (i) year in which insulation retrofit

took place (2017, 2018 and 2019), Table D1; (ii) pre-retrofit energy-efficiency as

defined by the energy label (C, D, E, F, G), Table D2; (iii) socio-economic char-

acteristics of households, Table D3; (iv) pre-retrofit gas use quintile, Table D4.

Results are robust across all the year and energy label subsamples. The effect of

insulation however differs by household type. For instance, singles reach larger

savings, while households with migration background reduce gas consumption

less than average. The effect also differs by pre-retrofit gas use: households with

low gas demand experience almost half lower savings than average. The low-

income specific response to insulation is however robust in all the subsamples.

In the next Section we will dig deeper into the heterogeneities in the effect.

18We note that our data only include 4 years after retrofit. It might be that such substitution

effects take a longer time to manifest themselves. On the other hand, substituting gas for elec-

tricity often requires an investment upfront (e.g. buying an electric space heater). Low-income

households we are studying might face binding credit constraints prohibiting such investments.
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We also rerun the model using alternative model specifications, see Ap-

pendix E. These inlcude: (i) various functional form specifications to include

the retrofit intensity in the model, Table E1; (ii) Sun and Abraham estimator

to account for a possible bias due to the staggered treatment (Callaway and

Sant’Anna (2021); Sun and Abraham (2021)), Table E2; (iii) including group-

specific time trends, Table E3. The analysis suggests that the specific low-income

response shown in Table 3 holds under numerous modelling specifications.

5 Heterogeneity in treatment

5.1 Determinants of the size of gas savings

In the previous Section we documented up to one third lower savings from

retrofits for households on the very left tail of the income distribution. Below

we provide insight into other possible heterogeneities in the treatment effect and

their size. We aim to compare the importance of socio-economic and dwelling

characteristics in explaining the size of the gas savings from insulation retrofits.

We start by running Equation (13) for all the covariates in Table 1.

gi,t = (1 + κ1hi)Ri,tα+ (1 + κ2hi)Ri,tβSi + δXi,t + γi + ϕTt + ui,t. (13)

Here, hi is a heterogeneity covariate, included in a standardized form to

make the estimates mutually comparable. The covariate h is time-independent

and takes 2016 values, the year before any retrofits occur in our sample. We

substitute different covariates in the model one by one.

Figure 6 shows estimates of the main effect of the interaction terms. For

continuous variables - indicated with ”+1 SD” - the Figure shows the average

retrofit effect when the respective interaction variable increases with one stan-

dard deviation (SD).19 For the remaining (binary) variables, the Figure shows

the average effect in the respective subgroup from Equation (12).

First, notice that the retrofit intensity is the most important determinant of

the heterogeneity: one standard deviation increase leads to a 8 percentage point

larger treatment effect. Housing characteristics do not seem to play a large role,20

19We obtain this effect with the transformation (hi −mean(hi)) /sd (hi)− 1
20Note that if we do not control for retrofit size in the model, low energy label E,F,G of
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Figure 6: Covariate importance in explaining gas savings
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Average effect of retrofits on gas use

Notes: Grey bars show the estimated coefficients of the interaction terms κ1α in Equa-

tion (13), black lines indicate the 95% confidence interval. For continuous variables -

indicated with ”+1 SD” - the Figure shows the average retrofit effect when the respective

interaction variable increases with one standard deviation. For the remaining (binary)

variables, the Figure shows the average effect in the respective subgroup. All coefficients

should be interpreted for an ”average” retrofit (except for the retrofit intensity coeffi-

cient).

while socio-economics and especially pre-retrofit gas usage do. Large savers are

those with a high pre-retrofit gas use and single households (4 respectively 3

percentage point larger savings), while households with migration background

and families save between 6 respectively 3 percentage point less than average.

While the lowest incomes are small savers, in other income strata income does

not affect the treatment effect much.

For the covariates from Figure 6 that show important effect on retrofit effect

(pre-retrofit gas use, type of household, migration background and energy label),

we check the robustness of low-income response. Appendix D reports the het-

erogeneity by households type, migration background (binary indicator taking

value 1 when all household members are born outside the Netherlands, first and

second generation.), energy label and pre-retrofit gas use. The specific response

of low-income is robust across these covariates.

a house becomes a good predictor of the savings, with a 4 percentage point larger treatment

effect than average.
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5.2 Causal forest

To offer additional insights and robustness checks on the heterogeneity in the

size of the treatment effect, we exploit the causal forest machine learning ap-

proach (Wager and Athey, 2018). The algorithm identifies (predicts) treatment

effects by observation, based on a non-linear estimation using a large number of

predictors.21 It also yields information about the contribution of each attribute

in growing the forest from which the treatment effects are derived.

We use causal forest to divide observations into quintiles of predicted treat-

ment effect. Then, we estimate econometrically the heterogeneity between the

ATE in each of the quintiles, see Figure 7 for the estimated coefficients. Note

that these are not the forest predictions, but coefficients from a two-way fixed

effect estimation of Equation (12), where J = 5 are the five treatment effect

quintiles to which causal forest assigned the observations.

Figure 7 allows to test whether there are other heterogeneity determinants

besides those identified in Section 5.1. The result confirms the existence of con-

siderable heterogeneity in the effect of insulation retrofits on gas use. Conditional

on an average retrofit size, gas savings range from 11% (lowest quintile) to 29%

(highest quintile), an almost threefold difference. Figure F1 in Appendix F re-

ports the covariate importance from the forest. Same covariates as distinguished

above account for most of heterogeneity, with on the top the pre-retrofit gas

consumption.22

21No ex-ante assumptions about these drivers need to be imposed as is the case with the con-

ventional regression techniques with interaction effects. Under the unconfoundeness assump-

tion, causal forest estimates treatment effects that are consistent and asymptotically Gaussian

distributed (Athey et al., 2019; Wager and Athey, 2018).
22Our linear model Section 5.1 found that house characteristics such as surface and projected

gas use do not explain heterogeneity in treatment effect while Figure F1 causal forest suggests

that house characteristics are important. This difference is due to the retrofit intensity being

included in our linear model but not in causal forest. House characteristics become important

predictors of insulation effects when the retrofit intensity is not controlled for in our linear

model.
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Figure 7: Heterogeneity of retrofit effects: combination of causal forest and fixed

effects panel regression

−
30

%
−

20
%

−
10

%
0%

Low Medium−Low Medium Medium−High High

Quintile of predicted effect on gas use

R
et

ro
fit

 e
ffe

ct
 o

n 
ga

s 
us

e

Notes: This figure reports coefficients from Equation (12) with J = 5. Coefficients are

two-way interaction effects of the treatment with the causal forest quintile dummies.

Bars indicate 95% confidence interval. Standard errors clustered at household level.

6 Welfare effects

In this section, we develop a calibrated version of the consumer choice model

Equations (1) and (2). The calibrated model is then used to assess the welfare

effects of the heating efficiency retrofits that took place in the Dutch social

housing sector between 2017 and 2019.

6.1 Model calibration

To calibrate the model, we need to choose a number of exogenous parameters.

First, the gas price is set to the 2016 level of consumer gas price according

to Statistics Netherlands, pg = e 0.65 per cubic meter. Second, the income

distribution is approximated by a set of ten income deciles, which are defined

as follows. We split our study sample of 124,300 households (treatment and

control) into ten deciles d = 1, . . . , 10, based on household income expressed

in percentage of the social minimum. For each decile d, we assign the median

disposable income wd of that decile. Third, we derive from data the median gas

consumption gd before the home heating efficiency upgrade, this for each income

decile d. Finally, the empirically estimated retrofit effect rd from Equation (12)
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is assigned to each income decile. This retrofit effect is measured as the change

in cubic meters of gas consumption due to the heating efficiency upgrade.

We assume that all households face the same values of the preference pa-

rameters (θ̄, σ), natural temperature θ0, pre-retrofit heating efficiency q = qL

and post-retrofit heating efficiency q = qH . We compute calibrated values of

these parameters (qL, qH , θ0, θ̄, σ) by using a non-linear least squares method

that minimizes the weighted sum S:

S = W1

∑
d

(g∗(qL, wd)− gd)
2 +W2

∑
d

(g∗(qH , wd)− g∗(qL, wd)− rd)
2,

subject to the following constraints:

qL > 0, qH > 0, θ0 ≥ 10, θ̄ ∈ [18, 24], σ ≥ 0.

The weights W1 = SD (gd)
−2 and W2 = SD (rd)

−2 are chosen in such a way that

both sums in S have comparable scales.

Effectively, we choose parameters (qL, qH , θ0, θ̄, σ) to match the observed pre-

retrofit gas consumption gd in 2016 with the model prediction g∗(qL, wd) and

the empirically estimated change rd in gas consumption due to retrofit with the

model prediction g∗(qH , wd)−g∗(qL, wd). The calibration balances the goodness

of fit before and after the retrofit for ten income deciles d.

Table 5 reports the exogenous and calibrated parameter values. Note that

the calibrated value of the elasticity of substitution parameter σ is very close

to unity, which implies that the household utility is close to the Cobb-Douglas

utility specification.

6.2 Model validation

We perform a number of validation tests for the calibrated model. First, Fig-

ure 8 plots the observed gd and the calibrated gas usage g∗(qL, wd) (left panel),

as well as the estimated rd and the calibrated retrofit effect on gas consumption

(g∗(qH , wd)− g∗(qL, wd)) (right panel), per income decile d. Visual inspection

suggests a good overall fit, although we note that the absolute size of the cali-

brated retrofit effect is overestimated for the lowest income decile and underes-

timated for the highest income decile.
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Table 5: Calibrated parameters

Description Parameter Value

Exogenously chosen parameters

Price of gas (euro/m3) pg 0.65

Price of other consumption px 1.00

Calibrated parameters

Indoor temperature at g=0 (o C) θ0 11.10

Elasticity of substitution σ 1.00

Satiety level of thermal comfort (o C) θ̄ 23.80

Energy efficiency before retrofit (o C/m3) qL
1

103

Energy efficiency after retrofit (o C/m3) qH
1
80

Second, we aim to validate the calibrated increase in the optimal tempera-

ture θ∗(qH , wd)− θ∗(qL, wd) that shows how much households re-optimize their

consumption towards a higher thermal comfort after the heating efficiency im-

provement. The temperature increase generated by the model ranges from 0.1

to 0.6 degrees Celsius, this value decreases with income. The values are consis-

tent with the earlier findings from small scale empirical studies, e.g., Fisk et al.

(2020).

Third, we look at the share of potential gas savings that is foregone because

households re-optimize consumption towards higher thermal comfort. This so-

called rebound effect can be computed as the monetary value of the thermal

comfort improvement divided by the retrofit income effect:

−∆S
θ

−∆S
.

The average rebound effect over the income deciles amounts to 5.3% (in 2016

prices) in our calibrated model. This value compares well to recent findings on

the size of the rebound, see, e.g., Christensen et al. (2023).

Fourth, we compute the implied price elasticity of gas consumption and com-

pare it with the values form the existing literature. Resulting price elasticities

range from -0.04 to -0.27, which is in line with the earlier findings, see, e.g.,

Asche et al. (2008).
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Figure 8: Observed versus calibrated outcomes
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(b) Retrofit effect on gas use (m3)
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Notes: The dots are observed respectively estimated values, the lines are outcomes of

the calibrated model. Panel (a) depicts the median gas use, across income deciles. Panel

(b) depicts the average retrofit effect on gas use across income deciles. Both figures use

the data from the baseline sample of 124,300 households (treatment + control).

6.3 Welfare outcomes

The calibrated model is applied to value the benefits from the heating efficiency

retrofits performed in the Dutch social housing in 2017-2019. The retrofit is

described as a change from qL (low heating efficiency) to qH (high heating ef-

ficiency), see the values in Table 5. Two scenario’s are defined: (i) a reference

scenario, for which the model was calibrated (Table 5); (ii) a counterfactual, in

which the gas price is set to the high level pg = 1.36 euro/m3 it reached in 2022.

Table 6 reports the retrofit outcomes for the reference and the counterfactual,

for three income groups: low (below the social minimum), average (median of

the income distribution in our study sample) and high (75 percentile of the same

income distribution).

Columns (2)-(3) of Table 6 describe the effects of the retrofits on the house-

holds’ optimal consumption of temperature and natural gas. Note first that the

effect on the temperature is larger and the effect on gas consumption is smaller

in the counterfactural as compared to the reference. Reason is that higher gas

prices make heating services more expensive, so that more households choose for

low thermal comfort and uncomfortably low temperatures when q = qL. The

resulting high marginal utility of one degree temperature increase leads to larger
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adjustments in temperature consumption after the retrofit. Lower gas savings

follow. Second, in line with the theoretical insights of Section 2, low income

households realize considerably larger temperature increase and smaller abso-

lute reduction in gas use than higher incomes. For example, for the poor, the

temperature increase after retrofit reaches 0.3 grades in the reference scenario

and 0.7 grades in the counterfactual; this is thrice as much as for the higher

income households.

Table 6: Welfare outcomes

Income Change in thermal comfort Private benefits (euro)

∆ Temp. ∆ Gas Slutsky valuation Hicksian val.

◦C m3 −∆S −∆S
θ −∆S

x CV

(1) (2) (3) (4) (5) (6) (7)

In prices 2016 (0.65 euro/m3)

low 0.30 -245 175 15 159 177

average 0.19 -265 182 10 172 183

high 0.10 -280 187 5 182 188

In prices 2022 (1.36 euro/m3)

low 0.65 -182 320 71 249 329

average 0.41 -225 352 45 307 358

high 0.22 -258 377 24 353 381

Notes: The Table reports the effects of the average retrofit in our data, computed with

the calibrated model. This is done for two scenarios (reference with gas prices of 2016

and counterfactual with gas prices of 2022) and for three income groups (low, aver-

age and high, respectively 16keuro, 24keuro and 43keuro in disposable yearly income).

Columns (2) and (3) document the changes in consumption of temperature respectively

other goods, following the retrofits. Column (4) reports the valuation of the private

benefits of the retrofits using the Slutsky compensation. Column (7) reports the same

valuation using the Hicksian compensation (compensating variation). Columns (5) and

(6) decompose the Slutsky compensation into the parts that arise due to the change in

temperature consumption respectively the change in consumption of other goods. The

Table shows yearly outcomes.

Columns (4)-(7) of Table 6 report the private welfare gains from the retrofit:

total and decomposed into the benefits of increased temperature respectively of

other consumption, as derived in Equations (7) to (9). The comfort benefits

from temperature increase make a considerable part of the total gains, more so

for the low income households. In the reference scenario with low gas prices,
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the comfort benefits amount to 9% of the total utility increase for the social

minima and only 3% for the richer households. In the counterfactual with high

gas prices, the comfort benefits make 22% respectively 6% of the total gains for

the two groups. The driving force behind these differences is that the marginal

benefit of a one degree temperature increase is higher for the poor and when

gas prices are high, so that residents spend a larger share of the potential gas

savings on comfort increase.

The benefits are distributed unevenly among income levels: the gains for the

poor are 6% to 14% lower in comparison with the higher income peers. This is

intuitive. Because low income households consume less gas before retrofit, their

potential savings from heating efficiency upgrades are also smaller. By trading

off potential gas savings for a comfort increase, households improve their wel-

fare, but the resulting gains still stay below the benefits that higher incomes

can obtain. From a policy perspective, this insight points at a trade-off that

accompanies policies subsidizing heating efficiency improvements for low income

households. Lower gas savings of the poor translate one-to-one to lower envi-

ronmental (CO2) benefits. Alleviating poverty and increasing living comfort for

the poor comes at the expense of lower environmental benefits.

It is instructive to compute the net present value of the discussed welfare

benefits and to compare it with the costs of the heating efficiency retrofits in the

social housing. We use a discount rate of 2.25%, which is prescribed for the Dutch

cost-benefit analyses and take a time horizon of 50 years, which is technically

feasible for home insulation investments. The net present value (NPV) of the

private welfare benefits in the reference scenario with low gas prices amounts

to 5.5 respectively 5.8 thousand euro NPV per household, for low and higher

incomes respectively. In the counterfactual with high gas prices it rises to 10

respectively 12 thousand euro per household. We also test the sensitivity of the

result for a shorter, 30 years time horizon, which may be more realistic given the

the Netherlands’ goal to become greenhouse gas-neutral in 2050. The resulting

NPV’s are then one quarter lower. Mot et al. (2023) reports the average cost

of insulation retrofits in Dutch social housing to equal 11 thousand euro per

dwelling in 2020. Our analysis suggests therefore that the benefits from gas
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savings and comfort increase likely fall short of the costs of the heating efficiency

upgrades, even at high gas prices. Obviously, one should expect heating efficiency

retrofits to yield other welfare benefits as well, besides those studied in our paper.

These are, among other things: health improvement due to reduced exposure to

draught and extreme temperatures (Maidment et al. (2014)), climate benefits

due to lower CO2 emission, poverty alleviation gains (Banerjee et al. (2021)),

etc. In computing the societal returns to the heating efficiency investments,

these benefits need to be taken into account as well.

7 Conclusion

Many countries subsidize energy efficiency upgrades in low income housing. The

goal of these policies is twofold: reducing CO2 emissions and alleviating poverty.

This paper showed that the two goals are competing: prioritizing energy effi-

ciency upgrades for the poor may come at the expense of lower environmental

benefits. We conducted a large-scale evaluation of the effects of heating effi-

ciency retrofits that inhabitants of Dutch social (low-income) housing received

from their housing providers in 2017-2019. Our study followed 125,000 house-

holds during 2014-2021, leveraging considerable variation in income in the sample

(from below the social minimum to above the population median). We exploited

a unique conditional random assignment to retrofit in the Dutch social hous-

ing sector in the study years. The evaluation used quasi-experimental two-way

fixed effects econometrics on the one hand, and, on the other hand, a calibrated

microeconomic consumer choice model, in which people choose between thermal

comfort and other goods. We specifically focused on the retrofit-induced benefits

from lower gas use and from higher comfort.

Four primary findings of our study should be emphasized. First, we docu-

mented empirically that lowest-income households realize considerably smaller

than average natural gas savings from home heating-efficiency retrofits. The

quasi-experimental estimates suggest that, after a heating efficiency upgrade,

the social minima reduced their gas consumption by 16%, while the average gas

savings in the sample were 22%. In absolute terms, this means up to one third

lower gas and environmental savings for the poor, when compared with their
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more well-off peers. Second, this heterogeneity in gas savings can be explained

from income-specific behavioural responses to the retrofit. Our calibrated con-

sumer choice model suggests that the poor reinvest up to 20% of the potential

monetary savings from a heating efficiency upgrade into thermal comfort im-

provement, i.e. a higher temperature in house. The more well-off peers only

reinvest 5%, because their thermal comfort was already high before retrofit.

Third, even accounting for the benefits from comfort improvement, the mon-

etary value of the private welfare gain from retrofits is lower for the poor, as

compared to their richer peers. Fourth, also when gas prices are high, the size of

the studied private welfare benefits falls short of the costs of an average heating

efficiency retrofit.

Our study provides novel evidence into the benefits and trade-offs of us-

ing heating efficiency retrofits as an instrument to alleviate poverty. We also

contribute to the literature and public discussion about the returns to such poli-

cies.23 Obviously, the welfare effects we computed are an underestimation of the

society’s benefits due to the heating efficiency upgrades. For instance, we looked

from the household perspective only and fail to recognize the benefits of green-

house gas and local pollutant emissions reductions. Further, private benefits

of households involve more aspects than the financial savings and comfort im-

provement we included in the analysis. Among other things, insulation-induced

reduction in draught and extreme temperatures in house will likely have a pos-

itive impact on the inhabitants’ health (Maidment et al. (2014)). Moreover,

specifically for the left tail of the income distribution, additional societal gain

may be achieved through poverty alleviation (Banerjee et al. (2021)). In this pa-

per, we find the environmental benefits and monetary savings from reduced gas

consumption to be smaller for the poorest. Comfort gains are however higher,

so will be poverty alleviation benefits and - possibly - the health effects. Further

research into these latter aspects is desirable to facilitate a cost-benefit test of

heating efficiency upgrades by income group. Our paper suggests a methodology

to make the welfare trade-offs explicit and quantify them.

23For instance, Fowlie et al. (2018) found negative returns for weatherization retrofits in

Michigan, US, despite their much lower cost of 4585 dollar per household. The Michigan

retrofits involved attic and wall insulation, infiltration reduction and furnace replacement.
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A Appendix Utility maximization problem solutions

In this Appendix we offer the Proof of Proposition 1. Write out the Lagrangian

for the household utility maximization problem, UMP:

L =
(
x

σ−1
σ +

(
(2θ̄ − θ)θ

)σ−1
σ

) σ
σ−1

+ λ

(
w − x− θ − θ0

q
pg

)
Due to the strict monotonicity of u(x, θ) w.r.t. x, it follows that λ > 0 and the

F.O.C.s for an interior solution are:
0 =

(
x

σ−1
σ +

(
(2θ̄ − θ)θ

)σ−1
σ

)− 1
σ
x−

1
σ − λ

0 = 2
(
x

σ−1
σ +

(
(2θ̄ − θ)θ

)σ−1
σ

)− 1
σ (

(2θ̄ − θ)θ
)− 1

σ (θ̄ − θ)− pg
q λ

0 = w − x− θ−θ0
q pg

The first two equations imply:

x = (2θ̄ − θ)θ

(
pg

2q(θ̄ − θ)

)σ

.

Then, the third equation implies that θ∗ satisfies Equation (4), which can be

written as

F (θ∗, w, q) = 0, (14)

where

F (θ, w, q)
def
= w − (2θ̄ − θ)θ

(
pg

2q(θ̄ − θ)

)σ

− θ − θ0
q

pg. (15)

It can be seen that for w ≥ 0, q > 0, and θ ∈ [θ0, θ̄), F increases with w and q

and decreases with θ, because its derivatives are:

Fθ = −
(
pg
2q

)σ (
2(θ̄ − θ)2 + σ(2θ̄ − θ)θ

) (
θ̄ − θ

)−σ−1 − pg
q

< 0,

Fw = 1 > 0,

Fq =
σ

q

(
pg
2q

)σ

(2θ̄ − θθ)(θ̄ − θ)−σ > 0.

Therefore, if Equation (14) has a solution θ∗(w, q), it is monotone increasing.

Since F (θ0, w, q) = 0, where w is defined in Equation (3), it follows that for

w < w, Equation (14) has no solution satisfying θ ≥ θ0. For such low income

levels, the UMP has a corner solution in which θ∗ = θ0 and x∗ = w. This proves

part 1 of the proposition.
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For w > w, Equation (14) defines a unique solution θ∗(w, q). The solution

always exists because for any income w > w:

F (θ0, w, q) > 0,

lim
θ↑θ̄

F (θ, w, q) = −∞,

and F continuously decreases with θ. This proves part 2 of the proposition. The

monotonicity properties of θ∗ follow form the monotonicity properties of F :

θ∗w = −Fw

Fθ
= − 1

Fθ
> 0,

θ∗q = −Fq

Fθ
> 0.

The monotonicity of x∗ can be seen from:

x∗w = 1− pg
q
θ∗w > 0.

This proves part 3 of the proposition. Finally, since F in unbounded in w and θ,

the solution θ∗ approaches θ̄ when w increases unboundedly. Similarly, for any

θ < θ̄ and w > 0, F (θ, w, q) converges to w > 0 when q increases unboundedly.

Therefore, in the limit, it must be that the solution θ∗ converges to θ̄. This

proves part 4 of the proposition.
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B Appendix Identification

Table B1 reports the estimation results from an OLS regression of the retrofit

intensity on pre-retrofit dwelling, income and energy consumption characteris-

tics of the households. The sample includes all 13409 retrofitted houses from

our baseline sample. The results indicate that among energy use and socio-

economics, only gas use and income have a statistically significant effect on the

retrofit intensity. However, this correlation is very small: a one standard devia-

tion increase in gas use or income leads to a retrofit intensity up to 0.054 smaller,

i.e. projected gas savings 0.83 percentage points smaller - this is negligible as

compared to the 43% average projected gas savings.

Table B2 reports the estimation results from a logit model relating the prob-

ability of moving house to the retrofit incidence, observed pre-retrofit socio-

economic, dwelling characteristics and energy use (ln pi
1−pi

= β0+β1Ri+βXi+ϵi;

Xi are observed controls in 2016, pi is the probability of relocation and Ri in-

dicates dwellings treated between 2017 and 2019). Numeric variables are stan-

dardised so that the inverse log-odds of the coefficient β0 ”Constant” can be

interpreted as the relocation rate for an average household in the control group

(e.g. exp(−1.129)/(1+exp(−1.129)) = 24.4%). The sample consists of all house-

holds in our study sample for which there is no missing observed characteristics.

In columns (3) and (4) treated dwellings are matched to 3 control dwellings on

observed characteristics. The results indicate that the relocation rate after treat-

ment remains largely unchanged, e.g. exp(−1.129 − 0.054)/(1 + exp(−1.129 −

0.054)) = 23.5% vs. 24.4% for the non-treated.
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Table B1: Determinants of retrofit intensity

(1) (2)

(Intercept) -0.004 (0.009) 0.110* (0.061)

Log gas (standardized) 0.046*** (0.009) -0.054*** (0.007)

Log income (standardized) -0.036*** (0.009) -0.035*** (0.010)

No. children (standardized) -0.050 (0.067)

No. persons (standardized) 0.039 (0.074)

No. persons squared (standardized) 0.052 (0.091)

No. senior squared (standardized) -0.024 (0.039)

No. children squared (standardized) -0.018 (0.053)

No. seniors (standardized) 0.024 (0.049)

No. females (standardized) 0.019 (0.021)

No. females squared (standardized) -0.019 (0.021)

Log surface (standardized) -0.241*** (0.008)

Log projected gas (standardized) 0.516*** (0.008)

Log construction year (standardized) 0.214*** (0.016)

Employed 0/1 0.031* (0.018)

Solar panels 0/1 0.153** (0.064)

Boiler changed 0/1 0.311*** (0.025)

Household type one adult (ref)

Household type nuclear family 0/1 0.076 (0.060)

Household type one senior 0/1 0.039 (0.046)

Household type single parent 0/1 0.149*** (0.051)

Household type two adults 0/1 0.031 (0.049)

Education high (ref)

Education low 0/1 0.025 (0.024)

Education medium 0/1 0.031 (0.025)

Education unknown 0/1 0.009 (0.025)

Energy label C (ref)

Energy label D 0/1 0.207*** (0.018)

Energy label E 0/1 0.459*** (0.019)

Energy label F 0/1 0.514*** (0.026)

Energy label G 0/1 0.733*** (0.028)

Constr. Period 1906-1940 (ref)

Constr. Period 1940-1965 0/1 -0.616*** (0.051)

Constr. Period 1966-1976 0/1 -0.418*** (0.066)

Constr. Period 1977-1992 0/1 -0.794*** (0.085)

Num.Obs. 13401 13401

R2 0.003 0.443

R2 Adj. 0.003 0.442

Notes: The tables shows estimates of two separate OLS regressions. The depen-

dent variable is the retrofit intensity. The independent variables are all pre-retrofit

observed controls. Statistical significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table B2: Effect of retrofits on household’s relocation

Dependent variable: household relocated before 2021 (0/1)

Logit models

(1) (2) (3) (4)

Constant (β0) −1.063∗∗∗ −1.052∗∗∗ −1.129∗∗∗ −1.124∗∗∗

(0.013) (0.003) (0.029) (0.007)

Retrofit (β1) −0.027∗∗ −0.121∗∗∗ −0.054∗∗∗ −0.048∗∗∗

(0.014) (0.013) (0.015) (0.015)

Controls X X

Matching X X

Observations 630,692 630,692 137,676 137,676

Log Likelihood −349,024.400 −359,846.700 −74,444.580 −76,333.970

Notes: the dependent variable is a binary indicator for household relocation between

2017 and 2021. Controls include socio economics, house characteristics and energy

use in 2016. Numeric variables are standardised so that the inverse log-odds of the

”Constant” coefficient can be interpreted as the relocation rate for an average house-

hold in the control group (e.g. exp(−1.124)/(1 + exp(−1.124)) = 24.5%). The sample

consists of all households living in our study sample and for which there is no missing

observed characteristics. In columns (3) and (4) treated dwellings are matched to 3 con-

trol dwellings on observed characteristics. Statistical significance: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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C Appendix Main results - full table

Table C1 reports the full set the coefficients behind Table 2 estimating Equa-

tion (10).

Table C1: Average effects of insulation retrofit

Dependent: log of yearly natural gas use (1) (2) (3) (4)

Retrofit (year ≥ 2) -0.149*** -0.228*** -0.228*** -0.218***

(0.004) (0.003) (0.004) (0.003)

Retrofit (year < 2) -0.028*** -0.109*** -0.105*** -0.100***

(0.004) (0.002) (0.004) (0.002)

Retrofit (year ≥ 2):Retrofit index -0.058*** -0.077*** -0.100*** -0.078***

(0.004) (0.003) (0.004) (0.003)

Retrofit (year < 2):Retrofit index -0.024*** -0.039*** -0.065*** -0.038***

(0.004) (0.002) (0.003) (0.002)

No. children -0.019** 0.018***

(0.008) (0.004)

No. persons 0.115*** 0.022***

(0.008) (0.004)

No. persons squared -0.014*** -0.002**

(0.002) (0.001)

No. senior squared 0.002 -0.002

(0.003) (0.002)

No. children squared 0.011*** 0.000

(0.002) (0.001)

No. seniors 0.020** -0.001

(0.008) (0.005)

No. females 0.050*** 0.061***

(0.008) (0.007)

No. females squared -0.009 -0.024***

(0.006) (0.004)

Household type nuclear family 0.084*** 0.059***

(0.007) (0.004)

Household type one senior 0.055*** 0.001

(0.006) (0.004)

Household type single parent 0.094*** 0.047***

(0.007) (0.004)

Household type two adults 0.033*** 0.042***

(0.006) (0.003)

Household type two seniors 0.035***

(0.003)

Employed -0.013*** -0.001
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(0.002) (0.001)

Log income 0.034*** 0.044***

(0.003) (0.002)

Education low 0.051*** 0.016*

(0.004) (0.009)

Education medium 0.035*** 0.005

(0.004) (0.008)

Education unknown 0.050*** 0.035***

(0.004) (0.010)

Boiler changed -0.019*** -0.042***

(0.005) (0.003)

Solar installation -0.036*** -0.035***

(0.003) (0.002)

Log proj. gas use 0.257***

(0.004)

Constr. Period 1940-1965 0.017***

(0.005)

Constr. Period 1966-1976 0.006

(0.005)

Constr. Period 1977-1992 -0.021***

(0.005)

Log surface 0.215***

(0.007)

Energy label D 0.018***

(0.003)

Energy label E 0.034***

(0.003)

Energy label F 0.042***

(0.005)

Energy label G 0.049***

(0.005)

No. obs. 963459 963459 959073 959073

No. treatment houses 13409 13409 13409 13409

No. control houses 110891 110891 110891 110891

R2 Adj. 0.021 0.822 0.144 0.826

Year fixed-effect X X X X

Household fixed-effect X X

Controls X X

Notes: The table shows estimates of four separate regressions. The dependent variable is

the log of gas consumption. Standard errors in parentheses are clustered at household level.

Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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D Appendix Sensitivity checks

In this Appendix we subject the results of Table 3 to a range of sensitivity anal-

yses. We re-estimate the model Equation (12) for various subsamples, allowing

the retrofit effect to differ by: (i) year in which insulation retrofit took place

(2017, 2018 and 2019), Table D1; (ii) pre-retrofit energy-efficiency as defined by

the energy label (C, D, E, F, G), Table D2; (iii) socio-economic characteristics

of households, Table D3; (iv) pre-retrofit gas use quintile, Table D4. Results are

robust across all the year and energy label subsamples. The average effect of

insulation however differs by household type. For instance, singles reach larger

savings, while households with migration background reduce gas consumption

less than average. The average effect also differs by pre-retrofit gas use: house-

holds with low gas demand experience almost half lower savings than average.

The low-income specific response to insulation is however robust in all the sub-

samples.

Table D1: Effects of retrofits by retrofit year

Retrofit year

Baseline 2017 2018 2019

Retrofit (year ≥ 2) −0.218 (0.003)∗∗∗ −0.217 (0.005)∗∗∗ −0.221 (0.004)∗∗∗ −0.212 (0.005)∗∗∗

× Below poverty line 0.024 (0.011)∗∗ 0.025 (0.020) 0.028 (0.017)∗ 0.004 (0.021)

× Below 100% soc.min. 0.062 (0.016)∗∗∗ 0.088 (0.031)∗∗∗ 0.046 (0.024)∗ 0.040 (0.027)

× Below 130% soc.min. 0.025 (0.006)∗∗∗ 0.022 (0.011)∗ 0.021 (0.010)∗∗ 0.032 (0.011)∗∗∗

× Below 150% soc.min. 0.018 (0.006)∗∗∗ 0.022 (0.010)∗∗ 0.012 (0.008) 0.017 (0.010)

Notes: The table shows estimates of Equation (12) for 10 separate regressions. Coefficients reported are

two- and three-way interactions. The symbol × indicates an effect as compared to the reference level (non-

poor). The combination of the column and row name indicates the interaction. The dependent variable is

log of gas. Each regression includes controls, household fixed-effects and year fixed-effects. The sample size

is 13409 treated and 110891 control units. Standard errors in parentheses are clustered at household level.

Statistical significance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D2: Effects of retrofits by energy label

Energy label

Baseline C D E F G

Retrofit (year ≥ 2) −0.218∗∗∗ −0.223∗∗∗ −0.218∗∗∗ −0.228∗∗∗ −0.228∗∗∗ −0.225∗∗∗

(0.003) (0.007) (0.005) (0.005) (0.008) (0.012)

× Below poverty line 0.024∗∗ 0.036 0.039∗ 0.020 0.034 −0.022

(0.011) (0.032) (0.022) (0.017) (0.028) (0.078)

× Below 100% soc.min. 0.062∗∗∗ 0.083∗ 0.071∗∗ 0.050∗ 0.027 0.169∗

(0.016) (0.044) (0.030) (0.028) (0.066) (0.088)

× Below 130% soc.min. 0.025∗∗∗ 0.035∗∗ 0.022∗ 0.025∗∗ −0.011 0.020

(0.006) (0.017) (0.013) (0.012) (0.019) (0.031)

× Below 150% soc.min. 0.018∗∗∗ 0.023 0.010 0.020∗ −0.004 0.011

(0.006) (0.015) (0.011) (0.011) (0.017) (0.026)

Notes: The table shows estimates of Equation (12) for 10 separate regressions. Coefficients reported are

two- and three-way interactions. The symbol × indicates an effect as compared to the reference level

(non-poor). The combination of the column and row name indicates the interaction. The dependent

variable is log of gas. Each regression includes controls, household fixed-effects and year fixed-effects. The

sample size is 13409 treated and 110891 control units. Standard errors in parentheses are clustered at

household level. Statistical significance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D3: Effects of retrofits by household type and migration background

Mig. BG Household type

Yes 1 adult nuclear fam. 1 senior single parent 2 adults 2 seniors

Retrofit (year ≥ 2) −0.176∗∗∗ −0.252∗∗∗ −0.193∗∗∗ −0.223∗∗∗ −0.202∗∗∗ −0.225∗∗∗ −0.209∗∗∗

(0.006) (0.007) (0.006) (0.005) (0.007) (0.007) (0.005)

× Below poverty line 0.044∗∗∗ 0.020 0.063∗∗∗ −0.009 0.057∗∗∗ 0.041 −0.009

(0.018) (0.020) (0.018) (0.026) (0.023) (0.034) (0.053)

× Below 100% soc.min. 0.090∗∗∗ 0.083∗∗∗ 0.047 0.064∗∗∗ 0.008 0.126∗ 0.120∗∗∗

(0.026) (0.034) (0.043) (0.027) (0.031) (0.075) (0.047)

× Below 130% soc.min. 0.028∗∗ 0.005 0.044∗∗∗ 0.028∗∗∗ 0.028∗∗ 0.032 0.053∗∗∗

(0.013) (0.017) (0.015) (0.011) (0.014) (0.026) (0.013)

× Below 150% soc.min. 0.023∗∗ −0.009 0.047∗∗∗ 0.021∗∗ 0.019∗ 0.027 0.033∗∗∗

(0.012) (0.015) (0.013) (0.011) (0.013) (0.022) (0.010)

Notes: The table shows estimates of Equation (12) for 10 separate regressions. Migration background (Mig. Bg) is ”Yes”

when all household members are born outside the Netherlands (first and second generation). Nuclear family stands for

2 adults with children. Coefficients reported are two- and three-way interactions. The symbol × indicates an effect as

compared to the reference level (non-poor). The combination of the column and row name indicates the interaction (e.g.

below poverty line × Yes Migration background). The dependent variable is log of gas. Each regression includes controls,

household fixed-effects and year fixed-effects. The sample size is 13409 treated and 110891 control units. Standard errors in

parentheses are clustered at household level. Statistical significance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D4: Effects of retrofits by pre-retrofit gas use quintiles

Pre-retrofit gas use quintile

Baseline first quintile last quintile

Retrofit (year ≥ 2) −0.218∗∗∗ −0.128∗∗∗ −0.265∗∗∗

(0.003) (0.010) (0.005)

× Below poverty line 0.024∗∗ 0.015 0.006

(0.011) (0.034) (0.019)

× Below 100% soc.min. 0.062∗∗∗ 0.152∗∗∗ 0.047∗

(0.016) (0.049) (0.027)

× Below 130% soc.min. 0.025∗∗∗ 0.047∗∗ 0.014

(0.006) (0.022) (0.011)

× Below 150% soc.min. 0.018∗∗∗ 0.031 0.013

(0.006) (0.020) (0.010)

Notes: The table shows estimates of Equation (12) for 15 separate

regressions. Coefficients reported are two- and three-way interactions.

The symbol × indicates an effect as compared to the reference level

(non-poor). The combination of the column and row name indicates

the interaction (e.g. below poverty line × first quintile). The dependent

variable is log of gas. Each regression includes controls, household

fixed-effects and year fixed-effects. The sample size is 13409 treated

and 110891 control units. Standard errors in parentheses are clustered

at household level. Statistical significance: ∗∗∗p < 0.01; ∗∗p < 0.05;
∗p < 0.1.
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E Alternative model specifications

E.1 Functional form retrofit intensity

Table E1 shows the retrofit effect on poor households for various specifications of

the retrofit intensity: the first column is the baseline specification Equation (10),

the second column excludes the largest retrofits (retrofit intensity > 2), the third

column allows for non-linear effects of the retrofit intensity and the last column

discard the retrofit intensity. Low-income response is robust across all these

specifications.

Table E1: Effects of retrofits across various retrofit intensity specifications

Specification of retrofit intensity

Baseline Linear and ≤2 Polynomial Not controlled for

Retrofit (year ≥ 2) −0.218 (0.003)∗∗∗ −0.222 (0.006)∗∗∗ −0.223 (0.003)∗∗∗ −0.217 (0.003)∗∗∗

× Below poverty line 0.024 (0.011)∗∗ 0.023 (0.012)∗∗ 0.024 (0.014)∗ 0.026 (0.011)∗∗

× Below 100% soc.min. 0.062 (0.016)∗∗∗ 0.064 (0.017)∗∗∗ 0.062 (0.022)∗∗∗ 0.063 (0.017)∗∗∗

× Below 130% soc.min. 0.025 (0.006)∗∗∗ 0.023 (0.007)∗∗∗ 0.013 (0.008) 0.023 (0.006)∗∗∗

× Below 150% soc.min. 0.018 (0.006)∗∗∗ 0.017 (0.006)∗∗∗ 0.009 (0.007) 0.016 (0.006)∗∗∗

Notes: The table shows estimates of Equation (12) for 20 separate regressions. In the first column, the retrofit

intensity enters the model linearly. In second column, observations with the retrofit intensity larger than 2 are

discarded. In the third column, the retrofit intensity and its second and third orders enter the model. In the

last column, the retrofit intensity is discarded from the model. Coefficients reported are two-way interactions.

The symbol × indicates an effect as compared to the reference level (non-poor). The dependent variable is

log of gas. Each regression includes controls, household fixed-effects and year fixed-effects. The sample size

is 13409 treated and 110891 control units. Standard errors in parentheses are clustered at household level.

Statistical significance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

E.2 Sun and Abraham estimator

The coefficient of treatment effect can be biased in studies where the treatment

timing differs across units, as is shown in (Callaway and Sant’Anna, 2021; Sun

and Abraham, 2021). Table E2 reports the retrofit effect on poor households,

using the estimator from Sun and Abraham (2021) that corrects for the variation

in treatment timing (staggered treatment). Low-income response is robust to

this correction.
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Table E2: Effects of retrofits, Sun and Abraham estimator (”Sunab”)

Not sunab Sunab

Retrofit (year ≥ 2) −0.218 (0.003)∗∗∗ −0.225 (0.003)∗∗∗

Below poverty line −0.188 (0.012)∗∗∗ −0.198 (0.012)∗∗∗

Below 100% soc.min. −0.155 (0.017)∗∗∗ −0.161 (0.017)∗∗∗

Below 130% soc.min. −0.209 (0.006)∗∗∗ −0.224 (0.006)∗∗∗

Below 150% soc.min. −0.215 (0.005)∗∗∗ −0.228 (0.005)∗∗∗

Notes: The table shows estimates of Equation (12) for 10 sepa-

rate regressions.”Sunab” stands for Sun and Abraham estimator

(Sun and Abraham, 2021). All coefficients (except ”Retrofit”) are

estimated on the sub-samples of poor households. The dependent

variable is log of gas. Each regression includes controls, house-

hold fixed-effects and year fixed-effects. The baseline sample size

is 13409 treated and 110891 control units. Standard errors in

parentheses are clustered at household level. Statistical signifi-

cance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

E.3 Heterogeneous time trends

Table E3 shows the retrofit effect on poor households where the time-fixed effect

is allowed to differ between poor and non-poor households. Low-income response

is robust to this specification.
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Table E3: Effects of retrofits, allowing heterogenous time trends

Baseline Heterogeneous time trends

Retrofit (year ≥ 2) −0.218 (0.003)∗∗∗ −0.218 (0.003)∗∗∗

× Below poverty line 0.024 (0.011)∗∗ 0.030 (0.011)∗∗∗

× Below 100% soc.min. 0.062 (0.016)∗∗∗ 0.054 (0.017)∗∗∗

× Below 130% soc.min. 0.025 (0.006)∗∗∗ 0.010 (0.007)

× Below 150% soc.min. 0.018 (0.006)∗∗∗ 0.002 (0.006)

Notes: The table shows estimates of Equation (12) for 10 separate regressions

where the time fixed-effect can differ between the poor and non-poor house-

holds. Coefficients reported are two-way interactions. The symbol × indicates

an effect as compared to the reference level (non-poor). The dependent vari-

able is log of gas. Each regression includes controls, household fixed-effects

and year fixed-effects. The sample size is 13409 treated and 110891 control

units. Standard errors in parentheses are clustered at household level. Statis-

tical significance: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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F Appendix Causal forest

The causal forest algorithm we apply, is based on random forests (Breiman,

2001), while additionally enabling consistency and asymptotic validity of the

heterogenous treatment estimates and providing valid confidence intervals for

them. The basic building block of the causal forest is a regression tree, which

employs recursive partitioning to split a sample into subgroups that maximize

heterogeneity across splits.24 We employ the generalized random forest (grf)

R package by Tibshirani et al. (2022). Taking advantage of the panel data

structure, we redefine the dependent variable as the difference between the yearly

gas usage in the year 2021 and the year 2016.25 The predictors are all observed

house and household characteristics in 2016.

F.1 Tree growing routine

First we explain the tree growing routine which lies at the bottom of the causal

forest algorithm.

1. Randomly draw (i) a sample of households (50% of the original data) and

(ii) a subset of available covariates.

2. Use the sample and the subset to grow a tree, by splitting the sample iter-

atively in branches. (See Knittel and Stolper (2021) for an example tree.)

A split in two branches is performed when the resulting branches maxi-

mize heterogeneity, under the constraint that each branch should contain

at least 10 treated and control units. The formal criterion to be maxi-

mized is defined in Athey et al. (2019) and is proportional to the squared

difference of treatment effects between the two branches (treatment effect

is equal to mean outcome of the treatment units minus mean outcome of

control units).

24Each tree starts with a single root node, which is split in child nodes, which are split

further recursively to form a tree. To maximize heterogeneity in subgroup ATE, penalties for

within-node variance in ATE and treatment-control imbalance are applied. When splitting a

specific node cannot result in an improved fit, that node forms a ‘leaf’ of the final tree. A forest

is formed by a collection of a large number of such trees.
25Recall that 2016 is a pre-treatment year in our data and 2021 is a post-treatment year. No

retrofits occur in the data in these two years.
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3. Match households in the sample to leaves of the trees, according to observed

characteristics.

4. Estimate ATEs in each leaf using the matched observations in that leaf.

The within-leaf ATE estimation is implemented as a cross-sectional, difference-

in-means comparison between treatment and control group.

5. Repeat for next tree.

F.2 Running causal forest

The procedure followed in the causal forest, can then be described by four steps:

1. Tree-growing routine, repeated 40,000 times to train the causal forest. See

above.

2. Predict the insulation retrofit effect on the outcome of interest, for every

house in our data (both, treatment and control group), using the trained

model. Fro each dwelling, the 40,000 predictions are aggregated into a

single, central estimate of a household’s treatment effect using adaptive

neighbourhood estimation (Tibshirani et al., 2022).

3. Distinguish houses into 5 quintiles, by size of the predicted effect. We call

the quintiles low, medium-low, medium, medium-high, high.

4. Use Equation (12) to estimate the average retrofit effect within each quin-

tile and to test the hypothesis that responses to retrofits differ between the

quintiles.

Summarizing, in our analysis, the causal forest predictions are instrumental

to identify the possible range of heterogenous responses to the treatment. We

do not use the forest predictions directly; all effect estimations are based on

econometric models like Equation (12).

To get a first idea of the degree of heterogeneity in the treatment effect we

use causal forest to order the observations into five quintiles, by increasing size

of the predicted treatment effect. Afterwards we estimate Equation (12) with

J = 5, including two-way interaction effects of the treatment with the quintiles

59



dummies. In this way we allow the treatment effect to differ for each of the forest

quintiles.

F.3 Covariates importance

Figure F1 reports the covariate importance.

Figure F1: Causal forest covariate importance

(Intercept)
Household type other

Household type two seniors
Household type nuclear family

Household type one senior
Household type two adults

Migration background mixed
No. seniors

Education nknown
Below poverty line
Education medium

Education low
Employed

Household type single parent
Migration background non−Dutch

No. children
No. persons
No. females

Dwelling type single−family
Boiler changed

Income (prct of social minimum)
Solar adopted

Construction year
Electricity (KWh)

Income
Theo. gas

Surface
Gas (m3)

0.00 0.05 0.10 0.15 0.20

Covariate score

Notes: The covariate score in the figure indicates how frequently the co-

variate was selected by causal forest to split the sample. In the causal

forest model specification, the dependent variables is the change of log gas.

The control covariates are taken in 2016, before any renovation occur in

our sample.
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