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Challenges and Opportunities
for 21st Century Bayesian

Econometricians
A personal view∗

Herman K. van Dijk
Erasmus University Rotterdam & Tinbergen Institute & Norges Bank

December 21, 2023

“Why econometrics should always and everywhere be Bayesian”
— Sims (2007)

Abstract

This essay is about Bayesian econometrics with a purpose. Specifically,
six societal challenges and research opportunities that confront 21st century
Bayesian econometricians are discussed using an important feature of
modern Bayesian econometrics: conditional probabilities of a wide range
of economic events of interest can be evaluated by using simulation-based
Bayesian inference. The enormous advances in hardware and software
have made this Bayesian computational approach a very attractive vehicle
of research in many subfields in economics where novel data patterns
and substantial model complexity are predominant. In this essay the
following challenges and opportunities are briefly discussed, including the
scientific results obtained in the 20th century leading up to these challenges:
Posterior and predictive analysis of everything: connecting micro-economic
causality with macro-economic issues; the need for speed: model complexity
and the golden age of algorithms; learning about models, forecasts and
policies including their uncertainty; temporal distributional change due to

∗This paper should not be reported as representing the views of Norges Bank. The views
expressed are those of the author and do not necessarily reflect those of Norges Bank. A
preliminary version of this paper was presented at the ESOBE 2022 Meeting. The author
is indebted to Jamie Cross, Lennart Hoogerheide, Gary Koop, Dimitris Korobilis, Francesco
Ravazzolo and Koene van Dijk for helpful comments and stimulating conversations about several
of the topics of this paper.
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polarisation, imbalances and shocks; climate change and the macroeconomy;
finally and most importantly, widespread, accessible, advanced high-level
training.
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1 Introduction
As a preliminary remark to the subject of this essay, I mention how in the first
quarter of the 21th century tremendous progress has been made in many scientific
fields with important practical applications. As an important illustration and
major example of success of a societal challenge and research opportunity in this
period, I list the discovery and production of the BioNTech-Pfizer vaccine as an
effective medicine to combat the pandemic caused by the Covid-19 virus. Three
major features of this success are: an effective migration policy by Germany where
talented persons from abroad found a living and work opportunity; the high level
of the German university system that is accessible at low cost for qualified persons;
and the successful international cooperation and good leadership initiative between
the top management from both BioNTech and Pfizer. It is important to note that
without vaccines the Delta and Omicron variants of Covid-19 virus would have
been three times deadlier, see Figure 1. As a general note, I remark that the
‘speed of success’ in this case was substantial but it is also important to realize
that viruses, some mild others very serious, will affect the health of humans and
are here to stay.

Figure 1: Estimated daily excess deaths (thousands) among individuals who avoided infection
thanks to other people’s vaccinations. Source: www.economist.com adapted from results in Watson
et al. (2022).

In this essay I describe a similar major success for Bayesian econometric
inference which has its origin in World War II. It refers to the invention of the
Monte Carlo method which consists of generating pseudo-random numbers on
a computer and, at the same time, to the development of computers with ever
increasing computational power. This method took a longer time than the Covid
vaccine to gain acceptance in several scientific fields but a fair conclusion is that
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the Monte Carlo method is here to stay and is widely applicable.
The Monte Carlo method was invented by Stanislaw Ulam and John von

Neumann during World War II working on the Manhattan project with the purpose
of improving decisions, see Metropolis (1987), and the references cited there. This
approach allowed for numerical evaluation of integrals through statistical sampling
methods for a wide range of model structures. Monte Carlo methods were in the
early stage not used in Bayesian inference but mainly in physics and gradually
in economics. The application in economics consisted of direct simulation of
artificial data from basic probability models with given parameter values. Examples
include the arrival of ships at ports or ambulances at hospitals. In a related
development, in frequentist econometrics, simulating repeatedly artificial data on
a computer from a given parametric model was used in order to explore frequentist
properties of estimators. In the latter part of the 20th century the fundamental
step in Bayesian inference was one of reverse engineering. That is, given data,
one attempts to simulate parameter values of posterior and predictive probability
models. However, direct sampling was not feasible for a wide class of Bayesian
models. One more step was to make use of indirect sampling by simulating from
a different distribution than the distribution of interest under the condition that
this different distribution should be a good approximation to the distribution of
interest. This indirect sampling approach implies that a correction factor has to
be applied. Two important classes of indirect simulation methods that deal with
correction factors are importance sampling due to Goertzel (1949) and Kahn and
Harris (1951), and introduced in econometrics and statistics by Kloek and Van Dijk
(1978), and Markov Chain Monte Carlo, see Metropolis et al. (1953) and Hastings
(1970), which was introduced in statistics by, amongst others, Gelfand and Smith
(1990).

These two approaches enabled the performance of the integration operation
in conditional probabilities in Bayesian inference more effectively as well as being
operational for a wide class of complex models, say, in finance, marketing and
macro-economics. This led to more accurate forecasts and a better quantification
of uncertainty and risk. For a historical perspective on the rise of Bayesian
econometrics, see Baştürk et al. (2014).

The world has substantially changed in the early part of the 21st century.
Communication through the internet has become so prolific that interdependence
or connection between many economic fields has occurred which may give the
impression of world-wide economic advancement and convergence connecting many
areas of economics using data science and high tech simulation methodology.
However, recently shocks, economic imbalances, polarisation, inequality and serious
climate problems occurred. Both positive and negative developments imply
challenges and opportunities for Bayesian econometric inference.

In this essay I discuss six challenges and opportunities for 21-century Bayesian
econometricians including the scientific advances in the 20th century in simulation
based Bayesian inference. The challenges and opportunities are listed with
their interconnections in Figure 2. At the top a most important challenge and
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Topic 6: Widespread, accessible, advanced high-level training

Topic 1: Posterior and
predictive analysis of everything:

connecting micro-
economic causality with
macro-economic issues.

Topic 2: The need for speed:
model complexity and the
golden age of algorithms

Topic 3: Learning
about models,
forecasts and

policies including
their uncertainty

Topic 4: Temporal
distributional change
due to polarisation,

imbalances
and shocks

Topic 5: Climate
change and the
macroeconomy

Figure 2: Connections between six research challenges and opportunities.
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opportunity is given as: Widespread, accessible, advanced high-level training. This
is crucial input to take up one of the other five challenges. In Subsection 2.1 the
ideal challenge is presented as posterior and predictive analysis of everything1:
connecting micro-economic causality with macro-economic issues.

This challenge needs input from and interaction with the challenge listed next
to it and given as: The need for speed: model complexity and the golden age of
algorithms. Here several technical topics are treated which are also needed in the
three more applied challenges listed in the second block: Learning about models,
forecasts and policies including their uncertainty; Temporal distributional change
due to polarisation, imbalances and shocks; Climate change and the macroeconomy.

I close by noting that this essay is a personal reflection on the past, present
and future of Bayesian econometrics, and is not meant to provide a survey of these
topics with complete references in econometrics and statistics.

2 Six Societal Challenges and Research
Opportunities for 21st Century Bayesian
Econometricians

2.1 Posterior and Predictive Analysis of Everything:
connecting micro-economic causality with macro-
economic issues.

In the field of economics there have been, at least, two major successes in the
20th century. In the economy at large there was a tremendous progress in
the modeling and forecasting patterns in economic time series. This improved
understanding of the dynamic behavior of economies at large has led first to more
effective fiscal policy, e.g., New Deal Policy. Second, understanding short and long
term patterns in financial time series patterns led to improved measurement of
volatility and risk with implications for monetary policy. In the micro-economy
the econometric analysis of causal effects using personal data led to introduction of
income maintenance programs, better understanding of the search in and working
of the labor market; working of education and training programs. A very interesting
feature that occurred is that there exists a common structure between macro-
and micro-economic models in this period. For instance, modeling the income-
education effect in microeconomics; stationary combinations in macro-economic
series, and information reduction in large financial models all led to the common
structure of a multivariate regression model as shown in Figure 3.

In macroeconomics, the integration of micro- and macro- theory developed
in the mid-20th century and is referred to as ‘microfoundations’. This line of
research uses microeconomic principles such as utility optimizing households, and

1Analogy with Physics’ Theory of Everything: How to combine the General Theory
of Relativity (understanding the universe) with Quantum Mechanics (subatomic particles,
molecules).
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profit maximizing firms, to address macroeconomic questions such as ‘what drives
inflation?’ within a general equilibrium framework. This movement tended to
focus on representative agents and low-order distributional moments of aggregate
macroeconomic data. This perspective has changed in the 21st century.

Figure 3: Common structure of three classic linear econometric regression models. Source:
Baştürk et al. (2017).

Ỹ = X̃A + E, R(A) is less than full

Ỹ = (Y X), X̃ = Z

A = (0 Π)
(

1 0′

β Ir

)
modeling direct connectivity;

empirical analysis:
income-education effect

Ỹ = ∆Y, X̃ = Y−1

A = (Ir β′
2)α′

modeling stationary
random walk
combinations;

empirical analysis:
forecasting

Ỹ = Y, X̃ = I

A = F (Ir Λ2)

Σ = D

modeling information
reduction;

empirical analysis: financial
momentum

First, a major 21st century development has been the integration of micro data
in macro models. As discussed in the Nobel Lecture of Heckman (2001), the use
of micro data in cross sections beginning in the 1960s revealed the importance of
heterogeneity within individual behavior, income, consumption habits and portfolio
selection. Between the 1960s and the turn of the century, the pervasiveness
of this heterogeneity became more pronounced as newly available panel data
revealed that these effects are persistent over time for the same persons, and have
important intergenerational consequences. While cross sectional variation alone
cannot be used to identify the macroeconomic effects of variables that are common
across individuals, such as fiscal and monetary policies, the findings sparked an
important debate about the integration of macroeconomic general equilibrium
and microeconometrics for calibration and estimation purposes. Econometrically,
the use of microdata has allowed us to better measure important macroeconomic
variables, such as expectations and sentiment, and shed new light on frequent
macroeconomic questions. Examples include the identification and quantification
of fiscal policy multipliers (Ramey, 2011), the causes of the Great Recession (Mian
and Sufi, 2011), and the ability to track the economic effects of the COVID-19
pandemic in real time (Vavra, 2021).

Another important area of research has been the synthesis of microeconometric
identification methods within macroeconomic time series models. Since the seminal
work of Sims (1980), structural vector autoregressions (SVARs) have been the
primary tool of empirical macroeconometricians to understand macroeconomic
phenomena, however shock identification has always been the central source of
debate (Cooley and LeRoy, 1985). Over the past decade, there has been an increase
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in usage of microeconomic instrumental variables to identify macroeconomic VAR
models, which have become known as ‘proxy VARs’. An early example of this idea
is Mertens and Ravn (2013) who use narratively identified tax changes in post-
WWII data as proxies for structural tax shocks within a SVAR model. Caldara
and Herbst (2019) and Arias et al. (2021) were among the first to develop Bayesian
frameworks for inference in proxy SVARs. More recently, Giacomini et al. (2022)
propose an algorithm for robust Bayesian inference in proxy SVARs, and Mumtaz
and Petrova (2023) develop Bayesian methods for the use of instruments in time-
varying SVARs. This raises an interesting question: what other microeconometric
identification methods can be used in macroeconometric models?

Figure 4: Empirical distribution of the University of Michigan’s inflation expectations data and
estimated probability mass function (top row), mode locations (center row) and number of modes
(bottom row). Source: Cross et al. (2023).

Finally, over the past few years macroeconomists have begun to recognize the
importance of modeling heterogeneity not only within the behavior of individuals
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at a given point in time, but also within aggregate time series over a given
period. Econometrically, important information about such data features can be
obtained by looking at higher-order moments like skewness and kurtosis, and other
important distributional features such as multimodality. For instance, changes in
the quantile behavior of the conditional distribution of GDP growth have been
linked to macroeconomic risk (Adrian et al., 2019), and multimodality in this
distribution has been linked to multiple equilibria (Adrian et al., 2021). Mitchell
et al. (2022) show that the existence of multimodality over the business cycle is
a key feature in the predictive distribution of GDP growth when conditioning on
financial conditions. While tests for multimodality of distributions for continuous
random variables such as real GDP have been around for some time, determining
multimodality for the case of discrete variables such as survey responses to inflation
expectations are rare. A first attempt to overcome this problem is provided in
a recent paper by me and co-authors, see Cross et al. (2023). We propose a
simple method for mode inference with discrete distributions that is illustrated
in Figure 4. The top row contains observations from the University of Michigan’s
inflation expectations in two periods, along with a Bayesian estimated distribution.
The middle and bottom rows respectively contain implied posterior probabilities of
the number of modes and their locations. In both periods credible information is
shown regarding the quantity and location of modes. There is also strong evidence
of increased heterogeneity in survey responses by participants in 2023 relative to
those in 2020. This suggests that expectations may have become unanchored in
recent times, and this presents an important policy challenge for central bankers
who are tasked with maintaining low and stable inflation. While one can speculate
that this un-anchoring is likely due to the rising cost of living in the aftermath of
the COVID-19 pandemic, identification of causal factors relating to this phenomena
is an important area of future research.

I note that recently there are several other examples where a connection is
found between microeconomic models, their data features and the macroeconomic
implications. A detailed analysis is beyond the scope of this essay but an important
example is from financial econometrics where it has been established that the
financial crisis of 2007-2009 was largely due to irresponsible micro behavior of
banks by lending subprime mortgages.

I conclude that the existence of multimodality in expectations, financial market
conditions and over the business cycle presents an important challenge for research
as well as for policy makers like central bankers tasked with maintaining low and
stable inflation.

2.2 The need for speed: Model Complexity and the
Golden Age of Algorithms

I start this discussion with a personal note, for background see Van Dijk (1999).
In 1974 Teun Kloek and I started to explore the use of simulation methods in
order to compute posterior moments and densities of parameters of interdependent
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equation systems. We realized that using the Monte Carlo simulation approach as
it was known in econometrics required a step of reverse engineering: not generating
data given parameters but the reverse. We worked experimentally. That is, we
took a specific example of a small econometric model and considered that the
posterior, being the product of likelihood and prior, is not a member of a known
class of densities in our case even though an informative prior may be chosen as
one. Thus, I simulated draws from this prior and evaluated likelihoods. That
worked fine for the case of an informative prior that was a close approximation
to the likelihood. During the Fall of 1974, I presented the method in an informal
seminar at the Econometric Institute in Rotterdam. One of the participants asked
whether I could handle the case of a uniform prior. When I ran our computer
program for that case after the seminar I discovered that the posterior results were
numerically very unstable. Only a few draws got a large weight of the likelihood
function. The remaining 99% of the draws received a negligible weight. A simple
step was to generate draws from a distribution with a density that approximates
the posterior/likelihood and, at the same time, to divide the posterior/ likelihood
by this approximate density. I discovered that evening in the library that in the
book ‘Monte Carlo Methods’, Hammersley and Handscomb (1964), this idea was
listed and framed as Importance Sampling (IS), due to Goertzel (1949) and Kahn
and Harris (1951). Our results appeared in a report of the Econometric Institute
(Kloek and Van Dijk, 1975), presented at the World Meeting of the Econometric
Society in Toronto in 1975, published in Econometrica, Kloek and Van Dijk (1978)
and further developed in Van Dijk and Kloek (1980, 1983) and Geweke (1989). An
advantage of importance sampling is that draws are generated independently and
one can make use of standard limit theorems, like the Law of Large Numbers, to
check the accuracy of the numerical results. However, finding a good approximate
density in a high dimensional problem was not always easy and successful.

Another very important class of Monte Carlo methods is based on the intuition
of a basic Markov property in the sense that in this approach a random draw
generated from a candidate distribution depends only upon a previously generated
draw but not upon older draws. Also, given the property of so-called time
reversibility of a Markov Chain method a sample of generated draws will behave as
if generated from the target/posterior distribution after a long sequence of accepted
random draws. Further, it is intuitively clear that candidate draws are typically
rejected in regions of the parameter space where too many candidate draws are
simulated as compared with the target/posterior distribution, whereas candidate
draws are typically accepted (and repeated) in regions of the parameter space
where too few candidate draws are simulated as compared with the target/posterior
distribution, see for an introduction Hoogerheide et al. (2009). Methods based
on these principles were labeled Markov Chain Monte Carlo (MCMC) methods
and were developed by Metropolis et al. (1953) and Hastings (1970). The Gibbs
sampling method, the most well-known MCMC method, is due to Geman and
Geman (1984). These methods were introduced in statistics by Gelfand and Smith
(1990). For an historical perspective on the Metropolis-Hastings method, I refer
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to Hitchcock (2003).
It is important to mention that parallel to the advancement of software the

enormous advances in the development of hardware is crucial. For illustrative
purposes I include Figure 5 showing the ENIAC, the Electronic Numerical
Integrator and Computer, which was the first programmable general purpose
digital computer. It is interesting to note that the first part of the name of this
computer refers to numerical integration which is the most important operation
in modern simulation based Bayesian inference. More important is to realize that
there has been a revolutionary development in power and speed of computers since
the early beginning. This continues even in recent times, see Figure 6. This
development is an important cause for the substantial rise in simulation-based
Bayesian econometrics since it allows the analysis of more complex economic issues
than could be done with basic linear models.

Figure 5: ENIAC (Electronic Numerical Integrator and Computer), c. 1946. Courtesy of the
Moore School of Electrical Engineering, University of Pennsylvania.

I note that in both computational approaches, IS and MCMC, the choice of a
good approximate distribution, named candidate/importance distribution, to the
so-called target distribution, often the posterior, is crucial for more complex model
structures. With a poor approximation many draws receive a negligible weight
in IS or there are only very few accepted draws in MCMC. In this context it is
relevant to realize that in many scientific fields the clock-shapes of the normal
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Figure 6: Comparing single-precision and double-precision performance of CPUs and GPUs.
Source: Sun et al. (2019)

or student-t posterior densities are less relevant and multi-modal or other non-
elliptical shapes like curved ridges and asymmetric tails occur, for instance, the
analysis of DNA data in bio-informatics, obtaining loans in the banking sector by
heterogeneous groups and analysis of education’s effect on earned income in labor
economics. Here, I refer, for the sake of convenience, to a few of my own papers
with different co-authors: Schaap et al. (2013), Baştürk et al. (2023), Cross et al.
(2023) and Baştürk et al. (2017). The appearance of these nonnormal shapes of
target densities led to the search for flexible classes of candidate densities with good
approximation properties. One approach is to make use of a mixture of densities
and I discuss briefly how this idea was implemented by several co-authors and
myself. Our method, labeled Mixture of t-distributions by Importance Sampling
weighted Expectation Maximization (MitISEM) (Hoogerheide et al., 2012; Baştürk
et al., 2017) provides an automatic and flexible two-stage method to approximate
a non-elliptical target density using an adaptive mixture of student-t densities
as approximating density. In the first stage a mixture of student-t densities is
fitted to the target using an expectation maximization algorithm where each step
of the optimization procedure is weighted using importance sampling. In the
second stage this mixture density is a candidate density for efficient and robust
application of importance sampling or the Metropolis-Hastings (MH) method to
estimate properties of the target distribution. Of course, many other researchers
followed the research line of finding a good approximation to a posterior density
but discussing this literature is beyond the purpose of this personal essay.

A next step was to have the candidate density to learn over time due to the
changing data and model structure. A fundamental step was to introduce dynamic
models with unobserved states and parameters that may change over time. For
such linear dynamic systems with Gaussian noise, the optimal learning algorithm
is the so-called Kalman Filter where the updating of the hidden states occurs
using analytical properties of the normal distribution. I list only two papers that
introduce this method in econometrics and statistics: Frühwirth-Schnatter (1994)
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and De Jong and Shephard (1995) but there are several more papers on this topic.
However, the temporal change in the posterior and predictive distributions of

complex models with non-Gaussian noise require more sophisticated algorithms
than the Normal/Kalman Filter. The nonlinear dynamic adjustments in
unobserved states and parameters require simulation methods instead of analytical
methods. This is a topic of much recent research, see, for instance, Herbst and
Schorfheide (2016) and the references cited there, in particular the seminal paper
on Sequential Monte Carlo due to Gordon et al. (1993)

One example of my personal research is presented in Baştürk et al. (2019).
I summarize a novel filtering approach, listed there, as follows. Filters are
usually based on a recursive formula about the particles in a filter. Importantly,
propagation of these particles over time leads to weight degeneracy with finally
only one particle carrying all the weight. In the paper Baştürk et al. (2019) we
avoid the propagation step by replacing it by an independent sampling step in
each time period. Here we extend the literature about importance sampling for
state space models using a very flexible approximation density based on mixtures
of student-t densities. More research is here needed and is an opportunity for novel
work.

Table 1: Summary of predictive density combinations with time-varying weight components for
large datasets and their connection with machine learning in Casarin et al. (2023).

Large set of n financial series leading to large set of n predictive densities
↘ ↓ ↓ ↙

Dynamic clustering allocates large set of n densities to small number of m groups
↓ ↓ ↓ ↓

Cluster 1 Cluster 2 · · · Cluster m

Cluster weights are logistic transformations of unrestricted random walks weights:
↙ ↓ ↓ ↘

Mapping small set of cluster weights to large set of model weights
↓ ↓ ↓ ↓

Construction of convex combination of large set of predictive densities

In Table 1 a sketch is presented how a large panel of financial time series is
used in a Bayesian modeling approach to yield a large set of predictive densities.
As a next step a machine learning type of method is used to cluster the large set
of densities into a small set of densities. The probabilistic combination weights
are unobserved and have to be integrated out using dynamic filtering methods like
Normal/Kalman or Particle Filters. I emphasize that the line in the middle can
also be interpreted as containing a hidden layer where the elements are integrated
out using, for instance, neural networks from machine learning. The figure serves,
therefore, to indicate the close connection between machine learning methods with
hidden layers and filtering methods in nonlinear time series models.
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More generally, machine learning refers to a set of algorithms that are used to
find patterns in large data sets and make predictions for future outcomes of these
data. They are used, for instance, in stock trading where a trader may be informed
about potential interesting future outcomes. What matters is that a similar
method is used in the example of Casarin et al. (2023) but with nomenclature
from nonlinear filtering. Such a close connection between the fields of machine
learning and nonlinear filtering may lead to challenging research.

I close this Subsection with a remark about the issue Can machines think?
This quote from Alan Turing (Turing, 1950) refers to the argument that technically
oriented persons are of the opinion that machine learning methods automatically
can perform tasks. However, it is experienced in practice and in formal inference
that tuning of parameters by humans is often crucial in complex cases. A clear
difference may be observed between situations where one controls the whole process
and only repetitive tasks have to be performed (for example, building a series of
new cars) and situations where one has to deal with humans or animals that may
have unexpected characteristics and where unexpected events may happen in the
task performance (for example, in healthcare or complex biological processes).
Especially in the latter cases the role of human intervention may remain crucial.
My personal opinion is that a combination of human and machine learning appears
to be more realistic in the complex models handled in empirical econometrics.

As a final note I remark that the methods of this Subsection are needed and
applicable in Subsections 2.3 - 2.5.

2.3 Learning about models, forecasts and policies including
their uncertainty

As a preliminary remark I note that the introduction of stochastic errors in order to
learn about the specification of econometric equation systems appeared less than
one hundred years ago. Residual error models were added by Tinbergen to his
system of equations, see Tinbergen (1939), with the aim to minimize the difference
between observed values of data and forecasted values. However, Keynes was not
convinced that this was the right approach, see the famous Keynes-Tinbergen
debate in Keynes (1939). As a second note Trygve Haavelmo introduced the
concept of probabilistic estimation of systems of equations using the likelihood
approach which allowed for formal specification testing (Haavelmo, 1944).

Econometric learning about model specification, forecasts and policies has
come a long way since. It is non-trivial due to a large degree of ambiguity or
uncertainty, making absolute conclusions difficult. I discuss three popular methods
that tackle this issue of specification learning: error learning, Bayesian learning
and, more recently, machine learning used on big data sets. There exists an
interesting methodological and even philosophical debate about the relative merits
of each approach but there does not exist a theorem about superiority of one
of the three approaches in all possible situations. Learning from errors/mistakes
through a process of a series of trials/tests is supposed to improve the model
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specification. Bayesian learning possesses the advantage of being an optimal
information processing rule where probabilistic information of prior beliefs about
model specification is carried through data evidence to posterior or predictive
information about model features like forecasting including their uncertainty. Big
data require an agnostic approach using deterministic or stochastic algorithms
mostly based on machine learning that detect patterns in massive data before
a modeling stage can occur. In this essay I take the point of view of a ‘do-er’ or
instrumentalist. Handling a case of big data needs first a diagnostic step of pattern
recognition; next a Bayesian learning step and finally learning from residual errors.
The connections between the three procedures are sketched in Figure 7.

Machine
learning

Bayesian
machine
learning

Error
learning

Figure 7: Connections between three learning procedures.

As mentioned learning about patterns in vast amounts of data that are too large
for traditional analytical approaches requires machine learning methods, see also
Subsection 2.2. The hope is that by exploring such datasets meaningful patterns
will emerge with greater clarity, allowing researchers to identify relationships that
might not be evident with smaller datasets. Many of the microdatasets used
in the research outlined in Subsection 2.1 are examples of big data. In such
cases, the immense quantity of data often means that there will be inherent
noise and uncertainty. The challenge lies in distinguishing genuine patterns from
random noise. To that end, big data learning has an intersection with Bayesian
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learning, in that prior information can be used as a regularization tool to shrink
meaningless noise to zero while preserving important information (Bańbura et al.,
2010). Alternatively, advanced algorithms, often based in machine learning, have
been increasingly common (Goulet Coulombe, 2020; Goulet Coulombe et al., 2022).
Varian (2014) provides a broad discussion of big data in econometrics while Koop
(2017) provides a discussion about big data in macroeconomics. For an interesting
intersection between probabilistic machine learning and bayesian nonparametric
methods, see Chamberlain and Imbens (2003).

A major advantage of Bayesian learning is that it explicitly accounts for
uncertainty by going beyond point estimates towards posterior distributions that
depict the entire range and likelihood of possible outcomes. Another advantage is
that Bayesian learning is logically coherent in that information from distinct models
can be easily combined using Bayes’ theorem — a method known as Bayesian Model
Averaging (BMA). Set in this manner, the BMA predictive density is a weighted
average of individual model densities where the combination weights are equal to
posterior probabilities of the respective models. By doing this iteratively, BMA
weights encompass learning in that they reflect each model’s relative ability to
predict the object of interest over the training period. While BMA is simple and
logically coherent it has several shortcomings: (1) it assumes that the true model
is included in the model set; (2) it does not account for uncertainty associated
with the weights attached to each model; (3) it is extremely sensitive to prior
information. Given that there does not exist a true model and that therefore any
one model is always incorrect/misspecified, it is better to make use of a set of
models and of probabilistic learning about features of a set of models. However,
even a desired model set is likely to change over time, see Subsection 2.4. Therefore,
a combination of Bayesian learning about model features and learning about
posterior and predictive errors seems appropriate. Quantification of uncertainty
and risk in this context is important, and it is precisely this rationale that makes
Bayesian methods appealing. This has led to an evolution of different types of
Bayesian forecast density combinations that aim to address these weaknesses (see
Aastveit et al. (2019) for a review).

Error learning is predicated on the idea that prediction errors can be valuable
sources of information. It involves adjusting parameter estimates, model selection,
or policy related decision-making, based on the size and sign of previous and current
errors. The focus here is on using historical errors to minimize discrepancies over
iterations thereby achieving improvements through trial and error. The classic
econometric example of this type of learning is the error correction model (ECM)
of Engle and Granger (1987). Other examples which have become popular since the
onset of deep learning are neural networks, especially during the backpropagation
phase, and reinforcement learning where agents improve strategies based on
rewards and penalties. On another personal note, my first research into neural
networks for economic data was in the 1990s (Kaashoek and Van Dijk, 1994;
Draisma et al., 1995), however it was not until later that I realized that these
methods were also useful for microeconometric identification (Hoogerheide et al.,
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Figure 8: Real price of crude oil. Source: Aastveit et al. (2023)

2007). Also, while Bayesian neural networks have been around since the 1980’s
(Kononenko, 1989), they have only recently emerged as an important tool in
econometrics (Klein et al., 2023; Tsionas et al., 2023).

In Figure 7 it is indicated that machine learning, be it stochastic or
deterministic, encompasses the other two learning procedures. Clearly, Bayesian
learning is a very important class of stochastic machine learning in the context
of improving model specification and forecasting in the face of uncertainty and
risk. Error learning is situated in the inner circle. A quote from Nobel Laureate
Clive Granger illustrates the connection between the latter two learning methods
as follows: “Bayesian forecasts are better than non-Bayesian Forecasts (here error
based forecasts) and better than bad Bayesian Forecasts.” This to indicate that
Bayesian learning is wider than trial and error learning but that learning from
errors is also an essential step in model forecasting and policy analysis.

For illustrative purposes I summarize features of three recent papers of mine:
(1) seeks to address the issue of forecast uncertainty and risk with a combination
of a set of models when the data exhibit several shocks, see for details Aastveit
et al. (2023); (2) learns about model set composition given a large financial data
panel, see Casarin et al. (2023); and (3) learns about policy combinations, their
uncertainty and risk, in a portfolio strategy, see Baştürk et al. (2019).

For time series which show shock behavior like the real price of oil, see
Figure 8, Aastveit et al. (2023) make use of a combination of a set of five
models and an algorithm which is an econometric interpretation of the so-called
Bayesian Predictive Synthesis method, see McAlinn and West (2019), McAlinn
et al. (2020), in order to provide accurate forecasts and risk measures for this oil
price. Underestimation of risk could obviously cause immense problems for banks
and other participants in financial markets (e.g. bankruptcy). Overestimation of
risk may cause one to allocate too much capital as a cushion for risk exposures,
possibly having a negative effect on productivity. Therefore, precise estimates of
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risk measures are obviously desirable.
Since the focus of this Subsection is on learning, Figure 9 shows results on

learning about the time pattern of five individual model weights. It is seen
that individual model forecasts lead to placing more weight on two models that
perform well in forecasting previous periods and vice versa. So, the learning
about time variation in these weights is an important source of information.
The attentive reader will note that the model combination weights are not
restricted to be a convex combination in the unit interval but can take on
values over the real line. While this approach sacrifices the intuitive probabilistic
understanding of the weights, accommodating both positive and negative weights
can provide a safeguard against possible forecast uncertainties by indicating
hedging opportunities, an attribute highly valued by many finance professionals.

Figure 9: Model weights sequentially computed at each point in time over the forecast evaluation
period 1998:03-2017:12. Source: Aastveit et al. (2023).

The second illustration deals with a panel of 496 daily individual stock prices,
components of the S&P500, over the sample January 2, 2014 to June 30, 2021. A
first step is to make use of a stochastic machine learning type algorithm which
clusters the predictions of all stock prices in four groups. In Figure 10 the
four clusters of predictive models are denoted by n1 and n2, which refer to two
normalmodels (with high and low volatility, respectively), and t1 and t2, which
refer to two student-t models (with low and high degrees of freedom parameters,
respectively). Details are given in Casarin et al. (2023). It is seen in the top panel
of Figure 10 that the percentages of stocks within models n1 and t1 are dominant.
COVID-19 creates some instability in the stock allocation. In this case of financial
econometrics an important motivation to obtain complete forecast distributions
over outcomes is that such results provide information helpful for making economic
decisions under uncertainty. I note that asset allocation decisions usually involve
higher moments than just first moments.

Next, in the bottom panel it is seen that measures of model set incompleteness
indicate that all models fail in the beginning of the pandemic period but the
incompleteness lowers again substantially in the later period. Incompleteness is
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measured as the average value of the squared posterior residuals. It is seen that n2
has high average incompleteness after the pandemic. This diagnostic information
indicates that cluster n2 gives low predictive accuracy in that period.
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Figure 10: Dynamic Weight Learning (top) and Error Learning (bottom). Source: Casarin et al.
(2023)

Results on learning about policy combinations in a portfolio analysis are taken
from Baştürk et al. (2019). In this paper a dynamic asset-allocation model
is specified in probabilistic terms with portfolio strategies based on momentum
patterns in US industry returns. Figure 11 shows the posterior means of
the probabilistic weights from a combination of 2 investment strategies (model
momentum in blue, residual momentum in yellow). The time variation in these
weights – where residual momentum appears to get larger weights in the second
half of the data series – provides useful signals for improved modeling and policy,
in particular, from a risk-management perspective.

Again as a final note I remark that the topic of this Subsection is closely
connected to the material and topic of Subsection 2.1.
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Figure 11: Posterior means of the combination weights for two investment strategies.
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2.4 Temporal distributional change due to polarisation,
imbalances and shocks

Why is it that, in capitalistic economies, aggregate variables undergo repeated
fluctuations about trend, all of essentially the same character? (Lucas, 1977)

This topic has fascinated econometric researchers from the beginning of business
cycle analysis. A brief selection of the approaches is the following: Juglar (1862)
ascribed the recurrent business crises in Europe and North America to credit crises;
Yule (1971) and Slutzky (1937) suggested that the cumulative effect of random
shocks could be the cause of cyclical patterns in economic variables; and Tinbergen
explored the possible economic causes of the periodic upswings and downswings in
economic activity, see Tinbergen (1939).

Figure 12: Consumption to Income Ratio in the US. Source: fred.stlouisfed.org

Next to this topic of exploring patterns in economic time series, several variants
of regression analysis were used to estimate stable ratios like the consumption-
income ratio. An example using US data is provided in Figure 12. This ratio
has long been studied in econometrics (e.g., Haavelmo, 1947), and has recently
been used as an important statistic when modeling income distribution dynamics
(Carroll et al., 2017).

Recognizing issues of endogeneity in traditional econometric regressions, Sims
confronted the modeling of structural analysis in the latter part of the twentieth
century by arguing that data patterns depend to a very large extent only on time
series behavior of stochastic economic variables (e.g., Sims, 1980; Sims et al., 1986).
Lagged dependent variables and shocks were crucial for the dynamic behavior.
Again a major line of research to explore stable relations in this context became
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known as the field of cointegration (Granger, 1981; Engle and Granger, 1987;
Granger, 2010).

In the 21st century new phenomena occurred: A switch from stable to unstable
ratios due to polarisation and economic inequality. This is illustrated in Figure 13.
The figure shows clear evidence of diverging wealth between different groups
since the 1980’s. This creates a serious econometric challenge of how to model
the connection between temporal variation in cross-sectional distributions and
macroeconomic phenomena and it provides also a clear motivation for modeling
with quantiles.

Figure 13: Diverging Ratios in economic variables may lead to regime changes.

To further illustrate how recent imbalances lead to inequality and polarisation,
Figure 14 shows the change in property price to income ratios in western Europe.
This leads to major reductions in affordable housing around the region. In 2013,
only two cities (Paris and Nice) had ratios of more than 10. Ten years later, 16
cities now have ratios of more than 10, with Paris now having a ratio of more
than 20, and cities like Innsbruck and Munich having ratios of more than 15. This
phenomenon is not local to western Europe. The data also show stark increases in
such ratios in major cities of Asia, America, and the Oceanic regions, making it a
truly global phenomenon.

Another novel feature is that the time series are not always periodical and
shocks to series occur. This was discussed in Subsection 2.3 with reference to
(Aastveit et al., 2023).
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Figure 14: Property price to income ratios by city in western Europe. Left shows data in 2013
and right shows data in 2023. Source:www.numbeo.com

Related to much of the preceding discussion is the general question of how
to model temporal distributional changes. To illustrate one such example, I
include Figure 15 which shows the distributional changes in GDP per capita in
an unbalanced panel of countries from 1950-2004, see Khaled and van Dijk (2008).

In a recent piece of work, Chang et al. (2021) propose to accomplish this task
using a state-space model in which the state-transition equation is specified as
a functional vector autoregression that models dynamics between macroeconomic
aggregates and a cross-sectional density. In this model, the log densities and state
transition kernels are approximated by spline basis functions (AKA sieves).

An alternative approach is recently provided by Bjørnland et al. (2023).
Instead of using spline basis functions, they propose the use of functional principle
component analysis (FPCA) to project the infinite dimensional density of interest
to a finite set of functional principle components. These components are then used
within a SVAR model that is estimated using frequentist estimation.

From a practical perspective, both the frameworks provided by Chang et al.
(2021) and Bjørnland et al. (2023) allow econometricians to jointly examine the
distributional effects of functional cross-sections and aggregate macroeconomic
time series for the first time. While this research is still in its infancy, given the
desire for such methods in policy areas across multiple domains, I expect this to
be a major area of theoretical and empirical research within the next two decades.
Note the connection between these topics and the algorithms listed in Subsection
2.2.
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Figure 15: Distributional changes in GDP per capita in an unbalanced panel of countries from
1950-2004.

2.5 Climate Change and the Macroeconomy
Figure 16 shows the annual quantity of global carbon dioxide (CO2) emissions
from fossil fuels and industry since the eighteenth century. Emissions prior to the
Industrial Revolution were very low, and have since grown exponentially. While
the growth in emissions took a dip in the COVID-19 pandemic, they have since
increased to a new peak of over 35 billion tonnes each year.

While Figure 16 shows a clear link between climate change and the
macroeconomy, this nexus is extremely complex, with numerous interrelated
aspects. From an economic perspective, greenhouse gas (GHG) emissions are
negative externalities that result from a market failure in the overuse of GHG-
emitting technologies. It is well known that such externalities can be corrected
through market interventions on the price, via taxation, or the quantity, via quotas
and carbon trading systems (see, e.g., Stern (2008) for a literature review of the
economics of climate change). Climate change therefore has both a direct effect on
the economy through negative externality and indirect effects through policies.

The early work on this nexus focused on the direct long-run relationship
between climate change and the economy, and it can be traced back to the twentieth
century (see, e.g., Tol (2009) for a literature review). Much of this work was
due to the pioneering research by Nordhaus, who was awarded the Nobel Prize
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Figure 16: Global CO2 emissions from fossil fuels. Source: ourworldindata.org

for it: “integrating climate change into long-run macroeconomic analysis”. His
methodological contributions were in the popular classes of linear programming
(LP), or computable general equilibrium (CGE) models, with his most well known
model being the Dynamic Integrated model of Climate and the Economy (DICE)
model (see, Nordhaus (2018) for a review). Another example of the effect of climate
change on the long term distribution of international economic poverty is the
expected evolution of drought by regions in Africa, see Figure 17. While most
work on the link between weather conditions and economic conditions has been
done using frequentist methodologies (e.g., Brückner and Ciccone, 2011; Arezki
and Brückner, 2012), there is still much scope to tackle such problems using the
conditional probabilistic lens that Bayesian econometrics has to offer.

In recent years, empirical macroeconomists have shifted their focus towards
the short-run nexus between the economy and climate. Much of it has been
with different variants of the (Bayesian) structural vector autoregression (SVAR)
model. For instance, Alessandri and Mumtaz (2021) use a panel VAR model
with stochastic volatility in mean (SVM) to study the impact of climate volatility
on economic growth on 133 countries between 1960 and 2019. They find that
increases in temperature volatility have a negative impact on GDP growth, in both
rich and poor countries. Känzig (2023) estimates a proxy VAR with an external
instrument to show that carbon pricing mechanisms in the European Union (EU)
decrease emissions, but at the expense of lower real economic activity and greater
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Figure 17: Example: The effect of Climate Change on Long Term Changes in Distribution of
International Economic Poverty

inequality; as poorer households lower their consumption significantly more than
richer households. More recently, Bjørnland et al. (2023) propose an SVAR
model with sign restrictions to quantify the effects of demand and supply shocks
underlying the EU carbon market covered by the Emission Trading System (ETS).
They find that while emission supply restrictions of the EU ETS were the dominant
driver of emissions reductions since its inception in 2005, two opposing emission
demand factors that reflect industrial production and the transition towards a low-
carbon economy have also played an important role. Given the recency of these
studies, I expect to see much more work done on the climate-macroeconomy nexus
using Bayesian SVARs over the next decade.

2.6 Widespread, accessible, advanced high-level training
The discussion thus far demonstrates that proficiency with Bayesian methods
requires a high degree of education. While most degrees in economics or
finance offer an array of frequentist econometric methods, Bayesian methods are
unfortunately still not a core component of most curricula around the world.
This should change. While some universities have begun to offer a single elective
course in Bayesian methods at either an undergraduate or postgraduate level, the
sophisticated methods discussed here demonstrate the need for increased offerings
in order to move forward. Here, I list some thoughts on a possible curriculum
starting at a basic level.

In the first instance, students should be taught the foundations of probability
and statistics. Most universities provide this in the first year of a bachelor degree.
Given this foundation, students could then engage in an introduction to a Bayesian
econometrics course. This course should be accessible to anyone with a good
foundation in practical probability. A first lecture could discuss philosophical
differences between Bayesian and frequentist methods, and demonstrate how
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Bayesian estimation yields posterior probabilities that are intuitively interpreted
with the notion of conditional probability. Next, analytical solutions to problems
such as linear regression can be taught, and a parallel can be drawn between
the OLS estimator and the Bayesian posterior mean estimate. Important here
is the fact that the prior can be seen as a regularization tool within the data-
driven posterior mean. Next, regression with non-normal error distributions,
such as the student-t-distribution, provide a natural shift away from analytical
solutions of obtaining a posterior distribution towards using numerical Monte Carlo
methods for this purpose. Basic algorithms such as Gibbs Sampling, see Geman
and Geman (1984) and the Metropolis-Hastings method, see Metropolis et al.
(1953) can be readily introduced. Mastering such methods will provide a solid
foundation to go into advanced time series methods, such as vector autoregression,
panel methods, and both linear and non-linear state-space models. At the
undergraduate level, the precision sampling method of Chan and Jeliazkov (2009)
will be especially convenient, see Chan and Strachan (2023) for a recent survey
of these methods. At postgraduate levels, drawing parallels between precision
sampling and linear and non-linear filters would prove valuable. Also at the
postgraduate level, alternative posterior approximation methods such as Sequential
Importance Sampling, Variational Bayes, and Approximate Bayesian Computation
(ABC) would round out a comprehensive treatise of simulation based Bayesian
methods. Challenges when using such methods should be discussed. For instance,
convergence problems when implementing variational Bayes and ABC methods, or
the path degeneracy problem when using particle filters. This will spark interest
in curious students and act as an open challenge to provide new breakthroughs in
their PhD dissertations and beyond.

3 Final Remark
The aim of this essay was to discuss six specific topics that one may classify under
the general topic Bayesian econometrics with a purpose. It is the author’s wish and
hope that 21st century Bayesian econometricians take up (some of) the challenges
discussed.
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