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Abstract

This paper considers a stochastic volatility model featuring an asymmetric stable

error distribution and a novel way of accounting for the leverage effect. We adopt

simulation-based methods to address key challenges in parameter estimation, the

filtering of time-varying volatility, and volatility forecasting. Specifically, we make

use of the indirect inference method to estimate the static parameters, and the

extremum Monte Carlo method to extract latent volatility. Both methods can be

easily adapted to modifications of the model, such as having other distributions for

the errors and other dynamic specifications for the volatility process. Illustrations

are presented for a simulated dataset and for an empirical application to a time

series of Bitcoin returns.
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1 Introduction

In the analysis of financial time series, such as daily fluctuations in stock prices or ex-

change rates, return series are often leptokurtic and approximately serially uncorrelated,

while squared returns or absolute returns are highly correlated (e.g., McNeil, Frey, &

Embrechts, 2015, Ch.3). These empirical findings are well documented, and they have

led to a large body of related research. The initial attempt to account for excess kurtosis

is due to Mandelbrot (1963), who replaced the (then standard) assumption of normally

distributed returns by postulating that they follow the stable distribution instead. In

addition to being fat-tailed for almost all of its parameterizations, the stable distribution

has several important advantageous theoretical properties. In particular, the distribu-

tion is closed under summation, and it plays a pivotal role in the generalized central

limit theorem (Gnedenko & Kolmogorov, 1954), which states that any limiting sum of

independent and identically distributed (IID) variables must be stable.

Mandelbrot (1963) also noted that “large changes tend to be followed by large changes,

of either sign, and small changes tend to be followed by small changes.” This phenomenon

is referred to as “volatility clustering”; it has led to the (G)ARCH model of Engle (1982)

and Bollerslev (1986), which has been widely adopted in the econometrics and finance

literature. Another class of models that allow for temporal variability in the variance of a

financial return series is known as the stochastic volatility (SV) model. The development

of SV models has been initiated by the work of Stephen Taylor, in particular in Taylor

(1982, 1986). The SV model has a strong theoretical foundation in the finance theory

on option pricing (e.g., Hull & White, 1987). It has also been recognized early on that

the SV model has a strong connection with the class of nonlinear and non-Gaussian state

space models; see Harvey, Ruiz, and Shephard (1994).

The estimation of parameters in SV models has been regarded as an interesting and

challenging problem, for which many methods have been explored. For example, some

proposed estimation methods are simple moment matching (Taylor, 1986), generalized

method of moments (GMM; Melino & Turnbull, 1990), quasi-maximum likelihood (QML;

Harvey et al., 1994), Bayesian methods such as Markov chain Monte Carlo (MCMC;

Jacquier, Polson, & Rossi, 1994; Kim, Shephard, & Chib, 1998), the indirect inference
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(Gourieroux, Monfort, & Renault, 1993; Lombardi & Calzolari, 2009) and efficient method

of moments (Gallant, Hsieh, & Tauchen, 1997), simulation-based maximum likelihood

(Danielsson, 1994; Sandmann & Koopman, 1998), and direct maximum likelihood via

numerical integration (Fridman & Harris, 1998; Koopman, Lucas, & Scharth, 2015). A

more complete review on SV models, including their estimation methods, are collected in

the book of Shephard (2005) and the review chapter of Shephard and Andersen (2009).

In the initial development of the SV model, the observation error was assumed to

be normally distributed. However, in later work it has been found that the Gaussian

assumption is not sufficient to account for several aspects of the conditional distribution,

such as excess kurtosis and skewness; see, for example, Gallant et al. (1997) and Durham

(2006). Recently, the SV structure has been combined with the stable distribution for

applications that are characterized by extreme movements. Some examples of applications

of the stable SV model are the analysis of currency crises (Lombardi & Calzolari, 2009),

exchange rates in general (Meintanis & Taufer, 2012), index returns (Sampaio & Morettin,

2020), and the modeling of electricity prices (Müller & Uhl, 2021). Furthermore, Vankov,

Guindani, and Ensor (2019) stress the importance of asymmetry in the stable SV model,

based on an application to weekly spot prices of propane.

While the stable distribution is rather flexible and has several theoretically appealing

properties, its econometric treatment is challenging since its probability density function

does not have a closed-form expression in general, and the associated second and higher-

order moments do not exist. This precludes the direct use of standard estimators for

the static parameters, and the same holds for methods that are used to estimate the

time-varying volatility, including MCMC (Kim et al., 1998) and particle filters (Gordon,

Salmond, & Smith, 1993; Pitt & Shephard, 1999).

This paper considers the asymmetric stable SV model, and it introduces an extension

of the model to account for the leverage effect. A simulation-based approach is adopted to

address the challenges of parameter estimation, filtering of the time-varying volatility, and

its forecasting. An indirect inference estimator is proposed for the static parameters, while

the extremum Monte Carlo method (Blasques, Koopman, & Moussa, 2023) is used to

extract the latent volatility. These simulation-based methods can be adapted to different

modifications of the model, such as the use of other error distributions or alternative
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dynamics of the volatility. Two illustrations are presented. First, we discuss some details

of the proposed method for a simulated time series. Second, we carry out an empirical

study for a time series of Bitcoin returns.

The remainder of this paper is organized as follows. Section 2 introduces the asym-

metric stable stochastic volatility model. Section 3 discusses parameter estimation by

the indirect inference method. Section 4 describes how filtering and forecasting can be

performed using the extremum Monte Carlo method. Section 5 applies the proposed

methods in a study of daily returns of Bitcoin. Section 6 concludes.

2 Asymmetric stable stochastic volatility

2.1 The asymmetric stable stochastic volatility model

For a time series of financial returns y1:T = (y1, . . . , yT ), we consider the SV model with

stable observation errors (Lombardi & Calzolari, 2009; Vankov et al., 2019) in (1),

yt = exp(xt/2)εyt , εyt ∼ S(α, β),

xt+1 = µx + φx(xt − µx) + σxε
x
t , εxt ∼ N(0, 1),

(1)

for t = 1, . . . , T , with xt the unobserved log variance at time t, initialization x1 ∼

N(µx, σ
2
x/(1 − φ2

x)), and static parameters µx ∈ R, |φx| < 1, and σx > 0. Furthermore,

S(α, β) denotes the first parameterization of the standard univariate stable distribution

as in Nolan (2009), with tail index parameter α ∈ (0, 2] and asymmetry parameter

β ∈ [−1, 1]. The density of the stable distribution is known in closed form only in certain

special cases, hence the characteristic function is used to describe the distribution:

E[exp(iuεyt )] = exp
(
−|u|α

[
1− iβ tan(

πα

2
)(sgnu)

])
if α 6= 1.

In addition to the normal distribution (α = 2), the stable distribution contains the

Cauchy distribution (α = 1, β = 0) and the Levy distribution (α = 1/2, β = 1) as special

cases. Several approximations to the stable density exist (e.g., Nolan 1997; Menn and

Rachev 2006), but these can become computationally expensive when many evaluations
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are needed, and their accuracy varies with the parameter values. To circumvent the issue

of limited tractability, we adopt a simulation-based approach to estimation and filtering,

which exploits the fact that it is straightforward to draw stable variates via the method

of Chambers, Mallows, and Stuck (1976); see also Weron (1996).

In addition to being closed under summation and its pivotal role in the generalized

central limit theorem, the stable distribution is characterized by having fat tails for

almost all its parameterizations. For α < 2, the distribution has bounded moments only

of order less than α. As the variance does not generally exist, the term “volatility” will

be used to indicate the scale exp(xt/2) of yt. To ensure that the mean of the returns

{yt} exists, we impose that α > 1, which is a very mild restriction in the context of

financial returns. In this case, E[εyt ] = 0, such that the mean is not impacted by the tail

and asymmetry parameters. This intuitive property also implies that the returns form a

martingale difference sequence, which is consistent with the efficient markets hypothesis.

The above stable SV model is most suitable for applications that are characterized

by extreme movements, several examples of which were given in the introduction. In

cases thinner tails are more appropriate, one may consider instead a tempered version

of the stable distribution (e.g., Barndorff-Nielsen & Shephard, 2001; Schoutens, 2003);

alternatively, one may consider an altogether different distribution for the errors. Our

proposed estimation and filtering methods are easily adapted to such model adjustments,

and the same applies to modifications in the dynamics of the stable SV model. Examples

of the latter are the Markov-switching variant of the above model due to Casarin (2004),

the version with time-varying autoregressive parameters from Müller and Uhl (2021), and

the extension of the model with leverage effect that is considered in the next section.

2.2 Leverage

A common empirical finding in financial returns is the asymmetric relationship between

returns and volatility; see Yu (2005) and the references therein. This phenomenon is

called the “leverage effect” due to Black (1976), who provided an explanation in terms

of financial leverage. It is now widely recognized that other explanations may be more

suitable (e.g., Figlewski & Wang, 2000; Hasanhodzic & Lo, 2019), but regardless of the
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theoretical justification, there is wide consensus that incorporating a statistical leverage

effect is crucial in many applications.

Introducing leverage in the stable SV model poses several challenges. The standard

way to introduce leverage in the SV model is by correlating the errors εxt and εyt . However,

when εyt ∼ S(α, β) with α < 2, the correlation ρ = Corr[εxt , ε
y
t ] is undefined because

Var [εyt ] = ∞. In this case, one can still use the equivalent representation of correlation

with independent errors, in which the error εxt is replaced by ε̃xt = σx(ρε
y
t +

√
1− ρ2εxt )

in the update equation for xt in (1). However, doing so would introduce fat tails into

the log volatility process, which may not be desirable. Moreover, the above specification

can be too simplistic in applications where a nonlinear relationship between xt+1 and εyt

is more suitable. For example, Yu (2012) finds that the use of a spline for the leverage

function leads to improved fit and forecasting performance compared with the standard

leverage model based on correlation.

The above issues can be addressed by extending the log volatility update equation

to contain a bounded leverage function, Λ(εyt ), that can exhibit nonlinearity. This yields

the following stable SV model with leverage,

yt = exp(xt/2)εyt , εyt ∼ S(α, β),

xt+1 = µx + φx(xt − µx) + σxε
x
t + Λ(εyt ), εxt ∼ N(0, 1).

(2)

We illustrate our approach using the leverage function

Λ(εyt ) = c tanh (dεyt ), (3)

with parameters c ∈ R and d > 0 (for identifiability). The parameter d controls the

shape of the function, while the parameter c determines the magnitude of the leverage

effect, where we note that |Λ(εyt )| ≤ |c|. The specification in (3) is flexible as it allows

for multiple forms of the leverage effect. This is illustrated by Figure 1, which plots

the above leverage function for various values of the parameters c and d. In particular,

it generalizes correlation as represented with independent errors, since c := κ/d yields

limd→0 Λ(εyt ) = κεyt for any κ ∈ R. In addition, it contains the simple conditional mean

adjustment as a special case, since limd→∞ Λ(εyt ) = c sgn (εyt ).
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With respect to identification, parameter d is not identified when c = 0, while as

d→∞, it becomes weakly identified because tanh (dεyt ) flattens out for any value of εyt .

In these cases it is difficult to estimate d precisely, but fortunately, the same does not

apply to the leverage function Λ as a whole, which will be the primary interest in most

applications. Ideally, the leverage function is chosen such that E[Λ(εyt )] = 0 to disentangle

its effect from the unconditional mean, which makes the parameters easier to interpret

and prevents related numerical issues. We notice that if E[Λ(εyt )] 6= 0, the unconditional

mean E[xt] = µx + E[Λ(εyt )]/(1 − φx) diverges as φx approaches one. For values of φx

close to one (which are common in applications), numerical overflows could then easily

occur in the simulated paths of the log volatility. In practice, we shall therefore work with

the centered leverage function Λ(εyt ) = Λ(εyt ) − E[Λ(εyt )], where the second term can be

computed via Monte Carlo integration. Alternatively, for odd functions Λ(·) such as (3),

one could assume β = 0 to ensure symmetry of the error density p(εyt ). This approach is

legitimate, but it has the drawback that the resulting SV model can either introduce both

conditional and unconditional asymmetry in the returns or neither. In the applications

we shall therefore use the centered leverage function based on (3).

Figure 1: The leverage function Λ(εyt ) in (3) for various values of the parameters c and d.
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3 Parameter estimation

3.1 Previous literature

Estimation of the static parameters in the stable SV model is challenging due to the fact

that probability density function does not have a closed-form expression in general, and

its second and higher-order moments do not exist. Moreover, even if (an approximation

to) the density can be used, computation of the likelihood remains complicated because

it is defined as a high-dimensional integral with respect to the random log volatilities.

Several methods have been considered to circumvent the above issues. In the Bayesian

setting, Casarin (2004) introduces an auxiliary variable to perform MCMC (see Buckle,

1995), Vankov et al. (2019) use approximate Bayesian computation, and Müller and

Uhl (2021) use a Gaussian mixture approximation to the stable distribution. In the

classical setting, Meintanis and Taufer (2012) consider a different variant of the stable

SV model that allows them to exploit the joint characteristic function of the returns,

while Lombardi and Calzolari (2009) and Sampaio and Morettin (2020) use the method

of indirect inference (II; Gourieroux et al., 1993) to estimate the parameters of models

with symmetric stable errors. Our approach is related to the latter two studies, as we

consider an II estimator for the asymmetric stable SV models from the previous section.

3.2 Indirect inference

The idea behind the II method is to estimate the parameter vector θ ∈ Θ for some model

of interest (the structural model) by simulating data for various candidate values of the

parameters and choosing the estimate that makes the simulated data most “similar”

to the observed data. The similarity is expressed in terms of an auxiliary parameter

vector, ψ ∈ Ψ, which must contain at least as many parameters as θ for the purpose of

identifiability. The auxiliary parameters form the arguments to a corresponding objective

function Q(ψ; y1:T ) that is easy to evaluate; a common choice for Q is the (average) log

likelihood of a similar model. In our case, the structural model corresponds to one of

the stable SV models from Section 2, and examples of possible auxiliary models are the

GARCH and exponential GARCH (EGARCH Nelson, 1991) models.
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More specifically, the II estimator starts with estimating ψ by optimizing the auxiliary

objective function based on the observed data:

ψ̂ ∈ arg max
ψ∈Ψ

Q(ψ; y1:T ). (4)

Let y
(j)
1:T (θ), j = 1, . . . ,M denote M ∈ N paths that are simulated using the structural

model with parameter vector θ, and let ψ̂M(θ) ∈ arg maxψ∈Ψ

∑M
j=1 Q(ψ; y

(j)
1:T (θ)) be the

corresponding estimate of the auxiliary parameters. Then the II estimator is defined as

(Gouriéroux & Monfort, 1996, Ch.4.1.3)

θ̂II ∈ arg min
θ∈Θ

[
ψ̂ − ψ̂M(θ)

]′
Ω
[
ψ̂ − ψ̂M(θ)

]
,

where Ω is a positive semi-definite matrix. Because the above estimator corresponds to a

nested optimization problem, it can be computationally intensive. We shall therefore use

the score-based version of the II estimator (or efficient method of moments) due to Gallant

and Tauchen (1996). Note first that the score ∂Q/∂ψ equals zero when evaluated at ψ̂

and y1:T . The score-based II estimator attempts to make the score as small as possible

when evaluated at ψ̂ and the simulated data. It is defined as

θ̃II ∈ arg min
θ∈Θ

ς(θ)′Σς(θ), ς(θ) =
1

M

M∑
j=1

∂Q
(
ψ; y

(j)
1:T (θ)

)
∂ψ

∣∣∣∣
ψ=ψ̂

,

with Σ a positive semi-definite matrix. Contrary to the regular II estimator θ̂II, the score-

based estimator θ̃II does not require nested optimizations. It is particularly attractive

when (part of) the score can be computed in closed form.

Both versions of the estimator and their relationship simplify when the number of

structural and auxiliary parameters are equal. Because the optimization problems are

just-identified, the weighting matrices Ω and Σ become irrelevant and can therefore be

replaced by the identity matrix. Moreover, for T sufficiently large it holds that θ̂II = θ̃II

(Gouriéroux & Monfort, 1996, Proposition 4.1). Under appropriate regularity conditions,

it can be shown that the II estimator is consistent and asymptotically normal for the

true parameter, θ0 ∈ Θ; see Proposition 4.2 in Gouriéroux and Monfort (1996). Two
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necessary assumptions for consistency are that the auxiliary objective function converges

to a deterministic limit function Q∞(ψ, θ) = limT→∞Q(ψ; y1:T (θ)), and that the binding

function ψ∗ : Θ→ Ψ defined as

ψ∗(θ) = arg max
ψ∈Ψ

Q∞(ψ, θ)

is one-to-one. In practice it is therefore common to choose an auxiliary model that is

similar to the structural model (but easier to estimate). It can generally be expected

that this strategy results in binding functions that are one-to-one, although this can be

difficult to verify rigoursly, since ψ∗(θ) is usually not available in closed form.

Several studies have applied the II method in the context of the stable distribution.

For the stable distribution (including location and scale parameters) as structural model,

Lombardi and Calzolari (2008) use the skew-t distribution of Azzalini and Capitanio

(2003) as auxiliary model, while Garcia, Renault, and Veredas (2011) propose the skewed-

t distribution of Fernández and Steel (1998). In a setting similar to ours, Lombardi

and Calzolari (2009) and Sampaio and Morettin (2020) both use the GARCH model

with Student’s t errors as auxiliary model, which has the advantage that its likelihood

function is easy to compute. However, in light of the consistency requirement on the

binding function, it is more natural to choose an auxiliary model that, like the SV model,

specifies the dynamics of the log volatility instead of the variance. This approach is

adopted in the next section.

3.3 The auxiliary model

For the stable SV model in (1) as the structural model, we consider the following variant

of the EGARCH model (Nelson, 1991) as the auxiliary model,

yt = exp (zt/2)ut, ut ∼ CST(s, λ),

zt+1 = µz + φz(zt − µz) + σz(|ut| − E |ut|),
(5)

where CST(s, λ) denotes a centered version of the skew-t distribution from Azzalini and

Capitanio (2003) with λ > 0 degrees of freedom and slant parameter s ∈ R which controls
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the asymmetry. The auxiliary model excludes the leverage component of the EGARCH

model, so that it has the same number of parameters as the structural model with similar

interpretation. This is important in light of the required one-to-one property of the

binding function for obtaining consistency of the II estimator. In addition, the similarity

between parameters makes it straightforward to use the auxiliary estimates to determine

reasonable starting values for the structural parameters in the optimization step.

As with the GARCH model, the likelihood of the auxiliary model is easy to compute,

hence it can be used as an auxiliary objective function. The log specification for the

volatility automatically ensures its positivity and simplifies the parameter restrictions.

In line with the constraint α > 1 in the structural model and the restrictions used in

Lombardi and Calzolari (2009), we impose λ > 1 and |φz| < 1, in addition to σz >

0. The parameter constraints are incorporated by reparameterizing the optimization

problem, so that the optimization can be performed over unrestricted transformations of

the parameters, such as σ̃z : σz = exp(σ̃z).

To discuss the CST distribution, we start by considering the skew-t distribution.

Suppose X follows the standard skew normal distribution with slant parameter s ∈ R,

and V follows the chi-squared distribution with λ degrees of freedom, then

w =
X√
V
∼ ST(s, λ)

follows the standard skew-t distribution with corresponding parameters s and λ as above

(Azzalini & Capitanio, 2014, Ch.4.3). In this case, w has density

pst(w; s, λ) = 2pt(w;λ)Ft

(
s · w ·

√
λ+ 1

λ+ w2
;λ+ 1

)
, (6)

where pt and Ft denote the PDF and CDF of the Student’s t distribution, respectively.

For s = 0 the ST distribution reduces to the Student’s t distribution, while for λ→∞ it

yields the skew normal distribution. An important advantage of the skew-t distribution is

that its score exists and is available almost entirely in closed form (Azzalini & Capitanio,

2014, Ch.4.3.3), which does not hold for the well-known asymmetric t distribution of

Fernández and Steel (1998). As is common with asymmetric distributions, the shape
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parameters s and λ impact the mean,

E[w] ≡ m(s, λ) = µs · µλ, (7)

where

µs =
s√

1 + s2
and µλ =

√
λΓ
(

1
2
(λ− 1)

)
√
πΓ
(

1
2
λ
) . (8)

It follows that m(s, λ) 6= 0 if s 6= 0 for λ > 1, which is undesirable as it complicates

interpretation of the shape parameters. Moreover, use of ST errors in the auxiliary model

in (5) would imply that {yt} is not a martingale difference series, which is inconsistent with

the efficient market hypothesis. Instead, we therefore work with the CST distribution,

which is defined by the centered variates

u = w −m(s, λ) ∼ CST(s, λ).

Because the auxiliary model in (5) has IID errors {ut} and {zt} is a Markov process,

the joint density of the observations can be decomposed as

p(y1:T ) =
T∏
t=1

p(yt|y1:t−1) =
T∏
t=1

p(yt|ẑt),

where y1:0 = ∅ and the ẑt are the filtered log scales given by the recursion

ẑt+1 = µz + φz(ẑt − µz) + σz(|ût| − E |ut|), ẑ1 = µz, (9)

with residuals ût = exp (−ẑt/2)yt. Since ut ∼ CST(s, λ), the log likelihood for parameter

vector ψ = (µz, φz, σz, s, λ)′ is

L(ψ; y1:T ) =
T∑
t=1

`(ψ; yt), `(ψ; yt) = `st(−ω̂tm(s, λ), ω̂t, s, λ; yt), (10)

with filtered volatilities ω̂t = exp(ẑt/2), and with `st(ξ, ω, s, λ; y) the log likelihood of the

skew-t distribution with location ξ and scale ω for a single observation y, which can be

found in Lemma 2 of Appendix A.
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The above log likelihood can be used as auxiliary objective function in the regular II

estimator, but as discussed in the previous section, it is computationally preferable to

use the score-based variant of II. To show that the score of the auxiliary model exists, we

consider the two potentially problematic terms with absolute values in (9). First,

|ût| = | exp (−ẑt/2)yt| = exp (−ẑt/2) · |yt|

by absolute homogeneity, which is differentiable in ẑt. Second, the existence of dE |ut|/dψi
is established in the following result, which provides a corresponding expression.

Lemma 1 (Derivatives of absolute mean for CST distribution). Let u ∼ CST(s, λ), with

s ∈ (
¯
s, s̄) for −∞ <

¯
s < s̄ <∞ and λ ∈ (

¯
λ, λ̄) for 1 <

¯
λ < λ̄ <∞. Then

d

dψi
E |u| =

E
[
|w −m| · ∂`st

∂ψi

]
+ 2(Fst(m)− 1/2) ∂m

∂ψi
if ψi ∈ {s, λ},

0 otherwise,

with w ∼ ST(s, λ), `st = `st(0, 1, s, λ;w), Fst is the CDF of the standard skew-t distribu-

tion, m = m(s, λ) as in (7), and

∂m

∂s
= (1 + s2)−3/2µλ,

∂m

∂λ
= µs

Γ(λ−1
2

)
(
λΨ0(λ−1

2
)− λΨ0(λ

2
) + 1

)
2
√
π
√
λΓ(λ

2
)

,
(11)

where µλ and µs are given in (8) and Ψ0 is the digamma function.

Proof. See Appendix B.

In the above result, the bounds on the parameters are arbitrary, apart from the restrictions

−∞ <
¯
s < s̄ < ∞ and 1 <

¯
λ < λ̄ < ∞. The assumption that s ∈ (

¯
s, s̄) and λ ∈ (

¯
λ, λ̄)

is therefore of little impact in practice. The result allows us to derive the score of the

auxiliary model, which is given in Appendix C. For computational purposes, we shall use

the corresponding score-based variant of II as estimator of the structural parameters in

the applications.
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3.4 Adapting the auxiliary model

The auxiliary model in (5) is easily adapted to adjustments to the structural model. For

example, if a different distribution is assumed for the errors εyt , and the density p(εyt ) is

tractable (e.g., Student’s t), one can assume

ut ∼ p(εyt ).

The same applies for modifications to the dynamics of the structural model. For the SV

model with leverage in (2), we can use the following auxiliary model,

yt = exp (zt/2)ut, ut ∼ CST(s, λ),

zt+1 = µz + φz(zt − µz) + σz(|ut| − E |ut|) + Λ(ut),
(12)

which automatically accommodates the chosen leverage function Λ in the structural

model. This is an important advantage over the GARCH-t model as auxiliary model,

which would require switching to a suitable specification with leverage, the choice of

which is not immediate. Moreover, the resulting model would likely not have the same

degree of similarity with the structural model as (12).

4 Filtering and forecasting

Without a closed-form density for the observation errors, most standard methods for

extracting the time-varying volatility cannot be used directly. For example, both MCMC

methods and particle filters need to evaluate p(yt|xt) = p(εyt ). In some cases it is possible

to circumvent this issue by introducing an auxiliary variable. For example, if we limit

ourselves to observation errors from the symmetric stable distribution, εyt ∼ S(α, 0),

the well-known stochastic representation εyt = ZV with normal variate Z ∼ S(2, 0)

and V ∼ S(α/2, 0) allows for exploiting the fact that εyt is Gaussian conditional on

V . Lombardi and Godsill (2006) use this approach to apply particle filtering methods

to extract the time-varying parameters in a model with stable measurement noise. To

extract the latent volatility in the more general asymmetric case, we propose to use the

recently developed extremum Monte Carlo (XMC) method (Blasques et al. 2023; BKM
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hereafter), which is explained in the following section.

4.1 Extremum Monte Carlo filtering

The XMC method combines simulation and regression techniques to estimate the time-

varying conditional means, quantiles, modes, and other features of interest. The method

relies on a technique that originates from the least squares Monte Carlo method (Longstaff

& Schwartz, 2001) that was developed for the valuation of American-style options and

related financial derivatives. Given two random variables, say, X and Y , the latter

method estimates the conditional expectation function E[X|Y ] by drawing N variates of

X and Y and performing a least squares regression of X on Y . The estimated regression

function, f̂ , is then evaluated at any point of interest y (e.g., observed data) to provide

the approximation f̂(y) ≈ E[X|Y = y]. The XMC method exploits this technique to filter

unobserved signals, by applying the above for t = 1, . . . , T with X = xt and Y = Ỹt ⊆ y1:t,

with Ỹt a suitable subset of the available observations.

Algorithm 1 presents the XMC filtering method for extracting the log volatility xt for

the SV models in (1) and (2). The method starts by using the SV model of choice to

simulate N paths of the log volatility and observations. Next, at every time t = 1, . . . , T ,

the log volatility variates are regressed on a subset of the available observations. This

subset is used, rather than all available observations, to prevent overfitting of the training

sample. More specifically, for a given “window size” parameter W ∈ N, we define the set

of covariates by

Ỹ
(i)
t = y

(i)
t˜:t , with t˜= max {t−W + 1, 1},

such that it consists of the W observations nearest to time t. Together with the other

tuning parameters of the chosen regression method, the window size is selected from

a set of candidate values as the minimizer of the average loss in (13) incurred on a

separate validation sample of simulated data. Lastly, the log volatilities are predicted

by evaluating the estimated regression functions at the observed data Ỹt (distinguishable

from the simulated data by the lack of superscript) for t = 1, . . . , T .

The algorithm requires a choice of function space FN and loss function L, the combina-
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Algorithm 1 Extremum Monte Carlo filtering method for stochastic volatility models.

1. Simulate: Simulate N paths of the log volatility xt and observations yt,

x
(i)
1:T , y

(i)
1:T , i = 1, . . . , N,

with T ∈ N the length of the observed data y1:T .

2. Fit: Perform the following regression for t = 1, . . . , T :

f̂Nt ∈ arg min
f∈FN

1

N

N∑
i=1

L
[
x

(i)
t − f

(
Ỹ

(i)
t

)]
, (13)

where the covariates Ỹ
(i)
t ⊆ y

(i)
1:t are a subset of the observations available at time t, and

with FN denoting a function space and L a loss function of choice.

3. Predict: Evaluate the estimated regression functions {f̂Nt }Tt=1 at the observed data for
t = 1, . . . , T to predict the log volatilities:

x̂t = f̂Nt (Ỹt).

tion of which characterizes the adopted regression method. The function space represents

a tradeoff between estimation error (a “large” FN) and misspecification error (a “small”

FN). The loss function, on the other hand, determines the desired estimate of the log

volatility. For example, it is well known that the mean squared error loss is minimized

by the conditional expectation function; in our setting, this yields the filtering means

E[xt|y1:t] for t = 1, . . . , T . Moreover, by using other loss functions, the XMC method

allows for estimating different aspects of the conditional distributions of interest, such as

the quantiles (tilted absolute error loss) or the modes (all-or-nothing loss).

The combination of simulation and regression results offers a large degree of flexibility,

which makes it easy to extend Algorithm 1 in several ways. In addition to filtering the

log volatility, the XMC method can be used to directly extract the volatility itself,

σt = exp(xt/2),

just by using the latter as a dependent variable in the regressions. Moreover, by choosing

a conditioning set different from y1:t, it can be used to perform fixed-interval smoothing

(conditioning set: y1:T ) or k-period forecasting (conditioning set: y1:t−k, k ∈ N). In
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particular, by using yt as dependent variable, it is possible to forecast the observations

and determine corresponding probability intervals. The common issue of missing data can

also be handled by adjusting the conditioning set, namely by omitting the appropriate

covariates. Furthermore, multivariate SV models, such as the ones proposed by Harvey et

al. (1994), are directly accommodated by noting that if the volatility xt = (x1,t, . . . , xNx,t)
′

is a vector, Algorithm 1 can be performed separately for each element xj,t, j = 1, . . . , Nx.

Lastly, for lengthy time series, that is large T , which are common in financial studies,

substantial computational savings can be obtained by re-using the estimated regression

functions at other time points. This “steady state” approach ensures that the regression

step only has to be performed for part of the times t = 1, . . . , T . Further discussion of

these issues and other aspects of the XMC filtering method can be found in BKM.

4.2 Filtering illustrations

This section makes use of simulated data to illustrate the performance of the XMC filter

for estimating the filtering expectations E[xt|y1:t] for t = 1, . . . , T . The simulated data is

generated from the stable SV model in (1) for two different parameter choices. The first

choice corresponds to the Gaussian SV model (α = 2, β = 0), with the other parameters

set to µx = 0, φx = 0.96, and σx = 0.16. These parameters are based on the maximum

likelihood estimates obtained by Sandmann and Koopman (1998) for a time series of

S&P500 daily log returns. The resulting SV model was used to simulate a path of the

states x1:T and observations y1:T of length T = 100, which is shown in Figure 2. The

Gaussian case is convenient because the density is available in closed form, so that we

can directly apply a particle filter for comparison. Figure 2 (b) shows the filtered states

from the bootstrap filter (BF; Gordon et al., 1993), a popular version of the particle filter,

represented by the orange, solid line.

To select the appropriate XMC filter, note that because xt is a transformation of

the scale of yt, the filtering expectations are nonlinear in the observations. A nonlinear

regression method is therefore appropriate, hence we consider an XMC filter based on the

tree-based gradient boosting method (GB; Friedman, 2001) combined with the squared

error loss as in BKM. To ensure that the estimates of the filtering expectations are highly
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Figure 2: Analysis of a simulated path from the Gaussian version (α = 2, β = 0) of the stable
SV model in (1), with the other parameters set to µx = 0, φx = 0.96, and σx = 0.16 as in
Sandmann and Koopman (1998): (a) simulated observations; (b) true states and filtered states
by the bootstrap filter (BF) and gradient boosting (GB) version of the XMC filter. Both filters
are based on 106 draws (i.e., particles and simulated paths).

accurate, both the BF and the XMC filter are based on 106 draws (i.e., particles and

simulated paths). Figure 2 (b) shows the filtered states from the XMC filter (the blue,

dashed line). As expected, the estimates of the two filters are seen to be close, and

both roughly follow the movements of the true states, which are relatively high at the

beginning and lower near the end of the sample.

As a second illustration, we repeat the above using the following parameters from

Vankov et al. (2019): µx = −0.2, φx = 0.95, σx = 0.2, α = 1.75, and β = 0.1. The

simulated paths of the observations and states are shown in Figure 3. In this case, β 6= 0,

which means that the particle filter cannot be used directly, nor via the approach of

Lombardi and Godsill (2006). By contrast, the XMC filter remains applicable because

the only model-specific knowledge it requires are simulated paths of the states and obser-

vations. The filtered states by the XMC filter (blue, dashed line) are shown in Figure 3
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Figure 3: Analysis of a simulated path from the stable SV model in (1) with µx = −0.2, φx =
0.95, σx = 0.2, α = 1.75 and β = 0.1 as in Vankov et al. (2019): (a) simulated observations; (b)
true states and filtered states by the gradient boosting (GB) version of the XMC filter based
on 106 draws.

(b). As with the Gaussian illustration, the filtered states follow a similar pattern as the

true states, except for the period around t = 70 where several extreme observations are

concentrated. However, it is noticeable that the impact of extreme observations on the

filter are limited, a property that can be attributed to the assumed stable distribution

for the observation errors.

Lastly, we consider a simulation study based on the stable SV model in (1) with the

second parameter choice. This simulation study extends the one in BKM by considering

1-period forecasting and smoothing. The SV model is used to generate a test sample

of 105 paths of length T = 100. For each path, the GB-XMC filter (N = 105) uses

the observations to filter the states xt. In addition to filtering, we also consider 1-period

forecasting of the states with conditioning sets y1:t−1, as well as (fixed-interval) smoothing

with conditioning sets y1:T . For comparison, we consider the QML filter from Harvey et

al. (1994), which remains applicable without a tractable observation density. The QML
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Table 1: Results from simulation study with the stable SV model in (1): overall root mean
squared error (RMSE) for estimates of xt by the QML filter and the gradient boosting version of
the XMC filter (N = 105) using 1-period forecasting, filtering, and (fixed-interval) smoothing.
The results are based on a sample of 105 simulated paths from the stable SV model using the
following parameters from Vankov et al. (2019): µx = −0.2, φx = 0.95, σx = 0.2, α = 1.75,
and β = 0.1.

Method Forecasting Filtering Smoothing

RMSE
QML 0.537 0.524 0.462
XMC 0.510 0.492 0.429

filter starts by transforming the observations via ỹt = log y2
t to cast the SV model into a

linear state space form,

ỹt = xt + 2ε̃ yt ,

xt+1 = (1− φx)µx + φxxt + σxε
x
t ,

with ε̃t = log |εt|. Although ε̃t is not normally distributed, one can assume it is, so that

the Kalman filter (Kalman, 1960) can be used to act as an approximate filter for xt. This

approach uses the mean and variance of ε̃t, which are given by Lemma 3.19 of Nolan

(2009) for α 6= 1:

E[ε̃t] = γEuler(1/α− 1)− 1

α
log (cos[α · c(α, β)]),

Var[ε̃t] =
π2 (1 + 2/α2)

12
− c(α, β)2,

where γEuler ≈ 0.577 is Euler’s constant, and

c(α, β) = α−1 arctan
[
β tan

(πα
2

)]
.

Table 1 presents the overall root mean squared error (RMSE) for both methods. The

XMC filter outperforms the QML filter for each choice of conditioning set. The difference

in predictive performance is underlined by the fact that the 1-period forecasts of the XMC

filter outperform the filtered QML predictions, although the former are based on a smaller

conditioning set that excludes the most informative element, yt.

19



Figure 4: Centered daily log returns of the BTCUSD exchange rate (Bitcoin) multiplied by
100, starting from September 18th, 2014, to March 16th, 2023 (T = 3102). Source: Yahoo
Finance.

5 Empirical study of Bitcoin returns

In this section, we apply the stable SV models and adopt the methods from previous

sections to study a time series of daily Bitcoin returns (obtained from Yahoo Finance).

As for other cryptocurrencies, Bitcoin has recently gained much interest from the scientific

community (e.g., Hafner 2020; Makarov and Schoar 2020; Liu, Tsyvinski, and Wu 2022;

Biais, Bisiere, Bouvard, Casamatta, and Menkveld 2023). From a financial point of view,

cryptocurrencies are interesting because data on every transaction is publicly available,

while from an econometric perspective they are interesting due to the frequent occurrence

of extreme movements (Härdle, Harvey, & Reule, 2020).

Figure 4 shows the centered daily log returns of Bitcoin (multiplied by 100), starting

from September 18th, 2014, to March 16th, 2023 (T = 3102). The data show clear signs

of volatility clustering, and absolute returns exceeding 10 percent are often observed. It

is noticeable that such movements are also common in the relatively calm periods. The

combination of these features makes this data set an interesting application for the stable

SV models from Section 2.

5.1 Parameter estimation

We apply the proposed II estimator to the log returns of Bitcoin shown in Figure 4.

Table 2 shows the parameter estimates for the stable SV model in (1) and the auxiliary

EGARCH-ST model in (5), where the latter are obtained by the method of maximum
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likelihood. As expected, the estimates of the structural and auxiliary models are in close

agreement overall. The estimates of the asymmetry parameters β and s are slightly neg-

ative, but in both cases they are not significant at the 10% level. The autocorrelation

coefficients φx and φz for the log scale are both close to one, which indicates high persis-

tence in the log volatility. The estimates for the unconditional mean of the log volatility

are also similar, but contrary to µz, the estimate of µx is not significant. This can be

explained by noting that, in addition to the models being different, the maximum like-

lihood estimator is generally expected to be more efficient than the II estimator, which

results in a smaller standard error.

The estimated tail parameters α = 1.766 and λ = 2.602 reflect the frequent extreme

movements that are shown in Figure 4, where we note that as both the stable and

skew-t distributions are power laws, their densities satisfy lim|v|→∞ p(v) ∝ v−(k+1) with

corresponding tail index k ∈ {α, λ}. However, the difference in these estimates is not

surprising, as the above limiting behavior is but one aspect of the density that is controlled

by these shape parameters. In this light, it should be noted that any estimate is based

on data that ranges over a finite domain, for which the above limiting behavior may

not be relevant; see also Fofack and Nolan (1999), who find that the point at which the

limiting formula becomes a good approximation to the stable density depends heavily on

the parameter values and can be very large for values of α close to two. Moreover, the

larger estimate for the skew-t parameter was also to be expected because for a substantial

part of the support, the t(2) density is much heavier tailed than the corresponding stable

density for α near 2; see the corresponding discussion in Lombardi and Calzolari (2008,

Table 2: Parameter estimates for the stable SV model in (1) and the auxiliary EGARCH-ST
model in (5) based on the daily log returns of Bitcoin from Figure 4. The estimates are obtained
by the method of II for the SV model, and by maximum likelihood for the EGARCH-ST model.
Asterisks indicate significance relative to zero at the 10% (*), 5% (**), and 1%(***) level,
respectively.

Log scale Shape
Model Mean Autocorr. Scale Tail Asymmetry

EGARCH-ST
µz φz σz λ s

1.780*** 0.987*** 0.142*** 2.602*** −0.052

Stable SV
µx φx σx α β

2.092 0.992*** 0.288** 1.766*** −0.064
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pp.201-202),

Table 3 shows the parameter estimates for the stable SV model with leverage in (2)

and the corresponding EGARCH-ST model with leverage in (12). Overall, the estimates

of the structural and auxiliary models are again in close agreement. The results are also

in line with those for the models without leverage in Table 2, with a somewhat larger

estimate of µx and a smaller (but still insignificant) estimate of β being the most salient

changes. The estimates of the shape parameter d are both large, which implies that the

leverage effect is best approximated by a step function. Both estimates are insignicant

at the 10% level; as noted in Section 2.2, it can be difficult to obtain precise estimates

of d because the leverage function in (3) quickly becomes similar for large values of this

parameter. However, this issue is of limited concern because our primary interest is the

estimation of the leverage effect, Λ(·), which is not liable to the same issue. For the

parameter c, both estimates are positive and relatively small, as the magnitude amounts

to less than 1.9% (stable SV) and 4.2% (EGARCH-ST) of the estimated unconditional

mean. The positivity of these estimates indicates that volatility tends to increase slightly

after a rise in Bitcoin, although the statistical insignificance of the stable SV estimate

makes it difficult to draw this inference convincingly.

5.2 Volatility filtering

We consider several applications of the XMC filter to extract the time-varying volatility

from the daily log returns of Bitcoin shown in Figure 4. Here we focus on the stable SV

Table 3: Parameter estimates for the stable SV model with leverage in (2) and the auxiliary
EGARCH-ST model with leverage in (12) based on the daily log returns of Bitcoin from Figure
4. The estimates are obtained by the method of II for the SV model, and by maximum likelihood
for the EGARCH-ST model. Asterisks indicate significance relative to zero at the 10% (*), 5%
(**), and 1%(***) level, respectively.

Log scale Shape Leverage
Model Mean Autocorr. Scale Tail Asymmetry Magnitude Shape

EGARCH-ST
µz φz σz λ s c d

1.792*** 0.989*** 0.122*** 2.596*** -0.074 0.076*** 22.377

Stable SV
µx φx σx α β c d

3.234* 0.992*** 0.292** 1.734*** -0.194 0.061 1935.8
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model without the leverage component. The static parameters are set to the estimates

in Table 2.

Figure 5 presents the log volatility that is filtered from the returns by the QML filter

(brown, solid line) and the GB-XMC filter (blue, dashed line) with N = 105. The log

volatility is extracted via estimates of the filtering means E[xt|y1:t] for t = 1, . . . , T . The

estimates of both methods are close and tend to move in the same direction as new

observations come available. The XMC filter responds somewhat more strongly to the

large negative log return of -46.65 at March 12th, 2020, but it is striking that the impact

is limited on both filters. This can be explained by the fact that stable observation errors

do not require a large value of the scale to make extreme observations likely.

The XMC filter can also be used to directly extract the volatility, σt = exp(xt/2), by

using it as dependent variable in the regressions. For comparison, the EGARCH-ST filter

in (9) was used to extract the corresponding volatility exp(zt/2), which is shown in Figure

6 (a). It reveals that the extreme observation at the start of 2020 resulted in a drastic

increase of the filtered volatility. Figure 6 (b) shows the 1-period forecasts of σt from the

XMC filter, which are based on the past observations y1:t−1 like the EGARCH filter. Apart

from the difference in initialization, the volatility estimates by the two filters have very

similar movements. However, the impact of the extreme observation on the XMC filter is

limited, which can be explained by the fact that estimated stable distribution (α = 1.766)

has thicker tails than the estimated skew-t distribution (λ = 2.602). In addition, Figure 6

Figure 5: Log volatility filtered from the daily Bitcoin returns by the QML filter (brown, solid
line) and the GB-XMC filter (blue, dashed line) based on N = 105 draws. The log volatility is
extracted via estimates of E[xt|y1:t] for t = 1, . . . , T .
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(c) shows the smoothed volatilities by the XMC filter, which are based on the smoothing

means E[σt|y1:T ] for t = 1, . . . , T . When compared with the forecasts presented in Figure

6 (b), most of the jagged movements have disappeared because the same conditioning set

is used at all times. The enlarged conditioning set should generally result in improved

estimates, and it is noticeable that the impact of the extreme observation is even smaller

Figure 6: Estimated Bitcoin volatility σt = exp(xt/2) for the EGARCH-ST and GB-XMC
filters: (a) filtered EGARCH volatility exp(ẑt/2) based on the corresponding filter for zt in (9);
(b) XMC 1-period forecasts E[σt|y1:t−1] (N = 106); (c) XMC smoothed volatilities E[σt|y1:T ]
(N = 105).
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than before. The incorporation of future returns leads to a lower estimate of the volatility,

which is as one would expect based on Figure 4.

6 Conclusion

In this paper, we have considered the stochastic volatility model with an asymmetric

stable error distribution and considered an extension of the model to account for potential

leverage effects. An indirect inference estimator is proposed for estimating the static

parameters, while the extremum Monte Carlo method is used for filtering and forecasting.

Both methods are easily adapted to modifications of the model, such as the use of other

error distributions and alternative dynamics of the volatility. Illustrations are presented

for simulated data and for an empirical application to a time series of Bitcoin returns.

The application to Bitcoin illustrates that the extracted volatility based on the stable

SV model is particularly robust to extreme observations, especially when compared to

the EGARCH-ST filter. In this context, an important advantage of the XMC method

is the ease with which it allows for the incorporation of additional observations. It is

also indicated in the simulation study of Section 4.2 that the benefits of doing so can

be substantial. The estimation results for the Bitcoin data indicate that, if there is

asymmetry in the process for generating the daily returns of Bitcoin, it appears to be

limited to a small positive leverage effect. The estimated leverage function corresponds

to a mean adjustment, which implies that the volatility tends to go up whenever Bitcoin

rises. Given that the evidence for a leverage effect is weak, further study is needed to

obtain more conclusive results. It would be of interest to consider other cryptocurrencies

to determine whether similar findings are obtained.
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Appendix A Results for the skew-t distribution

The derivations in the following sections make use of the log likelihood and score of the ST

distribution, which is given in Section 4.3.3 of Azzalini and Capitanio (2014). We collect

this auxiliary result in the lemma below. Note that this result contains both total and

partial derivatives. For a function f
(
x, y(x)

)
with y a function of x, the total derivative

is df/dx = ∂f/∂x + ∂f/∂y · ∂y/∂x, while the notation ∂f/∂x will be used to indicate a

partial (or ordinary) derivative.

Lemma 2 (Log likelihood and score of the skew-t distribution). The log likelihood for

a single observation y from the skew-t distribution with location ξ, scale ω, slant s, and

degrees of freedom λ is

`st(ξ, ω, s, λ; y) = constant− logω − 1

2
log λ+ log Γ

(
1

2
(λ+ 1)

)
− log Γ

(
1

2
λ

)
− 1

2
(λ+ 1) log

(
1 +

ỹ2

λ

)
+ logFt(w;λ+ 1),

(14)

with

ỹ =
y − ξ
ω

, q = q(ỹ) = sỹr, r = r(ỹ, λ) =

√
λ+ 1

λ+ ỹ2
. (15)

The corresponding score is

∂`st

∂ξ
=

1

ω

(
ỹr2 − sλrh(q)

λ+ ỹ2

)
,

∂`st

∂ω
=

1

ω

(
−1 + (ỹr)2 − λqh(q)

λ+ ỹ2

)
,

∂`st

∂s
= ỹrh(q),

∂`st

∂λ
=

1

2

(
Ψ0

(
1

2
λ+ 1

)
−Ψ0

(
1

2
λ

)
− 2λ+ 1

λ(λ+ 1)
− log

(
1 +

ỹ2

λ

)
+

(ỹr)2

λ
+
sỹ(ỹ2 − 1)h(q)

(λ+ ỹ2)2r

g(λ)

Ft(q;λ+ 1)

)
.

(16)

with

h(q) =
pt(q;λ+ 1)

Ft(q;λ+ 1)
,

31



and

g(λ) =
dFt(q(sỹr(ỹ, λ));λ+ 1)

dλ

=

∫ q

−∞

(
(λ+ 2)x2

(λ+ 1)(λ+ 1 + x2)
− log

(
1 +

x2

λ+ 1

))
pt(x;λ+ 1)dx. (17)

Appendix B Proof of Lemma 1

We start by writing

E |u| = E |w −m| =
∫ ∞
−∞
|w −m|pst(w; s, λ)dw =: K(m, s, λ),

where m = m(s, λ) is given in (7), from which it is immediate that dE |u|/dψi = 0 for

ψi /∈ {s, λ}. For ψi ∈ {s, λ},

d

dψi
E |u| = ∂K

∂ψi
+
∂K

∂m

∂m

∂ψi
.

Since K denotes the mean absolute error between w and m, a standard result from the

quantile regression literature (e.g., Eq. (1.11) in Koenker, 2005) yields

∂K

∂m
= 2(Fst(m)− 1/2),

where the multiplication by 2 is needed to make the quantile loss equivalent to the absolute

error loss. Furthermore, (11) follows from applying the chain and quotient rules to (7).

For ∂K/∂ψi, write K(m, s, λ) =
∫∞
−∞ κ(w; s, λ)dw with integrand

κ(w; s, λ) = |w −m| · pst(w; s, λ),

in which m is treated as a constant with respect to s and λ because it is an argument to

K and we consider the partial derivative ∂K/∂ψi. We will show that the derivative and

integral can be interchanged,

∂K/∂ψi =

∫ ∞
−∞

∂

∂ψi
κ(w; s, λ)dw =

∫ ∞
−∞
|w −m| · ∂

∂ψi
pst(w; s, λ)dw,
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and that the right-hand side is finite. A sufficient condition for the above interchange is

(Cheng, 2006, Theorem A.1) that the following holds for all s ∈ (
¯
s, s̄) and λ ∈ (

¯
λ, λ̄):

1. E |u| =
∫∞
−∞ κ(w; s, λ)dw exists.

2. The derivative ∂κ(w; s, λ)/∂ψi exists almost surely.

3. There exists an integrable function H(w) such that∣∣∣∣ ∂∂ψiκ(w; s, λ)

∣∣∣∣ ≤ H(w). (18)

The first condition is satisfied because λ >
¯
λ > 1. The second condition is satisfied

because it follows from the product rule of differentation that

∂ log pst

∂ψi
=

1

pst

· ∂pst

∂ψi
⇐⇒ ∂pst

∂ψi
=
∂ log pst

∂ψi
· pst, (19)

where the scores ∂ log pst/∂ψi are given by (16), and the density pst is given by (6).

To derive an integrable upper bound H(w) as in (18) for the third condition, it will

be convenient to consider the closures of the parameter domains,

Cs = [
¯
s, s̄] and Cλ = [

¯
λ, λ̄],

such that we can exploit the fact that continuous functions are bounded on compact sets.

The bounds derived in this way will then also hold for the actual domains (
¯
s, s̄) ⊂ Cs

and (
¯
λ, λ̄) ⊂ Cλ. We consider the components on the right-hand side of (19) separately,

starting with pst:

pst(w; s, λ) = 2pt(w;λ)Ft

(
sw

√
λ+ 1

λ+ w2
;λ+ 1

)

≤ 2pt(w;λ) = 2
Γ(λ+1

2
)

√
λπΓ(λ

2
)

(
1 +

w2

λ

)−λ+1
2

≤ B1

(
1 +

w2

λ̄

)−¯
λ+1

2

=: p̄(w) = O
(
|w|−(

¯
λ+1)

)
,
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with

B1 = max
λ∈Cλ

(
2

Γ(λ+1
2

)
√
λπΓ(λ

2
)

)
∈ R+.

For the scores ∂`st/∂ψi = ∂ log pst/∂ψi, note that the terms ỹr and q are bounded for

given values of s and λ, since by (15),

|ỹr| =

∣∣∣∣∣ỹ
√

λ+ 1

λ+ ỹ2

∣∣∣∣∣ =
√
λ+ 1

∣∣∣∣∣
√

ỹ2

λ+ ỹ2

∣∣∣∣∣ ≤ √λ+ 1,

|q| = |sỹr| = |s| · |ỹr| ≤ |s| ·
√
λ+ 1.

(20)

Therefore,

|h(q)| ≤ h̄ := max
(s,λ)∈[

¯
s,s̄]×[

¯
λ,λ̄]

h(q) <∞,

where the upper bound h̄ is finite because h is continuous in λ and q with

|q| ≤ |s̄| ·
√
λ̄+ 1

by (20). It follows that

∂`st

∂s
= |ỹrh(q)| = |ỹr| · |h(q)| ≤

√
λ+ 1 · |h̄| ≤

√
λ̄+ 1 · |h̄| ∈ R+

where the bound for ỹr follows from (20). We conclude that (18) holds for ψi = s with

upper bound

H(w) = |w −m|
√
λ̄+ 1 · |h̄| · p̄(w) = O(|w|) ·O(1) ·O

(
|w|−(

¯
λ+1)

)
= O(|w|−¯

λ),

which is integrable because
¯
λ > 1.
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For ∂`st/∂λ, we have that∣∣∣∣∂`st

∂λ

∣∣∣∣ =
1

2

∣∣∣∣Ψ0

(
1

2
λ+ 1

)
−Ψ0

(
1

2
λ

)
− 2λ+ 1

λ(λ+ 1)
− log
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1 +

ỹ2

λ

)
+

(ỹr)2

λ
+
sỹ(ỹ2 − 1)h(q)

(λ+ ỹ2)2r
· g(λ)

Ft(q;λ+ 1)
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≤
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1

2
λ+ 1

)
−Ψ0

(
1

2
λ

)
− 2λ+ 1

λ(λ+ 1)

∣∣∣∣+

∣∣∣∣log

(
1 +

ỹ2

λ

)∣∣∣∣
+

∣∣∣∣(ỹr)2

λ

∣∣∣∣+

∣∣∣∣sỹ(ỹ2 − 1)h(q)

(λ+ ỹ2)2r

∣∣∣∣ · ∣∣∣∣ g(λ)

Ft(q;λ+ 1)

∣∣∣∣
≤ B2 + log

(
1 +

ỹ2

¯
λ

)
+ 2 +

∣∣∣∣ s̄ỹ(ỹ2 − 1)h̄

(
¯
λ+ ỹ2)3/2

√
¯
λ+ 1

∣∣∣∣B3 =: H̃(ỹ),

with bounds

B2 = max
λ∈[

¯
λ,λ̄]

∣∣∣∣Ψ0

(
1

2
λ+ 1

)
−Ψ0

(
1

2
λ

)
− 2λ+ 1

λ(λ+ 1)

∣∣∣∣ <∞,
B3 = max

q∈[−
√
λ+1,

√
λ+1]

∣∣∣∣ g(λ)

Ft(q;λ+ 1)

∣∣∣∣ <∞,
which are finite by the continuity of the functions that are maximized. Furthermore, it

holds by (20) that for λ > 1, ∣∣∣∣(ỹr)2

λ

∣∣∣∣ ≤ λ+ 1

λ
≤ 2,

and ∣∣∣∣sỹ(ỹ2 − 1)h(q)

(λ+ ỹ2)2r

∣∣∣∣ =

∣∣∣∣ sỹ(ỹ2 − 1)h(q)

(λ+ ỹ2)3/2
√
λ+ 1

∣∣∣∣ ≤ ∣∣∣∣ s̄ỹ(ỹ2 − 1)h̄

(
¯
λ+ ỹ2)3/2

√
¯
λ+ 1

∣∣∣∣ =
O(ỹ3)

O(ỹ3)
= O(1).

The complexity of the upper bound H̃ follows as

H̃(ỹ) = O(1) +O
(

log (|ỹ|)
)

+O(1) +O(1) ·O(1) = O
(

log (|ỹ|)
)
,

and since ỹ represents a standard skew-t variate by (15), the results above hold for w = ỹ.

We conclude that (18) holds for ψi = λ with upper bound

H(w) = |w −m|H̃(w) · p̄(w),
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which is integrable because H̃(w) = O
(

log(|w|)
)

= O(|w|δ) for any δ > 0, such that

H(w) = O(|w|) ·O(|w|δ) ·O(|w|−(
¯
λ+1)) = O(|w|δ−¯

λ),

where δ −
¯
λ < −1 since

¯
λ > 1 and δ > 0 is arbitrarily small.

Appendix C Score of the auxiliary model

The score of the auxiliary model in (5) is given by

d

dψ
L(ψ; y1:T ) =

T∑
t=1

d

dψ
`(ψ; yt),

d`(ψ; yt)

dψi
=
∂`st

∂ψi
+
∂`st

∂ξ

∣∣∣
ξ=ξt
· ∂ξt
∂ψi

+
∂`st

∂ω

∣∣∣
ω=ω̂t
· ∂ω̂t
∂ψi

,

with

ξt = −ω̂tm(s, λ) and ω̂t = exp(ẑt/2),

where ẑt is given by the recursion in (9). The term ∂`st/∂ψi is given by (16) if ψi ∈ {s, λ}

and it equals zero if ψi ∈ {µz, φz, σz}. Furthermore,

∂ξt
∂ψi

=

−ω̂t
∂m(s,λ)
∂ψi

− ∂ω̂t
∂ψi
m(s, λ) if ψi ∈ {s, λ},

−∂ω̂t
∂ψi
m(s, λ) otherwise,

where ∂m/∂ψi is given by (11) if ψi ∈ {s, λ} and it equals zero if ψi ∈ {µz, φz, σz}. In

addition,
∂ω̂t
∂ψi

=
ω̂t
2
· ∂ẑt
∂ψi

,

where it follows from (9) that the second component is given by the recursion

∂ẑt
∂ψi

=
∂γ(ψ)

∂ψi
+
∂φz ẑt−1

∂ψi
+
∂σz exp (−ẑt−1/2)

∂ψi
|yt−1|, (21)
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with γ(ψ) = (1− φz)µz − σz E |ut| and initialization

∂ẑ1

∂ψi
=

1 if ψi = µz,

0 otherwise.

The components are given by

∂φz ẑt−1

∂ψi
=

φz
∂ẑt−1

∂φz
+ ẑt−1 if ψi = φz,

φz
∂ẑt−1

∂ψi
otherwise,

∂σz exp (−ẑt−1/2)

∂ψi
=

σz
∂ exp (−ẑt−1/2)

∂ψi
+ exp (−ẑt−1/2) if ψi = σz,

σz
∂ exp (−ẑt−1/2)

∂ψi
otherwise,

∂ exp (−ẑt−1/2)

∂ψi
=
∂ exp (−ẑt−1/2)

∂ẑt−1

∂ẑt−1

∂ψi
= −1

2
exp (−ẑt−1/2)

∂ẑt−1

∂ψi
,

∂γ

∂ψi
=



1− φz if ψi = µz,

−µz if ψi = φz,

−E |ut| if ψi = σz,

−σz ∂ E |ut|∂s
if ψi = s,

−σz ∂ E |ut|∂λ
if ψi = λ.

The terms E |ut|, ∂ E |ut|/∂s, and ∂ E |ut|/∂λ must be computed numerically. For exam-

ple, Lemma 1 can be used to efficiently compute both E |ut| and ∂ E |ut|/∂s via simulation

by using the same variates. The component ∂ E |ut|/∂λ should not be evaluated this way

because it would be too expensive due to the integral in (17). It is therefore more efficient

to compute this element of the score vector by finite difference.
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