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Abstract

This paper proposes a novel time-series model with a non-stationary stochas-
tic trend, locally explosive mixed causal non-causal dynamics and fat-tailed
innovations. The model allows for a description of financial time-series that
is consistent with financial theory, for a decomposition of the time-series in
trend and bubble components, and for meaningful real-time forecasts during
bubble episodes. We provide sufficient conditions for strong consistency and
asymptotic normality of the maximum likelihood estimator. The model-based
filter for extracting the trend and bubbles is shown to be invertible and the
extracted components converge to the true trend and bubble paths. A Monte
Carlo simulation study confirms the good finite sample properties. Finally, we
consider an empirical study of Nickel monthly price series and global mean sea
level data. We document the forecasting accuracy against competitive alterna-
tive methods and conclude that our model-based forecasts outperform all these
alternatives.
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1 Introduction

Financial and economic time series often experience periods of locally explosive be-
haviour that are followed by strong and sharp decline or mean-reverting dynamics.
These events, often called bubbles, are the object of much attention and discussion,
especially by those engaged in trading financial assets and commodities. Bubbles in
housing markets and stock markets have arguably been either the cause or an early
symptom of emerging widespread global economic recessions.

The economic literature as often described bubbles in asset prices as sum between
a fundamental value which is founded on rational expectations and a locally explosive
component, which is referred to as a speculative bubble, see e.g. Blanchard and Watson
(1982)and West (1987). Empirically, Diba and Grossman (1988) proposed the use of
unit root and cointegration tests to test for explosive non-stationary bubbles in the
data. This testing methodology relies however on the time-series being globally non-
stationary and/or explosive in nature. This assumption can be problematic since
locally explosive processes featuring short-lived bubbles which expand and collapse
may render the time-series stationary Evans (1991). This concern is addressed by
Phillips et al. (2011), Phillips et al. (2015), Phillips and Shi (2018) which develop
supremum tests on recursive right-side unit root test-statistics in order to allow for
exploding sub-samples in a time-series. Interestingly, these methods also allow for
the dating of both the beginning and the end of explosive bubble events. Further,
Homm and Breitung (2012) finds that this recursive method works well as a real-time
bubble detection algorithm. In empirical applications, (Phillips et al., 2011; Phillips
and Yu, 2011) find evidence of bubble events on the Nasdaq index, the U.S. housing
price index, the price of crude oil and the spread between Baa and Aaa bond rates.
The generealized test proposed in Phillips et al. (2015) was used to detect bubbles
in commodity prices (Etienne et al., 2014; Gutierrez, 2013) and real estate (Chen
and Funke, 2013; Yiu and Jin, 2012), among others. Recent empirical applications of
these same testing methodologies can be found on balooning sovereign risk (Phillips
and Shi, 2019), sector trading in real time (Milunovich et al., 2019) and the U.S.
regional housing market (Shi, 2017).

In parallel, we have witnessed the emergence of the literature on mixed causal
non-causal autoregressive (MAR) models as an alternative form of describing and
modeling bubbles in financial and economic time-series. As such MAR models are
relevant in the study of financial bubbles. These models have gained considerable
attention in the last decade as they have proven able to fit a number of interesting
episodes in financial data and allowed for some modeling structure and formalization
of the concept of a locally explosive event, or bubble, at least in a time-series sense.

Mixed causal non-causal models allow for speculative bubble dynamics to be mod-
eled using a noncausal autoregressive process of order one with heavy tailed innova-
tions. This specification is able to model speculative bubbles since it generates large
outliers which are preceded by a slow build-up to that outlying observation. The class

2



of MAR models was recently extended to accommodate for stable distributions by
Gouriéroux and Zaköıan (2017) and a higher order mixed causal and noncausal poly-
nomial structure by Fries and Zaköıan (2017). The MAR framework has been used
to model and forecast financial bubbles in a wide range of different assets prices dis-
playing explosive behaviors like Nickel monthly price, NASDAQ price, Bitcoin price,
and the price of a number of different commodities (Hecq and Voisin (2021), Fries
and Zaköıan (2017), Hencic and Gouriéroux (2015), Gouriéroux and Zaköıan (2017)).

Despite the numerous applications of MAR models, it is crucial to note that these
models operate in a stationary framework. The underlying stationarity of MAR pro-
cesses allows for the derivation of theoretical results, such as expected bubble life
times and emergence and collapse probabilities. Of course, this also means that unit
root tests applied to MAR data generating processes will generally reject the unit root
hypothesis and that MAR models are unable to distinguish the potential speculative
bubble from the fundamental value of a financial asset. In practice, a fundamental
challenge faced by MAR applications is indeed that most financial time-series display-
ing locally explosive behaviours are also non-stationary. The fact that most financial
time-series feature some form of non-stationary fundamental component, typically
exhibiting unit-root or random-walk dynamics, is practically undisputed. Rather, it
is the challenge in appropriately dealing with the non-stationary component which
has made it difficult for MAR models to be applied to non-stationary data.

In the literature for MAR models the recognition that most relevant time-series
are non-stationary has led to the use of several detrending methods, the most com-
mon being a n-degree polynomial in time, Hencic and Gouriéroux (2015), or the
HP filter Hecq and Voisin (2021). Hecq and Voisin (2019) show the performance of
these different available methods for estimation and forecasting performance. Unfor-
tunately, these de-trending approaches often do not have an economic or financial
interpretation. Moreover they are not able to deliver a meaningful forecast of the
trend and bubble component. While the overall in-sample fit might be reasonable
for high-order polynomials or HP-filters, the ability to produce reasonable forecasts
are severely limited. Hecq and Voisin (2019) show in a simulation exercise that these
methods may perform well in estimating the true parameters and the right order of
the process. However, the use of these methods is problematic when a bubble is grow-
ing in real time. Indeed, the extreme movements observed during a locally explosive
behaviour will always be captured as a trend by these detrending methods, and only
ex-post recognized as a bubble, once the bubble collapses. This renders the current
de-trending methods very problematic for forecasting in real-time.

In this paper we propose an observation driven model which jointly models the
random-walk stochastic trend as well as the stationary non-causal bubble component
of financial time-series. In line with the MAR literature, we assume an additive struc-
ture with a ‘trend plus a bubble component’. However, in contrast with the current
literature, we estimate the trend and bubble components jointly. We build on the
approach followed by Blasques et al. (2022) for a non-stationary location model and
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establish the asymptotic properties of the maximum likelihood estimator and provide
sufficient conditions for strong consistency and asymptotic normality. Furthermore,
we establish the stochastic properties of data generated by our model and show that
our filter is capable of uncovering the unobserved stochastic trends and bubble com-
ponents. In particular, the filters for the stochastic trend and stationary bubbles
are shown to be invertible and to converge to the true trend and bubble paths. A
Monte Carlo simulation reveals good finite sample properties for the estimator and
the observation-driven filter of both the stochastic trend and the MAR bubble compo-
nent. We finally consider an application on the NASDAQ composite index monthly
series and compare the forecasting accuracy of our method against the detrending
approaches used in the MAR literature. Our model is naturally capable of forecast-
ing the trend component and the bubble component, where the latter rely on the
methodology introduced in Gourieroux and Jasiak (2016) and Lanne and Saikkonen
(2011). We show that our methods outperforms all the considered alternatives.

We revisit the application in Hecq and Voisin (2021) and find strong evidence for
the existence of bubbles in the monthly Nickel price. In particular, we show that
incorporating MAR dynamics substantially improves the model fit over random-walk
and GARCH alternatives. Unlike Hecq and Voisin (2021) we do not need to de-trend
the NASDAQ series with HP filters and can allow instead the fundamental value to
follow a random walk, in line with financial theory, the efficient market hypothesis
and countless papers in financial econometrics. We also provide a climate application
using one of the time series considered by Giancaterini et al. (2022). Our model
shows a good forecasting performance on sea level measurements, a non stationary
time series that presents small but frequent non causal dynamics. In both applications
we perform a real time forecasting exercise, showing how our models outperforms the
alternatives.

This paper is organized as follows. In the next section we present our model
specification. In section 3 we present the properties of the estimated model. In
section 4 we perform an application using NASDAQ monthly price and in section 5
we have a simulation study to compare our model with the existing methods in the
literature.

2 The Model

Consider a non-stationary time-series {yt} which can be decomposed into a non-
stationary random-walk component {µt} and a stationary process {vt} with MAR(r, s)
dynamics according to the following observation-driven model which we call a MAR
stochastic trend model (MARST),

4



yt = µt + vt

vt = ψ(L−1)−1ϕ(L)−1εt

µt = δ + µt−1 + αεt−s

(1)

where ψ(z) = 1−ψ1z− ...−ψsz
s and ϕ(z) = 1− ϕ1z− ...− ϕsz

s are respectively the
lags and leads polynomial, {εt} is an independent identically distributed sequence
with εt ∼ tν with ν > 0 the degrees of freedom and σ a scale parameter. In the
updating equation for µt, δ represents a possible drift in the trend component, α
drives the amplitude of the update. We note that k = r + s is the total order of the
autoregressive polynomial and that the MARST model in (1) allows for an additive
structure of the stationary bubble and non-stationary trend components.

The time-series {yt} will be rendered unit-root non-stationary, for any α > 0, and
feature a drift whenever δ ̸= 0, where {µt} can be interpreted as the fundamental value
while {vt} captures the bubbles and the stationary autoregressive features through a
MAR specification. The MAR component can be causal, non-causal, or both, depend-
ing on the parameters in the causal polynomial ϕ(z) or the non-causal polynomial
ψ(z). Assumption 1 imposes well known restrictions rendering the MAR(r, s) process
{vt} stationary and ergodic; see e.g. Lanne and Saikkonen (2011).

Assumption 1 The polynomials ϕ(z) and ψ(z) satisfy,

ϕ(z) = 0 for |z| > 1 and ψ(z) = 0 for |z| > 1.

Naturally, the model defined in (1) nests a number of different important models
available in the literature. For example, when (1) features a MAR(0, 0) component,
it defines a model with random walk dynamics (with or without drift), as in Blasques
et al. (2022). If only the causal part of the autoregressive polynomial is non-zero,
then the model contains short-run stationary causal dynamics but does not allow
for bubbles. This means that by taking appropriate model selection steps, one can
effectively consider a range of possibilities, and even if the model is designed to deal
with bubbles in non-stationary time series it also allows to reject these features.

We also note that the MARST model in (1) can be re-written as a non-stationary
MAR featuring appropriate parameter restrictions on the causal polynomial. In par-
ticular, the following remark highlights that the observation-driven specification with
a non-stationary random-walk component plus a stationary MAR component is just
one of multiple possible model representations.1

Remark 1 Let Assumption 1 hold. Then {yt} satisfies the following mixed autore-
gressive integrated moving average, MARIMA(r,s,1,k+r), representation,

ϕ(L)ψ(L−1)∆yt = δ + θ(L)εt

1Derivations are made available in Appendix A.
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where θ(z) = 1 − zs + α0z
sϕ(z)ψ(z−1). Further, if ψ(L−1) = ϕ(L) = 1, then model

in (1) generates a random-walk process with drift with non-linear MA innovations
yt = δ + yt−1 + εt + γ(εt−1), where γ(εt−1) = (α− 1)εt−1. Moreover if α = 1 then (1)
defines a random-walk process yt = yt−1 + σεt.

3 Estimation and filtering

Let the parameter vector be defined as θ = (δ, α,Ψ,γ), with δ, α being parameters
that drive the update of the filter in (1), Ψ = (ϕ1, ..., ϕr, ψ1, ..., ψs) the vector of
MAR parameters and with γ consisting of the vector of the distributional parameters
γ = (σ, ν). To estimate the parameter vector θ we rely on the Approximate Maximum
Likelihood framework for MAR processes from Lanne and Saikkonen (2011). The log-
likelihood criterion function LT (θ) is naturally given by,

L̂T (θ) =
T−s∑
t=r

l̂t(θ) =
T−s∑
t=r

log f

(
ψ(L−1)ϕ(L)ĝt(θ);γ

)
where lt is the individual likelihood contribution,f(·) is the Student’s t pdf and ĝt(θ) =
yt−µ̂t(θ) is the bubble component. The hat symbol represents the dependence of these
functions on the filtered bubble component ĝt(θ), instead of the limit counterpart
gt(θ). Moreover note that ĝt(θ) can also be interpreted as a prediction error, being
the deviation of the process yt from the filtered random walk component µ̂t(θ). We
are interested in the properties of maximum likelihood (ML) estimator defined as,

θ̂T argmax
θ∈Θ

L̂T (θ).

We note that the log-likelihood depends on the prediction error ĝt(θ) which must be
obtained after the random walk component µ̂t(θ) is ‘filtered out’. In practice, for any
given θ, and given a sample {yt}Tt=1, we obtain first the filtered sequence {µ̂t(θ)}Tt=1,

µ̂t+1(θ) = ω + µ̂t(θ) + αψ(L−1)ϕ(L)
(
yt−s − µ̂t−s(θ)

)
and the initialization is given by the first k observations of the sample (µ̂k(θ), ..., µ̂1(θ))
= (yk, ..., y1), where k = r+ s and r and s are respectively the causal and non-causal
order of our MAR(r, s) process.

Given the non-stationary filter µ̂t(θ), our interest lies in the stationarity of the
prediction error ĝt(θ) = yt − µ̂t(θ). We can write the prediction error according to
the following SRE,

ĝt+1(θ) = ĝt(θ)− ω − αψ(L−1)ϕ(L)ĝt−s(θ) + ∆yt+1.
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Further, we can define the vector ĝt =
[
ĝt, ĝt−1, ..., ĝt−k+1

]′
and write the model

residuals as ε̂t−s(θ) = Φ(θ)′ĝt(θ), and their limit counterpart as εt−s(θ) = Φ(θ)′gt(θ),
with Φ(θ) = (ζ0, ..., ζk−1) and

ζi =
∑i

j=1 ψs−j+1ϕi−j for i = 1, ..., s

ζi =
∑k−i+1

j=1 ψj−1ϕj+i−s−1 for i = s+ 1, ..., k.

Neither should be confused with εt the iid noise of (1). From now on we will drop the
subscript −s for the residuals when we work with the vector form of the prediction
errors and their limit counterpart, respectively ĝt(θ),gt(θ) while it should be kept in
mind that any εt(θ) depends on the items gt−r, ..., gt+s. Then, we can write our SRE
in vector form as,

ĝt+1(θ) = C(θ) + A(θ)ĝt(θ) +Bt+1,

with

C(θ) =


−δ
0
...
0

 A(θ) =


1− αζ1 −αζ2 . . . −αζk−1 −αζk

1 0 . . . 0 0
...
0 0 . . . 1 0

 Bt+1 =


∆yt+1

0
...
0


where, to keep notation short, we will often redefine A(θ) as,

A(θ) =


ξ1 ξ2 . . . ξk−1 ξk
1 0 . . . 0 0
...
0 0 . . . 1 0


Stationarity and filter invertibility

The stationarity of the MAR component of the data and the filter invertibility are
important ingredients in establishing the consistency of the MLE, as they allow for
laws of large numbers to be applied to the log likelihood loss function. In order
to establish the stationarity of the data generating process of the underlying MAR
process and the invertibility of the filter, we impose a number of restrictions on the
parameter space. Specifically, we assume that the parameters of the MAR define
stable or contracting process, and that the innovations have n moments.

Assumption 2 The degrees of freedom parameter for the Student’s t innovations ν
satisfies ν ≥ n > 1, so that E

∣∣εt∣∣n <∞ for some n > 1.

Assumption 3 The parameters in the matrix A(θ) are such that supθ∈Θ |ξ1| < 1 and

supθ∈Θ
∣∣∑k

i=1 ξi
∣∣ < 1.
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Proposition 1 shows the properties of data generated by the model in (1).

Proposition 1 Let {yt}t∈Z be generated by the model defined in (1) with some true
parameter vector θ0 ∈ θ. Under Assumptions 1 and 2 we have that {∆yt}t∈Z is a
stationary and ergodic process with E|∆yt|n <∞.

Proposition 2 gives sufficient conditions for the uniform invertibility of the filter ĝt(θ),
establishing its convergence to a unique stationary and ergodic process, as well as the
convergence of the corresponding model residuals.

Proposition 2 Let {yt}t∈Z be generated by the model defined in (1). Let Assump-
tions 1-3 hold. Then we have that,

a) the filtered sequence of prediction errors satisfies,

sup
θ∈Θ

||ĝt(θ)− gt(θ)||
e.a.s.−−−→ 0, as t −→ ∞.

with {gt(θ)}t∈Z a unique, stationary and ergodic sequence.

b) the residual ε̂t(θ) = Φ(θ)ĝt(θ) and its limit counterpart εt(θ) = Φ(θ)gt(θ) satisfy,

sup
θ∈Θ

||ε̂t(θ)− εt(θ)||
e.a.s.−−−→ 0, as t −→ ∞.

Propositions 3 and 4 show that the stationary limit solutions identified in Propo-
sition 2 have n bounded moments, and that the filter {µ̂t(θ} of the non-stationary
component converges to the true {µt}.

Proposition 3 Under Assumptions 1-3, the limit process {gt(θ)}t∈Z is such that
E supθ∈Θ ||gt(θ)||n <∞. Moreover E supθ∈Θ ||εt(θ)||n <∞.

Consistency and Asymptotic Normality

We now establish the strong consistency of the MLE θ̂T . We make use of the com-
pactness of the parameter space.

Assumption 4 Θ is a compact set such that (1) holds for every θ ∈ Θ.

Theorem 1 Under Assumptions 1,3-4, and if E|εt|n < ∞ for n > 2 then MLE θ̂T

satisfies θ̂T
a.s.−−→ θ0 as T −→ ∞.

The proof follows the approach of Blasques et al. (2018) and Straumann and
Mikosch (2006). Given the filter invertibility and the moment conditions established
in the previous section, asymptotic consistency follows by following the same concepts
for the approximate maximum likelihood consistency in Lanne and Saikkonen (2011)
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and Breid et al. (1991) accounting for the fact that our setting includes a set of
additional parameters.
We finally turn to the

√
T -convergence and asymptotic normality of the MLE. We first

establish relevant properties for the derivatives of the limit filter. These properties
will play an important role in showing that the estimator is asymptotically normal.

Proposition 4 Let {yt}t∈Z be generated by (1). Under Assumptions 1-3 we have,

(a) {∂ĝt(θ)/∂θ}t∈N converges e.a.s. to a unique stationary and ergodic sequence
{∂gt(θ)/∂θ}t∈Z uniformly over θ such that E supθ∈Θ ||∂gt(θ)/∂θ||n <∞;

(b) {∂2ĝt(θ)/∂θ∂θ
′}t∈N converges e.a.s. to a unique stationary and ergodic se-

quence {∂2gt(θ)/∂θ∂θ
′}t∈Z uniformly over θ such that E supθ∈Θ ||∂2gt(θ)/∂θ∂θ

′||n
<∞.

To obtain the asymptotic normality of the MLE we need to assume the existence of
additional moments. The following assumption requires the Student’s t distributed
innovations to have more than four degrees of freedom.

Assumption 5 The degrees of freedom parameter for the Student’s t innovations ν
satisfies ν ≥ n > 4, so that E

∣∣εt∣∣n <∞ for some n > 4.

Theorem 2 Assume that assumptions 1,3-5 hold. Let θ0 lie in the interior of Θ.
Then we have that √

T (θ̂T − θ)
d→ N (0, I−1) as T −→ ∞

where I = −E[∂2lt(θ0)/∂θ∂θ
′] is the Fisher information matrix.

For this theorem we follow the argument of Theorem 3.1 of Gorgi and Koopman
(2021) and Section 7 of Straumann and Mikosch (2006). The additional moments on
the innovations are required in order to ensure the existence of the variance of the
estimator.

4 Monte Carlo study

This section uses a Monte Carlo simulation exercise to show that (i) the MARST
model can effectively filter the stochastic trend and uncover the short-term explosive
bubble behavior in a simulated dataset; and (ii) to analyze the distortionary effect of
different detrending techniques on the estimation of bubble dynamics as in Hecq and
Voisin (2019).
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Filtering trends and bubbles

In general, most financial time series are not well described by a pure MAR process,
where bubbles are pervasive and generated continuously. In contrast, it seems that
financial time series exhibit a small number of bubbles, often characterized by a great
magnitude. To mimic this feature we simulated a number of random walks and added
occasional large bubbles generated by a MAR process with infrequent but very large
errors. The sum of these two processes creates a random walk with only a few locally
explosive episodes. We find that our model is able to disentangle the two processes
even if the MAR component is not always present, in other words, the model model
allows the non-causal part to disappear in moments where there is no-bubble and to
be activated when there is a sudden bubble.

Figure 1: The trend obtained through the MAR + trend filter follows closely the random
walk until the bubble component kicks in. The HP filter instead has problems to detect
what is the trend component and what is not.

Figure 1 shows an example of such simulated path and the filtered stochastic trend
obtained by both our model and the HP filter.

Detrending and MLE distortion

The following Monte Carlo simulation follows the procedure from Hecq and Voisin
(2019) in documenting how different de-trending procedures distort parameter esti-
mates in a range of data generating processes. In particular, we simulate data from
a number of mispecified sources and find that the current model can easily identify
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the non-causal process in addition to a given trend. We also simulate a MAR process
without trend to show that the stationary mixed causal non-causal process (which
is a special case of our model) does not result in distorted ML parameter estimates.
Specifically, we consider the following data generating processes2: (a) simple MAR
process; (b) MAR process plus a random walk with drift; (b) MAR process plus
deterministic trend breaks.

The sample without a trend is used to analyze distortions on the MLE when a
trend is actually not present. We use the random walk with drift to represent the
type of composition of stochastic trend and bubble process that would be usually
observable in real data. The last data generating process we consider represents a
situation with breaks in the trend to mimic the process defined in the simulation
study from Hecq and Voisin (2019).

We simulate S = 100 samples of length T = 400 of MAR(1, 1) processes with
ψ = ϕ = 0.6 and degrees of freedom ν = 2. In Figure 2 we present the distribution
of the estimates obtained according to the different estimation methods that we use,
respectively our MARST model and the time polynomial or HP filter detrending plus
MAR. In the figure the ϕ and the ψ estimates are presented in sequence for all the
considered data generating processes. As we can see the type of distortion produced
in the parameter estimates by our model is similar to the one observed using the
standard methods in the literature.

2Figure C in the Appendix shows examples of realized paths from such data generating processes.
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(a) ψ estimates for a random walk with drift dgp. (b) ϕ estimates for a random walk with drift dgp.

(c) ψ estimates for no trend dgp. (d) ϕ estimates for no trend dgp.

(e) ψ estimates for a dgp with breaks in the trend. (f) ϕ estimates for a dgp with breaks in the trend.

Figure 2: Distributions of the monte carlo estimates of the causal and non causal parameters
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5 Empirical Applications

In this section we go through two different applications. The first one is relevant in
commodity pricing and considers the monthly price of Nickel which is characterized
by very sizeable bubbles, especially in the period between 2007 and 2008. We show
how our model outperforms the alternatives in terms of forecasting power. We also
highlight how the model performance behaves over the different phases that the pro-
cess experiences, and how our model is flexible enough to adapt to these phases. The
second application focuses on data which is relevant in climate studies and considers
a time series of global mean sea levels. This data is characterized by a strong trend
and many smaller episodes of non causal dynamics. We find that modelling these
periods of short-lived explosive behvior can substantially improve the ability of the
model to fit the data.

5.1 Bubbles in commodity prices

We follow Hecq and Voisin (2021) in analyzing the seemingly large bubble present
in the monthly time-series of global Nickel Price. Our interest lies in understanding
if the presence of a MAR component introduced by the MARST model beyond the
usual random-walk will lead to an improvement of the online forecast of the nickel
price. Figure 3 plots the Nickel price spanning from January 1990 to October 2022.

Figure 3: Monthly Nickel Price

A natural consequence of the MARST model is the ability to extract both a
stochastic trend and a MAR component. In light of the theory developed in Section
3, and the Monte Carlo evidence in Section 4, the divergence of the MAR component
from the stochastic trend should give us an indication of whether locally explosive
bubble dynamics are present or not.
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For the model selection step we consider a MARST(r, s) with r ≤ 5 and s ≤ 5.
We choose the causal and non-causal model order according to BIC, that indicates a
MAR(1, 1) as the most suitable option.

Order Likelihood AIC BIC
(1,1) 604.81 1221.63 1241.42
(2,3) 602.10 1222.20 1251.88
(4,2) 597.99 1215.98 1248.97
(4,3) 597.46 1216.92 1253.20
(4,4) 598.10 1220.21 1259.79

Table 1: Model Selection Criteria for the Nickel Monthly price application.

We make use of interval forecasts to show that our model manages to predict the
sign of the extreme observations during a bubble in a consistent way. We report our
performance compared to the performance of a random walk model and a random-
walk with GARCH volatility as the existing versions of online forecasting using MAR
models have very poor performances in non stationary settings due to their lack of a
reliable method to forecast the trend part.

Beyond comparing interval forecasts, we further perform a point forecast. While
we report on the usual point forecast, corresponding to the conditional expectation,
we shall pay closer attention to the interval forecast. Point forecasts in the MAR
framework are less suitable for interpretation and less informative than in most other
contexts. This is because in the MAR framework predictive density is bimodal when-
ever there is am active bubble component. This bimodality comes from the bubble
behavior which attaches a given probability to the event that the bubble continues,
and some probability to the event that the bubble will crash; see e.g. Hecq and Voisin
(2021). 3

Our test sample includes the last 190 observations of the sample, spanning from
September 2006 to October 2022. We select this test sample to show two main
advantages of our model. The data is shown in Figure 4. First, it is able to provide
reliable forecasts during the 2008 bubble, that is the most relevant in the sample.
Second our approach performs well also when the non-stationarity of the data becomes
more evident, so from 2009 onwards.

3With the exception of the MAR(r,1) with Cauchy innovations, see Gouriéroux and Zaköıan
(2013), there is no closed form solution for the predictive density of most MAR specifications.
Instead, there are two approximation methods to compute forecasts in this framework. One that is
simulation based (Lanne et al. (2012)), and another which is sample based (Gourieroux and Jasiak
(2016)). We rely on the method from Lanne et al. (2012).
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Figure 4: The time series of Nickel price. The test sample is highlighted in orange.

We work with an expanding window and with the simulation based forecast
method of Lanne et al. (2012). Since the method is based on simulation, the forecast
is subject to some variability, regardless Hecq and Voisin (2021) show that the ap-
proximation behaves coherently with the theoretical probabilities. We set the number
of iterations to a high threshold to reduce the uncertainty to a minimum. To compare
the performance of the different methods we rely on a Diebold Mariano test statis-
tic based on the Brier score which is a well suited performance measure for discrete
outcomes 4. Table 2 summarizes the results.

Models Brier Score
Model Score Test Statistic

MARST 0.37 ·
MAR (a) 0.45 -1.67

Random Walk (b) 0.33 1.05
Random Walk (c) 0.44 -2.04

Table 2: Event Prediction Scores and Test Statistics against a) MAR with time
polynomial, b) RandomWalk with GARCH specification and Student’s t innovations,
c) Gaussian Random Walk.

We now show how our method behaves compared to the alternatives in different
parts of the sample. We can split our large test sample in three subsamples: a
subsample for the 2008 bubble, a huge non-causal event but with a low level of non
stationarity, a subsample from 2009 to 2018, exihibiting a low level of non-causality,
being very close to a simple random walk, and a subsample for the last part of the
sample where again we non causal events and a seemingly relevant upwards trend.
Figure 5 summarizes the division in subsamples.

4See Appendix D for additional details on the testing procedure

15



Figure 5: Testing subsamples subdivision of the whole sample

In the first subsample the bubble component is dominant, the random walk with
Gaussian innovations fails to capture the extreme movements that the process is
experiencing. During this period the robust random walk performs a bit better but
we still outperform both methods. In the second subsample the process experiences a
path that can be approximated well by a random walk. Our model still outperforms
the Gaussian Random Walk, but has a worse performance than the more flexible
GARCH driven process, however the difference are not significant. The intuition
behind the better performance of the random walk with Garch innovations compared
to the MARST comes from the fact that in the considered subsample, without relevant
non-causal episodes the MARST dynamics mimics the one of a simple random walk.
In the third subsample the process experiences again relevant explosive episodes. For
this reason the random walk with Gaussian innovations does not manage to capture
the movements of the process during the small but sharp bubbles we can see in
this part of the sample. Table 3 shows the test statistics over these three different
subsamples.

1stSubsample 2ndSubsample 3rdSubsample
Models Brier Score Brier Score Brier Score

Score Statistic Score Statistic Score Statistic
MARST 0.44 · 0.45 · 0.24 ·
RW (a) 1.20 -13.88 0.44 0.19 0.32 -2.16
RW (b) 0.60 -2.36 0.38 1.26 0.24 0.59

Table 3: Event Prediction Scores and Test Statistics for the Nickel Price application
over the three different test subsamples a) Gaussian Random Walk , b) Random
Walk with Garch specification and Student’s t innovations.
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5.2 Modeling sea levels

In this second application we investigate the presence on non-causal dynamics in
global mean sea level data. As we shall se the MARST model manages to capture a
stochastic trend without relying on methods like HP filter. Further we will note that
the MARST provides us with reliable forecasts.
Climate change has grown to become of the most debated challenges of our times.
Understanding the dynamics of climate data is a crucial step in the debate. Gianca-
terini et al. (2022) use MAR models to assess the time reversibility of different climate
change indicators like emission of greenhouse gases, temperature anomalies or global
mean sea level. These time series show clear positive trends and a certain degree of
non-causality, so they are good candidates for the current dynamic model.

Figure 6 plots the global mean sea-level data. The data spans from 2011 to 2022.
We use the last 30 observations of the sample as pseudo-out-of-sample observations
to test the performance of the one step ahead forecasts from our model.

Figure 6: Global mean sea level time series (left), and the most recent period (right) with
a highlight of the period we will use as our test sample.

For the model selection step we consider a MARST(r, s) model with r ≤ 5 and s ≤ 5.
Table 4 shows standard information criteria at different lag/lead lengths. We select
the model order following the BIC and adopt a MARST(1,1) specification.

Figure 6 presents the fitted MARST trend and the resulting detrended MAR part.
We observe that the MARST model captures well the stochastic trend component of
the process.
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Likelihood AIC BIC
(1,1) 271.13 554.26 579.55
(2,1) 271.66 557.32 586.82
(2,2) 273.10 562.20 595.92
(3,4) 260.05 542.10 588.46
(4,4) 259.99 543.98 594.55

Table 4: Model Selection Criteria for the Global Mean sea level application

Figure 7: Global mean sea level time series with the trend fitted by our model
(left),detrended time series, in other words the remainder MAR process (right). We zoomed
in on the last 150 observations to have a closer look at the small bubbles appearing in the
sample.

We compare our forecasting performance against a MAR process that relies on a
standard detrending procedure, in this case a time polinomyal, and against a random
walk process, both Gaussian and heavy tailed. We also compare our model against
an ARIMA specification. Recall from Remark 1 that some ARIMA and MARIMA
specifications are nested into our model. We still expect the ARIMA specification
to perform reasonably well in parts of the sample where the non causal part is not
dominant. We still rely on interval forecast performance as the bimodality of the
predictive density renders point forecast accuracy a rather uninteresting performance
measure for comparing models with such rich predictive behavior. Table 5 shows
that the MARST model outperforms all competing models according to a Diebold
Mariano test statistic based on the Brier Score 5.

5see Section D in Appendix for additional details on the testing procedure
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Models Brier Score
Model Score Test Statistic

MAR with trend 0.52 ·
MAR (a) 0.63 -2.83

ARIMA (2,1,2) (b) 0.59 -1.99
Random Walk (c) 0.66 -2.33

Table 5: Event Prediction Scores and Test Statistics for the sea level application
against a) MAR with time polynomial, b) ARIMA specification c) Random Walk
with Gaussian innovations.

6 Conclusion

We proposed a new dynamic model which can jointly filter stochastic trends and sta-
tionary MAR components from time-series data. The model was shown to be relevant
for handling non-stationary time series with random-walk trends and locally explo-
sive behavior. In comparison with existing de-trending approaches used in the MAR
literature, our method has the advantage of allowing for online forecast of financial
bubbles in non-stationary time series. We showed in the empirical application data
that our method allows us to forecast the data during bubble episodes better than
using the existing methods.
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A Proofs

A.1 Proof of Remark 1

Proof Consider a MAR(1, 1) with trend process. Then ϕ(L)ψ(L−1)(yt − µt) = εt with µt =
δ + µt−1 + α0εt−s. As a result,

ϕ(L)ψ(L−1)(yt − δ − µt−1 − α0εt−s) = εt.

We can now express µt−1 = yt−1 −
(
ϕ(L)ψ(L−1)

)−1
εt−s and obtain the first claim,

ϕ(L)ψ(L−1)∆yt = ω∗ − εt−s + α0ϕ(L)ψ(L
−1)εt−s + εt.

⇔ ϕ(L)ψ(L−1)∆yt = ω∗ + θ(L)εt.

For the second claim, we observe that,

∆yt = ∆µt +∆εt ⇔ ∆yt = δ + αεt−1 +∆εt.

Finally, if δ = 0 and α = 1, then it follows that ∆yt = εt. □

A.2 Proof of Proposition 1

Proof: By letting yt = vt − µt, we can express

∆yt = ∆µt +∆vt

∆yt = δ0 + α0εt−k +∆vt

where vt is a MAR process that is SE under Assumption 1. Then we have that {∆yt} is SE as it is
a measurable function of a SE process (Krengel, 1985, Proposition 4.3). Moreover, we have that

E|∆yt|n ≤ c0 + c1E|εt−k|n + c2E|∆vt|n <∞

by the moment bound in Assumption 2. □

A.3 Proof of Proposition 2

Proof: We first note that under Assumptions 1 and 2, the spectral radius of A(θ) is smaller than
one over all θ. This means that we have,

sup
θ∈Θ

∣∣∣∣A(θ)r∣∣∣∣ ≤ Kρr (2)

with ρ < 1. To show that a) holds, we define the infinite sum process,

gt+1(θ) =

∞∑
r=0

A(θ)rC(θ) +

∞∑
r=0

A(θ)rBt+1−r. (3)

So gt+1(θ) can be represented as the infinite sum of elements of the sequence {∆yt+1}. By (2)
we have that these sums converge. Since by Proposition 1 {∆yt} is a SE sequence, and since
gt is a continuous function of {∆yt} for every θ ∈ Θ, we have that {gt(θ)}t∈Z is stationary and
ergodic (Proposition 4.3, Krengel, 1985). Alternatively this process can also be written as the unique
stationary solution of a vector AR(k) process according to Bougerol and Picard (1992).
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Let’s now consider the filter,

ĝt+1(θ) = C(θ) +A(θ)ĝt(θ) +Bt+1

For a given initialization µk = [µ̂k, ..., µ̂1] the corresponding ĝk =
[
v̂k, v̂k−1, ..., v̂1

]′
is a vector of

fixed values and ∥ĝk∥ is finite. We can now unfold the process.

ĝt+1(θ) =

t−k∑
r=0

A(θ)rC(θ) +A(θ)t−kĝk(θ) +

t−k∑
r=0

A(θ)rBt+1, (4)

and take the difference from the limit process,

∥gt+1(θ)− ĝt+1(θ)∥θ = ∥
∞∑

r=t−k+1

A(θ)rC(θ)−A(θ)t−hĝk +

∞∑
r=t−k+1

A(θ)rBt+1−r∥θ

≤ ∥A(θ)t−k∥θ · ∥
∞∑
r=0

A(θ)rC(θ) +
∞∑
r=0

A(θ)rBk+1−r||θ + ∥A(θ)t−k∥θ · ∥ĝk∥

≤ Kρt−k

(
∥

∞∑
r=0

A(θ)rC(θ) +

∞∑
r=0

A(θ)rBk+1−r∥θ + ∥ĝk∥

)
,

which implies that ∥ĝt(θ)− gt(θ)∥θ
e.a.s−−−→ 0 as T −→ ∞. To prove b) we note that,

sup
θ∈Θ

||ε̂t(θ)− εt(θ)|| = sup
θ∈Θ

||Φ(θ)ĝt(θ)− Φ(θ)gt(θ)||

≤ sup
θ∈Θ

||Φ(θ)|| · sup
θ∈Θ

||ĝt(θ)− gt(θ)|| ≤ ρt−kK1.

This means that supθ∈Θ ||ε̂t(θ)−εt(θ)||
e.a.s−−−→ 0 t −→ ∞, where by Proposition 4.3 in Krengel (1985)

{εt(θ)} is a stationary and ergodic sequence. □

A.4 Proof of Proposition 3

Proof: Define the norm || · ||θn = (E supθ∈Θ || · ||n)1/n, which is subadditive for n ≥ 1. To prove that
the stationary and ergodic limit sequence {gt}t∈Z has n ≥ 1 bounded moments we note that,

||gt(θ)||θn =
∣∣∣∣ ∞∑
r=0

A(θ)rC(θ) +

∞∑
r=0

A(θ)rBt+1−r
∣∣∣∣θ
n

≤
∞∑
r=0

(
sup
θ∈Θ

∣∣∣∣A(θ)r∣∣∣∣n)1/n∣∣∣∣C(θ)∣∣∣∣θ
n
+

∞∑
r=0

(
sup
θ∈Θ

∣∣∣∣A(θ)r∣∣∣∣n)1/n∣∣∣∣Bt+1−r
∣∣∣∣θ
n

≤ c0

∞∑
r=0

ρr sup
θ∈Θ

∣∣ω∣∣+ c1

∞∑
r=0

ρr
(
E sup

θ∈Θ

∣∣∆yt+1−r
∣∣n)1/n

≤ c2
supθ∈Θ

∣∣ω∣∣+ (E supθ∈Θ

∣∣∆yt+1−r
∣∣n)1/n

1− ρ
<∞.

By Proposition 1 we have ||∆yt||n <∞. The second statement of the Proposition follows from

||εt(θ)||θn = ||Φ(θ)gt(θ)||θn ≤ sup
θ∈Θ

||Φ(θ)||θn sup
θ∈Θ

||gt(θ)||θn. □
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A.5 Proof of Theorem 1

Proof: The proof follows the approach of Blasques et al. (2018, Theorem 4.1) and Straumann and
Mikosch (2006). In particular, we establish the following sufficient conditions:

(C1) L̂T (θ) converges almost surely to LT uniformly over θ ∈ Θ,

sup
θ∈Θ

∣∣L̂T (θ)− LT (θ)
∣∣ a.s.−−→ 0 as T −→ ∞.

(C2) The limit log-likelihood contributions have one bounded moment uniformly on θ ∈ Θ,

E sup
θ∈Θ

|l(ε(θ), γ)| <∞.

(C3) θ0 is identifiably unique,
sup

θ∈Sc(θ0,δ)

L(θ) < L(θ0),

where Sc(θ0, δ) denotes the complement of an open ball of radius δ, centered at θ0.

As shown in Blasques et al. (2018, Theorem 4.1), conditions C1-C3 imply that for every δ > 0:

lim sup
T−→∞

sup
θ∈Bc(θ0,δ)

L̂T (θ) < L(θ0)

and the consistency follows.

We note first that the log-likelihood takes the form,

L̂T (θ) =
1

T − k

T−s∑
t=r

l̂t(θ) =
1

T − k

T−s∑
t=r

l(ε̂t(θ),γ) =
1

T − k

T−s∑
t=r

log f(ψ(L−1)ϕ(L)ĝt(θ);γ)

where we have k = r+s and l̂t(θ) = l(ε̂t(θ),γ) = log f(yt|µ̂t(θ);γ) is the log-likelihood contribution
of the observation at time t and ĝt(θ) = yt − µ̂t(θ) as defined before, with

log f(yt|µ̂t(θ),γ) = log pε(ε̂t(θ),γ) = log

(
Γ(ν+1

2 )

Γ(ν2 )

(
1 +

ε̂t(θ)
2

ν

)− ν+1
2
)

(5)

and filtered residuals are defined as ε̂t(θ) = ψ(L−1)ϕ(L)ĝt(θ). We further let LT (θ) denote the
log-likelihood with the limit sequence εt(θ),

LT (θ) =
1

T − k

T−s∑
t=r

lt(θ) =

T−s∑
t=r

l(εt(θ),γ),

where {εt}t∈Z is an iid sequence.

To prove C1, we note that by the mean value theorem

l̂t(θ)− lt(θ) =
ν + 1

2

[
log
(
ν + ε̂t(θ)

2
)
− log

(
ν + εt(θ)

2
)]

=
ν + 1

2(ν + ε̃t(θ)2)

(
ε̂t(θ)

2 − εt(θ)
2
)
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where ε̃ is a point between ε̂ and ε. Since ε̃t(θ)
2 is always positive and we assumed ν ≥ 1 we have

ν+1
2(ν+ε̃t(θ)2)

≤ 1. Hence,

sup
θ∈Θ

∣∣l̂t(θ)− lt(θ)
∣∣ ≤ sup

θ∈Θ

∣∣ε̂t(θ)2 − εt(θ)
2
∣∣

And now since {εt}t∈Z is SE, E log |εt(θ)| < ∞ and supθ∈Θ

∣∣ε̂t(θ) − εt(θ)
∣∣ e.a.s−−−→ 0 by Lemma

TA.17 of Blasques et al. (2017) we have that supθ∈Θ

∣∣ε̂t(θ)2 − εt(θ)
2
∣∣ e.a.s−−−→ 0. This implies,

sup
θ∈Θ

∣∣l̂t(θ)− lt(θ)
∣∣ e.a.s−−−→ 0.

To establish C2, we note that

l(ε,θ) = log

(
Γ(ν+1

2 )

Γ(ν2 )

(
1 +

ε2

ν

)− ν+1
2
)
,

and hence that,

E sup
θ∈θ

|l(εt(θ), γ)| = E sup
θ∈θ

∣∣∣∣ log(Γ(ν+1
2 )

Γ(ν2 )

(
1 +

εt(θ)
2

ν

)− ν+1
2
)∣∣∣∣

≤ c0 + E sup
θ∈θ

∣∣∣∣ log((1 + ε(θ)2

ν

)− ν+1
2
)∣∣∣∣

≤ c0 + c1E sup
θ∈θ

∣∣∣∣ log (1 + εt(θ)
2

ν

)∣∣∣∣
= c0 + c1E sup

θ∈θ

∣∣εt(θ)∣∣δ <∞

for some δ < 1. The last inequality follows by Proposition 3.

Condition C3 follows by noting that L(θ) exists for every θ ∈ Θ, by C2. To show uniqueness of
the maximizer θ0 we need that for any θ ∈ Θ, θ ̸= θ0 we have L(θ) < L(θ0). We first show that
l
(
εt(θ0),γ0) = l

(
εt(θ),γ) almost surely if and only if θ = θ0. We know that εt(θ0) = εt almost

surely for all t. We also know εt is Student’s t distributed so it has a non-zero density on all R.
Hence it is enough to show that l(h+ ε;γ) = l(ε;γ0) can hold with probability 1 if and only if h = 0
and γ = γ0. By the definition of l(·), for any γ1,γ2, this requires,

log

(
Γ(ν1+1

2 )

Γ(ν12 )
√
πν1σ2

1

(
1 +

(x+ h)2

σ2
1ν1

)− ν1+1
2
)

= log

(
Γ(ν2+1

2 )

Γ(ν22 )
√
πν2σ2

2

(
1 +

x2

σ2
2ν2

)− ν2+1
2
)

for all x ∈ R. Clearly l(h+ ε;γ) = l(ε;γ0) almost surely for all t requires h = 0 and γ1 = γ2.
We now need to prove that given that θ = (α, ω,Ψ,γ) is such that γ = γ0 we can conclude that
gt(θ) = gt(θ0) = vt almost surely if and only if (α, ω,Ψ) = (α0, ω0,Ψ0). Suppose this is not the case
and that gt(θ) = vt almost surely for some t, than it must hold for all t ∈ Z. Then we would have,

gt+1(θ) = gt(θ)− ω − αϕ(L)ψ(L−1)vt−s +∆yt+1

= gt(θ)− vt −
(
ω − ω0

)
− α

∞∑
h=−∞

ρhεt+h + α0εt−s + vt+1

= gt(θ)− vt + ω0 − ω + α0εt−s − α

∞∑
h=−∞

ρhεt+h + vt+1
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Now since by hypothesis gt(θ) = vt for all t then we must have:

ω0 − ω = α0εt−s − α

∞∑
h=−∞

ρhεt+h, almost surely for all t

Now if ω ̸= ω0 it means that the right-hand side must be a non-zero constant. But the right-hand
side expression is a non degenerate function of {εt}t∈Z that is ̸= 0 almost surely for all t for all θ ∈ Θ
if α ̸= α0 and Ψ ̸= Ψ0. This means that it must be that ω = ω0. Then since the right-hand side is
non zero with probability one we can have gt+1(θ) = vt+1 if and only if α = α0 and Ψ ̸= Ψ0.

Now that we showed that l
(
εt(θ0),γ0) = l

(
εt(θ),γ) almost surely if and only if θ = θ0 we can

use an argument on the lines of the one used in Blasques et al. (2022) using some of the arguments
from Breid et al. (1991) to conclude the proof of C3. We will rely on a mean value expansion around
θ0. Recall that unfolding our limit prediction error process we have:

gt(θ) =

∞∑
i=−∞

γizt, (6)

with zt = δ + ∆yt Moreover recall ζi the coefficient of the i-th element of the polynomial
ψ(L−1)ϕ(L). Then consider Θ as a compact set satisfying Assumption 1-3 such that:

sup
θ∈Θ

|ζi − ζi,0| ≤ Cϵ

sup
θ∈Θ

|γi| ≤ C|d|i

sup
θ∈Θ

|γi − γ0,i| ≤ Cϵ|d|i

sup
θ∈Θ

|δ − δ0| ≤ Cϵ

with |d| < 1. This allows us to conclude that:

sup
θ∈Θ

∣∣gt(θ)− gt(θ0)
∣∣ ≤ ∞∑

i=−∞
sup
θ∈Θ

∣∣γi − γ0,i
∣∣ · (∣∣∆yt∣∣+ ∣∣δ0∣∣)+ ∞∑

i=−∞
sup
θ∈Θ

∣∣γi∣∣ · sup
θ∈Θ

∣∣δ − δ0
∣∣

≤ ϵ
(
C0 + C1

∞∑
i=−∞

|d|i
∣∣zt∣∣)

sup
θ∈Θ

∣∣εt(θ)− εt(θ0)
∣∣ = sup

θ∈Θ

∣∣ϕ(L)ψ(L−1)gt(θ)− ϕ0(L)ψ0(L
−1)gt(θ0)

∣∣
≤ ϵ
(
C0 + C1

k∑
i=1

∣∣gt−i(θ0)∣∣+ C2

∞∑
i=−∞

|d|i
∣∣zt∣∣)

Moreover following Breid et al. (1991) we can write:

εt(θ) = εt(θ) + εt(θ0)− εt(θ0)

with:
εt(θ0)− ϵKt ≤ εt(θ) ≤ εt(θ0) + ϵKt

Note that the second derivatives of the log likelihood function, avoiding the repetitions in the
cross derivatives, will be:
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∂l2(ε(θ∗))

∂θi∂θj
=



∂2εt(θ)
∂ϕi∂ϕj

h(εt(θ)) +
∂εt(θ)
∂ϕi

∂εt(θ)
∂ϕj

h′(εt(θ))

∂2εt(θ)
∂ϕi∂ψj

h(εt(θ)) +
∂εt(θ)
∂ϕi

∂εt(θ)
∂ψj

h′(εt(θ))

∂2εt(θ)
∂Πi∂Πj

h(εt(θ)) +
∂εt(θ)
∂Πi

∂εt(θ)
∂Πj

h′(εt(θ))

∂2εt(θ)
∂Πi∂ϕj

h(εt(θ)) +
∂εt(θ)
∂Πi

∂εt(θ)
∂ϕj

h′(εt(θ))

∂εt(θ)
∂Ψi

h(εt(θ)) + σ−1 ∂εt(θ)
∂Ψi

h′(εt(θ))

σ−1εt(θ)h(εt(θ)) + σ−2εt(θ)
2h′(εt(θ)) + 1

Note that similarly to what has been done in the section A.6 for the proof of proposition 4 all the
first and second derivatives of εt(θ) can be written as unfoldable and converging SREs. Unfolding
these expression it is possible to show these expressions as infinite sums of the underlying zt as in
(6) with the same sequence of coefficients {γi}t∈Z. Then we have:

sup
θ∈Θ

∣∣∣∣∂εt(θ)∂θi
− ∂εt(θ0)

∂θi

∣∣∣∣ ≤ ϵCZt

sup
θ∈Θ

∣∣∣∣∂2εt(θ)∂θi∂θj
− ∂2εt(θ0)

∂θi∂θj

∣∣∣∣ ≤ ϵCZt

where Zt is such that E|Zt|n < ∞ with n such that E|εt|n < ∞. Now that we defined bounds
on these given quantities we can use the same approach as Breid et al. (1991) to conclude the proof.
Here we define a mean value expansion in θ0 of our expected likelihood difference.

E
[
l(εt(θ),θ)− l(εt(θ0),θ0)

]
= E

[ k∑
i=1

∂l(ε(θ0)

∂θi

(
θi − θi,0) +

k∑
i=1

k∑
j=1

∂l2(ε(θ0)

∂θi∂θj

(
θi − θi,0

)(
θj − θj,0

)
+

k∑
i=1

k∑
j=1

(
∂l2(ε(θ∗))

∂θi∂θj
− ∂l2(ε(θ0)

∂θi∂θj

)(
θi − θi,0

)(
θj − θj,0

)] (7)

From now on we will provide an argument for the derivative taken with respect to i ≤ r but the
same argument holds for the non-causal part. Note that using εt(θ0) = εt we have:

E
[
∂l(ε(θ0))

∂θi

(
θi − θi,0)

]
= E

[
E
[
∂l(ε(θ0))

∂θi

(
θi − θi,0)

∣∣∣∣Ft−1

]]
= 0

For what concerns the third term we have:

E
[ k∑
i=1

k∑
j=1

∂l2(εt(θ0)

∂θi∂θj

(
θi − θi,0

)(
θj − θj,0

)]
= −

(
θi − θi,0

)′I(θ0)(θi − θi,0
)

Finally for the last term we can apply a similar reasoning as what it is done in Breid et al.
(1991). We have:
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E sup
θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ

∗)) +
∂2εt(θ

∗)

∂ϕi∂ϕj
h(εt(θ

∗))

− ∂εt(θ0)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))−

∂2εt(θ0)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
≤E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))−

∂εt(θ0)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ0))−

∂εt(θ
∗)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ

∗))− ∂εt(θ
∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂2εt(θ∗)

∂ϕi∂ϕj
h(εt(θ0))−

∂2εt(θ0)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂2εt(θ∗)

∂ϕi∂ϕj
h(εt(θ

∗))− ∂2εt(θ
∗)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
= c1 + c2 + c3 + c4 + c5

Then:

c1 ≤ ϵCE
∣∣Zt ∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣ −→ 0, as ϵ −→ 0

Note that E
∣∣Zt ∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣ <∞ as ∂εt(θ0)
∂ϕj

and h′(εt(θ0)) are independent and it is possible

to split the infinite past and future elements in Zt such that all the elements in the expectation are
bounded by E|εt|2 <∞.
By a similar argument also c2 −→ 0 as ϵ −→ 0. Moreover as in Breid et al. (1991) we can split:

h′(x) = h1(x)− h2(x)

with hi(·) non-decreasing functions such that:

hi(x) = O(|x|k), as |x| −→ ∞
with k such that E|εt|2+k < ∞. Note also that the same operation is possible for h(x). With this
definition we can define:

Xi,t =



hi

(
εt(θ0)−εCKt

σ0−ϵ

)
− hi

(
εt(θ0)+εCKt

σ0+ϵ

)
, if εt(θ0) + εCKt¿0

hi

(
εt(θ0)−εCKt

σ0+ϵ

)
− hi

(
εt(θ0)+εCKt

σ0−ϵ

)
, if εt(θ0) + εCKt¡0

hi

(
εt(θ0)−εCKt

σ0−ϵ

)
− hi

(
εt(θ0)+εCKt

σ0−ϵ

)
, otherwise

Then we can bound:

E sup
θ∈Θ

c3 ≤ E sup
θ∈Θ

∂εt(θ
∗)

∂ϕi

∂εt(θ
∗)

∂ϕj

(
X1,t +X2,t

)
Using the moment bounds it is possible to show that this expected value is finite, then by

dominated convergence we have that c3 −→ 0 as ε −→ 0. We can apply the same approach to c4 and
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c5 so that we showed that the difference between the second derivatives in the last term of (7) goes
to zero with ϵ for i, j ≤ k. The reasoning is similar for other elements of the second derivative of the
score as argued in Breid et al. (1991), hence we have that:

E
[ k∑
i=1

k∑
j=1

(
∂l2(ε(θ∗))

∂θi∂θj
− ∂l2(ε(θ0))

∂θi∂θj

)(
θi − θi,0

)(
θj − θj,0

)]
−→ 0, for ϵ −→ 0

so that there is a ε > 0 such that for all θ ∈ Θ such that θ ̸= θ0 we have:

L(θ)− L(θ0) = E
[
l(εt(θ),γ)− l(εt(θ0),γ0)

]
< 0

Moreover assumption 4 ensures that θ is a compact set and the uniform convergence result
showed in part i) implies the continuity of the limit criterion function L(θ). These two results
combined with the uniqueness of the maximizer imply the result. □

A.6 Proof of Proposition 4

Proof: We establish (a) by noting that the first derivative of the limit process for our prediction
errors, defined in (13), takes the form

∂gt+1(θ)

∂θ
=

∞∑
r=0

∂Ci(θ)

∂θ
A(θ)r +

∞∑
r=0

Kr(θ)C(θ) +

∞∑
r=0

Kr(θ)Bt+1−r (8)

where Kr(θ) =
∑r
k=1 A

k−1(θ)∂A(θ)
∂θ A(θ)r−k. Further, we note that,

sup
θ∈Θ

||Kr(θ)|| ≤
r∑

k=1

||Ak−1(θ)
∂A(θ)

∂θ
A(θ)r−k||θ ≤ rKρr−1

∣∣∣∣∂A(θ)

∂θ

∣∣∣∣θ.
Taking the derivative the unfolded filtered prediction error, defined in (4), we get instead,

∂ĝt+1(θ)

∂θ
=

t−k∑
r=0

A(θ)r
∂C(θ)

∂θ
+

t−k∑
r=0

Kr(θ)C(θ) +

t−k∑
r=0

Kr(θ)Bt+1−r +Kt−k(θ)ĝk. (9)

Hence, the difference is given by,∣∣∣∣∣∣∣∣∂ĝt+1(θ)

∂θ
− ∂gt+1(θ)

∂θ

∣∣∣∣∣∣∣∣θ
=

∣∣∣∣∣∣∣∣ ∞∑
r=t−k+1

(
A(θ)r

∂C(θ)

∂θ
+Kr(θ)C(θ) +Kr(θ)Bt+1−r

)
+Kt−k(θ)ĝk

∣∣∣∣∣∣∣∣θ

≤
∞∑

r=t−k+1

∣∣∣∣∣∣∣∣(A(θ)r
∂C(θ)

∂θ

∣∣∣∣∣∣∣∣θ +

∞∑
r=t−k+1

∣∣∣∣Kr(θ)
∣∣∣∣θ ·

∣∣∣∣∣∣∣∣C(θ) +Bt+1−r

∣∣∣∣∣∣∣∣θ +
∣∣∣∣Kt−k(θ)

∣∣∣∣θ ·
∣∣∣∣ĝk∣∣∣∣

≤
∞∑

r=t−k+1

ρrK1 +

∞∑
r=t−k+1

rρrK2 ·
(
|ω|θ +

∣∣∣∣Bt+1−r
∣∣∣∣θ)+ (t− k)ρt−k−1K3

∣∣∣∣ĝk∣∣∣∣
≤ (t− k)ρt−k

[
K1

t− k

ρ

1− ρ
+K2

(
ρ|ω|θ

(1− ρ)2
+

∞∑
j=1

jρj
∣∣∣∣Bk−j∣∣∣∣θ)+ ρ−1

∣∣∣∣ĝk∣∣∣∣θ]
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where the inequality follows from the fact that we know under our assumptions that supθ∈Θ

∣∣∣∣A(θ)r∣∣∣∣ ≤
Kρr and c = supθ∈Θ ||∂A(θ)/∂θ|| <∞ because it is a continuous function over a compact set. Nat-
urally, this means that,

∣∣∣∣∂ĝt+1(θ)

∂θ
− ∂gt+1(θ)

∂θ

∣∣∣∣ e.a.s.−−−→ 0 as t −→ ∞

Finally, taking the expression in (8) we have, by subadditivity of || · ||nθ , that,

E sup
θ

∣∣∣∣∂gt+1(θ)

∂θ

∣∣∣∣n = E sup
θ

∣∣∣∣ ∞∑
r=0

∂C(θ)

∂θ
A(θ)r +

∞∑
r=0

Kr(θ)C(θ) +

∞∑
r=0

Kr(θ)Bt+1−r
∣∣∣∣n

≤ b1 + b2
(
|ω|nθ + E|∆yt+1−r|n

)
<∞

under the assumptions that E|εt|n <∞, with b1 = K1

1−ρn and b2 = K2ρ
n

(1−ρn)2 .

We now show that (b) holds by taking the derivative of the expression in (8) to get the limit second
derivative of the limit process of the prediction erros, that takes the form

∂2gt+1(θ)

∂θ∂θ′ =

∞∑
r=0

∂C(θ)

∂θ
Kr(θ) +

∞∑
r=0

(
Qr(θ)C(θ) +Kr(θ)

∂C(θ)

∂θ

)
+

∞∑
r=0

Qr(θ)Bt+1−r (10)

where we have

Qr(θ) =

r∑
k=1

( k−1∑
j=1

Aj−1(θ)
∂A(θ)

∂θ
A(θ)k−1−j ∂A(θ)

∂θ
A(θ)r−k +A(θ)k−1 ∂

2A(θ)

∂θ∂θ′ A(θ)r−k+

r−k∑
j=1

Ak−1(θ)
∂A(θ)

∂θ
A(θ)j−1 ∂A(θ)

∂θ
A(θ)r−k−j

)
.

Now, we note that

||Qr(θ)||θ ≤
r∑

k=1

(
(r − 1)Kρr−2

∣∣∣∣∂A(θ)

∂θ

∣∣∣∣2
θ
+Kρr−1

∣∣∣∣∂2A(θ)

∂θ∂θ′

∣∣∣∣θ)
≤ r2Kρr−2

(∣∣∣∣∂A(θ)

∂θ

∣∣∣∣2
θ
+ ρ
∣∣∣∣∂2A(θ)

∂θ∂θ′

∣∣∣∣θ).
While by taking the derivative of the unfolded filtered derivative, defined in (9), we have,

∂2ĝt+1(θ)

∂θ∂θ′ =

t−k∑
r=0

Kr(θ)
∂C(θ)

∂θ
+

t−k∑
r=0

(
Qr(θ)C(θ) +Kr(θ)

∂C(θ)

∂θ

)
+

t−k∑
r=0

Qr(θ)Bt+1−r +Qt−k(θ)ĝk

(11)

Then by similar arguments as in point (a) we have,∣∣∣∣∣∣∣∣∂2ĝt+1(θ)

∂θ∂θ′ − ∂2gt+1(θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣θ =

∣∣∣∣∣∣∣∣ ∞∑
r=t−k+1

(
2Kr(θ)

r ∂C(θ)

∂θ
+Qr(θ)

[
C(θ) +Bt+1−r

])
+Qt−k(θ)ĝk

∣∣∣∣∣∣∣∣θ
≤ K0(t− k + 1)ρt−k + (t− k + 1)2ρt−k−1K1 + (t− k)2ρt−k−2K2||ĝk||θ

≤ (t− k)2ρt−k
(
K0,t + ρ−1K1,t + ρ−2K2

∣∣∣∣ĝk∣∣∣∣).
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As a result, ∣∣∣∣∂2ĝt+1(θ)

∂θ∂θ′ − ∂2gt+1(θ)

∂θ∂θ′

∣∣∣∣ e.a.s.−−−→ 0 as t −→ ∞

Hence, we can use (10) and in a similar way to (a), by the sub-additivity of the norm and by the
fact that E|εt|n <∞ we have,

E sup
θ

∣∣∣∣∂2gt+1(θ)

∂θ∂θ′

∣∣∣∣n
= E sup

θ

∣∣∣∣ ∞∑
r=0

∂C(θ)

∂θ
Kr(θ) +

∞∑
r=0

(
Qr(θ)C(θ) +Kr(θ)

∂C(θ)

∂θ

)
+

∞∑
r=0

Qr(θ)Bt+1−r
∣∣∣∣n

≤ c1 + c2
(
K2 +K3E

∣∣Bt+1−r
∣∣n) <∞

with c1 = ρnK3

(1−ρn)2 and c2 = ρn(1+ρn)
(1−ρn)3 . □

A.7 Proof of Theorem 2

Proof: We follow the argument of Theorem 3.1 of Gorgi and Koopman (2021) and Section 7 of
Straumann and Mikosch (2006). We first start showing the normality of the ML estimator which
relies exclusively on the limit likelihood function, defined by,

θ̃T = argmax
θ∈Θ

LT (θ) (12)

The final result is then proved by showing that
√
T (θ̂−θ0) and

√
T (θ̃−θ0) have the same asymptotic

distribution.
Note that LT (θ) is twice continuously differentiable in θ, the expression for L′

T and L′′
T are

available in the Appendix 6. By Proposition 4.3 in Krengel (1985), we have that L′
T and L′′

T are both
stationary and ergodic since they are continuous function of gt(θ), ∂gt(θ)/∂θ and ∂2gt(θ)/∂θ∂θ

′

that are stationary and ergodic by Proposition 2. Joint stationarity and ergodicity of the three
sequences can be recovered by the stable dependence on the underlying sequence {εt}t∈Z. Now,
application of the mean value theorem yields,

L
′

T (θ̃T ) = L
′

T (θ0) + L
′′

T (θ
∗)(θ̃T − θ0),

where θ∗ is a point between θ0 and θ̃T . By the definition given in (12) we have that L
′

T (θ̃T ) = 0,
this means that we have,

L
′′

T (θ
∗
T )

√
T (θ̃T − θ0) = −

√
TL

′

T (θ0).

Now we have that θ̃T
a.s.−−→ θ0 , with θ0 in the interior of θ by assumption. We also have that under

Assumptions 1-4 and if assumption 3 holds with n > 4 we can apply lemma 1 such that L
′′

T (θ
∗
T ) has

a uniformly bounded moment. Then by the ergodic theorem of Rao (1962) we have that,

−L
′′

T (θ
∗
T )

a.s.−−→ −E[l′′t (θ0)].

We also have, by Lemma 2, that E||l′′t (θ0)|| is positive definite, and by Lemma 3 we have
√
TL′

T (θ0)
d−→

N(0,Ω−1) as T −→ ∞. Therefore we conclude that

√
T (θ̃T − θ0)

d−→ N (0,Ω) as T −→ ∞

6see Appendix E
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where Ω = −E[l′′t (θ0)]−1. Finally, we show that θ̂T and θ̃T have the same asymptotic distribution.
We can do this as in Straumann and Mikosch (2006) by noting that,

L
′

T (θ̂T ) = L
′

T (θ̃T ) + L
′′

T (θ
∗∗)(θ̃T − θ̂T )

where through abuse of notation, we let θ∗∗ denote a point between θ̃T and θ̂T , rowise in the score
vector. Now we have that by definition L

′

T (θ̃T ) = 0 and L̂
′

T (θ̂T ) = 0. Then the previous equation
is equivalent to, √

T
(
L̂

′

T (θ̂T )− L
′

T (θ̂T )
)
= L

′′

T (θ
∗∗)

√
T (θ̃T − θ̂T )

The left hand term goes to zero a.s. by Lemma 4 as T −→ ∞. We also have that θ∗∗
T

a.s.−−→ θ0
and as before by Lemma 1 we have that L

′′

T (θ
∗∗)

a.s.−−→ E[l′′t (θ0)] as T −→ ∞. This implies that√
T (θ̃T − θ̂T )

a.s.−−→ 0 implying that θ̃T and θ̂T have the same distribution. □
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B Lemmas

Lemma 1 Under assumption 1-4 and if assumption 3 holds with n > 4 we have that the second
derivative of the loglikelihood function has a uniformly bounded moment, that is E supθ∈Θ ||l′′t (θ)|| <
∞.

Proof: We have that l′′t (θ) = ∂lt(θ)/∂θ∂θ
′. First recall the division of the parameter vector

θ = (α, ω,γ), where α and ω are the parameters driving only the update equation. Using the
definition we have in the Appendix (18) this means,

E||l′′t (θ)||θ ≤ E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂θ∂θ′

∣∣∣∣∣∣∣∣θ + E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂θ∂ε

∂εt(θ)

∂θ

∣∣∣∣∣∣∣∣θ
+ E

∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂ε∂ε

∂εt(θ)

∂θ

∂εt(θ)
′

∂θ

∣∣∣∣∣∣∣∣θ
+ E

∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∂2lt(εt(θ),γ)

∂ε∂θ

∣∣∣∣∣∣∣∣θ + E
∣∣∣∣∣∣∣∣∂lt(εt(θ),γ)∂ε

∂2εt(θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣θ.
The first term is defined by (19), and we can see in (20) that it is bounded. To show that the
next terms are bounded we use the generalized Holder inequality saying that for the norm || · ||p =
(E|| · ||p)1/p for random variables or random vectors x and y we have ||x ·y|| ≤ ||x||p||y||q with p, q > 0
such that pq/(p+ q) = 1. For the second terms, and symmetrically for fourth term, this implies,

E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂θ∂ε

∂εt(θ)

∂θ

∣∣∣∣∣∣∣∣θ ≤ E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂θ∂ε

∣∣∣∣∣∣∣∣θ
2

E
∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∣∣∣∣∣∣∣∣θ
2

<∞,

where again the first term is defined in (19) in the appendix and bounded by the expression in (20).
Moreover under the assumption of a finite moment for n = 4 the second term is bounded by Lemma 5.

The same approach holds for the third and the last term,

E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂ε∂ε

∂εt(θ)

∂θ

∂εt(θ)

∂θ

∣∣∣∣∣∣∣∣θ ≤ E
∣∣∣∣∣∣∣∣∂2lt(εt(θ),γ)∂ε∂ε

∣∣∣∣∣∣∣∣θ
2

E
∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∣∣∣∣∣∣∣∣θ
4

E
∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∣∣∣∣∣∣∣∣θ
4

<∞

E
∣∣∣∣∣∣∣∣∂lt(εt(θ),γ)∂ε

∂2εt(θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣θ < E
∣∣∣∣∣∣∣∣∂lt(εt(θ), γ)∂ε

∣∣∣∣∣∣∣∣θ
2

E
∣∣∣∣∣∣∣∣∂2εt(θ)∂θ∂θ′

∣∣∣∣∣∣∣∣θ
2

<∞

Lemma 2 E||l′′t (θ0)|| is positive definite.

Proof First recall the division of the parameter vector θ = (α, ω,Ψ,γ), where α and ω are the
parameters driving only the update equation. For the purpose of this proof let us include the MAR
parameter in the distribution parameters vector, so γ = (ϕ1, ..., ϕr, ψ1, ..., ψs, σ, ν), as we are in-
terested in the difference between the filter parameters and the other ones. We note that under
Assumption 2 we have −E

[
l′′t (θ0)

]
= E

[
l′t(θ0)l

′
t(θ0)

′] by Fischer information matrix equality. We
are assuming that the model is correctly specified such that lt(θ0) is the true log density evaluated at
yt. We also note that lt(θ0) is twice continuosly differentiable and that the second derivative of lt(θ0)
has a bounded moment according to Lemma 1. Then the equality follows using standard arguments.

Now to show that the matrix is invertible we note that E
[
l′t(θ0)l

′
t(θ0)

′] is positive semi-definite
by construction so what is left to prove is that it is also not singular. We then have to prove that,

v′l′t(θ) = 0 a.s if and only if v = 0
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where v ∈ Rk+4. We can express our first derivative as:

v′l′t(θ) = v′


 0

0
∂l′t(ε(θ0),γ0)

∂γ

+


∂εt(θ0)
∂α

∂εt(θ0)
∂ω

∂εt(θ0)
∂γ

 ∂lt(εt(θ),γ0)
∂ε

 .
We can then split the vector v = (v1, v2) with v1 ∈ R2, that is the vector of elements corresponding
to the zeros in the first term of the derivative of the likelihood, and with v2 ∈ Rk+2 that is the rest
of the elements.

It is possible to argue as in the proof of Gorgi and Koopman (2021) that we could have v′l′t(θ) = 0
almost surely with v ̸= 0 only with the following cases: (i) v1 ̸= 0 and v2 = 0, (ii) v1 = 0 and v2 ̸= 0
and (iii) v1 ̸= 0 and v2 ̸= 0. For the first case (i) to hold we must have,

∂lt(εt,γ0)

∂ε
v′1

(
∂εt(θ0)
∂α

∂εt(θ0)
∂ω

)
= 0.

Observing the score function in the Appendix E we can see that ∂lt(εt,γ0)/∂ε ̸= 0 with probability
1. Then for this to hold we need to have v1,1∂εt(θ0)/∂α+ v1,2∂εt(θ0)/∂ω = 0 a.s. We have that,

gt+1(θ) =

∞∑
r=0

A(θ)rC(θ) +

∞∑
r=0

A(θ)rBt+1−r (13)

∂εt(θ)

∂ω
= Φ(θ)

∂gt(θ)

∂ω
= Φ(θ)

( ∞∑
r=0

A(θ)r
∂C(θ)

∂θ

)
∂εt(θ)

∂α
= Φ(θ)

∂gt(θ)

∂α
= Φ(θ)

∞∑
r=0

( r−1∑
k=1

A(θ)k
∂A(θ)

∂α
A(θ)r−k

[
C(θ) +Bt+1−r

])
Now noting that all the elements, including the derivative of A(θ) are well defined, we know that

C(θ) + Bt+1−r = ∂C(θ)
∂θ if and only if ∆yt+1−r − ω = −1 and this happens with probability zero.

Since these two terms are different with probability 1 we have that the derivative processes are
linearly independent. This means option (i) can not hold.
Now we need to rule out case (ii). In this case:

v′2

[
∂l′t(εt(θ0),γ0)

∂γ

∂l′t(εt(θ0),γ0)

∂ε

−1

+
∂εt(θ0)

∂γ

]
= 0

We first note that ∂εt(θ0)/∂γi = 0 for i = k + 2 and on the other hand ∂l′t(εt(θ0),γ0)/∂γi = 0 for
i ̸= k + 1, k + 2. Define j = {k + 1, k + 2}. We can then repeat our splitting argument, one would
need to find a v2,1,v2,2 such that,

v2,1
∂εt(θ0)

∂γ−j
+ v2,2

∂l′t(εt(θ0),γ0)

∂γj

∂l′t(εt(θ0),γ0)

∂ε

−1

= 0 a.s.

We would need either v2,1 ̸= 0 and v2,2 = 0, (ii) v2,1 = 0 and v2,2 ̸= 0 and (iii) v2,1 ̸= 0 and v2,2 ̸= 0.
Let us start with the first expression.

At the same time we can have a look at the derivatives of the first term, we can write Φ(θ) =
(φ0, ..., φk−1) where φi is the coefficient of zi−s in 1

σ (1−ϕ1z−ϕ2z
2− ...−ϕrzr)(1−ψ1z

−1−ψ2z
−2−
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...− ψsz
−s). Then:

φi =

i∑
j=1

ψs−j+1ϕi−j for i = 1, ..., s

φi =

k−i+1∑
j=1

ψj−1ϕj+i−s−1 for i = s+ 1, ..., k.

Then,

∂Φ(θ)

∂ϕ1
=

1

σ

[
0, ψs..., ψ1, 1, 0, ..., 0

]
∂Φ(θ)

∂ϕr
=

1

σ

[
0, 0, ..., 0, ψs..., ψ1, 1

]
∂Φ(θ)

∂ψs
=

1

σ

[
1, ϕ1, ..., ϕr, 0, 0, ..., 0

]
∂Φ(θ)

∂ψ1
=

1

σ

[
0, .., 0, 1, ϕ1, ..., ϕr, , 0

]
at the same time we have that ∂A(θ)

∂γi
is a matrix with α∂Φ(θ)

∂γi
on the first row and zeros everywhere

else. This means that,

∂εt(θ0)

∂γi
=
∂Φ(θ)

∂γi
gt(θ) + Φ(θ)

∞∑
r=1

( r−1∑
k=1

A(θ)k
∂A(θ)

∂γi
A(θ)r−k

[
C(θ) +Bt+1−r

])
so every element of this vector is a linear function of linearly independent vectors.

This means that it is not possible to find a non-zero vector such that,

v2,1
∂εt(θ0)

∂γ−j
= 0 a.s.

Now we can move to the second case, in the appendix we can find an expression for the last term.
Both its elements are non degenerate so it is non-zero with positive probability. This means we
would need v2,2 = 0 to have,

v2,2
∂l′t(εt(θ0),γ0)

∂γj

∂l′t(εt(θ0),γ0)

∂ε

−1

= 0 a.s.

For the last case we would need to find v2,1,v2,2 ̸= 0 such that,

v2,1
∂εt(θ0)

∂γ−j
= −v2,2

∂l′t(εt(θ0),γ0)

∂γj

∂l′t(εt(θ0),γ0)

∂ε

−1

a.s.

But we have that our right term depends on εt while the one on the left is Ft−1-measurable, with
all the elements being not degenerate, so this equation cannot hold. This rules out the possibility
that v2 = 0 and v1 ̸= 0.

Then for the third case (iii) we would need,

v′1

(
∂εt(θ0)
∂α

∂εt(θ0)
∂ω

)
+ v′2

∂εt(θ0)

∂γ
= v′2

∂l′t(εt(θ0),γ0)

∂γ

∂l′t(εt(θ0),γ0)

∂ε

−1

a.s.

Now the left hand side is Ft−1-measurable and the right hand side is not because it depends on εt,
and since we have that all the derivatives are non degenerate we have that this equation cannot hold
a.s. By this we can conclude our proof.
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Lemma 3 Under the assumptions 1- 4- 3 and if assumption 2 holds with n ≥ 4 we have that,

√
TL′

T (θ0)
d−→ N (0,K) with T −→ ∞

where L′
T (θ0) =

∑T
t=1 l

′
t(θ0) and l

′
t(θ0) = ∂lt(θ0)/∂θ.

Proof: This result uses the CLT for stationary and ergodic martingale difference sequences from
Billingsley (1999).
We can start by arguing that {l′t(θ0)}t∈Z is a stationary and ergodic sequence by (Krengel, 1985,
Proposition 4.3) since each of its elements is a continuous function of gt(θ) and ∂gt(θ)/∂θ that are
elements of stationary and ergodic sequences.
We can also argue that {l′t(θ0)}t∈Z is a martingale difference sequence as lt(θ0) is the conditional
score of a correctly specified model. Our density meets the weak regularity conditions as it is a
continuously differentiable function and its derivative with respect to θ can be uniformly bounded
by some constant in all its arguments. We need to show that the second moment of l′t(θ) is bounded.
Equivalently we can show that ||lt(θ0)||2 with || · ||n = (E|| · ||n)1/n. Using the subadditivity of the
norm for n ≥ 1 we have,

∣∣∣∣l′t(θ0)∣∣∣∣2 ≤
∣∣∣∣∣∣∣∣∂lt(εt(θ0),γ)∂θ

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∂lt(εt(θ0),γ)∂ε

∂εt(θ0)

∂θ

∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣∂lt(εt(θ0),γ)∂θ

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∂lt(εt(θ0),γ)∂ε

∣∣∣∣∣∣∣∣
4

·
∣∣∣∣∣∣∣∣∂εt(θ0)∂θ

∣∣∣∣∣∣∣∣
4

We can see that the first term is bounded in (20). The second inequality comes instead from the
Generalized Holder inequality and ∂lt(εt(θ0),γ)/∂ε is the expression in (??) and it is bounded.
Then by the assumptions of Theorem 2 we have that,∣∣∣∣l′t(θ0)∣∣∣∣2 <∞

this finishes the proof of this part.

Lemma 4 Under the assumptions 1- 4- 3 and if assumption 2 holds with n ≥ 4 we have that,

√
T sup

θ∈Θ

∣∣∣∣L̂′
T (θ)− L′

T (θ)
∣∣∣∣ a.s.−−→ 0 as T −→ ∞

Proof: We will show that, ∣∣∣∣l̂′t(θ)− l′t(θ)
∣∣∣∣θ e.a.s.−−−→ 0 as t −→ ∞.

As this implies that

lim
T−→∞

∣∣∣∣L̂′
T (θ)− L′

T (θ)
∣∣∣∣θ ≤

T∑
t=1

∣∣∣∣l̂′t(θ)− l′t(θ)
∣∣∣∣θ <∞ a.s.

And this implies our result. First using the subadditivity of the norm and relying on (17) we have
that,

∣∣∣∣l̂′t(θ)− l′t(θ)∣∣∣∣θ ≤
∣∣∣∣∣∣∣∣∂lt(ε̂t(θ),γ)∂θ

− ∂lt(εt(θ),γ)

∂θ

∣∣∣∣∣∣∣∣θ+ ∣∣∣∣∣∣∣∣∂lt(ε̂t(θ),γ)∂ε

∂ε̂t(θ)

∂θ
− ∂lt(εt(θ),γ)

∂ε

∂εt(θ)

∂θ

∣∣∣∣∣∣∣∣θ.
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This means that it is enough to show that the two terms on the right converge to zero. For the
second term we rely on Corollary TA.16 of Blasques et al. (2021) according to which it is enough to
show that,∣∣∣∣∣∣∣∣∂lt(ε̂t(θ),γ)∂ε

− ∂lt(εt(θ),γ)

∂ε

∣∣∣∣∣∣∣∣θ e.a.s.−−−→ 0 and

∣∣∣∣∣∣∣∣∂ε̂t(θ)∂θ
− ∂εt(θ)

∂θ

∣∣∣∣∣∣∣∣θ e.a.s.−−−→ 0

if both ∂lt(εt(θ),γ)/∂ε and ∂εt(θ)/∂θ are stationary and ergodic and with a finite log+ ||·|| moment.
In our case we have that ∂εt(θ)/∂θ from (21) is a continuous function of a stationary and ergodic
sequence so it is stationary and ergodic by (Krengel, 1985, Proposition 4.3). It has also a bounded
|| · || as we can see from (21) and Proposition 2. The same reasoning holds for ∂lt(εt(θ),γ)/∂ε (see
(20) in the Appendix).
The convergence of ∂ε̂t(θ)/∂θ to ∂εt(θ)/∂θ follows by the continuous mapping theorem and by
Proposition 2.
The convergence of ∂lt(ε̂t(θ),γ)/∂ε relies on mean value theorem,∣∣∣∣∣∣∣∣∂lt(ε̂t(θ),γ)∂ε

− ∂lt(εt(θ),γ)

∂ε

∣∣∣∣∣∣∣∣θ ≤ sup
θ∈Θ

sup
ε∈R

∣∣∣∣∂2l(ε,γ)∂ε2

∣∣∣∣ · |ε̂t(θ)− εt(θ)|θ
e.a.s.−−−→ 0

which results from the fact that ∂2l(ε,γ)∂ε2 is bounded (see (20) in the Appendix) and by the
convergence of ĝt(θ) to gt(θ) e.a.s and the continuous mapping theorem.
The first term also follows from an application of the mean value theorem,∣∣∣∣∣∣∣∣∂lt(ε̂t(θ),γ)∂θ

− ∂lt(εt(θ),γ)

∂θ

∣∣∣∣∣∣∣∣θ ≤ sup
θ∈Θ

sup
ε∈R

∣∣∣∣∂2l(ε,γ)∂θ∂ε

∣∣∣∣ · |ε̂t(θ)− εt(θ)|θ
e.a.s.−−−→ 0

which results from (20) in the Appendix and by Proposition 1.

Lemma 5 For any n ≥ 1 such that E|εt|n <∞ we have:

E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∣∣∣∣∣∣∣∣n <∞ E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂2εt(θ)∂θ∂θ′

∣∣∣∣∣∣∣∣n <∞

Proof: We have,

E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂εt(θ)∂θ

∣∣∣∣∣∣∣∣n ≤ E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂Φ(θ)∂θ
gt(θ)

∣∣∣∣∣∣∣∣n + E sup
θ∈Θ

∣∣∣∣∣∣∣∣Φ(θ)∂gt(θ)∂θ

∣∣∣∣∣∣∣∣n
≤ K1E sup

θ∈Θ

∣∣∣∣gt(θ)∣∣∣∣n +K2E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂gt(θ)∂θ

∣∣∣∣∣∣∣∣n <∞
(14)

where K1 = supθ∈Θ ||∂Φ(θ)/∂θ||n and K2 = supθ∈Θ ||Φ(θ)||n are bounded by θ being compact set
such that σ > 0 and the two other terms are less than infinity by Proposition 2. Then in a similar
way we have,

E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂2εt(θ)∂θ∂θ′

∣∣∣∣∣∣∣∣n ≤ E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂2Φ(θ)∂θ∂θ′ gt(θ)

∣∣∣∣∣∣∣∣n + E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂Φ(θ)∂θ

∂gt(θ)

∂θ

∣∣∣∣∣∣∣∣n + E sup
θ∈Θ

∣∣∣∣∣∣∣∣Φ(θ)∂2gt(θ)∂θ∂θ′

∣∣∣∣∣∣∣∣n
≤ K1E sup

θ∈Θ

∣∣∣∣gt(θ)∣∣∣∣n +K2E sup
θ∈Θ

∣∣∣∣∣∣∣∣∂gt(θ)∂θ

∣∣∣∣∣∣∣∣n +K3

∣∣∣∣∣∣∣∣∂2gt(θ)∂θ∂θ′

∣∣∣∣∣∣∣∣n <∞

(15)

with the three terms being bounded by Proposition 2.
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C Monte Carlo Simulation

Figure 8: Simulated paths from the three data generating processes.

(a) MAR process without trend.

(b) MAR process plus random walk with drift. (c) MAR process plus trend with breaks.

D Testing Procedure for Multimodal Predictive

Densities

We use the Brier score, from Brier (1950), is computed as,

BS =

T∑
t=1

(pt − ot)
2

where pt is the probability of our event and ot is the realization of that event (1 if it happens, 0
otherwise). The range of this score is between 0 and 1. We now consider the multicategory Brier
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score defined as,

BS =
1

T

T∑
t=1

R∑
r=1

(pt,r − ot,r)
2

where the r represents the different events and they must be such that
∑R
r=1 pt,r = 1 for all t

and ot,r = 1 only for one r and it is 0 for the others. The range of this score is between 0 and 2.
This multicategory score allows us to compare interval forecast. Since we are interested in prediction
during a bubble (so we want to correctly address sharp increases and crashes) we consider as category
movements that are within or outside the range of one standard deviation of a baseline Gaussian
random walk. Our categories will then be,

pt,r =


1∆yt<−σrw if r = 1

1|∆yt|<σrw
if r = 2

1∆yt>σrw
if r = 3

(16)

With these scores we can create a Diebold Mariano test statistic. The test statistic for the multi-
category Brier score will be,

dt =

R∑
r=1

(pm,rt − om,rt)
2 −

R∑
r=1

(pi,rt − oi,rt)
2

DM =
√
T
d

σd

where σd =
√
γ̂(0) + 2

∑k
i=1 wiγ̂(i), with k is of the same order as the square root of the test sample

size and wi = 1− i/k.
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E Additional derivations

Remember that θ = (ω, α,γ) with γ = (ϕ1, ..., ϕr, ψ1, ..., ψs, σ, ν) with r+s = k. The full derivatives
of LT (θ) are:

∂lt(εt(θ),γ)

∂θ
=
∂lt(ε,γ)

∂θ

∣∣∣∣
ε=εt(θ)

+
∂lt(ε,γ)

∂x

∣∣∣∣
ε=εt(θ)

∂εt(θ)

∂θ
(17)

We now can consider that,

∂lt(ε,γ)

∂θ
=


0
0
...
0

∂lt(ε,γ)
∂ν


As the only parameter that actually appears in the likelihood is ν all the others are inside εt(θ).
We also have,

∂2lt(εt(θ),γ)

∂θ∂θ′ =
∂2lt(ε,γ)

∂θ∂θ′

∣∣∣∣
ε=εt(θ)

+
∂2lt(x,γ)

∂θ∂ε

∣∣∣∣
ε=εt(θ)

∂εt(θ)

∂θ
+
∂2lt(ε,γ)

∂ε2

∣∣∣∣
ε=εt(θ)

∂εt(θ)

∂θ

∂εt(θ)

∂θ
+

+
∂εt(θ)

∂θ

∂2lt(ε,γ)

∂ε∂θ

∣∣∣∣
ε=εt(θ)

+
∂lt(ε,γ)

∂ε

∣∣∣∣
ε=εt(θ)

∂2εt(θ)

∂θ∂θ′

(18)

We now can consider that,

∂2lt(ε,γ)

∂θ∂θ′ =


0 0 . . . 0
0 0 . . . 0
...

... ∂2lt(ε,γ)
∂ν∂ν′0 0

 and
∂2lt(ε,γ)

∂ε∂θ′ =


0
0
...

∂2l(ε,γ)
∂ε∂ν

 (19)

for the same reason as before.
We can now provide expressions for these derivatives dividing them in two groups:

A) The derivatives of the model for l(ε,γ) and s(ε,γ) = ∂l(ε,γ)/∂ε. We know that:

l(ε,γ) = − log(πν)

2
+ log

(
Γ(ν+1

2 )

Γ(ν2 )

)
− ν + 1

2
log

(
1 +

ε2

ν

)

∂l(ε,γ)

∂ε
=− (ν + 1)

ε

ν + ε2
∂2l(ε,γ)

∂ε2
= −(ν + 1)

ν − ε2(
ν + ε2

)2 ∂2l(ε,γ)

∂ν∂ε
= −ε 1 + ε2(

ν + ε2
)2

∂l(ε,γ)

∂ν
= − 1

2ν
+ h′(ν) +

ν + 1

2ν

ε2

ν + ε2
− 1

2
log

(
ν + ε2

ν

)
∂2l(ε,γ)

∂ν2
=

1

2ν2
+ h′′(ν) +

ε2 + ν(ν + 2)

2ν2
ε2(

ν + ε2
)2 +

ε2

ε2ν + ν2

Now let’s show all these expressions are bounded, we have that:
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sup
γ

∣∣∣∣∂l(ε,γ)∂ε

∣∣∣∣ ≤ sup
γ

ν + 1

ν + ε2
· |ε| ≤ k|ε|

sup
γ,ε

∣∣∣∣∂2l(ε,γ)∂ε2

∣∣∣∣ ≤ sup
γ,ε

ν + 1

ν + ε2
·
∣∣∣∣ν − ε2

ν + ε2

∣∣∣∣ ≤ 2

sup
γ

∣∣∣∣∂l(ε,γ)∂ν

∣∣∣∣ ≤ sup
γ

∣∣∣∣− 1

2ν
+ h′(ν)− ν + 1

2ν

ε2

ν + ε2
− 1

2
log

(
ν + ε2

ν

)∣∣∣∣
≤ 3

2
+ |h′(ν)|+ k2|ε|δ

sup
γ

∣∣∣∣∂2l(ε,γ)∂ν2

∣∣∣∣ ≤ sup
γ

∣∣∣∣ 1

2ν2
+ h′′(ν) +

ε2 + ν(ν + 2)

2ν2
ε2(

ν + ε2
)2 +

ε2

ε2ν + ν2

∣∣∣∣
≤ 1 + |h′′(ν)|+

∣∣∣∣ ε4(
ν + ε2

)2 ∣∣∣∣+ ∣∣∣∣ ε4

2ν2
(
ν + ε2

)2 ∣∣∣∣
sup
γ

∣∣∣∣∂2l(ε,γ)∂ν∂ε

∣∣∣∣ ≤ sup
γ

|ε|
ν + ε2

1 + ε2

ν + ε2
≤ 1

(20)

B) The derivatives of the prediction error:

εt(θ) =
ϕ(L)ψ(L−1)

σ
gt−s(θ) = Φ(θ)gt(θ)

with gt =
[
gt, gt−1, ..., gt−k+1

]′
and Φ(θ) the vector of coefficients from the MAR polynomial. Then:

∂εt(θ)

∂θ
=
∂Φ(θ)

∂θ
gt(θ) + Φ(θ)

∂gt(θ)

∂θ
∂2εt(θ)

∂θ∂θ′ =
∂2Φ(θ)

∂θ∂θ′ gt(θ) + 2
∂Φ(θ)

∂θ

∂gt(θ)

∂θ
+Φ(θ)

∂2gt(θ)

∂θ∂θ′

(21)

In the specific we have:

∂εt(θ)

∂ω
= Φ(θ)

∂gt(θ)

∂ω

= Φ(θ)
[∂C(θ)
∂ω

+A(θ)
∂gt−1(θ)

∂ω

]
∂εt(θ)

∂α
= Φ(θ)

∂gt(θ)

∂α

= Φ(θ)
[∂A(θ)
∂α

gt−1(θ) +A(θ)
∂gt−1(θ)

∂α

]
∂εt(θ)

∂γi
=
∂Φ(θ)

∂γi
gt(θ) + Φ(θ)

∂gt(θ)

∂γi
for i = 1, ..., k + 1

=
∂Φ(θ)

∂γi
gt(θ) + Φ(θ)

[∂A(θ)
∂γi

gt−1(θ) +A(θ)
∂gt−1(θ)

∂γi

]
∂εt(θ)

∂γi
= 0 for i = k + 2

(22)
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We can write Φ(θ) = (φ0, ..., φk−1) where φi is the coefficient of zi−s in 1
σ (1−ϕ1z−ϕ2z

2− ...−
ϕrz

r)(1− ψ1z
−1 − ψ2z

−2 − ...− ψsz
−s). Then:

φi =

i∑
j=1

ψs−j+1ϕi−j for i = 1, ..., s

φi =

k−i+1∑
j=1

ψj−1ϕj+i−s−1 for i = s+ 1, ..., k

Then:

∂Φ(θ)

∂ϕ1
=

1

σ

[
0, ψs..., ψ1, 1, 0, ..., 0

]
∂Φ(θ)

∂ϕr
=

1

σ

[
0, 0, ..., 0, ψs..., ψ1, 1

]
∂Φ(θ)

∂ψs
=

1

σ

[
1, ϕ1, ..., ϕr, 0, 0, ..., 0

]
∂Φ(θ)

∂ψ1
=

1

σ

[
0, .., 0, 1, ϕ1, ..., ϕr, , 0

]
The derivative for A(θ) is very similar but it is in a matrix form and it has the α parameter as

a scale in front of the first row.
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