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Abstract

We explore how optimal emission abatement trajectories are affected by dynamic charac-

teristics of greenhouse-gas emitting systems, such as inertia, induced innovation, and path-

dependency, by formulating a compact and analytically tractable model with stylized damage

assumptions to derive the optimal cost-benefit pathway. Our analytic solutions highlight how

simple dynamic parameters affect the optimal abatement trajectory (including the optimal

current effort and the cost of delay). The conventional cost-benefit result (i.e., an optimal

policy with rising marginal costs that reflects discounted climate damages) arises only as a

special case in which the dynamic characteristics of emitting systems are assumed to be in-

significant. More generally, our model yields useful policy insights for the transition to deep

decarbonization, showing that enhanced early action may greatly reduce both damages and

abatement costs in the long run.
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1 Introduction

As concern over climate change grows, objectives to cut greenhouse gas emissions have become

increasingly ambitious. The emphasis on more rapid and radical action is reflected in the joint

governmental goals agreed in the COP21 agreement in Paris in 2015, and in national targets

to reach “net zero” emissions—required if global temperatures are to be stabilized. These now

cover all major economies and a large share of global emissions (IPCC, 2022). Such ambition

implies major and potentially rapid sectoral transformations, raising important questions about

the economics of deep decarbonization, including cost-benefit, optimal effort, and trajectories

given the dynamic characteristics of global emitting systems (Nordhaus, 2019; Stern, 2022).

Integrated assessment models (IAMs) of climate change can broadly be divided into stylized

aggregate cost-benefit models and more complex process-based IAMs (Weyant, 2017; Nikas

et al., 2019). The former (e.g., Nordhaus, 1991, 1993; Golosov et al., 2014; van der Ploeg and

Rezai, 2019) are common in the mainstream economics literature, focusing in particular on

optimal responses given assumed climate change damages, but often neglect dynamic aspects

of the emitting systems such as capital stock and innovation processes (Acemoglu et al., 2012;

Vogt-Schilb et al., 2018). The latter type involve more detailed representations of energy and

land use systems, including dynamic aspects—as used in the IPCC Assessments (IPCC, 2007,

2014, 2022). Such IAMs, 17 of which are reviewed by Harmsen et al. (2021), primarily focus on

modeling pathways toward fixed goals while drawing on large databases and technology-specific

assumptions. The resulting complexity can inhibit transparency, and may not illuminate

underlying economic mechanisms or key sensitivities.

This article contributes to a nascent literature seeking to bridge these schools. Building on

the intuition in Grubb et al. (1995), we develop a stylized cost-benefit model—both analytically

tractable and transparent—to evaluate the optimal balance between emissions-driven changes

in temperature (Ricke and Caldeira, 2014; Mattauch et al., 2020) and dynamic features of

emitting systems identified in the empirical literature: inertia, induced innovation, and path

dependency. Our model allows for an analytic solution that yields insights into how just a

few, key, dynamic assumptions affect optimal abatement, with the ultimate goal of informing

debates on the optimal effort and timing of abatement, beyond assumptions about damages.

First, inertia in the system arises most obviously from the duration, construction times, and

displacement of long-lived capital stock. The importance of assumptions about the malleability

of capital stock in optimal growth models has been known for half a century (Newbery, 1972),

but many climate-macroeconomic models which focus on the long run have no inertia, or—

implicitly or explicitly—assume a high elasticity of substitution between “green” and “dirty”

technologies (e.g., Acemoglu et al., 2012, 2016; Hassler et al., 2020). This becomes problematic

in view of the typically long timescales of emitting capital stock (Pottier et al., 2014) and

growth rates for clean technology (Wilson and Grubler, 2015). Inertia thus has important

implications in the face of higher damage costs (Howard and Sterner, 2017) and in meeting

the goals of the Paris Agreement (IPCC, 2022).

This aspect of dynamic costs has recently been represented—at a cost of considerable

complexity—in IAMs in terms of capital investment; e.g., in the context of a fixed temperature

goal rather than a cost-benefit analysis (Vogt-Schilb et al., 2018), or in a DICE-like cost-

benefit model including capital stock (Baldwin et al., 2020). Our treatment is more stylized,

parameterizing the scale of such adjustment costs—the resistance to accelerating abatement—

in terms of a characteristic transition time of the global energy system.
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Turning to induced innovation, it is established that technological progress is induced by in-

vestment and scale, including learning-by-doing and economies of scale (see Grubb et al., 2021,

for a systematic review of empirical findings). Induced innovation encompasses endogeneity in

innovation between high- and low-carbon technologies (Acemoglu et al., 2012, 2014; Aghion

and Jaravel, 2015) and in economic systems more widely (Gillingham et al., 2008; Dietz and

Stern, 2015). A growing number of IAMs incorporate some form of induced innovation (e.g.,

Acemoglu et al., 2012; Baldwin et al., 2020), illustrating themes that similarly emerge from

our more stylized analysis. Whereas inertia in itself introduces adjustment costs, investments

associated with induced innovation may be associated with cheaper enduring abatement.

Finally, inertia and induced innovation together contribute to the third feature: path de-

pendency in emitting systems (Aghion et al., 2016, 2019). Specifically, the enduring impact of

greater abatement in one period can be found not only in induced cost reductions in specific

targeted technologies, but also in changes to the overall system that yield long-term emissions

reductions beyond the directly amortized costs. These may range from lasting low-carbon

infrastructure (e.g., in buildings, transport, and electricity networks) and targeted low-carbon

innovation to enduring changes in networks, institutions, and policy landscapes and expecta-

tions. The optimal effort involved to shift the emissions pathway in part reflects the degree of

path dependency of the system.

In pursuit of transparency and tractability, our model seeks to represent the implications of

these dynamic factors, rather than mimicking the processes themselves. The underlying struc-

ture can be characterized in terms of Gillingham and Stock’s (2018) distinction between static

and dynamic costs. Static costs are those for which the cost of a given degree of abatement

(relative to a reference emission projection) is predetermined by exogenous modeling assump-

tions, conventionally represented in terms of marginal abatement cost curves. Dynamic costs

are those which are incurred at a given point time in time, but which do not endure and may

relate directly to abatement cost curves in other periods. Specifically, we introduce a term

to represent rate-dependent “transitional costs” comprising two components: a characteristic

transition time of the emitting system, and a parameter representing the contribution of tran-

sitional investments to reducing the “static” component of abatement costs. We characterize

the latter as the pliability of the system—the extent to which, ultimately, the system can

endogenously adjust to abatement.

Our analytic solution illustrates the influence of key parameters, and also reveals qualita-

tively different behaviors, with three distinct patterns of optimal emission pathways (regimes):

the conventional results arising from models with static abatement costs only, one with mod-

erate transitional costs, and one with predominantly transitional costs.

A system with purely static abatement, akin to that in the standard DICE model, implies a

sudden drop in annual emissions (i.e., an initial discontinuity in annual emissions). Intuitively,

it makes sense to abate up to the value of avoided discounted climate damages.

The system behaves fundamentally differently in the presence of transitional costs. First,

it transforms at a steadier rate, as higher inertia (i.e., longer characteristic transition times in

our model) smooths the pace of reductions over time. As the initial abatement effort focuses on

transforming the system, it is not immediately associated with reduced emissions (as emissions

cannot suddenly drop, as in static-cost models). Nevertheless, the initial optimal abatement

effort may substantially exceed that in purely static-cost models. Second, to the extent that the

transitional costs are associated with reductions in enduring static costs (e.g., through induced

innovation, infrastructure, and other path-dependent effects represented in our model by non-
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zero pliability), there are enhanced benefits to early action. The optimal effort thus exceeds

the immediate social cost of carbon emissions. Third, faced with considerable inertia, it may

be optimal to “overshoot” into a period of negative emissions which draw peak temperatures

downward.

We also derive analytic solutions when faced with a hard temperature constraint, represent-

ing an extreme non-linearity in damages. These show that with only static costs, the optimal

solution tends to involve “overshoot” followed by steeply negative emissions as the constraint

approaches. More realistic dynamic assumptions result in very different strategies, tending to

linearly reduce emissions towards zero, though with potential “overshoot” when the constraint

is very tight given inertia in the emitting system.

The analysis offers several important contributions to the literature seeking to introduce

dynamic characteristics into stylized IAMs. Our introduction of a representative characteristic

transition time of the emitting system, indexing a cost associated with accelerating change from

the reference emissions trajectory, offers an amalgamated proxy for the wide range of specific

capital stock and technology growth-rate assumptions required in more complex models. It

thus offers a simple approach to evaluating the importance of the resulting inertia.

Similarly, the introduction of a parameter characterizing the pliability of the emitting

system reflects the implications of extensive research that a significant fraction of the cost of

abatement—classically presented as exogenous assumptions extending far into the future—may

in reality be transitional. We thereby capture the broad implications of low-carbon learning-

by-doing, scale economies, and infrastructure investments, all of which may be expected to

bring down the “static” cost of low carbon options relative to high-carbon ones. Consequently,

our model allows us to explore what is implied if the ex-ante abatement costs that are typically

assumed to be unavoidable in most models are in fact pliable—awaiting the required scale of

investment to secure the breakthroughs needed to set energy systems on a different course.

We also provide analytic insights to results found in more complex numerical models. For

example, it is well known that cost-benefit results are sensitive to the assumed discount rate

r. We derive solutions from our model for the optimal degree of initial effort and find that it

is exceptionally sensitive to the discount rate (i.e., proportional to 1/r6) in the “static” case,

if the reference trajectory is rising significantly and there are no exogenously defined backstop

technologies. We further find that any degree of pliability necessarily increases the optimal

initial effort. Our model also illustrates that with high enough pliability—as determined by

the ratio of climate damages to abatement costs and the (inverse) inertia of the system—the

optimal cost-benefit emissions trajectory always includes “overshoot”.

Finally, in a cost-benefit setting, if climate damages and abatement costs have equal degrees

of convexity and the reference case involves rising emissions, then there will be an optimal,

constant positive level of emissions unless abatement costs fall exogenously, or the system

is fully pliable. However if climate damages are extremely steep, or (almost equivalently)

proxied by a fixed temperature goal, then the behavior of a “static cost only” system changes

radically as soon as inertia is introduced—with emissions trending approximately linearly

towards zero—and the optimal initial effort is driven entirely by the cost of transforming the

system.

Overall, transitional investments reduce long-term abatement costs, curtailing the overall

costs of climate change (i.e., the sum of climate damages and abatement costs). Even with

moderate climate-damage assumptions, if emitting systems are substantially path dependent

(i.e., have a high degree of pliability), we find that the optimal long-run temperature increase
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may well lie below 2 degrees Celsius.

The main model is described in section 2. In section 3 we present and discuss the analytic

solution, computing it for calibrated parameter values. Section 4 analytically calculates the

optimal abatement efforts at time zero, while section 5 addresses the cost of delaying action.

Section 6 concludes.

2 The model

2.1 High-level optimization problem

We define cumulative emissions at time t, relative to pre-industrial times, as E(t) measured in

gigatonnes of carbon (GtC). We take t = 0 to mean today. The historical path of E(t), i.e., for

t ≤ 0, is fixed and cannot be changed. Eref(t) is a reference trajectory that matches historical

cumulative emissions for t ≤ 0. Cumulative emissions to date are fixed at E0 := Eref(0).

Going forward, i.e., for time t > 0, Eref(t) represents a “business as usual” scenario absent

any substantial abatement effort. This trajectory is suboptimal in the context of climate

change, such that E(t) will optimally diverge from Eref(t) for t > 0. For notational simplicity,

annual emissions are denoted by e(t) := E′(t), measured in GtC per year (GtC/yr). The

reference trajectory of annual emissions is written as eref(t) = E′
ref(t). The constant eref(0) = e0

represents current-day emissions.

The stylized high-level problem we are interested in solving is

min
{E(t)}t=T

t=0

∫ T

0
exp(−r t)F [E(t), e(t), e′(t)] dt, (1)

s.t. E(0) = E0, (2)

and e(0) = e0, (this restriction is optional). (3)

Here {E(t)}t=T
t=0 denotes the path of cumulative emissions E(t) from t = 0 to t = T , where

T > 0 measured in years (yr) is the time horizon, which may be infinite, r > 0 is the discount

rate, and F [·, ·, ·] is a function depending on E(t) and its first two derivatives, denoted e(t)

and e′(t). The cumulative emissions path E(t) for 0 ≤ t ≤ T together with the boundary

conditions (2) and optionally (3) implies the annual emissions path e(t) for 0 ≤ t ≤ T , as well

as its rate of change, e′(t). This means that E(t) can—without loss of generality—be used as

the control variable.

The function F [·, ·, ·], measured in USD per year, is the sum of a climate-damage function

D[·] and an abatement-cost function C[·, ·]:

F [E(t), e(t), e′(t)] := D[E(t)] + C[e(t), e′(t)]. (4)

The damage function reflects the form in the majority of stylized IAMs, which relate climate

damages to global temperature change, using the finding that this is closely proportional to

cumulative CO2 emissions (neglecting shortlived gases). Consequently, at any given point in

time, climate damages D[·] depend on cumulative emissions up to that point, i.e., E(t), and

omitting lags for simplicity (see section 2.2 for details).

Abatement costs C[·, ·], on the other hand, depend on both annual emissions e(t) and

their rate of change, e′(t). Most stylized IAMs take C = C[e(t)], i.e., without dependence
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on e′(t), such that the abatement cost at time t depends solely on the annual emissions at

time t, relative to the reference level. As indicated, these “static” costs represent the classic

structural form of an abatement cost curve. To these we add transitional costs by allowing

C[·, ·] to depend additionally on e′(t). As outlined, this comprises the elements of inertia and

induced innovation (see section 2.3 for details).

The minimization problem (1) is subject to constraint (2), implying that cumulative emis-

sions E(t) must be continuous at t = 0: we cannot instantly extract carbon from the atmo-

sphere. Models with static costs, which optimize annual emissions in sequential equilibria, yield

discontinuities in annual emissions when climate damages are introduced, and steep reductions

if a low-carbon technology suddenly becomes competitive. With transitional dynamics, how-

ever, such jumps in global emissions are implausible (and very costly). Constraint (3) implies

that E(t) smoothly matches the reference trajectory at t = 0, by making annual emissions e(t),

too, continuous at t = 0. To maintain comparability with standard models without inertia,

this constraint is optional.

2.2 Climate-damage function

It is now well established that global temperature change is closely related to cumulative

emissions. A central estimate is that global temperatures increase by 1 degree Celsius with

each additional 600 GtC in cumulative emissions (IPCC, 2021, Table SPM.2). In line with

much of the stylized literature, including the common default assumption in DICE, we assume

that global damages increase quadratically with temperature. The climate-damage function,

D[·], is thus simply:

D[E(t)] =
d

8
E(t)2, (5)

where d ≥ 0 is a damage parameter with dimensions USD/(yr×GtC2), such that damages have

a dimension of USD/yr. The numerical factor 1/8 is arbitrary and chosen for later convenience.

Damage function (5) ignores any time lag between emission reductions and their impact

on temperature. Contrary to common assumptions, this time lag is relatively small: Ricke

and Caldeira (2014) estimate the median time lag (until maximum warming occurs) to be just

over 10 years (see also Mattauch et al., 2020). A lag of L years could be introduced with a

simple transposition from d/8E(t)2 to d/8E(t−L)2. This would reduce the net present value

of the damage by (1 − e−Lt), a minor change with no impact on the structural insight of the

paper. We therefore omit this for simplicity.

2.3 Abatement-cost function

We specify the abatement cost function, C[·, ·], in terms of abatement a(t), and its rate of

change a′(t) as follows:

C[e(t), e′(t)] := c
[
q a(t)2 + 2 p τ2 a′(t)2

]
, (6)

where abatement a(t) := eref(t)− e(t). (7)

Here c > 0 is an overall cost-scaling constant, measured in USD×yr/GtC2, and the numerical

factor of 2 in the second term of equation (6) is arbitrary but included for later convenience.
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Abatement at time t, a(t) is measured in GtC/yr relative to baseline, while a′(t), in GtC/yr2,

represents its rate of change. The resulting cost function expresses annual expenditure on

emissions abatement in USD/yr.

The first term in equation (6) captures the static costs, the traditional stylized formulation

of abatement costs as a nonlinear function of the degree of abatement relative to a baseline pro-

jection, scaled by q where q ∈ [0, 1] is a dimensionless number. In common with several other

stylized models, we assume that the static abatement cost at time t increases quadratically

with the abatement effort at time t, giving rise to a term that scales with a(t)2.1

The second term captures the transitional cost, which is proportional to the square of the

rate of change of abatement and measures how rapidly the system is forced to deviate from

the reference trajectory.2 Here we introduce two parameters, τ and p:

1. Parameter τ > 0, measured in years, reflects the intrinsic inertia—i.e., the resistance to

change—of the system in terms of a characteristic transition time (Harmsen et al., 2021):

the higher τ , the longer it takes to achieve a given level of abatement for a given cost

(or the more costly it is to overcome this inertia). The characteristic time τ therefore

offers a compact proxy for capital stock retirement and growth rate constraints on new

technologies in more complex models.

2. Parameter p ∈ [0, 1] reflects the “pliability” of the system, with q = 1− p being its com-

plement. We use p to explore the implications of some portion of costs being transitional

that otherwise, in a purely exogenous framework, would have been attributed to static

costs. The case p = 0 represents the classical exogenous treatment in which all costs

are static, while p = 1 represents the opposite extreme, in which all costs turn out to

be transitional, with innovation and infrastructural developments resulting in low car-

bon technology systems which are fully competitive with the incumbent fossil-fuel-based

industries.

Central to our model is the contention that ex-ante estimates of (exogenously defined)

marginal cost curves in practice implicitly conflate static and dynamic costs in two aspects.

First, much innovation and cost reduction—beyond public R&D—is induced by economic

incentives and associated investment, involving private R&D, iterative economies of scale,

learning-by-doing, and supply chain developments associated with deployment. Second, an

important element of the costs facing many new technologies arises from mismatch with ex-

isting physical and institutional infrastructures, as, for example, seen by the needs of electric

vehicles for different fuelling and maintenance infrastructures. These and other factors mean

that introducing a carbon tax may involve an initial cost which declines as the economy adjusts

(Aghion et al., 2016; Shapiro and Metcalf, 2023).

Inertia and induced innovation together create path dependence. The ratio pτ2/q can be

taken to represent the degree of path dependency of the system: if there is high inertia and

significant pliability, then after transitional abatement in one period, the system will have

extensive path dependence and will tend to stick to its new trajectory.

1Several other stylized models assume quadratic abatement costs. Nordhaus (2013) has a(t)2.8. Grubb et al.
(2018) show that learning-by-doing tends to reduce not only the scale but the convexity of the marginal cost curve.

2Though there is less evidence on the functional form of transitional costs, they are clearly convex (see Grubb
et al., 2018). Vogt-Schilb et al. (2018) assume that the cost of capital retirement increase quadratically with the
pace and Bauer et al. (2016) assume that costs for renewable deployment increase quadratically with the rate of
accelerating renewable expansion in the REMIND model.
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Symbol Meaning Dimension Calibration
p, q pliability and its complement q = 1− p none
t, T time, time horizon yr
τ characteristic transition time yr 15
r discount rate 1/yr 0.025
C[·, ·], D[·] abatement cost and climate damage USD/yr
c abatement cost parameter USD× yr/GtC2 0.026
d damage parameter USD/(yr×GtC2) 0.00002
E(t), Eref(t) cumulative emissions at time t GtC
E0 cumulative emissions at t = 0 GtC 665
e(t), eref(t) annual emissions at time t GtC/yr
a(t) abatement at time t, a(t) := eref(t)− e(t) GtC/yr
e0 annual emissions at t = 0 GtC/yr 10.4
e′(t), e′ref(t) rate of change of annual emissions at time t GtC/yr2

a′(t) rate of change of abatement at time t GtC/yr2

e1 reference growth of annual emissions GtC/yr2 0.12

Table 1: Overview of symbols, dimensions, and calibration

2.4 Business-as-usual scenario

To complete the model setup, the reference path of cumulative emissions is specified by as-

suming linear growth in annual emissions as follows:

eref(t) := e0 + e1 t, t ≥ 0, (8)

Eref(t) = Eref(0) +

∫ t

0
eref(s) ds = E0 + e0 t+

e1
2
t2, t ≥ 0, (9)

where e0 ≥ 0 is the annual emissions at t = 0, while e1 ≥ 0, measured in GtC/yr2, represents

a (linear) growth rate of annual emissions assuming “business as usual.” We take as our

reference scenario a view in which global emissions rise at moderate pace of e1 = 120 MtC/yr2

(0.12 GtC/yr2), approximating the average trend since the financial crisis. Problem (1) has

now been specified in its entirety. Table 1 contains an overview of all symbols used as well as

their dimensions.

3 Analytic solutions

3.1 Statement of Theorem 1

Optimization problem (1) permits an analytic solution as described here.

Theorem 1 Consider optimization problem (1) with damage parameter d > 0 and infinite

time horizon (T = ∞). The optimal path is

E(t) = E⋆ + e⋆ · t +

2∑
j=1

Zj exp (zj t/2) , t ≥ 0, (10)

where constants E⋆, with dimension GtC, and e⋆, with dimension GtC/yr, are

E⋆ =
8 c q (e0 r − e1)

d
+ 64 e1 r

2

(
c p τ2

4 d
−
(c q
d

)2
)
, e⋆ = 8

c q e1 r

d
. (11)
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The form of the exponential constants zj, with dimension 1/yr, and Zj, with dimension GtC,

for j = 1, 2 depend on the pliability p of the system relative to a critical threshold p⋆, defined

as

p⋆ := 1−
√
1 + 4x− 1

2x
∈ (0, 1),

where x := c/(dτ2) ∈ (0,∞) is a dimensionless characteristic of the system. The solution then

comprises three mathematically distinct regimes:

1. No pliability. Assume p = 0 and impose constraint (2). Then

z1 = r −

√
r2 +

d

2 c q
, Z1 = E0 − E⋆, z2 = 0, Z2 = 0. (12)

2. Medium pliability. Assume 0 < p ≤ p⋆ and impose constraints (2) and (3). Then

z1 = z+ and z2 = z−, where

z± = r −
√
v ±

√
u < 0, (13)

where u := q2

p2τ4
− d

cpτ2
and v := r2 + q

p τ2
. Both z1 and z2 are real valued and strictly

negative. The exponential constants Zj for j = 1, 2 are given by

Z1 =
2(e0 − e⋆) + z−(E⋆ − E0)

z+ − z−
Z2 =

2(e0 − e⋆) + z+(E⋆ − E0)

z− − z+
. (14)

3. High pliability. Assume p > p⋆ and impose constraints (2) and (3). Then z1 = z+ and

z2 = z−, where

z± = r − w ± i

√
|u|

2w
, (15)

where i =
√
−1, w :=

√
v+

√
v2+|u|

√
2

, while u, v remain as under point 2. Both z1 and z1
are complex valued, with real parts that are strictly negative. Constants Z1, Z2 remain

as in equation (14), but with z± as in equation (15).

Proof: A standard application of the calculus of variations (e.g., Goldstein et al., 2013)

gives a fourth-order differential equation for the solution E(t). Conjecture (10) yields expres-

sions for E⋆ and e⋆, as well as a fourth-order polynomial equation for the constants zj for

j = 1, 2. Two roots can be discarded because of the (implicit) boundary condition at T = ∞.

The two remaining roots can be found analytically, giving z1 and z2. Depending on the regime,

these are either real (no-pliability and medium-pliability regimes) or complex (high-pliability

regime). The constants Zj for j = 1, 2 follow from the boundary conditions at t = 0 and are

expressable in terms of z1 and z2. In all cases, the cumulative emissions path E(t) remains

real and implies the marginal emissions path e(t) by taking the first derivative. Details of the

proof can be found in the online Appendix A.
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3.2 Discussion of Theorem 1

Equation (10) in Theorem 1 gives the optimal solution E(t) for t ≥ 0. As a sanity check, it

can be verified that the limits (i) d → 0 or (ii) c → ∞ imply E(t) → Eref(t). That is, when

(i) damages are zero or (ii) the abatement cost approaches infinity, the optimal path is equal

to the reference path. For non-zero damages (d > 0) and finite abatement cost (c < ∞), the

path of E(t) lies below that of Eref(t) for t ≥ 0. In particular, equation (10) gives E(t) as the

sum of a constant E⋆, a linear function of time with slope e⋆, and a sum of two exponential

functions. The (real parts of the) exponential parameters zj for j = 1, 2 are negative, such

that, as t → ∞, these terms vanish.

In all cases, the optimal marginal emissions path e(t) is implied by the cumulative emissions

path E(t) via a straightforward differentiation with respect to time. Further, in all cases an

analytic solution remains possible even for a finite optimization horizon T . The resulting,

somewhat more involved, expressions are available from the authors upon request.

Theorem 1 implies that optimal long-run annual emissions e(t) = E′(t) are constant at

the level e⋆ given in equation (11). The positive emissions are determined by the balance of

damages and abatement costs, both of which increase quadratically in our model if reference

emissions are rising. As might have been anticipated, e⋆ is an increasing function of the

abatement-cost parameter c, the business-as-usual emissions parameter e1, and the discount

rate r, and a decreasing function of the damage parameter d.

For a fully pliable, path-dependent system (p = 1, q = 0), or stable reference emissions

(e1 = 0), we have e⋆ = 0, i.e., it is optimal in the long run to decarbonize entirely—as would

be the case for more convex damages, as touched on in Theorem 2 below.3

The three regimes differ in how this optimal asymptotic emissions level e⋆ is reached. The

no-pliability solution, where p = 0, is akin to the standard DICE solution, and implies an

initial drop in emission (prompt jump in abatement).4 Whenever p > 0, i.e., for a system

with any positive degree of inertia, such an immediate response is impossibly costly. Hence, in

regimes 2 and 3, the path of e(t) remains continuous at t = 0, avoiding a discontinuity in annual

emissions. In the medium-pliability regime, the optimal long-run emissions level is reached by

more steadily cutting emissions to this level. The abatement effort (cost) at time zero typically

exceeds that in regime 1, because part of this effort is related to the transformation of the

emitting systems, the results of which are not immediately visible in the marginal emissions

path.

In the high-pliability regime, the exponential parameters zj for j = 1, 2 are imaginary. Nat-

urally, the cumulative emissions profile E(t) remains real valued. The corresponding response

can be equivalently written in terms of trigonometric functions as follows:

E(t) = E⋆ + e⋆ · t (16)

+ exp

(
ẑ t

2

)[
2(e0 − e⋆) + ẑ(E⋆ − E0)

z̃
sin

(
z̃ t

2

)
+ (E0 − E⋆) cos

(
z̃ t

2

)]
,

where e⋆, E⋆ remain as in Theorem 1, while ẑ, z̃ are real numbers defined as ẑ := Re(z+) and

3This reflects a point which is intuitively obvious but rarely made explicit: whether or not a cost-benefit model
converges to zero emissions depends on the relative convexity of assumed damage and abatement costs, unless a
“backstop” technology kicks in which also in effect reduces the convexity of the abatement cost curve.

4In practice, plots from DICE do not show this because emissions at time t = 0 are set equal to the actual
emissions and the discontinuity occurs in the first unconstrained five-year period, shown as t+ 5.
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z̃ := Im(z+).

The intuition for the third regime is that, when accelerating abatement is expensive (but

damages are significant), this constrains the pace of abatement, leading to some degree of

“overshoot” of concentrations and temperature before later correcting (steering back, with

negative emissions). This explains the appearance of trigonometric functions: emissions os-

cillate toward the long-term optimum. We note that “overshoot” has become of feature of

scenarios to meet more ambitious temperature goals in many complex IAMs of the IPCC

(IPCC, 2022), but has not generally been observed in stylized cost-benefit models.

3.3 Statement of Theorem 2

A key structural assumption in the preceding analysis concerns the functional form of damages,

in particular that damages for a given temperature increase with the same (quadratic) form

as abatement costs. This results in the specific form of the solution involving the convergence

on a constant emissions rate, which reflects the optimal trade-off between the damages and

abatement costs. It is thus natural to question the sensitivity of Theorem 1 to this assumption.

Science has largely framed the problem of climate change in terms of planetary risks, and

emphasized that the risk of major climate damages arising from earth systems (or indeed,

some vulnerable social systems) crossing various thresholds increase sharply with the degree

of temperature change.5

While solutions involving other functional forms of damages in general are not analytically

tractable, we here investigate the implications of highly non-linear damages by the proxy of a

limit on temperature, which can represented by a limit on cumulative emissions. This results

in our second theorem, which confirms the main takeaways of Theorem 1.

Theorem 2 Consider optimization problem (1) without damages (i.e., d = 0) but a constraint

on temperature change, represented by limit on cumulative emissions ET within a finite time

horizon T < ∞. Let ∆T := E(T ) − Eref(T ) and δT := e(T ) − eref(T ) be deviations from the

reference trajectory at the terminal time point (both negative).

1. No inertia/pliability. Assume p = 0. Impose initial constraint (2) and terminal

constraint E(T ) = ET . Then the optimal path is

E(t) = Eref(t) + ∆T
exp(rt)− 1

exp(rT )− 1
, 0 ≤ t ≤ T. (17)

2. Positive inertia/pliability. Assume p < 0 < 1. Impose initial constraints (2)-(3) and

terminal constraints E(T ) = ET and e(T ) = eT . Then the optimal path is

E(t) = Eref(t) +

2∑
i=1

[
Zi

ezi t − 1

zi

]
− (Z1 + Z2)

er t − 1

r
, 0 ≤ t ≤ T, (18)

where constants zi for i = 1, 2 with dimensions yr−1 are z1 = (r −
√
r2 + 2q/(pτ2))/2

5Weitzman (2009) underlined the importance of highly non-linear risks, which he explored in terms of damages
rising with temperatures.

11



and z2 = (r +
√

r2 + 2q/(pτ2))/2. Constants Zi for i = 1, 2 measured in GtC/yr are

Z1 =

(
ez2T − erT

)
∆T −

(
ez2T−1

z2
− erT−1

r

)
δT

(ez2T − erT )
(
ez1T−1

z1
− erT−1

r

)
− (ez1T − erT )

(
ez2T−1

z2
− erT−1

r

) , (19)

Z2 =
−
(
ez1T − erT

)
∆T +

(
ez1T−1

z1
− erT−1

r

)
δT

(ez2T − erT )
(
ez1T−1

z1
− erT−1

r

)
− (ez1T − erT )

(
ez2T−1

z2
− erT−1

r

) . (20)

3. Full pliability. Assume p = 1. Impose initial constraints (2)-(3) and terminal con-

straints E(T ) = ET and e(T ) = eT . Then the optimal path is

E(t) = Eref(t) + Z1 t + Z2 t e
r t − (Z1 + Z2)

er t − 1

r
, 0 ≤ t ≤ T, (21)

where constants Zi for i = 1, 2 with dimensions GtC/yr are

Z1 =
(δT − r∆T )rT e

rT − δT (e
rT − 1)

(erT − 1)2 − r2T 2erT
, Z2 =

(δT − r∆T )(e
rT − 1)− δT rT

(erT − 1)2 − r2T 2erT
. (22)

Proof: The proof is similar to that of Theorem 1, requiring us to solve a fourth-order

differential equation for E(t). The key difference is that terminal emissions conditions are

enforced at T < ∞. Details are available on request.

3.4 Discussion of Theorem 2

With no inertia, i.e., τ = 0, initial and terminal constraints on emission rates are irrelevant

since emissions can jump with no transitional cost. Behavior is then very different from the

other cases. Note that with p = 0

e(t) = eref +∆T
r exp(rt)

exp(rT )− 1

When T , the time horizon, is moderately close relative to the impact of discounting, the

result is a large discontinuous initial jump of magnitude ∆T
r exp(rt)

exp(rT )−1 at time 0. With a larger

T , the denominator increases and the emissions trajectory can defer subsequent action, with

“overshoot” followed by accelerating abatement towards large negative emissions in the final

stages, at high but short-lived annual costs, extensively discounted.

With positive pliability, i.e. p > 0, inertia prevents the sudden jump and the dynamics are

different. Time derivatives of all the terms in (18) involving Z1 and Z2 have the property of

linear dependence on t when t is small.

The general equation is greatly simplified for the case of full pliability (p = 1, q = 0). Note

that in this case we have

e(t) = eref(t) + Z1 (1− ert) + Z2 r t e
rt

The emissions trajectory is invariant with respect to τ also. The consequence is that

whereas in the cost-benefit case higher inertia leads to (slightly) less effort, with more convex
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damage the opposite is the case. With a temperature constraint, the optimal initial effort

increases directly in proportion to τ2 , as well as (of course) the severity of the constraint.

Summarizing, with a fixed binding goal for temperature (and hence cumulative emissions),

the behavior of the system has parallels with the cost-benefit case when the system has no

learning or inertia —an initial jump, followed by deferral of stronger action, until the constraint

approaches (or as damages accumulate). With p > 0, however, the emissions trend inclines

towards linear reductions in the earlier stages, to minimize transitional costs and exploit the

possibilities of lowered abatement costs.

3.5 Numerical results

3.5.1 Calibration

This subsection describes how we calibrate the parameters of our model. An overview of the

calibrated parameter values is given in Table 1.

Emissions. We define t = 0 to be 2019 and take values for E0, e0, and e1 from the most

recent IPCC report (IPCC, 2021). Specifically we set E0 = 665GtC, e0 = 10.4GtC/yr, and

e1 = 0.120GtC/yr2.

Discount rate. We assume the real discount rate to be 2.5% per year, based on the expert

elicitation survey by Drupp et al. (2018). This is a compromise between “prescriptive” and

“descriptive” rates, leaning more towards the latter in that after a few decades it leads to

significant discounting of costs and damages.

Climate damages. Our climate-damage estimates draw upon Nordhaus (2013) and Howard

and Sterner (2017), both of which present damage estimates as proportional to the square of

global temperature change, as in our model. Howard and Sterner’s (2017) “preferred damage

specification” is almost four times the Nordhaus (2013) value. We take a central benchmark

value midway between these, resulting in 0.00002USD/(yr×GtC2).

Abatement costs. The vast majority of literature specifies abatement costs in terms of

marginal abatement costs, some derived for specific projected years. Based on the extensive

review by Harmsen et al. (2021, Figure 1) of a dozen different complex IAMs, we take an

average benchmark abatement cost parameter c = 0.026USD × yr/ GtC2, equivalent to a

marginal abatement cost of 370USD/tC = 100USD/tCO2 for 50% emissions reduction from

reference (7GtC/yr), in the middle of their reported range.

Characteristic time. There is little empirical literature on transition timescales. The

review by Harmsen et al. (2021) introduces this metric for the first time, documenting a

median value of 13.5 years across all the complex-process IAMs they review. We take our

benchmark value as τ = 15 years.

3.5.2 Results for Theorem 1

We present our main results for five different scenarios. Figure 1 displays annual emissions

(in GtC per year), global mean temperature increases with respect to pre-industrial times
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(in degrees Celsius), along with annual damages from climate change and annual abatement

costs (in trillion USD per year) for a system with no pliability (i.e., p = 0), a system with

full pliability (i.e., p = 1), and three scenarios that relate to regions in between (i.e., p ∈
{0.25, 0.5, 0.75}).

No pliability, p = 0. The system with purely static costs resembles that used in DICE

and other classical IAMs (hereafter, “classical”), as discussed in section 2. There is a prompt

reduction in annual emissions (by about one third), but after this initial drop, emissions

continue to rise steadily throughout the century. This is because abatement in this scenario

cannot keep up with the rising emissions from the business-as-usual scenario. As can be seen,

behavior in the classical case with exogenous and static costs (p = 0) is similar to the climate-

policy ramp observed in DICE. Annual abatement investment increases from below 500 billion

USD per year to above 1.5 trillion USD per year in 2100. As cumulative emissions continue

to rise, global mean temperatures rise above 2.5 degrees Celsius by 2100 and continue rising

beyond. Damages increase correspondingly over time, reaching more than 4 trillion USD per

year by the end of the century.

As soon as p > 0, an immediate (discontinuous) emissions reduction is no longer possible.

As indicated above, emissions in these positive-pliability scenarios initially decline (approxi-

mately) linearly. Once they cross below the classical p = 0 case, which happens after roughly

τ = 15 years, the behavior varies widely across the different cases.

Full pliability, p = 1. At the opposite extreme, the scenario with a fully pliable system

is one with solely transitional costs and no static costs. Emissions decline steadily and reach

net zero emissions around 2065. Afterwards, net annual emissions become negative, implying

that cumulative emissions will decrease (as indicated for the high-pliability regime). With

temperature increases proportional to cumulative emissions, the global mean temperature

increases to about 1.6 degrees Celsius from pre-industrial levels at the time of net zero, and

decreases slightly thereafter.

With full pliability, the optimal policy involves substantially higher initial expenditure than

in the other scenarios. Initial annual abatement investment in the fully pliable system is, at

over 1 trillion USD per year, almost three times greater than in the non-pliable system. The

trend is also reversed: optimal effort decreases rather than increases over time, reaching less

than 500 billion USD per year by 2100. Damages in this scenario remain much lower than in

the other two cases: between one and two trillion USD per year between 2018 and 2100.

Intermediate pliability, p = 0.25, p = 0.5, p = 0.75. In all intermediate cases,

emissions after the crossing point stay below those in the classical (p = 0) case, but do not

reach zero; as explained above, they asymptote towards a constant level. Given the absence

of a “backstop” technology in our model, global temperatures, damages, and abatement costs

all keep rising, though the p = 0.75 case only reaches 2 degrees Celsius towards the end of the

century, reflecting an initial doubling of the effort, which remains above the classical cost for

the first half of the century, reaping the rewards in the second half with lower abatement costs

as well as lower damages.

While damages are lower for higher p in panel (c), abatement costs in panel (d) for p > 0

(but p ̸= 1) are (mostly) above the classical case with p = 0. The intuition is that the larger
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(a) Annual emissions (b) Global mean temperature increase

(c) Annual damages (d) Annual abatement costs

Figure 1: Optimal policy and implications for p ∈ {0, 0.25, 0.5, 0.75, 1}
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(a) Annual emissions (b) Annual abatement costs

Figure 2: Optimal policy and implications with limit on cumulative emissions

initial abatement effort in the intermediate-pliability cases leads to reduced damages later

on. Given that damages are approximately three times higher than abatement costs for any

given p, the reduction in damages is larger than the increase in abatement (compared to the

business-as-usual scenario).

Hence, in terms of overall discounted costs, any p > 0 ultimately reduces the NPV as-

sociated with responding to climate change, ie. a lower value of the (optimized) objective

function (1). However as we explore in section 4, it has the opposite implication for the

optimal initial effort.

3.5.3 Results for Theorem 2

Figure 2 plots annual emissions and annual abatement costs resulting from a temperature

constraint (limit on cumulative emissions), i.e., Theorem 2. We set T = 81 and e(T ) = 0, so

that annual emissions are constrained to reach zero at the end of the century. Furthermore,

E(T ) = 1000 GtC, which equates to remaining cumulative emissions of 335GtC (1230GtCO2),

giving a near two-thirds chance of staying “below 2 degrees Celsius” IPCC (2021).

For the classical case of p = τ = 0, we see the expected immediate jump in annual emissions.

Thereafter, emissions, however, do not start to decline further until the middle of the century.

After about 2085 they go below zero, into a period of steeply negative emissions in order to

bring the global temperature back down.

With positive inertia and pliability, the figure shows that emissions decline almost linearly

irrespective of the degree of inertia or pliability across the range shown. They dip slightly

below zero in the last decade.

Comparing Theorem 2 broadly confirms the findings of Theorem 1 and shows that our cost-

benefit approach leads to similar results than an approach with a fixed temperature target.

For the remainder of the paper—where we calculate the optimal effort at time zero and the

cost of delay—we therefore only present results using the set-up from our main cost-benefit

model. The results using the other approach are available upon request.
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Figure 3: Optimal abatement effort at time zero from equation (24)

4 Abatement effort at time zero

Having obtained the optimal path of cumulative emissions E(t) in three regimes in Theorem 1,

we can directly compute the optimal degree of initial abatement effort (expenditure at time

t=0), and explore key sensitivities.

4.1 No inertia, no pliability regime

For p = 0, substituting the exact solution (10) into the cost function C[·, ·] in equation (6) and

evaluating the result at t = 0 yields the optimal current abatement effort measured in USD/yr

as follows:

C[e(0), e′(0)]
∣∣∣
p=0

= c
[
e0 − e⋆ −

z1
2
(E0 − E⋆)

]2 ∣∣∣
p=0,q=1

, (23)

=

[
e21
r6

+
2 e0 e1
r5

+
e20 + 2 e1E0

r4
+

2 e0E0

r3
+

E2
0

r2

]
· d2

64 c
+O(d3),

where E⋆ and z1 are given in equation (11) and (12), respectively. The second line is a

straightforward first-order Taylor expansion in the square of the damage parameter. From

this expression, it is clear that the optimal level of effort today is extremely sensitive to the

discount rate r, which appears to the power of six in the denominator whenever e1 ̸= 0. The

ratio d2/c confirms that effort tends to increase nonlinearly with d, while higher abatement

cost c suppresses effort because it reduces the benefit/cost ratio (and with discounting it is

cheaper to defer the effort required). In terms of initial emission conditions, e0, e1, and E0 all

also increase the optimal effort.
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Numerous studies with DICE have underlined sensitivity to the discount rate, but to our

knowledge none have identified it analytically to such a remarkable degree. Note that the first

two terms in the expansion are driven by e1, while the inverse quartic and cubic dependencies

involve e0. We interpret this as follows: without inertia, the solution suggests that in the

presence of climate damages, optimal emissions today are much lower than actual emissions.

At low discount rates, the solution suggests an immediate, large reduction in the starting level,

which is amplified further to counteract the rising trend of future emissions. In published

results from DICE and similar numeric models, this immediate reduction in annual emissions

is somewhat obscured by the five-year time steps typically used, but the underlying logic is

one of a sudden, potentially dramatic jump so as to “start from somewhere else.” In isolation

of any consideration of dynamic constraints, it is unclear how useful this is as a policy-relevant

insight, since the global energy system clearly cannot make overnight jumps in its emission

levels and trajectories, as acknowledged in DICE itself (Nordhaus, 2019).

4.2 Inertia and positive-pliability regimes

For p ̸= 0, substituting the exact solution (10) into the cost function C[·, ·] in equation (6) and

evaluating the result at t = 0 yields the optimal current abatement effort as follows:

C[e(0), e′(0)] = 2 c p τ2
[
e1 − (e0 − e⋆) ·

z1 + z2
2

− (E⋆ − E0) ·
z1 × z2

4

]2
, (24)

For a small degree of pliability (low p), the dependencies can be clarified as:

C[e(0), e′(0)] = C[e(0), e′(0)]
∣∣∣
p=0

+ V × c τ
√
2p+O(p), (25)

where V is a constant,6 e⋆ and E⋆ are as in equation (11), while z1 and z2 are as in equation (13)

(medium-pliability regime). Equation (25) is a straightforward Taylor expansion in powers of

p around the point p = 0, where the first term is given in equation (23). In equation (25), the

fact that the second term scales with τ reflects the fact that with more inertia, greater effort

is required to change the emissions trajectory, in proportion to the characteristic timescale

of the emitting system. The dependence on
√
p shows that effort is very sensitive to p as p

approaches 0. As soon as there is any transitional cost, i.e,, for any p > 0, the system cannot

be moved to a different starting point as in the no-pliability regime; hence, the high sensitivity

to p can be explained by this qualitatively different nature of the solution. In general, the

optimal initial effort increases with p, as more effort is exerted into transforming the system.7

6V is defined as follows

V =
[
e1 − (e0 − e⋆)

r + z−
2

+ (E0 − E⋆)
r z−
4

]
·
[
2(e0 − e⋆)− z−(E0 − E⋆)

]∣∣∣∣
p=0,q=1

,

z± = r ±
√
r2 +

d

2c
,

7A similar equation as equation (25) but for p > p⋆ can be obtained by plugging p = 1 into equation (24). As
this yields no new insights, we do not display this formula. It is available upon request.
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Figure 4: Decomposition of optimal value of objective function (1)

4.3 Numerical illustration

Figure 3 displays the optimal abatement effort at time zero for our calibration from above,

but with three values of the characteristics transition time τ , i.e., τ ∈ {7.5, 15, 30}.
Optimal initial effort is increasing in p and decreasing in τ . The gains of induced innovation

can easily be reaped in a flexible system with low inertia. If, however, inertial timescales put a

serious brake on the optimal pace of abatement achieved, this dampens the response, and hence

the benefits available, in the entire system. Policies to remove obstacles to faster transitions—

many of which may be political and distributional—enhance the gains, and consequently, the

justified effort.8

5 Cost of delay

We end by exploring the influence of dynamic factors on the cost of delay, which we define

as the sensitivity of objective function (1) to an infinitesimal delay dt in implementing the

optimal solution given in Theorem 1. During this short period of delay, the emissions profile is

assumed to equal its reference trajectory, after which the re-optimized policy is implemented.

Optimization problem (1) is formally unchanged after a delay dt if we recognize that the initial

conditions E0 and e0 have shifted to E0 + e0dt and e0 + e1dt, respectively.
9

8Note that the impact of characteristic transition time τ is reversed if the climate damages are more convex:
with a fixed temperature constraint, the constancy of initial pace of emissions reduction implies the optimal initial
effort required is proportional to τ2.

9For analytic tractability we choose an infinitesimal delay dt; the results can be generalized to allow for any
(non-infinitesimal) delay ∆t > 0.
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Figure 5: Cost of delay for τ ∈ {7.5, 15, 22.5, 30}

First, we analytically compute (see the online Appendix B) the value of the objective

function (1) under the optimal policy given in Theorem 1. We refer to this quantity as the

optimal net present value (NPV) associated with problem (1). Figure 4 shows how this optimal

NPV, including its three components (damages, static cost, and transitional cost), vary with

p. The optimal NPV is decreasing in p, while climate damages make up around two thirds of

the total across the range.

Second, we analytically compute (again, see the online Appendix B) the sensitivity of the

optimal NPV with respect to a short delay dt. The results shown in Figure 5 demonstrate

that the cost of delay is decreasing in p from around ∼3.6 trillion USD per year (for p = 0)

to around ∼2.6 trillion USD per year for our benchmark value τ = 15. The fact that the

cost of delay is a large multiple of the optimal effort at time zero suggests that the optimized

objective function is highly sensitive to the initial conditions. Even as the optimal effort at

time zero is relatively modest, a short delay of this optimal effort may be exceedingly costly;

indeed, much more costly than the optimal effort itself.

With low pliability, climate change is more costly overall to deal with and climate damages

are substantially higher. However, the system faces no inertial barrier. The ability to drop

emissions immediately is valuable in terms of the large immediate marginal impact on E(t), and

every year that passes without such action squanders this potential, substantially increasing

long-run damages. At higher pliability, abatement effort shifts towards transitional investments

with enduring benefits, but the scale of (marginal) reduced climate damages is lower because

the overall scale of long-run climate change is curtailed. Higher inertia, by impeding rapid

response, reduces the pace at which the system can exploit lower static costs, but increases

the marginal value of the achievable emission reductions. At a characteristic transition time

of τ = 30 years, these two effects roughly cancel each other out and the overall cost of delay
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is almost independent of the degree of system pliability.

6 Conclusion

We have constructed a stylized model that focuses on dynamic features of abatement costs,

splitting the latter into static costs and elements of transitional costs. Our analytic results

illuminate key sensitivities, and we demonstrated that the relative degree (as well as the

absolute scale) of these cost components has important implications for optimal trajectories,

initial effort, and long-run economics of the system.

Capital stock and other factors create aggregate inertia, represented in our model in terms

of a characteristic transition time. Technology deployment is typically associated with cost

reductions, and that investments in low carbon infrastructure (e.g., buildings, networks) may

last many decades, we argue that ex-ante estimates of marginal cost curves in practice conflate

static and transitional cost elements. The extent to which technologies and systems may adjust

to transitional abatement-related effort is characterized in terms of the pliability of the system.

Many models assume marginal abatement costs to be exogenously definable, positive and

enduring. Compared to this classical formulation, the optimal response in systems with high

pliability tend to start with optimally linear reductions in emissions, driven by higher initial

effort, and result in lower long-run temperature change and damages. In a cost-benefit setting,

higher (lower) inertia slightly dampens (amplifies) these benefits in our model. In a setting

with highly convex damages—represented in extreme by a fixed temperature goal—inertia is

critical, with the optimal effort in our model increasing with τ2.

The extent to which ex-ante assumed (static) abatement costs are actually transitional is

of course uncertain. However, we note that, for example, numerous modelling studies from

a decade ago assumed ex-ante that solar energy and electric vehicles would be enduringly

expensive ways of reducing emissions. Initially, they were, but with hindsight it is clear that

much of the early investment in deployment drove innovation and scale economies. Hence, we

contend that many technology cost projections in reality conflate assumed static costs with

the need for transitional investment, or adjustment costs, at technology or system levels.

Moreover, whilst zero technology cost is impossible, abatement is not a technology but

a difference between the cost of low and high carbon technologies. Over the past decade,

following large investments, several low carbon technologies have indeed become as cheap as

fossil fuels, suggesting that exploring a full range of 0 ≤ p ≤ 1 is not unreasonable as a research

inquiry. We have shown how much it matters.

Our aim is that this model will inspire further research on the dynamic features of emitting

systems. Gaining a deeper understanding of different approaches to dealing with inertial

timescales, induced innovation, and path dependency is crucial to help inform policymaking

on one of the most important threats facing humanity this century.
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A Proof of Theorem 1

Euler-Lagrange equations. The optimization problem described in (1) can be solved

using standard Euler-Lagrange (EL) methods. The only non-standard feature is that the

control variable E(t) appears alongside both of its first and second derivative in the integrand

F . For this reason, the standard EL equation is adjusted to include a third term as follows

0 =
d(e−rtF )

dE
− d

dt

d(e−rtF )

dE′ +
d2

dt2
d(e−rtF )

dE′′ . (A.1)

where F := F (E,E′, E′′) as in equation (4), where primes denote derivatives. Explicitly

computing all derivatives we obtain

[
−4pτ2e1r

2 − 2q(e0r + e1(rt− 1)), d
4c , 2qr, 4pτ

2r2 − 2q,−8rpτ2, 4pτ2
]


1

E(t)

E(1)(t)

E(2)(t)

E(3)(t)

E(4)(t)


= 0,

which we here express as an inner product involving E(t) and its four derivatives. This

expression makes clear that in general we are faced with an inhomogenous linear ordinary

differential equation (ODE) of fourth order. As is standard, the solution can be written as

the sum of two solutions: one that solves the homogenous ODE and one that solves the

inhomogenous ODE.

Solution to inhomogenous ODE. The inhomogenous ODE can be solved by a linear

function of time, which we write as

E(t) = E⋆ + e⋆t, (A.2)

where E⋆ and e⋆ are constants to be found. For this candidate solution E(t), the second, third,

and fourth derivatives are zero. Solving the resulting simplified ODE for B and b, we obtain

e⋆ = 8
c q e1 r

d
E⋆ =

c q (e0 r − e1)

d/8
+ 64 e1 r

2

(
c p τ2

4 d
−
(c q
d

)2
)
. (A.3)

This simple solution already yields one important insight into the long-term behavior of our

solution: in the long run, optimal cumulative emissions are linear in time, such that annual

emissions are optimally constant. Specifically, the optimal long-run constant level of emissions

is given by the parameter e⋆ above. As can be seen, it decreases with the damage parameter

d, but increases with the static-cost component q, the discount rate r, and the increase of

marginal emissions in the reference scenario, given by e1.

While the inhomogenous ODE determines the optimal long-term emissions path, the par-

ticular solutions to the homogeneous ODE determine the optimal course of action in the

short-term. We discuss these next.

Solution to homogenous ODE. To solve the homogenous ODE, we look for solutions

that are exponential in time. Indeed, the homogenous ODE of fourth order allows for four
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independent solutions taking the form

E(t) =
4∑

j=1

Zj exp

(
zj t

2

)
, (A.4)

where the parameters Zj and zj remain to be determined for j = 1, 2, 3, 4. Substituting

this candidate solution into the ODE and simplifying, we find that the constants zj for each

j = 1, 2, 3, 4 must solve the following fourth-order polynomial equation

[
d/c, 4 q r, 4 r2 p τ2 − 2 q,−4 r p, p τ2

]

1

zj
z2j
z3j
z4j

 = 0, j = 1, 2, 3, 4. (A.5)

Generally, this equation is of fourth order, unless p = 0, in which case it is only of second order

(note the last two entries of the row vector).

Full solution. The full solution is obtained by summing the solutions to the homogeneous

and inhomogeneous ODEs, i.e.,

E(t) = E⋆ + e⋆ t+

4∑
j=1

Zj exp

(
zjt

2

)
, (A.6)

where the parameters E⋆ and e⋆ are given by (A.3), the constants zj for j = 1, 2, 3, 4 are the

roots of the fourth-order polynomial equation given in (A.5), and the four constants Zj for

j = 1, 2, 3, 4 remain to be determined by four boundary conditions, as discussed below. These

boundary conditions will need to ensure that E(0) = E⋆ +
∑4

j=1 Zj = E0, thereby putting a

constraint on the Zj ’s.

Boundary conditions. In general, the four constants Zj are determined by a total of

four boundary conditions to be specified at either t = 0 or t = T . At t = 0, we impose

E(0) = E0, reflecting the fact that cumulative emissions (relative to pre-industrial times) at

time zero are fixed. For systems with any positive transitional cost (p > 0), we also impose

E′(0) = E′
ref(0) = eref(0) = e0, because sudden jumps in marginal emissions would incur an

infinite cost. By imposing both boundary conditions, we ensure that the path of cumulative

emissions E(t) smoothly matches that of the reference trajectory of cumulative emissions

Eref(t).

At t = T , we are faced with two free boundary conditions, as endpoint E(T ) and its

derivative E′(T ) are left to be determined by the optimizer. However, in the limit as T → ∞,

which we consider below, two of the four homogenous solutions can be discarded (set to zero),

as they blow up exponentially, thereby causing infinite damages. As such, only two constants

Zj , for j = 1, 2 remain, which can be determined by the two boundary conditions at t = 0.

If p = 0, the ODE and polynomial equation are of second order. In this case, only a single

boundary condition at t = 0 is required, which we take to be E(0) = E0. In this case, a jump

in marginal (but not cumulative) emissions at time zero is permitted.
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Solutions under three regimes. The optimal solution behaves differently, qualitatively,

depending on the numerical values of the parameters. Specifically, three regimes can be iden-

tified. We present the solution in each of three mutually exclusive and collectively exhaustive

regimes:

1. No pliability: p = 0,

2. Medium pliability: 0 < p ≤ p⋆, which implies c q2 ≥ p τ2 d,

3. High pliability: p > p⋆, which implies c q2 < p τ2 d.

The critical boundary between the medium- and high-pliability regimes is denoted p⋆ and is

determined by setting p equal to p⋆, q equal to 1−p⋆ and solving for p⋆ the equality c q2 = p τ2 d,

i.e., we must solve

c (1− p⋆)2 = p⋆τ2d.

This is a quadratic equation in p⋆ with two potential solutions. Only one of these potential

solutions falls in the range (0, 1), which reads

p⋆ := 1−
√
1 + 4x− 1

2x
∈ (0, 1),

where x := c/(dτ2) ∈ (0,∞) is a dimensionless characteristic of the system. For 0 < p ≤ p⋆,

it can be verified that c q2 ≥ p τ2 d, such that we are in the medium-pliability regime. For

p > p⋆, we can be verified that c q2 < p τ2 d, such that we are in the high-pliability regime.

In each case, an analytic solution is possible, which can be found by (i) solving the (in

general) fourth-order polynomial equation, (ii) discarding two of the four solutions to the

homogeneous ODE that correspond to the explosive solutions, and (iii) imposing the relevant

boundary condition(s) at t = 0. We here only report the analytic solution in the case where

T = ∞, which is economically the most relevant, and for which the solution takes the simplest

possible form.

Zero pliability: If p = 0, such that the system contains no pliability, the fourth-order

ODE simplifies to a second-order ODE. The corresponding second-order polynomial equation

allows for two unique roots, one positive and one negative. The positive root can be discarded

as it corresponds to an explosive solution, such that we can set Z2 = Z3 = Z4 = 0, leaving

only Z1 to be determined. The negative root is given by

z1 = r −

√
r2 +

d

2 c q
. (A.7)

Note that z1 < 0; the other root contains a plus instead of a minus in front of the square root

and is economically irrelevant. This confirms the first part of equation (12) in Theorem 1.

Imposing the boundary conditions E(0) = E0, the constant Z1 can be determined as

Z1 = E0 − E⋆, (A.8)

where the value of E⋆ is given by (A.3) when p is set to zero. This confirms the second part of

equation (12) in Theorem 1. For the zero pliability regime, we do not impose E′(0) = e0 such

that the optimal level of today’s emissions, E′(0), will generally differ from the reference level,

e0. For pliable systems in the two regimes below, a jump in marginal emissions is impossible.
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Medium pliability: If p ̸= 0, c q2 ≥ p τ2 d, such that pliability is non-zero but small in

relative terms (i.e., 0 < p ≤ p⋆), the fourth-order polynomial allows for four distinct roots. Two

roots are positive and can be discarded from economic arguments, i.e., we set Z3 = Z4 = 0.

The two remaining (negative) roots are given by

z1 = r −

√√√√
r2 +

q

p τ2
+

√(
q

p τ2

)2

− d

c p
, (A.9)

z2 = r −

√√√√
r2 +

q

p τ2
−

√(
q

p τ2

)2

− d

c p τ2
, (A.10)

where each displayed square root is a real number because cq2 ≥ p τ2 d by assumption in the

current regime, which implies (q/pτ2)2 ≥ d/(cp). These equations confirm equations (13) in

Theorem 1.

Imposing the boundary conditions E(0) = E0 and E′(0) = e0, we find the two constants

Z1 and Z2 as follows

Z1 =
2(e0 − e⋆) + z2(E⋆ − E0)

z1 − z2
Z2 =

2(e0 − e⋆) + z1(E⋆ − E0)

z2 − e1
. (A.11)

These equations confirm equations (14) in Theorem 1.

High pliability: If p ̸= 0, c q2 < p τ2 d, such that transitional costs are large in relative

terms (i.e., p > p⋆), the fourth-order polynomial equation allows for four distinct, complex-

valued, roots. To avoid the emissions path exploding as t → ∞, we pick the two roots with

negative real parts. Hence, we may set Z3 = Z4 = 0. The two negative roots z1 and z2 differ

by only a single sign, such that we can denote them by z1 = z+ and z2 = z−, where z± is

defined as

z± ≡ r − 1√
2

√√√√
r2 +

q

p τ2
+

√
d

c p τ2
−
(

q

p τ2

)2

+

(
r2 +

q

p τ2

)2

± i√
2

√
d

c p τ2
−
(

q
p τ2

)2

√
r2 + q

p τ2
+

√
d
c p −

(
q

p τ2

)2
+
(
r2 + q

p τ2

)2

, (A.12)

where i =
√
−1 is the imaginary unit, and every displayed square root is a real (positive)

number, because c q2 < pτ2d in the current regime. It is clear that both z± have negative real

parts as desired. This confirms equation (15) in Theorem 1.

Imposing the boundary conditions E(0) = E0 and E′(0) = e0, we find that the constants

Z1 and Z2 are identical in form to those in the medium-pliability regime, namely

Z1 =
2(e0 − e⋆) + z2(E⋆ − E0)

z1 − z2
Z2 =

2(e0 − e⋆) + z1(E⋆ − E0)

z2 − z1
. (A.13)

However, the numerical values of these constants differ from those in the medium pliability

regime, because the two roots z1 and z2, which appear in the numerator and denominator, are
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now complex values. Hence, Z1 and Z2 are also complex valued. Naturally, the cumulative

emissions path E(t) for all time t remains real valued. After some tedious but straightforward

trigonometric algebra, the optimal cumulative emissions trajectory E(t) can be rewritten in

trigonometric terms as

E(t) = E⋆ + e⋆ t+ exp

(
ẑt

2

)[
2(e0 − e⋆) + ẑ(E⋆ − E0)

z̃
sin

(
z̃t

2

)
+ (E0 − E⋆) cos

(
z̃t

2

)]
,

where e⋆ and E⋆ are as in (A.3), while ẑ and z̃ are real numbers coming from the real and

imaginary parts of z1 above. Explicitly, we have

ẑ = r − 1√
2

√√√√
r2 +

q

p τ2
+

√
d

c p τ2
−
(

q

p τ2

)2

+

(
r2 +

q

p τ2

)2

(A.14)

and

z̃ =
1√
2

√
d

c p τ2
−
(

q
p τ2

)2

√
r2 + q

p τ2
+

√
d

c p τ2
−
(

q
p τ2

)2
+
(
r2 + q

p τ2

)2

. (A.15)

The intuition for the high pliability regime is that, when “steering” is expensive, it might be

beneficial to “oversteer” before correcting (steering back) later, which explains the appearance

of trigonometric functions in the solution: emissions oscillate towards the long-term optimum.

For a fully pliable system in which case q = 0, it is optimal to decarbonize the economy

completely at some finite time, and even go into negative marginal emissions (capturing carbon

dioxide from the atmosphere), also at some finite time, while oscillating (with exponentially

decreasing amplitudes) towards a fully decarbonized limit.

In all three regimes, the optimal marginal emissions path E′(t) is implied by the optimal

cumulative emissions path E(t) via a straightforward differentiation with respect to time.

Further, in all cases an analytic solution remains possible even for a finite optimization horizon

T , but the resulting expressions are more involved, because it no longer holds that two out

of four roots from the fourth-order polynomial can be discarded (all four roots are relevant in

this case). The resulting expressions are available from the authors upon request.

B Analytic solution for NPV and cost of delay

Assume 0 < p ≤ p⋆, such that the medium-pliability regime applies; below we extend the

results to all p ∈ [0, 1]. Assume T = ∞, i.e., an infinite time horizon. Assume the optimal

cumulative emissions path E(t) given in equation (10) in Theorem 1. Then the net present

value (NPV) of damages can be computed analytically as∫ ∞

0
exp(−r t)

d

8
E(t)2 dt = (B.1)

d

8

[
2e2⋆ + 2e⋆E⋆r + E2

⋆r
2

r3
+

4Z1Z2

2r − z1 − z2
+

2∑
i=1

{
Z2
i

r − zi
+

8Zi(e⋆ + E⋆r)

(2r − zi)
2 − 4ziZiE⋆

(2r − zi)
2

}]
.
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Second, the NPV of the static-cost component can be computed in closed form as∫ ∞

0
exp(−r t) c q [eref(t)− e(t)]2 dt = (B.2)

c q

4

[
8e21
r3

+
4(e⋆ − e0)

2

r
+ 8e1

e0 − e⋆
r2

+
4z1z2Z1Z2

2r − z1 − z2

+
2∑

i=1

{
8(e⋆ − e0)

ziZi

2r − zi
+

z2i Z
2
i

r − zi
− 8e1

2ziZi

(2r − zi)
2

}]
.

Third, the NPV of the transitional-cost component reads∫ ∞

0
exp(−r t) 2 c p τ2 [e′ref(t)− e′(t)]2 dt = (B.3)

cpτ2

8

[
16e21
r

+
z41Z

2
1

r − z1
+

z42Z
2
2

r − z2
+

4z21z
2
2Z1Z2

2r − z1 − z2
− 16e1

(
z21 Z1

2r − z1
+

z22 Z2

2r − z2

)]
.

In equations (B.1), (B.2) and (B.3), the quantities e⋆, E⋆ are given in equation (11), while zi
for i = 1, 2 are given in equation (13), and Zi for i = 1, 2 are given in equation (14).

By adding the right-hand side (RHS) of equations (B.1), (B.2) and (B.3), we obtain the

optimal NPV of the entire minimization problem (1), i.e.,

NPV = RHS of equations (B.1), (B.2) and (B.3). (B.4)

This optimal NPV remains valid in the limit where p approaches zero, such that the NPV in

the no-pliability regime can be obtained as a special case. Moreover, all expressions technically

remain valid in the high-pliability regime; while some quantities turn complex, the imaginary

parts cancel out and the result is a real-valued number that equals the desired NPV in the

high-pliability regime.

The cost of delay discussed in the main text is obtained by comparing the NPV as com-

puted above with the NPV evaluated a small time dt later, assuming no action is taken in

the meanwhile. Our solution remains valid after some delay if we recognize that the ini-

tial conditions have shifted. In particular, cumulative emissions have increased from E0 to

E(0+dt) = E0+ e0dt, while annual emissions have increased from e0 to e(0+dt) = e0+ e1dt.

Hence, with obvious notation,

cost of delay =
dNPV

dE0
e0 +

dNPV

d e0
e1, (B.5)

where the NPV is given in equation (B.4). The cost of delay is measured in units of cur-

rency per units of time. The required derivatives can be computed in closed form by using

equations (B.1), (B.2) and (B.3), which depend explicitly on E0 and e0. Moreover, the chain

rule must be employed to account for the implicit dependence of E⋆, Z1 and Z2 on the initial

conditions E0 and e0; the resulting (lengthy) expression for equation (B.5) is available from

the authors on request.
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