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Abstract

Without regulation or agreement, public goods are underprovided and public bads are
overprovided. Both problems are usually seen as flip sides of the same coin. In this paper
we examine a situation where a public good is good for some agents but bad for others,
and this preference is endogenous to the provisioning level of the good. We allow agents
to form a coalition to coordinate provision. Compared with games with only goods (or
only bads) we find larger coalitions in equilibrium. Specifically, we analyze a game with
quadratic benefit- and cost functions and we find the grand coalition to be stable except
for situations where agents have identical or almost identical characteristics. The main
driving force of coalition stability is that cooperation avoids a wasteful contest between
agents pulling the provision level in opposite directions. We show that, in equilibrium,
wasteful contest is confined to a narrow range of the parameter space of our game. This
result connects the literatures on public goods and contests.
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1 Introduction

Even a century after Lindahl (1919) published his path-breaking book, private provision

of public goods remains a thriving field of research. In this paper we examine the private

provision of a public good that is appreciated by some but disliked by others. We do so

using a game in which agents can join a binding agreement to coordinate public good

provisioning. Our model set-up follows a strand of literature that has emerged under the

header of international environmental agreements and deals with international cooperation

for the provision of global public goods such as mitigating climate change (Carraro and

Siniscalco, 1993; Barrett, 1994). The formal analysis of public goods that can be good for

some while bad for others has been pioneered in more recent work by Weitzman (2015) who

discusses the potential role of geo-engineering in climate policy-making. Geo-engineering

measures, like e.g. stratospheric aerosol injection, aim at global cooling. Such measures

can be adopted by individual countries at fairly low cost but are potentially undesirable

for other countries. Hence, global cooling is perceived as a public good by some while it is

perceived as a public bad by others (Heyen et al., 2019; Rickels et al., 2020).

Many examples of a similar structure can be found in the domains of public and envi-

ronmental policy-making where attitudes with respect to local conditions or environmental

standards differ. A road cutting through a forest can be a public good for commuters while

being a public bad for conservationists. Nature conservation and agriculture are frequently

pulling in opposite directions when it comes to water management or the intensity of farming.

The return of wolves to some European countries such as Germany or the Netherlands is

appreciated by conservationists but opposed by sheep farmers. Generally, all tax-financed

public goods may be seen as overprovided by taxpayers facing a high tax rate or having a

low preference for the public good. Conversely, taxpayers with low tax rates or a strong

preference for the public good would see them as underprovided. Hence, increased provision

would be a public good for the latter group and a public bad for the former. Another example

is the level of public security if higher levels come with more extensive policing. Preferred

levels may differ between citizens when more police in the streets is appreciated by some

but not by others.

We study such situations where a public good can be good for some and bad for others in

a setting with private provision of the public good. We borrow terminology from Weitzman

(2015) and refer to such goods as gobs (goods or bads). Importantly, we consider the case

where individual assessments of a gob as good or bad depend on the level of provision.

To fix ideas, consider a group of people in a room where each can turn on the heating or

open the window for cooling. As the room gets warmer, fewer people prefer additional

warming and more people will start to consider the warmth a public bad. Notice that the

non-cooperative equilibrium in this situation might be that some people turn on the heating

while others open the window, which is grossly inefficient. We refer to such situations as
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wasteful contest.

In this paper we examine a model of private provision of public gobs where agents can

form coalitions. A coalition would internalise the externalities associated with the provision

of the public gob and avoid wasteful contest within the coalition. Our interest is to see

whether such coalitions can be stable and would help to restrain wasteful contest, also with

agents outside the coalition. To obtain sharp results we use a model specification where

agents have quadratic benefits with respect to the public gob level and quadratic costs

with respect to their own contribution. This specification allows us to derive a closed-form

solution for coalition stability. It is also one of the few specifications for which analytical

results are available in the literature that considers only public goods (Carraro and Siniscalco,

1993; Barrett, 1994). This allows us to compare public gobs with public goods. Moreover,

it is the simplest specification that features non-orthogonal response functions (so that

we do not presuppose dominant strategies) while remaining tractable in a setting with

heterogeneous agents.

Our results show that the public gobs game has features of a contest. We find larger

coalitions compared to public goods games where everyone appreciates the good. Specifically,

in Proposition 1 we find the grand coalition to be stable with the exception of situations

where agents have identical or almost identical characteristics. This result is driven by our

second result that we present in Proposition 2: coalition formation avoids to a large extent

wasteful contest between agents pulling in opposite directions.

2 Contribution to the literature

In this paper we connect four strands of literature: (i) The private provision of public goods,

(ii) coalition formation for public goods provision, (iii) the provision of public gobs, and (iv)

contests.

The analysis of the private provision of public goods is generally framed as a game

between agents who derive utility from a public good and a composite numeraire good.

Agents are budget constrained and the public good is available at constant prices. Warr

(1983) and Bergstrom et al. (1986) are seminal works showing that the unique Nash-

equilibrium provision level is not affected by a redistribution of income as long as the set

of contributing agents is not affected. Although we study the private provision of public

goods, we do not assume constant prices but rather increasing marginal costs of provision.

In this setting, a change in the contribution of one agent is usually not completely offset by

changes in other agents’ contributions.

A second strand of literature is motivated by the general underprovision of transboundary

or global public goods. This literature studies the stability of coalitions between countries

that are characterised by their costs of provision and their benefits derived from the public

good. A key concern of this literature is to spell out determinants of the size of stable

3



coalitions and their effectiveness in terms of the provision of public goods. Coalitions are

formed to overcome the inefficiently low provision level in a Nash equilibrium of a game

with potentially many players. A coalition is stable when no member has an incentive to

leave and no non-member has an incentive to join. In general, larger coalitions would

provide more of the public good and a grand coalition would provide the efficient amount.

In this literature, a two-stage game is a workhorse model. In stage 1 countries announce

whether or not they join the coalition. In stage 2 the coalition members coordinate public

good provisioning to maximise their joint net benefits in a game with non-members (Carraro

and Siniscalco, 1993; Barrett, 1994). We contribute to this literature (see Benchekroun and

Long (2012) for a survey) by generalising the preferences of agents by considering public

gobs.

Third, we contribute to a small recent literature that addresses the provision of public

gobs. Theoretical work in this domain by Buchholz et al. (2018) extends the private provision

of public goods literature, considering utility maximising agents who face a given price of

the public gob and thus constant marginal costs of provision. Their model considers two

groups of agents; for one group more of the gob is always preferred, while the other always

prefers a lower level of provision. Our model differs from this approach in two ways. First,

we assume convex costs of provision and, second, our agents are not exogenously grouped

into beneficiaries and victims of public gob provision. In our model it depends on the level

of provision whether an agent prefers to have more or less of the gob. Close to our paper is

some recent work on the implications of geo-engineering options to combat climate change.

In particular Weitzman (2015) considers asymmetric damage from a certain gob level where

for any agent having too much may be more (or less) costly than having too little. Weitzman

does not address the issue of private provision of the gob but suggests a voting mechanism

that would implement an efficient gob level and avoid wasteful contest. Barrett (2008),

Heyen et al. (2019), Rickels et al. (2020) and Ghidoni et al. (2023) also take issue with

geo-engineering, emphasising that measures taken by some countries to stabilise the climate

could be opposed by others who differ in their assessment of the benefits and point to the

potential dangers of the measures. None of these papers offers a comprehensive analysis of

coalition formation in the public gobs game.

Finally, our paper connects the literature on public goods provisioning with the literature

on contests. In a standard model of contests, a prize is allocated among agents who can exert

costly effort to increase the probability of receiving the prize (Tullock, 1980; Rosen, 1986).

Specific contest designs where effort contributes to the value of the prize, but does not affect

other contestants’ probabilities of winning, resemble the problem of public good provisioning

(Konrad, 2009). Such similarities between public goods provisioning and contests have

been noticed before (see e.g. Gradstein, 1993; Chung, 1996; Baik, 2016). Furthermore,

contest games with alliance formation (Garfinkel, 2004) are close to our game-theoretic

setup. When some agents prefer more while others prefer less of the public gob — choosing
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positive and negative provision levels, respectively — our game can be interpreted as a

contest with offensive vs. defensive activities as in Grossman and Kim (1995). Combining

this game feature with alliance (or coalition) formation describes a mechanism to prevent

dissipation of the prize, which is one of the main concerns in the literature on contests.

3 The gob model

Consider a set N = {1, . . . , n} of agents who have single-peaked preferences with respect to

a gob. There is a uniform level of the gob G ∈ R to which all agents are exposed. We label as

Bi ∈ R agent i’s preferred level (or bliss level) of the gob. If Bi > G, then an increase of G is

a public good for agent i. If, however, Bi < G, it is a public bad for i. Let (B1, . . . , Bn) be the

distribution of preferred gob levels and, without loss of generality, we order agents by their

bliss levels such that B1 ≤ . . .≤ Bn. Each agent can contribute to the public gob. We denote

agent i’s contribution by gi ∈ R. Note that we allow for negative contributions. Positive

(negative) contributions will increase (decrease) the public gob level and contributions are

assumed to be additive. Let G0 be the default level of the gob when no agent takes action,

i.e., gi = 0 for all i. The gob level obtained through individual contributions is

G = G0 +
∑

i∈N

gi. (1)

In what follows we normalise the game such that G0 = 0. We denote aggregate contributions

of any subset of agents S ⊆ N as gS ≡
∑

i∈S gi and similarly for aggregates of benefits, costs,

and payoffs, defined below.

Agents derive benefits from the gob level and incur costs from their own (positive or

negative) gob contributions:

bi(G) = −
1
2

G2 + βiG +δi, (2)

ci(gi) =
1
2

g2
i . (3)

As discussed in the introduction, both functions are quadratic. Agents are heterogeneous

in terms of their exogenous benefit function parameter βi. The second benefit function

parameter, δi, is included to facilitate Examples 1 and 2 below but will drop out in the

analysis (and we generally use δi = 0 to economize on notation). Benefits peak at Bi = βi

while costs have a unique minimum at gi = 0 when contributing nothing. This model

specification in which agents only differ in bliss points allows us to obtain sharp analytical

results. In Section 6 we will present simulations for a more general model specification that

also allows for heterogeneity in costs.
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Payoffs are given by

πi(gi, G) = bi(G)− ci(gi). (4)

To build intuition, consider the following two-player example.

Example 1. Consider two agents i = 1,2 with bliss points B1 = β1 = −1 and B2 = β2 = 1.

Their benefit functions are bi(G) = −
1
2(G−βi)2 and their cost functions are ci =

1
2 g2

i . This is

a symmetric game in the following sense. Evaluated at the default gob level where G0 = 0,

the agents are facing similar marginal costs of contributing to the gob while their marginal

benefits are diametrically opposed. Any contribution by agent 1 will be negative while any

contribution by agent 2 will be positive, in order to pull the gob level in the direction of

their respective bliss levels. In the Nash equilibrium the agents make contributions g1 = −1

and g2 = 1. The resulting gob level is G = G0 = 0 and associated payoffs are π1 = π2 = −1.

A cooperative agreement in which each agent would reduce her contribution to g1 = g2 = 0

would yield the same gob level while saving costs. With payoffs π1 = π2 = −
1
2 , it would be

advantageous for both.

Example 1 demonstrates that the public gobs game may have features of a contest.

Such contest occurs whenever for two players i, j we have Bi < G0 + gN\{i, j} < B j. In such

situations, agent i would make a negative contribution while agent j would make a positive

one. A coalition formed by agents i and j would avoid a wasteful contest.

4 Coalition formation

We consider the formation of a single coalition S ⊆ N . Our game is based on the standard

two-stage coalition formation game (see Barrett, 1994; Hagen et al., 2020), often referred

to as a cartel game. In the first stage, agents decide whether to join the coalition S ⊆ N . We

consider an open membership game, that is, all agents who decide to join will be coalition

members i ∈ S and act jointly in the second stage. Agents who do not join are singleton

agents i ∈ N \ S. Denote this set of singleton agents by S̄. In the second stage, the coalition

and the singleton agents play a simultaneous-move game of public gobs provision. Since we

assume quadratic cost- and benefit functions, the public gobs game has a unique equilibrium.

This equilibrium gob level when coalition S forms is implicitly given by the system of

equations

∑

j∈S

b′j(G) = c′i(gi), for all i ∈ S; (5a)

b′i(G) = c′i(gi), for all i ∈ S̄. (5b)
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Solving for contributions, this system gives the following response functions for members

and singletons, respectively.1

gi =

∑

j∈S βi − s
∑

j∈N−i
g j

s+ 1
for all i ∈ S, (6a)

gi =
βi −

∑

j∈N−i
g j

2
for all i ∈ S̄. (6b)

Full cooperation means that the grand coalition S = N is formed, in which case Condition (5a)

is the Samuelson condition for the efficient provision of public goods.

Equilibrium uniqueness allows us to define payoffs in terms of the coalition formed.

That is, we write the payoff function as a cartel-partition function that uniquely defines a

payoff Vi(S) for every singleton agent i ∈ S̄ and a coalition payoff VS(S) for any coalition S

that may form. We allow for transfers between coalition members and assume that transfers

are arranged to stabilise a coalition if possible (see e.g. Carraro et al., 2006; Weikard, 2009),

such that

Vi(S)≥ Vi(S−i) if and only if VS(S)≥
∑

i∈S

Vi(S−i) for all i ∈ S. (7)

Condition (7) implies that if coalition S does not earn enough to cover the outside-option

payoffs Vi(S−i) of its members, no member will receive her outside-option payoff in that

coalition. It is thus not advantageous for any agent to join a coalition that would not earn

at least the sum of the outside-option payoffs. We can now define the concept of coalition

stability.

Definition 1. A coalition is stable if it is internally and externally stable.

1. If transfers are arranged according to Condition (7), a coalition S is internally stable

if and only if VS(S)≥
∑

i∈S Vi(S−i).

2. If transfers are arranged according to Condition (7), a coalition S is externally stable

if there is no agent j /∈ S such that Vj(S+ j)≥ Vj(S).

Definition 1 says that a coalition is internally stable if it can guarantee that each member

receives at least her outside-option payoff. It is externally stable if no singleton agent has

an incentive to join as she would earn less than her outside-option payoff. The following

general result follows from Definition 1. It links internal and external stability and we will

use it in discussing Example 2 below, as well as in the proof of Proposition 2.

Lemma 1. (Weikard, 2009). Coalition S is externally unstable, i.e. there is an agent j /∈ S

who prefers to join S over being a singleton agent, if and only if the enlarged coalition S+ j is

internally stable.
1In the following we use the shorthand notation S−i and S+i for S \ {i} and S ∪ {i}, respectively.
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We can describe the coalitional preferences by the sum of the benefits of the members. A

coalition can be characterised by the gob level BS that maximizes
∑

i∈S bi(G). Because we

use quadratic benefit functions, the coalitional benefit function is also quadratic. It follows

that BS is unique and lies strictly between the bliss levels of the members with the lowest

and the highest index number in S. In our specification we simply have BS =
1
s

∑

i∈S βi.

In general, coalition formation will change the gob level. A case like Example 1, where

coalition formation prevents wasteful contest but does not change the gob level, is a special

case. If the formation of coalition S changes the gob level to the advantage (disadvantage)

of agent k /∈ S, we will say that the formation of S has a positive (negative) spillover effect

on agent k. Intuitively, negative spillovers are conducive to the formation of larger coalitions.

An agent, by joining the coalition, can impact the coalition’s provision level to her advantage

or benefit from the transfers provided to stabilise the coalition. For symmetric public goods

games with negative spillovers, Yi (2003, Proposition 5.1) finds the grand coalition to be the

unique stable coalition. Positive spillovers, by contrast, hamper coalition formation as they

generate free-rider incentives. In our game, however, spillovers can be beneficial for some

agents and harmful for others. For such public gobs games, Proposition 2 shows that only

positive (or only negative) spillovers remain in equilibrium, i.e., when a stable coalition is

formed. Exceptions to this result occur only in a small part of the parameter space as we

will discuss.

The following example illustrates the above discussion.

Example 2. Consider a game with four players and quadratic benefit- and cost functions. Let

their bliss levels be at B1 = 1, B2 = 2, B3 = 3, B4 = 4 and normalise the benefit functions such

that bi(Bi) = 1.2 The example is illustrated in Figure 1. We solve the system of equations

(6) and calculate equilibria for all possible coalitions. We report the results in Table 1.

1 2 3 4

1
2

3
4

G

benefits

Figure 1: Benefit functions for four agents with bliss points at G = 1, 2,3, 4.

2β1 = 1,β2 = 2,β3 = 3,β4 = 4,δ1 =
1
2 ,δ2 = −1,δ3 = −

7
2 ,δ4 = −7.
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Table 1: Provision levels and payoffs for all possible coalitions based on Example 2.

S g1 g2 g3 g4 G V1 V2 V3 V4 VS Vtotal Vo IS∗

; −1 0 1 2 2 0 1 0 −3 − −2 − −
12 −0.71 −0.71 1.14 2.14 1.86 0.38 0.73 −0.31 −3.59 1.11 −2.79 1 0.11
13 0 0 0 2 2 0.5 1 0.5 −3 1 −1 0 1
14 0.71 −0.14 0.86 0.71 2.14 0.09 0.98 0.27 −0.98 −0.89 0.36 −3 2.11
23 −2.14 0.71 0.71 1.86 1.14 −0.31 0.73 0.38 −2.45 1.11 −1.64 1 0.11
24 −1.29 1.43 0.71 1.43 2.29 −0.65 −0.06 0.49 −1.49 −1.55 −1.71 −2 0.45
34 −1.43 −0.43 2.14 2.14 2.43 −1.04 0.82 −1.46 −2.53 −3.99 −4.21 −3 −0.99

123 0 0 0 2 2 0.5 1 0.5 −3 2 −1 0.39 1.61
124 0.45 0.45 0.82 0.45 2.18 0.2 0.88 0.33 −0.76 0.32 0.65 −3.27 3.59
134 0.91 −0.36 0.91 0.91 2.36 −0.34 0.87 0.38 −0.75 −0.71 0.16 −3.78 3.06
234 −1.55 1.36 1.36 1.36 2.55 −1.39 −0.08 −0.03 −0.99 −1.10 −2.47 −1.14 0.04

1234 0.59 0.59 0.59 0.59 2.35 −0.09 0.76 0.62 −0.53 0.76 0.76 −3.19 3.95
∗ IS = VS − Vo, indicates internal stability if (weakly) positive. Vo refers to the sum of members’ outside option
payoffs.

Example 2 reveals some interesting differences between public gobs and public goods.

A well-known result from the literature on coalitions with public goods is that in a specifica-

tion with symmetric agents and quadratic benefit- and cost functions (and hence positive

spillovers), the equilibrium coalition size will not be larger than 2 (Finus, 2001). Table 1

shows that in the case of asymmetric agents, this result does not hold as the game becomes a

gobs game. The last column shows that all coalitions except S = {3, 4} are internally stable.

By Lemma 1, all coalitions except the grand coalition are externally unstable. As a result,

only the grand coalition is stable. Notice that if coalition S = {3, 4} is formed, members will

increase the gobs level and induce negative spillovers to agents 1 and 2. In response, agents

1 and 2 will, as singletons, increase their countermeasures, thus exacerbating the wasteful

contest. Next, we can see that both agents 1 and 2 have an incentive to join {3, 4}. If agent 2

joins and coalition {2,3,4} is formed, the gobs provision by these agents increases and so

do the negative spillovers to agent 1 who increases, in turn, the countermeasures. Again

the wasteful contest can be avoided if agent 1 joins the coalition and the grand coalition is

formed.

5 Analysis

In this section, we derive analytical results on coalition stability for the public gobs game as

well as associated levels of wasteful contest. We do so employing replacement functions that

have been introduced in the literature on aggregative games (Cornes and Hartley, 2007;

Cornes, 2016). The key idea of this approach is to write agent i’s contribution to the public

good not as a response function, i.e., a function of other agents’ contributions, but as a

function of the total contribution of all agents including i. For our game such replacement

functions for singletons and members can be obtained from the FOCs when maximising (4).
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We obtain

gi =
∑

j∈S

β j − sG for all i ∈ S, (8a)

gi = βi − G for all i ∈ S̄. (8b)

Aggregating all contributions given by (8) and solving for G we obtain the equilibrium

provision level

G(S) =
s
∑

i∈S βi +
∑

i∈S̄ βi

s2 − s+ n+ 1
. (9)

Because of the aggregative structure of the game, the provision level, the coalition payoff, and

the sum of the outside-option payoffs only depend on aggregates of the benefit parameters

of the agents. We will exploit this feature of the game in the analysis of coalition stability

below.

To identify internally stable coalitions we need to check whether the coalition payoff VS(S)
is sufficient to cover the sum of the outside-option payoffs Vo(S) ≡

∑

i∈S Vi(S−i). We call

Φ(S)≡ VS(S)− Vo(S) the stability function which, if weakly positive, indicates the internal

stability of S; see Definition 1. To construct the stability function, notice that a deviation

of agent i ∈ S such that coalition S−i is formed will change the equilibrium provision level

from G(S) to G(S−i), which we construct using (9):

G(S−i) =
(s− 1)

∑

j∈S−i
β j +

∑

j∈S̄+i
β j

s2 − 3s+ n+ 3
. (10)

Using the equilibrium provision levels (9) and (10), we can derive both terms of the

stability function. Skipping the summation index for notational ease we obtain

VS(S) =

�

∑

S

β

�2
�

2ns2 − sn2 + s
2(s2 − s+ n+ 1)2

�

+
∑

S

β
∑

S̄

β

�

(s2 + 1)(n− s+ 1)
(s2 − s+ n+ 1)2

�

−

�

∑

S̄

β

�2
�

(s3 + s)
2(s2 − s+ n+ 1)2

�

(11)
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and

Vo(S) =

�

∑

S

β

�2
�

(s− 1)(s2 − 3s+ 2n+ 2
(s2 − 3s+ n+ 3)2

�

+
∑

S

β
∑

S̄

β

�

2(n− s+ 1)
(s2 − 3s+ n+ 3)2

�

−

�

∑

S̄

β

�2
�

s
(s2 − 3s+ n+ 3)2

�

−
∑

S

β2
�

−7+ n2 + 10s− 3s2 − 2s3 + s4 + 2n(−1− s+ s2)
2(s2 − 3s+ n+ 3)2

�

. (12)

Our first main result, stated in Proposition 1, assesses the internal stability of the grand

coalition (GC). Since the GC cannot be enlarged, external stability does not apply and

internal stability implies stability. The proposition demonstrates that the grand coalition is

stable except for situations where agents have identical or almost identical characteristics.

After proving and illustrating the proposition we derive a number of additional insights.

Proposition 1 (Stability of the Grand Coalition). In a quadratic public gobs coalition formation

game the stability condition for the grand coalition is

Φ(N)≥ 0 ⇐⇒
∑

N

β2 ≥
1
n

�

∑

N

β

�2
�

n(n5 − 2n3 + 4n2 − 3n− 4)
(1+ n2)(n4 − 4n2 + 8n− 7)

�

.

The grand coalition is stable for a large range of distributions of bliss points and is only unstable

when agents are (almost) symmetric.

Proof. For the grand coalition we have s = n and, since there are no remaining singletons,
∑

S̄ β = 0. Therefore the second and third terms of both (11) and (12) cancel. This simplifies

the stability condition to

Φ(N) =

�

∑

N

β

�2
�

n
2
−

2(n− 1)
3− 2n+ n2

+
−4+ 7n− 4n2 + n3

(3− 2n+ n2)2
−

n3 + n5

2(1+ n2)2

�

+
∑

N

β2
�

1
2
−

2(2− n)
3− 2n+ n2

+
(n− 2)2

(3− 2n+ n2)2

�

≥ 0

⇐⇒
∑

N

β2 ≥
1
n

�

∑

N

β

�2
�

n(n5 − 2n3 + 4n2 − 3n− 4)
(1+ n2)(n4 − 4n2 + 8n− 7)

�

. (13)

The term on the LHS and the first two terms on the RHS give Chebyshev’s inequality, which

always holds. The remaining term on the RHS depends only on n and is always positive; it is

larger than 1 for all n≥ 3, has a maximum value for n = 3 at 159
155 ≈ 1.026 and is approaching 1

for increasing n. Therefore the stability condition is violated only if Chebyshev’s inequality

holds (approximately) with equality, i.e. when agents are (almost) symmetric.
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Proposition 1 is illustrated in Figure 2. Any possible distribution of agents’ bliss points is

characterised by
∑

N β
2 and

�∑

N β
�2

. The area below the 45◦ line is not feasible because

Chebyshev’s inequality must hold. On the 45◦ line Chebyshev’s inequality holds with equality.

This represents the case of symmetric agents. The area of instability is a narrow wedge

between the 45◦ line and the stability line for some given n, here depicted for n = 3 and

n= 10. Notice that the wedge gets narrower for larger n.

0 2 4 6 8 10
0

2

4

6

8

10
45◦
n= 3
n= 10

1
n

�∑

N β
�2

∑

N β
2

0 2 4 6 8 10
0

2

4

6

8

10
45◦
n= 3
n= 10

1
n

�∑

N β
�2

∑

N β
2

Figure 2: The area of instability is a wedge between the 45◦ line and the stability line for
some given n, here depicted for n= 3 and n= 10.

In public gobs games, like in public goods games, player heterogeneity helps stabilise

larger coalitions. For public goods games this feature has been discussed by Weikard (2009),

Pavlova and de Zeeuw (2013) and Finus and McGinty (2019). For public gobs games,

however, Proposition 1 shows that the stabilising effect of agent heterogeneity is much

stronger, leading to stable grand coalitions in a large part of the parameter space. Only

when agents are (almost) symmetric, which makes the public gobs game a public goods

game, the GC is unstable. Indeed, it is well-known that such games have no stable grand

coalition whenever n> 2 (see Section 6).

To see Proposition 1 at work consider the following example.

Example 3. Extending Example 2, consider a game with n players having their bliss points

at B1 = k + 1, B2 = k + 2, . . . , Bn = k + n, where k ≥ 0 is a positive constant. Example 2

is obtained for n= 4 and k = 0. This uniform distribution allows us to obtain closed-form

expressions for
∑

N β
2 and

�∑

N β
�2

:

∑

N

β2 =
1
6

�

n+ 6kn+ 6k2n+ 3n2 + 6kn2 + 2n3
�

, (14)

�

∑

N

β

�2

=
1
2

�

n+ 2kn+ n2
�

. (15)

12



An increase in k shifts all bliss levels away from the default gob level G = 0. As a result,

coalition members become ‘more similar’. The gob becomes a conventional public good

whenever the smallest bliss level becomes sufficiently large: B1 = k+1> G(N). Substituting

(14) and (15) into stability condition (13), we find a stable GC for any n if k = 0. For

larger k, however, GC stability breaks down for sufficiently small n. For example, when

n = 3 (n = 5) the threshold value for k where the GC is still stable is 3.08 (7.33). If k > 6.49

(k > 11.64) only a trivial coalition s = 1 is stable and the game is a conventional public

goods game.3

Corollaries of Proposition 1 follow for two special cases: two-player games (Corollary 1)

and games where agents have opposed preferences (Corollary 2).

Corollary 1. If and only if n= 2, the GC is stable regardless of agents’ bliss points.

Proof. Evaluating the stability function (13) for n = 2 we obtain the stability condition
∑

N β
2 ≥ 1

2

�∑

N β
�2 44

45 . This always holds since Chebyshev’s inequality requires
∑

N β
2 ≥

1
2

�∑

N β
�2

and the factor 44
45 < 1 makes the RHS even smaller. In the proof of Proposition 1

we have established that there is a ‘region’ of instability if n≥ 3. This region includes the

case of symmetric agents located on the 45◦ line of Figure 2.

Corollary 2. If agents’ bliss levels are distributed such that
∑

N β = 0, then the GC is stable for

all n.

Proof. The LHS of the stability function (13) is always (weakly) positive because the bliss

level parameters are squared, while the RHS is equal to zero.

We now turn to examining the internal stability of partial coalitions, i.e., we zoom in

on cases where the GC is unstable. The analysis leads to the remarkable result that, in

equilibrium, wasteful contest is absent in the largest part of the parameter space. We formally

define ‘no wasteful effort’ and then characterise the parameter space where such wasteful

effort is avoided both within the coalition and between the coalition and singletons.

Definition 2. There is no wasteful effort if and only if

1. gS ≥ 0 and g j ≥ 0 for all j /∈ S, or

2. gS ≤ 0 and g j ≤ 0 for all j /∈ S.

The definition says that all agents are exerting effort in the same direction and contest is

avoided.

Proposition 2 (No Wasteful Effort). In a quadratic public gobs coalition formation game

wasteful effort does not occur in equilibrium. There are two exceptions. Wasteful effort can

occur in equilibrium only if:

3Mathematica code for this example is available upon request.
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(i) n = 3, s = 2, G(S) < BS (G(S) > BS), and the remaining singleton agent’s bliss level is

weakly smaller (larger) than and close to G(S).
(ii) n> 3, G(S)< BS (G(S)> BS), at least one singleton agent’s bliss level is weakly smaller

(larger) than and close to G(S) and the coalition is sufficiently small, i.e., a size-s coalition

in a game with n agents lies below the contour in the (n, s)-space that solves the polynomial

Ω(n, s) = 0 (given in the Appendix and illustrated by Figure 4).

Proof. The result is proven in the Appendix.

Proposition 2 says that, generally, in equilibrium all agents exert effort in the same

direction. Exceptions can occur for small coalitions (compared to the number of agents)

consisting of fairly homogeneous agents while any counteracting singleton agent’s bliss

level would be close to the equilibrium provision level and thus this agent spends little

counteracting effort. Hence, even in cases where wasteful effort occurs, the wasted effort is

limited, as can be seen from our proof in the Appendix. For example, for n= 4 and n= 5,

no wasteful effort can occur in equilibrium. For 6≤ n≤ 14 wasteful effort can only occur

when s = 1, the case of a trivial coalition.

The intuition for this result is as follows. Suppose a coalition exerts positive effort,

pulling up the level of G, then a singleton agent pulling down could be integrated into the

coalition which increases overall payoffs (since wasteful effort is avoided) and stabilises

the enlarged coalition. By Lemma 1, a stable enlargement implies that the initial coalition

is externally unstable and, therefore, not an equilibrium. This intuition only fails in cases

where agents are sufficiently similar such that the cost savings of integrating a counteracting

agent are insufficient to stabilise the enlarged coalition.

In the next section we will extend the analysis by introducing a cost parameter to

examine how cost heterogeneity helps stabilising larger coalitions. To set a benchmark for

this analysis we close this section by showing that a coalition of symmetric agents cannot be

stable regardless of the bliss levels of singleton agents. In the next section, however, we will

see that this result does not generalise to a model where we introduce a cost parameter.

Proposition 3. (No Stable Coalition of Symmetric Agents). In a quadratic public gobs coalition

formation game no coalition of agents with the same bliss levels can be stable, except for the

specific case where members do not make a contribution in equilibrium.

Proof. We construct the stability function Φ(S) from (11) and (12). Denote every member’s

bliss level by βm, that is, βi = βm ∀i ∈ S. The stability function can be rewritten as

Φ(S) =

�

∑

S̄

β + βm(−1− n+ s)

�2

�

(s− s2)
�

− 7+ 7s− 11s2 + 9s3 − 5s4 + s5 + n2(1+ s) + 2n(−1− 2s2 + s3)
�

2(3+ n− 3s+ s2)2(1+ n− s+ s2)2

�

.
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The first factor contains the bliss level parameters. Because it is squared, it is always (weakly)

positive. It can be zero and hence a symmetric coalition is just stable in the special case

that βm =
1

n−s+1

∑

S̄ β . This is the case when the equilibrium provision level G(S) = βm and

members are indifferent between membership and being a singleton. If the first factor is

(strictly) positive, the second factor determines the sign of the stability function. We find

that it is negative for all n≥ 3 and all s ≥ 2. That is, the stability condition is violated for all

non-trivial coalitions, except when members’ contribution is zero.

In general, no non-trivial (s ≥ 2) coalition consisting of symmetric agents can be stable

regardless of the bliss levels of members and singletons, and regardless of the number of

agents and the size of the coalition.

6 Cost heterogeneity

In this section we introduce a more general model specification that allows for heterogeneity

not only in benefits but also in costs. Specifically, we add an agent-specific cost parameter γi >

0 and update the cost function (3) to:

ci(gi) =
γi

2
g2

i . (16)

As discussed in Section 5, agent heterogeneity helps stabilising larger coalitions and we

expect that adding cost heterogeneity will boost the stability of gobs coalitions even beyond

what was shown in Proposition 1. Using cost function (16), we derive generalised versions

of the replacement functions (8):

gi =

∑

j∈S β j − sG

γi
for all i ∈ S, (17a)

gi =
βi − G
γi

for all i /∈ S. (17b)

Using these replacement functions, we repeat the analysis of Section 5 and ultimately obtain

generalised terms of the stability function (11) and (12):

VS(S) =
∑

i∈S

�

−
1
2

�

G(S)
�2
+ βiG(S)−

1
2γi

�

∑

j∈S

β j − sG(S)
�2

�

, (18)

Vo(S) =
∑

i∈S

�

−
1
2

�

G(S−i)
�2
+ βiG(S−i)−

1
2γi

�

βi − G(S−i)
�2
�

, (19)
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with

G(S) =

∑

i∈S
1
γi

∑

i∈S βi +
∑

i∈S̄
βi
γi

1+
∑

i∈S
s
γi
+
∑

i∈S̄
1
γi

, (20)

G(S−i) =

∑

j∈S−i

1
γ j

∑

j∈S−i
β j +

∑

j∈S̄+i

β j

γ j

1+
∑

j∈S−i

(s−1)
γ j
+
∑

j∈S̄+i

1
γ j

. (21)

Before analyzing the impact of heterogeneity in costs and benefits, we first examine a

benchmark case with full symmetry. This gives us a public goods game as a special case.

Taking βi = β and γi = γ for all i ∈ N simplifies (18) and (19) considerably. From

(18)–(21) we obtain for a two-player coalition s = 2 the internal stability condition Φ ≥
0 ⇔ 2γn+(2+n)2

(2+γ+n)2 ≥
n2+γ(−1+2n)
(γ+n)2 . Note that it is independent of β . Solving for γ gives γ ≥

−4 + n + 2
p

3− 3n+ n2 as the condition for a stable two-player coalition, given n ≥ 3.

Further, we examine the stability condition for s = 3 and find that it is always negative.

Taking derivatives we find ∂Φ
∂ s < 0. Thus, no coalition s ≥ 3 can be stable. These results have

first been reported by De Cara and Rotillon (2003). Thus the finding of Proposition 3 does

not generalise to a model with a general cost parameter. But the scope for stable coalitions

in a symmetric game is limited to s = 2.

Having established this benchmark case, we now proceed to assess how stability changes

if we introduce asymmetry in both β and γ parameters. Because of the complexity of (18)

and (19), we use simulations to illustrate such changes. Since we employ replacement

functions, we can introduce asymmetry simply by using a setting where all agents but one

have similar parameters βi = β and γi = γ for all i ∈ N \ j. This ‘odd’ agent j ∈ S is a

coalition member with parameters β j and γ j. A variation of this parameter suffices to assess

the impact of benefit- and cost asymmetry on the internal stability of any coalition S.

In Figure 3 we plot stability of the grand coalition as a function of s = n ∈ {2, . . . , 20}
for parameters β j ∈

�

1
2 , 1, 3

2

	

and γ j ∈
�

1
2 , 1, 3

2

	

, while normalizing β = γ= 1. The central

subplot features the symmetric case where β j = β = γ j = γ = 1 as discussed above. We

observe that stability holds for n = 2 only. That is, given symmetric parameter values

the only stable grand coalition in this subplot occurs for n = 2. All three subplots in the

middle column of Figure 3 feature γ = γ j = 1, so that Proposition 1 applies. That is, for

βi parameters that are sufficiently close to symmetry, we find that the grand coalition is

unstable. In Figure 3 this occurs in the central subplot where β = β j = 1. The grand coalition

is unstable (i.e., it is in the ‘wedge’ of Figure 2), except when n = 2, in line with Corollary 1.

In its two neighbouring subplots where β j =
1
2 , respectively β j =

3
2 , the asymmetry in bliss

points leads to stable grand coalitions for all levels of n.

We further verify how asymmetry affects the stability of grand coalitions by comparing

the central subplot with its eight neighbours. Moving to the left or right we keep β j = 1

but we vary γ j. This results in only minor changes and our main result holds. For other
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Figure 3: Stability Φ(N) of the grand coalition as a function of s = n ∈ {2, . . . , 20}, using
β = γ= 1 and 3× 3 combinations of β j and γ j for the ‘odd’ agent.

levels of β j, such changes in γ j have more substantial effects, generally leading to increases

in stability when γ j decreases. Moving up and down we keep γ j = 1 but we vary β j. This

results in substantial improvements in stability. For other levels of γ j, such changes in β j

have a similar stabilising effect. We conclude that asymmetry in costs, in particular the

presence of a low-cost agent, has the potential to increase coalition stability. Asymmetry in

benefits seems to be more powerful in the sense that it does not only affect the absolute

value but also the sign of the stability function.

7 Conclusion

In this paper, we offer a comprehensive analysis of the private provision of a public good

when additional provision is good for some agents and bad for others. Such goods have

been called gobs in the recent literature. We study coalition formation in the gobs provision

game in a setting with quadratic benefits from public gobs and quadratic costs of provision.

We establish two main findings. First, we characterise the class of games where the grand

coalition is stable (i.e., an equilibrium outcome) and the provision level is efficient. We find

a stable and efficient grand coalition if agents are sufficiently heterogeneous (Proposition 1).

Second, we find the remarkable result that, even in cases where the grand coalition is not

an equilibrium, a potential contest between agents exerting effort in different directions is

generally avoided in equilibrium. In short, if agents are (sufficiently) heterogeneous, they

can form a stable coalition which avoids a wasteful contest while, if agents are (sufficiently)

17



homogeneous, coalition stability breaks down, but the similarity of agents implies that all

exert effort in the same direction. The cases where moderate wasteful effort may occur lie

between these polar cases and are characterised in Proposition 2.
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Appendix: Proof of Proposition 2

Proof. To prove Proposition 2 we distinguish two main cases. (i) When the grand coalition

is stable, all agents coordinate their actions, wasteful contest is avoided, and the proposition

holds. (ii) When the grand coalition is unstable, we need to show whether in equilibrium

members and singletons exert effort in the same direction. In this case agents are (almost)

symmetric as we know from Proposition 1. We distinguish two sub-cases. (iia) First consider

that all agents are fully symmetric. Then, by Proposition 3, we have no stable coalition.

However, since agents have the same bliss level, they would exert the same effort and the

proposition holds. (iib) The remaining case is when agents have different bliss levels, but not

so different that the GC would be stable, i.e., we are inside the wedge depicted in Figure 2.

The remainder of the proof deals with this case.

Since it is not generally true that wasteful effort cannot occur in equilibrium, we de-

termine a no-wasteful-effort condition. We do so for the first part of Definition 2 where

members exert positive effort, i.e., we assume gS ≥ 0 and therefore BS ≥ G(S). Wasteful

effort implies that there exists some singleton j /∈ S with g j < 0 and therefore B j = β j < G(S).
The proof for the case gS ≤ 0 works in the same way and can be skipped.

The strategy to characterise the no-wasteful-effort condition is as follows. We first obtain

the internal stability function from equations (11) and (12). Next, we consider constraints

on the distribution of bliss levels (β) that need to be satisfied for a coalition S ⊂ N to

be stable. Finally, we distinguish the classes of equilibria (i.e., stable coalitions) in the

(n, s)-space for which wasteful effort can and cannot occur. We employ this strategy first for

part (i) of the proposition where n= 3 and subsequently for part (ii) where n> 3.

Combining (11) and (12), the stability function is given by

Φ(S) =

�

∑

S

β

�2
�

(1− s)(2+ 2n− 3s+ s2)
(3− 3s+ s2 + n)2

+
s(1− n2 + 2ns)

2(1+ n− s+ s2)2

�

+
∑

S

β
∑

S̄

β

�

−
2(1+ n− s)

(3− 3s+ s2 + n)2
+
(1+ n− s)(1+ s2)
(1+ n− s+ s2)2

�

+

�

∑

S̄

β

�2
�

s
(3− 3s+ s2 + n)2

−
s(1+ s2)

2(1+ n− s+ s2)2

�

+
∑

S

β2
�

−7+ n2 + 2ns2 − 2ns− 2n+ s4 − 2s3 − 3s2 + 10s
2(3− 3s+ s2 + n)2

�

. (22)

Part (i) (n= 3) First, consider s = 1 such that the coalition is trivially internally stable.

Without loss of generality, we normalise
∑

S β = s such that BS = 1. By (9) this implies

that G(S) = 1+
∑

S̄ β

4 . Since we assume BS ≥ G(S), we obtain
∑

S̄ β ≤ 3. Next, assume we

have wasteful effort. Then there is one singleton j, with β j <
1+
∑

S̄ β

4 . Denote the other

singleton agent by k and combine
∑

S̄ β = β j + βk with the previous inequality to obtain
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βk > 3β j−1. We use (22) to calculate stability of the enlarged coalition S∪{ j} and write it in

the (βk,β j)-space: βk ≥ 1+β j−3
p

2
q

1− 2β j + β2
j . This last condition implies βk > 3β j−1

so that if there is wasteful effort for s = 1, then there is also an internally stable enlargement

of S. By Lemma 1, this implies that we do not find an equilibrium with wasteful effort when

s = 1.

Next, consider s = 2 with only one singleton agent k. Again, we normalise
∑

S β = s = 2.

By (9) this implies that G(S) = 4+βk
6 . For wasteful effort to occur we require βk < G(S),

which implies βk <
4
5 . Assuming internal stability of S we use (22) to calculate a minimum

value for
∑

S β
2. When the bliss level of agent k gets closer to 4

5 , we find that
∑

S β
2 tends

to 51
25 when S is just minimally stable. We find a small range of β parameter values for the

two coalition members around
�

1−
p

2
10 , 1+

p
2

10

�

where a two-player coalition is stable and

exerts positive effort, while the remaining singleton exerts negative effort and so we have

wasteful contest. Integrating the contesting singleton leads to an unstable GC, and hence,

by Lemma 1, we find an equilibrium with wasteful effort when s = 2.

Part (ii) (n> 3) As before, without loss of generality we normalise
∑

S β = s so that

the average β of members is BS = 1. Next, we fix
∑

S β
2 (which captures the degree of

heterogeneity of members) at a value such that S is just internally stable, i.e. Φ(S) = 0. This

leaves us with an internal stability condition Φ(S) that depends only on n, s, and
∑

S̄ β , i.e.,

the sum of singleton agents’ bliss levels.4

Now, we need to determine for which combination of parameters n, s, and β , if any,

wasteful effort can occur in equilibrium. Note that stability of S is equivalent to the internal

stability of S and, by Lemma 1, the external instability of the enlarged coalition S ∪ { j} for

any singleton j /∈ S. In light of the latter condition, notice that S is most likely to be stable if

S is internally stable and any enlarged coalition S ∪ { j} is likely to be unstable. The latter is

true if agents in S ∪ { j} and therefore in S are more homogeneous in terms of bliss levels.

This is the reason why we can fix Φ(S) = 0 as we did before.5 For any wasteful effort to

occur in equilibrium there must exist a singleton j such that β j < G(S) and at the same time

β j must be sufficiently close to BS since, when a relatively ‘similar’ agent joins the coalition,

the enlarged coalition is the least likely to be internally stable and thus S is most likely to be

stable.

Formally, then, for any internally stable coalition S with BS ≥ G(S) and j /∈ S with

B j = β j < G(S) we assess the internal stability of S∪{ j} (which is equivalent to the external

instability of S). We find

Φ(S ∪ { j}) =
NUM
DEN

s2

�

∑

S̄

β − n+ s− 1

�2

, (23)

4For details and subsequent calculations in the proof, our Mathematica script is available upon request.
5If S were more than minimally internally stable, then an enlarged coalition S ∪ { j} is more likely to be

stable which implies that S is more likely to be externally unstable and, thus, not an equilibrium coalition.
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where numerator NUM and denominator DEN are higher-degree polynomials containing

only parameters n and s. Since the second and third terms of the stability function are

always positive, we are left with examining the fraction NUM
DEN . It can be proven that DEN> 0

for all n≥ 3 and s ≥ 1. For NUM we have

NUM=− 3− n6 + 2s− 4s2 + 7s3 − 10s4 − 6s5 + 48s6 − 49s7 + 22s8 − 22s9 + 8s10

− 5s11 + s12 − 2n5(1− 5s+ 2s2) + n4(7− 10s− 12s2 + 35s3 − 5s4)

+ 4n3(3− 17s+ 27s2 − 22s3 − 4s4 + 10s5) + n2(−3− 48s+ 136s2 − 206s3

+ 211s4 − 168s5 + 4s6 + 10s7 + 5s8) + 2n(−5+ s+ 4s2 − 28s3 + 77s4 − 89s5

+ 66s6 − 56s7 + 9s8 − 5s9 + 2s10). (24)

The pairs (n, s) such that NUM≥ 0 indicate internal stability of the enlarged coalition S∪{ j}
and thus external instability of coalition S. Such coalitions are not equilibria. Hence,

equilibria with wasteful effort can only occur when NUM < 0. As a result, NUM ≥ 0

constitutes our no-wasteful-effort condition. Figure 4 gives the contour for NUM= 0 in the

(n, s)-space. Points below the contour satisfy NUM< 0, that is we find no stable enlargement

of S, thus S is stable while agent j \ S exerts negative effort. Conversely, at points above the

contour wasteful effort cannot occur.

3 50 100
0

5

10

NUM=0

n

s

Figure 4: Contour for NUM = 0 in the (n, s)-space for n> 3. Points below the contour satisfy
NUM< 0 and vice versa.
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