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Abstract

We propose the river pollution claims problem to distribute a pollution bud-

get among agents located along a river. A key distinction from the standard

claims problem is that agents are ordered exogenously. For environmental rea-

sons, the location of pollution along the river is an important concern in ad-

dition to fairness. We characterize the class of externality-adjusted proportional
rules and show that they strike a balance between fairness and minimizing en-

vironmental damage in the river. We also propose two novel axioms that are

motivated by the river pollution context and use them to characterize two pri-

ority rules. We illustrate the rules through a case study of the Tuojiang Basin in

China.
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1 Introduction

In this paper we propose the river pollution claims problem and offer several solu-
tions to it. Agents are ordered along a river and each of them claims to be allowed
the discharge of a certain amount of pollution into the river. For environmental con-
servation reasons, the budget of total permitted pollution is limited and a solution
allocates this limited amount of permits. In this way, our model extends the stan-
dard claims problem (O’Neill, 1982) by incorporating an exogenous order of the
agents, reflecting their position along the river. This extension is inspired by the
problem of river water pollution, such as nutrient pollution originating from agri-
cultural production and chemical pollution originating from industrial processes,
which cause more aggregate harm the further upstream they are emitted. Our goal
is to allocate pollution permits fairly among the involved parties while also keeping
the environmental damage from pollution at a minimum.

Water pollution can cause serious health problems and ecological damage. For
example, Ebenstein (2012) estimated the impacts of surface water pollution on hu-
man health, showing that a deterioration of water quality by one grade (based on a
six-grade scale) could cause a 9.7% increase in the digestive cancer death rate. Be-
sides health, polluted water causes ecological imbalance and eco-remediation costs.
For example, Camargo and Alonso (2006) showed that acidification and eutrophi-
cation of freshwater ecosystems due to nitrogen pollution may cause severe dam-
age to the survival, growth, and reproduction of aquatic animals. Water pollution
has become a severe environmental problem and urgently requires effective control
measures. Such measures may be hampered by the mismatch between river basins
and the administrative borders of jurisdictions in which they are located. Globally,
286 rivers flow across country borders (UNEP, 2016), and many more rivers cross
the borders of lower-level jurisdictions like provinces, regions, and municipalities.
Due to this mismatch, the management of river pollution is often shared by multi-
ple jurisdictions. The distribution of water pollution between agents is a challenge
for which an analysis of the river pollution claims problem can provide possible
directions.

The main difference with the standard claims problem is that, in our model,
agents are ordered linearly from upstream to downstream, reflecting the direction
of river flow, and this order is exogenously given by the hydrological setting. In
addition to concerns over the amount of pollution in the river, a major concern is
its distribution over the agents. One reason for this concern is the standard fair-
ness consideration that is inherent to claims problems (see e.g. Thomson, 2003).
A second reason, which is novel, is that the location of pollution matters for the re-
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sulting damage. A given amount of pollution is likely to cause more damage when
it is discharged upstream compared to downstream since upstream pollution will
cause damage along a longer section of the river. This environmental externality
affects total health- and ecological damage in the river and may also cause ten-
sions along it. After presenting the model in Section 2, in Section 3 we will intro-
duce a class of rules that provides a compromise between these aspects of fairness
and environmental externalities. Specifically, we characterize the class of externality-
adjusted proportional rules on the domain of river pollution claims problems. It is in-
spired by the fixed-fraction rules proposed in Gudmundsson, Hougaard, and Ko
(2024). Our characterized class seems appropriate in light of the required balance
between fairness and pushing permits downstream. The characterization is based
on the axioms independence of upstream null claims, budget additivity, redistribution ad-
ditivity, and merging/splitting proofness. A common point to these axioms is that they
ensure that the rule is invariant across seemingly arbitrary choices on how to de-
fine the problem (e.g., whether to allocate permits on a monthly or yearly basis, or
whether to allocate at the country, city, or firm level). The axioms are formally de-
fined in Section 3. In Section 4, we provide a numerical example of pollution in the
Tuojiang River Basin.

Our paper relates to four separate strands of the literature. First, a series of re-
cent papers is concerned with the allocation of the global carbon budget in order
to assess fairness of countries’ efforts to mitigate greenhouse gas emissions (Duro
et al., 2020; Giménez-Gómez et al., 2016; Heo & Lee, 2022; Ju et al., 2021). Similar
to the current paper, these carbon budget papers model a total budget of pollution
that is allowed and they are concerned with the distribution of this budget over all
countries. The main difference with the current paper is that agents are not ordered,
and the location of pollution is not considered.

Second, there is a small literature that focuses on allocating water quantity in
river settings using a cooperative game approach (Ambec & Sprumont, 2002; van
den Brink et al., 2012) as well as using the claims problem approach (Ansink &
Weikard, 2012, 2015; Estévez-Fernández et al., 2021; van den Brink et al., 2014). Simi-
lar to the current paper, these papers use a setting where agents are ordered linearly
along the river. A key element of these models are the individual inflows (“endow-
ments”) of water that originates on each of the agents’ territories in the form of
rainfall and tributaries. Applying a claims problem in this setting redistributes the
existing water resources under a water balance constraint. In the current paper, as
in the standard claims problem, there is a single joint endowment, the pollution
budget, and we are concerned with the higher environmental impact of upstream
pollution compared to downstream pollution.
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Third, a fairly recent literature is concerned with the distribution of welfare due
to river cleaning (Gengenbach et al., 2010; Gudmundsson & Hougaard, 2021; Stein-
mann & Winkler, 2019; van der Laan & Moes, 2016) or the sharing of river water
treatment costs (Alcalde-Unzu et al., 2015; Li et al., 2023; Ni & Wang, 2007; van den
Brink et al., 2018). Ni and Wang (2007) pioneered this literature with an analysis
of how to share the costs of cleaning a river among different agents. While many
papers are concerned about the economics of river pollution in terms of the distri-
bution of costs for a given pollution abatement level or the distribution of welfare
for the efficient pollution level, we are not aware of papers that focus on the distri-
bution of pollution in the river.1 Such allocation of a pollution budget is underlying
the costs of pollution abatement and the resulting welfare levels.

Fourth, a few papers propose water quality trading as a cost-effective policy in-
strument to manage externalities due to water pollution (Farrow et al., 2005; Hung
& Shaw, 2005; Nguyen et al., 2013). Because of market frictions, such as transaction
costs, the initial distribution of pollution permits may impact the effectiveness of
this instrument in practice. The class of externality-adjusted proportional rules that we
propose in this paper offers an attractive starting point for the distribution of per-
mits under a water quality trading system. While this rule potentially causes the
most downstream agent to be allocated more permits than his claim, under water
quality trading this agent can simply trade any excess permits.

The paper is organized as follows. In the next section, we introduce the river pol-
lution claims problem. In Section 3, we characterize the class of externality-adjusted
proportional rules. In Section 4, we illustrate a case. In Section 5, we present conclud-
ing remarks.

2 The River Pollution Claims Problem

In this section, we introduce the river pollution claims problem. This problem adds
structure to the well-studied “claims/bankruptcy problems” (O’Neill (1982); and
see Thomson (2015, 2019) for surveys of this literature) through the natural order in
which agents (countries, regions, cities, . . . ) are located along the river. The resource
to be divided is a budget of pollution permits. As in the bankruptcy problem, agents
hold uncontested “claims” to this resource through, say, historic pollution levels.
We assume that the benefits of an agent’s pollution—a byproduct of many indus-
trial processes that create jobs, growth, and welfare—outweigh the costs in terms of

1There are some exceptions to this claim (see for instance Wu et al., 2019, and references cited
there), but these papers tend to focus on specific case studies rather than providing a more general
analysis as we do in this paper.

4



environmental and health damages,2 so agents prefer to be assigned more permits.3

2.1 Model

Let N = {1, . . . , n} denote the set of agents, representing the regions (e.g., cities
or countries) located along a river.4 Throughout, we reserve i, j, and k to denote
generic agents in N, where i is upstream of j whenever i < j. Each agent i ∈ N
has a claim ci ≥ 0 corresponding to their historical pollution level. The agents’
claims are collected in the profile c ≡ (ci)i∈N ∈ Rn

≥0. There is a pollution budget
E ≥ 0 to be distributed among the agents. We are concerned with problems in
which the claims add up to at least the budget; that is, a problem (c, E) is such that
C ≡ ∑i ci ≥ E. Let DN = {(c, E) ∈ Rn

≥0 × R≥0 | C ≥ E} denote the domain of
problems that agents N may face. A particular subdomain that will be interesting
is that of redistribution problems, which are such that the claims add up to the
pollution budget: RN = {(c, E) ∈ DN | C = E} ⊂ DN.

Given a problem (c, E) ∈ DN, an allocation x ∈ Rn
≥0 specifies that agent i is

awarded xi ≥ 0 pollution permits and is such that ∑i xi = E. For each E ≥ 0, let
X N(E) ≡ {x ∈ Rn

≥0 | ∑i xi = E} denote the set of allocations. A rule φ is a sys-
tematic way of selecting allocations; it selects, for each population N and problem
(c, E) ∈ DN, an allocation φ(c, E) ∈ X N(E).5 We restrict throughout to continuous
rules. In Remark 1, we illustrate two specific rules.

Remark 1 (Priority rules). An intuitive approach is to prioritize agents based on
their location along the river (compare downstream incremental in Ambec & Spru-
mont, 2002). Depending on the “direction”, this defines either the upstream priority
or downstream priority rule (details in Appendix A). For downstream priority, the most
downstream agent is awarded their claim if the budget allows. Then we turn to the
second-most downstream agent, and so on. Priority rules satisfy desirable proper-
ties such as claims boundedness (no one is assigned more than their claim) and con-

2Here, this relation is taken as given and we choose not to model pollution and production sepa-
rately as is done, for instance, by Gudmundsson and Hougaard (2021).

3Implicit throughout is that regions are unrestricted in the amount of permits they can put to
use and we do not a priori exclude the possibility that a small region (small ci) is awarded a large
number of permits (xi close to E, where E far exceeds ci). This situation is relevant for the class of
rules characterized in Section 3 and we offer a pragmatic solution in case it is deemed undesirable.

4Formally, we consider a variable-population model (see Axioms 1 and 4). There is an infinite
set of “potential” agents indexed by the natural numbers N. To specify a problem, we first draw
a finite number of them from this infinite population. Let N denote the family of nonempty finite
subsets of N. In this context, N ∈ N denotes a generic set of agents. For convenience, we define
the rules and axioms for a fixed population N, but they should be understood as applying to every
population in N .

5For allocations and rules, we use subscript “−i” to denote the assignment to all but agent i; for
instance, x = (xi, x−i).
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sistency (allocations update consistently across problems as participants change; see
Moulin, 2000). Indeed, downstream priority is the only rule to satisfy independence of
upstream claims (downstream allocation is independent of upstream claims) together
with claims boundedness (see van den Brink et al., 2014). However, priority rules also
inherently violate the principle of impartiality as they treat agents unequally based
on predetermined criteria.

In Appendix A, we provide new characterizations of both upstream priority and
downstream priority. We focus on the intuition here and refer to Appendix A for tech-
nical details and proofs. Proposition 1 characterizes upstream priority through claims
boundedness, consistency, and upstream solidarity. This axiom states that if some agent
has an increased claim, then any change in the allocation of permits to upstream
agents should have the same sign. That is, either all receive more, less, or the same.
Hence, upstream agents are affected in the same direction if one of the downstream
agents increases his claim. A related solidarity condition is upstream symmetry (Ni
& Wang, 2007) and similar ideas are discussed more broadly in Thomson (2003).

To characterize downstream priority, Proposition 2 couples claims boundedness and
consistency with the axiom don’t move up. This axiom is tailored to the differential
environmental impact of upstream versus downstream pollution. The axiom states
that any transfer of (part of) a claim from a non-satiated downstream agent to an
upstream agent does not decrease the downstream agent’s allocation of pollution
permits. In other words, it should be challenging to reallocate pollution from down-
stream to upstream locations in the river. The axiom draws inspiration from the no
transfer paradox axiom (Chun, 1988). ◦

2.2 Fairness and Environmental Concerns

Building on Remark 1, we will take an axiomatic approach to recommend a class of
rules. We stress that our objective is not to select how much pollution to allow but
rather to distribute a fixed pollution budget among the agents. In this way, we only
indirectly address the damages to health and the environment caused by pollution
through the axioms. A key concern is the simple observation that, due to the flow
of the river, pollution is more harmful the further upstream it is emitted. Although
this calls for pushing permits downstream, this has to be balanced with the fact that
the claims (historic permit allocations) anchor the agents’ expectations and act as a
reference point from which it may be difficult to make too drastic adjustments.

The two goals suggest two very different rules. For reasons that will become
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apparent, we denote them φ0 (all downstream rule) and φ1 ( the proportional rule):

φ0(c, E) = (0, . . . , 0, E),

φ1(c, E) = (E/C) · c.

In the next section we turn to introduce a class of rules that provides a compromise
between these two rules.

Finally, we note that our model and proposed solution have merit even if the
permit system only covers a section of the river (see Section 4). In this case, the
budget E can be interpreted as an environmental standard set to safeguard envi-
ronmental quality further downstream. Intuitively, a well-designed system for a
section of the river may be a key first step to attract more to join and extend the
agreement both up- and downstream. Our objective then is, first and foremost, to
allocate pollution permits to the involved agents/regions to minimize the environ-
mental damage from pollution. The same intuition applies for sea-bound rivers,
where we now may interpret E as a standard set to control the river’s impact on the
sea.

3 Externality-Adjusted Proportional Rules

In this section, we will introduce and characterize the class of externality-adjusted
proportional rules, striking a balance between our concerns for proportionality and
pushing permits downstream without necessarily resulting in priority outcomes
(see Remark 1). Rules in this class are parameterized by a single parameter, which
captures the trade-off between treating claims “fairly” and shifting pollution down-
stream.

The externality-adjusted proportional rules φλ with parameter λ ∈ [0, 1] allocate the
fraction λ of the permits in proportion to the claims, whereas the remaining 1 − λ

are awarded to the most downstream agent to minimize any harmful externalities.
With λ = 1, we obtain the canonical proportional rule, giving priority to fairness over
minimizing environmental damage. With λ = 0, permits are exclusively assigned to
the most downstream agent, giving priority to minimizing environmental damage
over fairness (such a solution would naturally violate claims boundedness, an issue
that we address at the end of Section 3.2). Any intermediate value of λ ∈ (0, 1)
makes for a compromise between these two outcomes.

Definition 1 (The externality-adjusted proportional rule with parameter λ). For
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each (c, E) ∈ DN,

φλ(c, E) = λ · φ1(c, E) + (1 − λ) · φ0(c, E).

That is,

φλ
1 (c, E) = (E/C) · λc1

φλ
2 (c, E) = (E/C) · λc2

...

φλ
n−1(c, E) = (E/C) · λcn−1

φλ
n(c, E) = (E/C) · (λcn + (1 − λ)C) .

These rules resemble the fixed-fraction rules recently explored by Gudmundsson,
Hougaard, and Ko (2024) in the context of assigning liability in the case of sequen-
tially triggered losses. Beyond the setting being completely different, there are two
key differences. First, in their paper, liability should be assigned “upstream” (to the
initiator of the loss chain); here, pollution permits should ideally be awarded down-
stream. Second, the fixed-fraction rules only apply in the particular case correspond-
ing to C = E (which we will refer to as “redistribution problems”); our solutions
extend to C ≥ E, where the practically most relevant cases will have C > E. In
this way, our setting calls for a different set of axioms and results in a novel class of
rules.

Next, we introduce a series of desirable axioms and ultimately show that they
jointly pin down the externality-adjusted proportional rules.

3.1 Axioms

We start from the case in which our two objectives—fairness with respect to claims
and avoiding upstream pollution—agree. This is captured in an axiom inspired
by the well-known “dummy”, independence, and consistency axioms (e.g. Arrow,
1963; Moulin, 2000; Shapley, 1953; Thomson, 2012) as follows:

Consider the case in which the most upstream agent has a claim of zero. We
contend then that the agent is irrelevant to the problem and that the rule should
be invariant to whether the agent is included or not.That is, for each agent i > 1,
φi(c, E) = φi−1(c−1, E).

Axiom 1 (Independence of upstream null claims). For each (c, E) ∈ DN,

c1 = 0 =⇒ φ(c, E) = (0, φ(c−1, E)).
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Next, budget additivity is a property closely connected to proportionality (see e.g.
Moulin, 1987; Thomson, 2019). It asserts that decomposing the resources (here, per-
mits) in two parts and applying the solution separately should make no difference.
This is desirable for instance if there is uncertainty on the total permits that will
be made available; the permits can then cautiously be announced in batches with-
out affecting the final distribution. The axiom is introduced by Chun (1988) and
explored for instance in Bergantiños and Vidal-Puga (2006).

Axiom 2 (Budget additivity). For each (c, E) ∈ DN and E′, E′′ ≥ 0 with E = E′+ E′′,

φ(c, E) = φ(c, E′) + φ(c, E′′).

The remaining axioms apply only to the particular class of redistribution problems,
RN = {(c, E) ∈ DN | C = E}. We require the rule to be additive across redistri-
bution problems. Note here that, if (c, E) and (c′, E′) are redistribution problems,
then (c + c′, E + E′) = ((c1 + c′1, . . . , cn + c′n), E + E′) is as well. Again, additivity
has a long history in the literature on fair allocation (e.g. Shapley, 1953); Thomson
(2019)discusses applying it only on a subset of problems.

Axiom 3 (Redistribution additivity). For each (c, E), (c′, E′) ∈ RN,

φ(c + c′, E + E′) = φ(c, E) + φ(c′, E′).

The final axiom applies to a yet smaller, elementary set of problems. The n-
agent elementary problem un ≡ (c, E) ∈ RN is such that only the most upstream
agent has a positive claim, which equals one: c = (1, 0, . . . , 0) and E = 1. The ax-
iom below pertains to the strategic opportunities for neighboring regions. Imagine
two regions requesting a recount because they now want to be treated as one (or
one region “splitting” into two): if they benefit from doing so—at the expense of
other agents—it would create unnecessary conflict. Merging/splitting proofness elim-
inates this possibility and goes back to the seminal work of O’Neill (1982); see
also Chun (1988), de Frutos (1999), and Ju et al. (2007). Intuitively, starting from
claims (1, 0, . . . , 0), any pair of adjacent agents i and i + 1 can coordinate to claims
(1 + 0, 0, . . . , 0) = (1, 0 + 0, . . . , 0) = · · · = (1, 0, . . . , 0, 0 + 0). We wish to rule out
that they benefit from doing so. Again, this requirement is here only imposed on
elementary problems.

Axiom 4 (Merging/splitting proofness). For each i < n,

φi(un) + φi+1(un) = φi(un−1).
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In summary, in any application one has to decide how to delimit the problem—
choose where to draw boundaries for who to include (independence of upstream null
claims), how to treat multiple source of pollution (additivity), and what level of
aggregation (regions, cities, firms, etc.; merging/splitting proofness) to go for. There
might not be a clear answer to these questions. Different parties can argue for dif-
ferent options and it could jeopardize the stability of the agreement if these ad-
ministrative decisions had too much of an impact on the outcome. This is then a
common point of our axioms: they make the outcome invariant across seemingly
arbitrary choices on how to define the problem.

3.2 Characterization Result

The main result of the paper is the following:

Theorem 1. A rule φ satisfies independence of upstream null claims, budget additivity,
redistribution additivity, and merging/splitting proofness if and only if there is λ ∈ [0, 1]
such that φ = φλ.

(1, 0, 0)

(0, 1, 0) (0, 0, 1) = φ0(c, E)

φ1(c, E) = (2/3, 1/3, 0)
φ1/2(c, E) = (1/3, 1/6, 1/2)

Figure 1: Illustration of Theorem 1 for c = (2, 1, 0) and E = 1. With parameter λ = 1/2, the
allocation is φ1/2(c, E) = (1/3, 1/6, 1/2). The allocations selected by the externality-adjusted
proportional rules with parameters λ > 1/2 are located on the solid line within the simplex
between φ1/2 and φ1. The dashed line covers other externality-adjusted proportional rules with
parameters 0 < λ < 1/2.

The proof is deferred to Appendix B. From the class of externality-adjusted pro-
portional rule, decision-makers or practitioners can select one rule based on their
preferred value of parameter λ ∈ [0, 1] that controls the trade-off between propor-
tionality and pushing permits downstream. Figure 1 illustrates how the value of λ

affects the permit allocation in a simple numerical example.
Claims can be such that a low value of λ causes the externality-adjusted propor-

tional rule to violate claims boundedness (specifically, the most downstream agent
may receive more than their claim when cn < E). To prevent such potentially un-
desirable outcomes, a decision-maker may select λ on a case-by-case basis. For in-
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stance, selecting the parameter based on historical data or specific problem charac-
teristics could ensure that the rule remains within acceptable bounds. A pragmatic
procedure is to restrict to values of λ which allocate the most downstream agent (at
most) his claim.6 In the relevant case cn < E ≤ C, solving φλ

n(c, E) = cn for λ ∈ [0, 1]
yields

E
C
· (λcn + (1 − λ)C) = cn ⇐⇒ λ =

C
E
· E − cn

C − cn
≤ 1.

The final inequality follows as E ≤ C, so E · cn ≤ C · cn, and therefore C(E − cn) =

EC − C · cn ≤ EC − E · cn = E(C − cn). This shows that, in each specific problem,
there is an externality-adjusted proportional rule for which no agent receives more
than their claim. In particular, it identifies the smallest λ that accomplishes this (that
is, the one that also best addresses the concern of pushing pollution downstream).

4 Case Study

In this section, we provide a numerical example using data from the Tuojiang River
Basin (China) to illustrate how the choice for some parameter λ affects the resulting
permit allocation results when using a externality-adjusted proportional rule.

The Tuojiang Basin is a primary tributary to the Yangtze, originating in Mianzhu
City, Sichuan Province, it flows from north to south through the cities of Deyang,
Chengdu, Ziyang, Neijiang, Zigong, and Luzhou within the Sichuan Province,7 ulti-
mately joining the Yangtze River. It spans a total length of 638 km and holds promi-
nence as one of the economically important rivers in the Sichuan Province. While
pollution from the Tuojiang Basin ends up in the Yangtze River, for this case we
only consider cities within the Tuojiang basin. Clearly, one can incorporate addi-
tional cities along the Yangtze River, say all the way down to Shanghai. A potential
benefit of using an externality-adjusted proportional rule is that the inclusion of these
downstream cities would have a limited effect on the permit allocation to most of
the upstream cities.

We focus on the volume of untreated sewage discharge in this case. The data
were obtained from the 2017 and 2021 Sichuan Provincial Statistical Yearbook. The
total volume of untreated sewage discharged was approximately reduced from
81.24 million cubic meters (MCM) in 2016 to 64.30 MCM in 2020. We use these data

6This approach defines a rule φ that for each problem (c, E) selects the same allocation as some
φλ but where the parameter λ depends on the problem. We leave a characterization of this rule for
future research, but note that φ satisfies claims boundedness and all axioms in Theorem 1 except budget
additivity.

7We label the cities Deyang, Chengdu, Ziyang, Neijiang, Zigong, Luzhou by 1 through 6.
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to construct the claims vector and endowment parameter. In the left section of Ta-
ble 1, we take the 2016 historical discharge levels as the claims vector, and we use the
2020 total discharge of 64.30 MCM as the budget to be distributed. Column 3 shows
the result of the downstream priority rule φd (see Appendix A for its definition)
and columns 4-5 show the results of the externality-adjusted proportional rules for two
levels of parameter λ. A case-by-case approach to selecting parameter λ such that
pollution is pushed downstream without violating claims boundedness (footnote 6)
results in φ0.94. Under this specific rule the most downstream city, Luzhou, receives
its full claim, whereas the other cities receive proportional shares of their claims.
The rules allocate significantly less to regions 2 and 5 compared to the actual 2020
emissions (column 6).

In the right section of Table 1, we instead take 2020 discharge levels as claims.
We examine three more stringent policy targets aimed at reducing pollution. Intu-
itively, a lower budget E provides more flexibility in distributing permits without
exceeding claims and lowers the threshold for the parameter λ. Put differently, by
reducing total emissions E, we can push a larger share of permits downstream.

Claims are 2016 discharge levels, Claims are 2020 discharge levels,
budget is total 2020 discharge variable budgets (emission targets)

i Claim φd
i φ0.94

i φ1
i Claim φ0.97

i φ0.95
i φ0.90

i

1 4.17 0.00 3.10 3.30 2.78 2.11 1.63 1.16
2 53.98 41.21 40.14 42.72 50.26 38.08 29.56 21.04
3 2.13 2.13 1.58 1.69 0.83 0.63 0.49 0.35
4 3.30 3.30 2.45 2.61 1.59 1.20 0.94 0.67
5 2.48 2.48 1.84 1.96 3.53 2.67 2.08 1.48
6 15.18 15.18 15.18 12.01 5.31 5.31 5.31 5.31

81.24 64.30 ——————— 64.30 50.00 40.00 30.00

Table 1: Discharge Permits Allocation in Tuojiang River Basin (units: MCM).

5 Conclusions

We propose the river pollution claims problem to distribute a pollution budget
among agents located along a river. A key distinction from standard claims prob-
lems is that agents are ordered and the location of pollution is an important concern
in addition to fairness. We characterized the class of externality-adjusted proportional
rules in Theorem 1. We apply the solution in a case study of the Tuojiang River
Basin to show that it is well-suited to balance fairness considerations with concern
for minimizing environmental damage due to river pollution. In addition to our
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main result, we propose two new axioms in the context of Remark 1, upstream soli-
darity and don’t move up, to characterize the upstream priority rule and the downstream
priority rule.

We end on three suggestions for future work. The first is to consider another
class of rules that could potentially be used to balance fairness and minimizing
environmental damage. This is the class of bubbling-up rules proposed by Hougaard
et al. (2017). In this class of rules, agents ‘bubble down’ a share of their claim to
their immediate downstream neighbor. The second is to explore an extension of the
model that replaces the river-wide budget E with agent-specific bounds Ei ≥ 0.
That is, there may be environmental concerns that make it desirable to emit at most
Ei units at or upstream of agent i. The present model is a special case in which
E1 = · · · = En = E. Third, our study implicitly assumes the involved participants
will keep emissions to the levels selected by the rule. It would be interesting to dig
deeper into this and search for game-theoretic, decentralized solutions (compare
Gudmundsson, Hougaard, & Ansink, 2024; Gudmundsson et al., 2019). We leave
these possibilities for future research.
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A Priority Rules

In this appendix, we characterize the upstream priority rule and the downstream pri-
ority rule.

Definition 2 (Upstream priority rule). For each (c, E) ∈ DN and j > 1,

φu
1(c, E) = min{c1, E}

φu
j (c, E) = min{cj, E − ∑

i<j
φu

i (c, E)}.

Definition 3 (Downstream priority rule). For each (c, E) ∈ DN and i < n,

φd
i (c, E) = min{ci, E − ∑

j>i
φd

j (c, E)}

φd
n(c, E) = min{cn, E}.

We now introduce a series of axioms, taking inspiration from the literature on
fair allocation. We start with claims boundedness, which asserts that no agent should
receive more permits than their claim.

Axiom 5 (Claims boundedness). For each problem (c, E) ∈ DN and agent i ∈ N,

φi(c, E) ≤ ci.

We continue with consistency, which addresses the situation in which agent j
“leaves” with their assigned permits. When we reevaluate the reduced problem,
the assignment to the remaining agents should be unchanged.

Axiom 6 (Consistency). For each problem (c, E) ∈ DN, and agents {i, j} ⊆ N such
that i ̸= j,

φi(c, E) = φi(c−j, E − φj(c, E)).
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We now provide formal definitions of the two new axioms that are tailored to
the river pollution claims problem. The first one is upstream solidarity.

Axiom 7 (Upstream solidarity). For each problem (c, E) ∈ DN, amount ∆ > 0, and
agents {i, j, k} ⊆ N such that i < j < k,

φi(c, E) < φi((ck + ∆, c−k), E) ⇐⇒ φj(c, E) < φj((ck + ∆, c−k), E)

and

φi(c, E) > φi((ck + ∆, c−k), E) ⇐⇒ φj(c, E) > φj((ck + ∆, c−k), E).

Upstream solidarity asserts that, if agent k’s claim increases while the pollution
budget E is unchanged, then the number of permits assigned to the agents upstream
of k should be affected in the same direction, either increase, decrease, or remain the
same. This fairness axiom is inspired by the upstream symmetry as proposed by Ni
and Wang (2007). Upstream symmetry pertains to the equal sharing of pollution costs
by upstream agents because it is difficult to distinguish each upstream polluter’s
contribution to the downstream costs of cleaning pollution. In the river pollution
claims problem, however, we are not concerned about cost sharing but rather about
the distribution of the pollution budget. Therefore, we adapt the upstream solidarity
axiom to reflect this difference.

Proposition 1 characterizes the upstream priority rule. Formally, the upstream pri-
ority rule φu is such that, for each (c, E) ∈ DN, φu

1(c, E) = min{c1, E} and otherwise
φu

j (c, E) = min{cj, E − ∑i<j φu
i (c, E)}.

Proposition 1. A rule φ satisfies claims boundedness, consistency, and upstream soli-
darity if and only if φ = φu.

Proof. It is straightforward to show that the upstream priority rule satisfies claims
boundedness, consistency and upstream solidarity. We proof the converse statement as
follows.

Consider the two related problems (c, E) ∈ DN and (c′, E) ∈ DN′
, where (c′, E)

differs from (c, E) by adding a dummy agent completely upstream, i.e. an agent
with a zero claim ordered before agent 1 that we, with slight abuse of notation,
refer to as agent 0. Hence, N ≡ N′ \ 0. By claims boundedness, the dummy agent will
receive a zero allocation. By consistency8, allocations to all the other agents remain
the same, so that φi(c, E) = φi(c′, E) ∀i ∈ N.

Next, consider the related problem (c′′, E) ∈ DN′′
where c′′ differs from c′ only

8Note that we can use independence of upstream null claims instead of consistency, see Axiom 1.
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by c′′k > c′k, where i, j < k, by upstream solidarity, we have,

φi(c′′, E)− φi(c′, E) = φj(c′′, E)− φj(c′, E) = φ0(c′′, E)− φ0(c′, E) = 0. (1)

So allocations to agents upstream of agent k will not be affected by agent k’s
increased claim.

Next, we use this result to derive the upstream priority rule. Consider problem
(c′′′, E) ∈ DN′′′

where profile c′′′ = (c1, . . . , cj−1, c′′′j , 0, . . . , 0) ∈ RN
≥0 is such that

the sum of claims is exactly equal to the pollution budget, i.e. ∑i≤j c′′′i = E. By
claims boundedness, we have φi(c′′′, E) = c′′′i for all i ∈ N. Now, create a sequence of
n + 1 − j problems (c, E)k≤j to transform problem (c′′′, E) back into problem (c, E)
by lexicographically increasing agents’ claims back to their original level, we do so
starting with the claim by agent j and subsequently going downstream with claims
by agent j + 1, j + 2, etc. In each of these problems, we can apply the above result.
Since we do this sequentially, we end up with φj(c, E) = min{cj, E − ∑i<j φi(c, E)}
for all j ∈ N. This defines the upstream priority rule.

With concerns for limiting environmental damage in mind, we introduce our
next axiom: don’t move up.

Axiom 8 (Don’t move up). For each problem (c, E) ∈ DN, agents {i, j} ⊆ N such
that i < j, and amount 0 < ∆ < cj − φj(c, E),

φj(c, E) ≤ φj((ci + ∆, cj − ∆, c−i,j), E).

Don’t move up says that an upstream transfer in claims will not result in an up-
stream transfer of pollution. Note that the axiom applies only when agent j is non-
satiated in the original problem since otherwise claims boundedness is violated; this
constraint is reflected by the inequality ∆ < cj − φj(c, E). The motivation for don’t
move up is that upstream pollution is likely to cause more damage and we may
want to prevent pollution from moving upstream given a certain pollution bud-
get. Don’t move up is similar to the inverse of no transfer paradox (Chun, 1988). The
no transfer paradox axiom focuses on the case where one agent transfers his claim
to another agent, and requires not only that the former should receive at most as
much as he did initially, but also that the latter should receive at least as much as
he did initially. This axiom is satisfied by many classical solutions to claims prob-
lems. When we consider such a claim transfer situation in a river setting, however,
no transfer paradox implies that if a downstream agent transfers part of its claim to-
wards upstream, the former will get at most as much as he did before. This is not
a desirable outcome from an environmental perspective given that pollutants flow
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from upstream to downstream. Therefore, we propose this inverse version of no
transfer paradox in order to prevent undesirable claim transfers and keep pollution
downstream as much as possible.

Proposition 2 characterizes the downstream priority rule.

Proposition 2. A rule φ satisfies claims boundedness, consistency, and don’t move up if
and only if φ = φd.

Proof. It is straightforward to show that the downstream priority rule satisfies claims
boundedness, consistency and don’t move up. We proof the converse statement as fol-
lows.

Consider the two related problems (c, E) ∈ DN and (c′, E′) ∈ DN, where (c′, E′)

differs from (c, E) by removing a subset of agents. Specifically, remove all but two
agents, such that only agents i and j remain with i < j. By consistency, the remaining
endowment is E′ ≡ E − ∑k ̸=i,j φk(c, E), and the corresponding claims vector is c′ =
{ci, cj}.

Next, consider the related problem (c′′, E) ∈ DN, where the claims vector c′′ =
(0, ci + cj) is such that the claim by agent i is transferred and added to agent j’s
claim. In other words, c′′i = 0 and c′′j = ci + cj. This transfer implies 0 < c′i −
c′′i = c′′j − c′j. Whenever we also have φj(c′′, E) < c′j, by don’t move up applied to
problems (c′′, E) and (c′, E′), we have φj(c′′, E) ≤ φj(c′, E), and given that there are
only two agents, this implies φi(c′′, E) ≥ φi(c′, E). By claims boundedness, c′′i = 0
implies φi(c′′, E) = 0. As allocations are non-negative, φi(c′′, E) = 0 ≥ φi(c′, E)
implies φi(c′, E) = 0. Agent i will always get a zero allocation under problem d′

even though his claim is not zero, implying that agent j has priority over agent i:
φi(c, E) = min{ci, E − ∑j>i φj(c, E)}. This defines the downstream priority rule.

B Proof of Theorem 1

It is straightforward to show that the externality-adjusted proportional rules satisfies
independence of upstream null claims, budget additivity, redistribution additivity, and
merging/splitting proofness. We prove the other direction as follows.

PART 1: Elementary problems: merging/splitting proofness

We start by pinning down the selection of the rule for elementary problems.
Recall that, for n ∈ N, we have un = (c, E) ∈ RN with c = (1, 0, . . . , 0) and E = 1.
By merging/splitting proofness, for each i < n, φi(un−1) = φi(un) + φi+1(un). We use
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this first for each i < n and then rearrange the right-hand side:

φ1(un−1) + · · ·+ φn−1(un−1)

= (φ1(un) + φ2(un)) + · · ·+ (φn−1(un) + φn(un))

= φ1(un) + · · ·+ φn(un) + (φ2(un) + · · ·+ φn−1(un)).

By balance, φ1(un−1) + · · · + φn−1(un−1) = 1 and φ1(un) + · · · + φn(un) = 1.
Hence, the equation simplifies to 1 = 1+ φ2(un)+ · · ·+ φn−1(un). As each φi(un) ≥
0, we have φ2(un) = · · · = φn−1(un) = 0. Therefore, by balance, there exists
λ ∈ [0, 1] such that, for each n ∈ N, φ(un) = (λ, 0, . . . , 0, 1 − λ) = φλ(un).

PART 2: Redistribution problems: redistribution additivity and independence of up-
stream null claims

Next, we extend to generic redistribution problems (c, E) ∈ RN. Recall that
the sum of redistribution problems is also a redistribution problem. Moreover, the
budget E can be inferred from the claims c through E = C. Hence, to simplify
notation, we refer to the problems in this part only through the claims vector.

First, we show that redistribution additivity implies that, for β ≥ 0,

φ(β · c) = φ(βc1, . . . , βcn) = β · φ(c).

We consider three cases as follows:

1. (Integer) If β ∈ N, then by repeatedly applying redistribution additivity, we
have

φ(β · c) = φ(c) + · · ·+ φ(c) = β · φ(c).

2. (Rational) If β = (p/q) ∈ Q \ N for some p, q ∈ N, then by redistribution
additivity, we have

q · φ(β · c) = φ(βq · c) = φ(p · c) = p · φ(c).

Divide by q on both sides to obtain the desired conclusion.

3. (Real) If β ∈ R \Q, let (a1, a2, . . . ) ∈ Q∞ be a rational sequence that converges
to β. By case 2 above, φ(ak · c) = ak · φ(c). As φ is continuous,

φ(β · c) = lim
k→∞

φ(ak · c) = lim
k→∞

ak · φ(c) = β · φ(c).

20



By applying redistribution additivity repeatedly,

φ(c) = ∑j φ(0, . . . , 0, cj, 0, . . . , 0) = ∑j cj · φ(0, . . . , 0, 1, 0, . . . , 0).

Independence of upstream null claims allows us to further decompose the problem,
eventually reaching an elementary problem. These were solved in PART 1. That is,
for each j ∈ N and claims vector (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the jth position,

φ(0, . . . , 0, 1, 0, . . . , 0) = (0, . . . , 0︸ ︷︷ ︸
j − 1 terms

, φ(1, 0, . . . , 0)︸ ︷︷ ︸
n − (j − 1) terms

) = (0, . . . , 0, λ, 0, . . . , 0, 1 − λ).

Hence, for each agent i < n, φi(c) = λci = φλ(c). By balance, φn(c) = φλ
n(c).

PART 3: Full domain: budget additivity

Finally, we generalize the results to the full domain, DN. Fix (c, E) ∈ RN. First,
we show that budget additivity implies that, for γ ≥ 1,

1
γ
· φ(c, E) = φ(c, E/γ).

We again consider three cases as follows:

1. (Integer) If (1/γ) ∈ N, then by budget additivity, we have

φ(c, E) = φ(c, E/γ) + · · ·+ φ(c, E/γ) = γ · φ(c, E/γ).

Divide by γ on both sides to obtain the desired conclusion.

2. (Rational) If γ = (p/q) ∈ Q \ N for some p, q ∈ N, then by budget additivity,
we have

p · φ(c, E/γ) = φ(c, pE/γ) = φ(c, qE) = q · φ(c, E).

Divide by p on both sides to obtain the desired conclusion.

3. (Real) If (1/γ) ∈ R \ Q, let (a1, a2, . . . ) ∈ Q∞ be a rational sequence that con-
verges to 1/γ. By case 2 above, φ(c, ak · E) = ak · φ(c, E). As φ is continuous,

φ(c,
1
γ
· E) = lim

k→∞
φ(c, ak · E) = lim

k→∞
ak · φ(c, E) =

1
γ
· φ(c, E).

This finally allows us to relate the solution of any problem (c, E/γ) ∈ DN to that

21



of the redistribution problem (c, E) ∈ RN. These were solved in PART 2:

φ(c, E/γ) =
1
γ
· φ(c, E) =

1
γ
· φλ(c, E) = φλ(c, E/γ).

This completes the proof.

C Independence of Axioms

We show independence of the axioms in Theorem 1: independence of upstream null
claims, budget additivity, redistribution additivity, and merging/splitting proofness. For
each axiom, we identify a rule that is not an externality-adjusted proportional rule
yet satisfies the other axioms.

Without budget additivity The downstream priority rule satisfies claims boundedness
and consistency, so it also satisfies independence of upstream null claims. For redistri-
bution problems (c, E) ∈ RN, it coincides with the proportional rule: φ(c, E) = c =
φ1(c, E). Hence, it satisfies redistribution additivity and merging/splitting proofness as
well. To see that it fails budget additivity, let c = (1, 3), E = 4, and E′ = E′′ = 2. Then

φ1(c, E) = 1 ̸= 1 + 1 = φ1(c, E′) + φ1(c, E′′).

Without redistribution additivity Define a rule similar to the externality-adjusted
proportional rules but let the parameter λ vary with c. Specifically, let λ = (C− cn)/C
and

φ(c, E) = λ · φ1(c, E) + (1 − λ) · φ0(c, E).

It is immediate that the rule satisfies merging/splitting proofness. As λ is independent
of E, it is also budget additive. To see that it fails redistribution additivity, let (c, E) = un

and (c′, E′) be such that c′ = (0, E′) and E′ ≥ 0. Then φ(c, E) = (λ, 1 − λ) and
φ(c′, E′) = (0, E′). For the “joint” problem (c + c′, E + E′) = ((1, E′), 1 + E′), we
then have λ = (C − cn)/C = 1/(1 + E′). Hence,

φ1(c + c′, E + E′) =
1

1 + E′ · 1 +
E′

1 + E′ · 0 ̸= φ1(c, E) + φ1(c′, E′).

Without merging/splitting proofness Define a rule as follows:

φi(c, E) =
E
C
·
(

ci

n − i + 1
+

ci−1

n − i + 2
+ · · ·+ c1

n

)
.
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To see that it fails merging/splitting proofness, let c = (1, 0, 0), E = 1, and c′ = (1, 0),
E′ = 1. Then φ(c, E) = (1/3, 1/3, 1/3) and φ(c′, E′) = (1/2, 1/2). Hence,

φ2(c, E) + φ3(c, E) =
2
3
̸= φ2(c′, E′) =

1
2

.

Without independence of upstream null claims In terms of the order along the
river, define the “opposite” of the externality-adjusted proportional rule as follows:
still allocate the fraction λ of the permits in proportion to the claims but now the
remaining 1 − λ are awarded the most upstream agent. That is, say now instead

φλ
1 (c, E) = (E/C) · (λc1 + (1 − λ)C)

φλ
2 (c, E) = (E/C) · λc2

...

φλ
n(c, E) = (E/C) · λcn.

It is immediate that it satisfies merging/splitting proofness as, for each n, φλ(un) =

(1, 0, . . . , 0). Furthermore, we have φλ((0, 1, 0, . . . , 0), 1) = (1− λ, λ, 0, . . . , 0), which
shows that the rule fails independence of upstream null claims. Finally, it satisfies the
two additivity axioms.
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