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Abstract

Alger and Weibull (2013) ask the question whether a combination of assortative match-

ing and incomplete information leads to the evolution of moral or altruistic preferences.

Their central result states that Homo Hamiltonenis – a type that has moral preferences

with a morality parameter equal to the level of assortment – is evolutionarily stable, while

preferences that lead to different behaviour are unstable. Together with their claim that

altruistic and moral preferences differ sharply, this suggests that moral preferences tend to

beat altruistic ones in evolutionary competition. We show that this is not true. First of

all, we show that there is a loophole in the definition of evolutionary stability, allowing for

Homo Hamiltonensis to satisfy the definition when the set of equilibria is empty, and their

equilibrium behaviour is not determined. If we try to close this loophole, by allowing for

mixing, or by allowing for asymmetric equilibria, we find that there are two options. With

the first approach, the differences in behaviour between Homo Hamiltonensis and regular

altruists can be substantial, but as soon as the difference appears, Homo Hamiltonensis

can be invaded, and regular altruists win in direct competition. With the second way of

allowing for mixing, or coordination on asymmetric equilibria, Homo Hamiltonensis cannot

be invaded, but then the difference in behaviour all but disappears, as all equilibria between

Homo Hamiltonensis are also equilibria between regular altruists.

Altruism, morality, evolution, assortment, incomplete information
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1 Introduction

In 1964, Bill Hamilton published a paper in which he presented what is now known as Hamilton’s

rule. This rule states that altruism will evolve if rb > c, where b is the fitness benefit to the

recipient, c is the fitness cost to the donor, and r is the genetic relatedness between them. The

idea that relatedness can breed altruism was a breakthrough, that is reflected in an enormous

amount of research, as well as many popular science books, including the most popular of popular

science books, The Selfish Gene by Richard Dawkins (1976).

In a more recent paper, Alger and Weibull (2013) suggest that relatedness – or assortment1 –

can also lead to something other than altruism. Altruism can be described by a utility function

that puts a positive weight on the fitness, or material payoff, of the other – besides a positive

weight on the fitness, or material payoff, of oneself. The preference that Alger and Weibull

(2013) focus on instead maximizes a convex combination of one’s own material interests, and

a hypothetical payoff. This hypothetical payoff is the material payoff that one would get if

both were to play the strategy that one plays oneself. A type that maximizes such a convex

combination is referred to by the authors as Homo Moralis. A Homo Moralis that puts a weight

on this hypothetical payoff that is equal to the assortment parameter of the model is referred to

by the authors as Homo Hamiltonensis.

The aim of their paper is to determine which one of those preferences evolution would select;

altruists or Homo Moralis. In the words of the authors (page 2270):

However, this literature is silent as to whether either altruistic or moral preferences would,

in fact, arise if evolution were to operate on preferences — as a way for nature to delegate the

choices of concrete actions to the individual in any given situation. It is our goal to fill this gap.

Their central result points to Homo Hamiltonensis as the winner of this evolutionary con-

test. In their model of preference evolution (that combines assortative matching with imperfect

information about each other’s preferences), and under conditions specified in the paper, Homo

Hamiltonensis satisfies their definition of evolutionary stability. Their central result also states

that preferences that lead to different behaviour are evolutionarily unstable.

In order to be able to reflect on their argument, it is good to spend some attention on two

more ingredients. The first is that the method that Alger and Weibull (2013) aim to use in

1Relatedness can be described as assortment of genotypes due to population structure, where behaviour is
transmitted genetically. Alger and Weibull (2013) assume assortment without making assumptions about the
mode of transmission (which can be genetic or cultural) or what it is that generates the assortment (which
could for instance be kin recognition, or a combination of local interaction and local dispersal). Kay, Keller, and
Lehmann (2020) suggest that one could use the word relatedness so as to also include cultural transmission as a
cause of identity by descent, while others restrict the term relatedness to genetic transmission.
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their paper is the “indirect evolutionary approach”. The idea of this approach is that the utility

functions that players have (which types they are) determine their behavior, their behavior

determines their material payoffs, and the material payoffs determine which utility functions

(types) get selected.

The second ingredient is that in their paper, Alger and Weibull (2013) stress that altruism

and morality, in their definition, are not the same. On page 2270, they write:

Clearly, these two motivations may give rise to different behaviors.

When they discuss the differences in more detail, on page 2293, they write:

As noted above, the preferences of homo moralis differ sharply from altruism. We first show

that, while in some situations morality and altruism lead to the same behaviour, in other situa-

tions, the contrast is stark.

The argument in the paper therefore has three main ingredients; 1) their central result that

states that Homo Moralis satisfies their definition of evolutionary stability, and types that play

differently do not; 2) their claim that they use the “indirect evolutionary method”; and 3) their

observation that there can be a stark contrast between the behaviour of the Homo Moralis and

regular altruists.

The message of these three ingredients together is crystal clear: when assortment is combined

with imperfect information, and Homo Moralis and regular altruists differ in their behaviour,

we should expect morality to evolve, and not altruism. Altruism and morality sometimes lead

to the same behaviour, but they also regularly do not, and if they do not, then the evolutionary

competition between them is won by morality, and not by altruism, because Homo Moralis is

evolutionarily stable, and preferences that make one play differently are not.

In this paper, we will show that this is not correct. That seems surprising, because this is not

due to their central result not holding. It will therefore be important to determine precisely how

it is possible that no examples exist of cases in which there is a “stark contrast” between regular

altruists and Homo Hamiltonensis, while the latter beats the former – even though that is what

the paper suggests. We will do this with an instructive example that shows that, if anything,

the opposite conclusion (that regular altruists win the competition, if their behaviours differ) is

true, and with two general results.

In search of a game in which regular altruists and Homo Hamiltonensis display different

behaviour, we first encounter a situation in which Homo Hamiltonensis is determined to be
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evolutionarily stable through a loophole in the definition. If the set of Bayesian Nash Equilibria,

as defined by Alger and Weibull (2013), is empty, and neither the material payoffs of Homo

Hamiltonensis as a resident, nor the material payoff of any possible mutant is defined, then

Homo Hamiltonensis nonetheless satisfies the definition of evolutionary stability automatically.

This is obviously not based on a comparison of material payoffs – which are not defined –

and therefore the definition of evolutionary stability in this case does not reflect the indirect

evolutionary approach.

In this example – which squarely falls in the domain that their central result applies to – only

pure strategies can be used. If we try to remedy the absence of BNE by allowing for mixing,

then two possibilities arise. With the first way of allowing for mixing, there is a difference in

behaviour between regular altruists on the one hand, and the Homo Hamiltonensis that we get

if we extend it to lotteries this way on the other (where we will call this extended version Homo

Hamiltonensis 1.0). As soon as they start behaving differently, however, regular altruists start

getting higher material payoffs than Homo Hamiltonensis 1.0, when Homo Hamiltonensis 1.0 is

the resident, and the regular altruist is the mutant. Regular altruists therefore can invade, while

they themselves cannot be invaded.

With the second way of allowing for mixing, leading to what we call Homo Hamiltonensis 2.0,

Homo Hamiltonensis stops getting lower payoffs than regular altruists, but also the difference in

behaviour disappears. Our Proposition 1 shows that this reflects something that is true generally;

any equilibrium for a Homo Hamiltonensis 2.0 is also an equilibrium between regular altruists.

This result also implies that as soon as there is a difference between Homo Hamiltonensis 1.0

and regular altruists, Homo Hamiltonensis 1.0 can be invaded, and typically they can be invaded

by regular altruists.

We then repeat this, but instead of allowing for mixing, we allow for asymmetric equilibria

(while the initial situation only allows for pure, symmetric equilibria). The results are the same

as with mixing. With symmetric equilibria only, Homo Hamiltonensis and regular altruists either

behave the same, or Homo Hamiltonensis is declared evolutionarily stable through a loophole in

the definition. With one way of allowing for asymmetric equilibria, Homo Hamiltonensis and reg-

ular altruists display different behaviours, but Homo Hamiltonensis can be invaded, and regular

altruists cannot. With the other way of allowing for asymmetric equilibria, Homo Hamiltonen-

sis can no longer be invaded, but now the “stark contrast” between Homo Hamiltonensis and

regular altruists dissipates. Proposition 2 is the counterpart of Proposition 1, with asymmetric

equilibria instead of mixing, and this proposition also indicates that our example captures a

general observation; it rules out the possibility that Homo Hamiltonensis both “differs sharply”

from regular altruists, and beats them in evolutionary competition. Since the details of the

4



definitions turn out to be crucial, we repeat the model before we get to our example, and our

two general results.

2 The Model

Alger and Weibull (2013) consider a population in which individuals are matched in pairs to

engage in a symmetric interaction with a common strategy set X. These individuals have

preferences, and the idea is that these preferences determine what the individuals that have

them do. We will see that one of the problems is caused by the fact that Homo Hamiltonensis

can satisfy the definition of evolutionary stability also if its equilibrium behaviour is not defined,

but for now we can imagine a situation in which the preferences that a type holds do imply

well-defined equilibrium behaviour.

What the individuals do in the interaction then determines their evolutionary success, ac-

cording to a material payoff function π (x, y), where π ∶ X2 → R. To study the evolution of

preferences, Alger and Weibull (2013) consider a situation with a resident type θ and a mutant

type τ , where θ and τ are preferences that individuals can have over strategy profiles; uθ ∶X2 → R

and uτ ∶X2 → R.

The players in the population are not matched uniformly randomly. Instead, an assortment

parameter σ is introduced, and this parameter defines the probabilities with which these two

types interact in the limit of vanishing mutant shares ε. In this limit, the resident is always

matched with another resident; limε↓0 Pr [θ∣θ, ε] = 1. In the same limit, the mutant is matched

with another mutant with probability limε↓0 Pr [τ ∣τ, ε] = σ, and with a resident with probability

limε↓0 Pr [θ∣τ, ε] = 1 − σ. One way to interpret this would be that, in this limit, every individual

is matched with a random draw from the population with probability 1 − σ, and with a copy of

itself with probability σ.2 Since a random draw at mutant frequency 0 means being matched to

a resident for sure, this gives the limiting probabilities as described.

It is assumed that these individuals do not know the preferences of the individual they are

matched with, but they do know what their own preferences are, and what that implies for their

probabilities of being matched with either type. Also mutants know what the preferences of the

resident are, residents know what the preferences of the mutant are, and both know in which

shares they occur, or, in other words, both are aware of the ε. The choices that residents θ

and mutants τ make are assumed to constitute a symmetric pure (Bayesian) Nash Equilibrium

(BNE), given a population state s = (θ, τ, ε) ∈ S, where θ, τ ∈ Θ are the resident and the mutant

2This interpretation does not have to be restricted to the limit; see van Veelen (2009, 2011); van Veelen, Allen,
Hoffman, Simon, and Veller (2017); van Veelen (2018). Also in the examples below we will assume population
structures where this interpretation extends to ε > 0.
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type, and where Θ is the set of types we are considering. This makes the set of population states

S = Θ2 × (0,1).

Definition 1. In any state s = (θ, τ, ε) ∈ S, a strategy pair (x∗, y∗) ∈ X2 is a (Bayesian) Nash

Equilibrium (BNE) if

x∗ ∈ arg max
x∈X

Pr[θ∣θ, ε] ⋅ uθ(x,x∗) + Pr[τ ∣θ, ε] ⋅ uθ(x, y∗),

y∗ ∈ arg max
y∈X

Pr[θ∣τ, ε] ⋅ uτ(y, x∗) + Pr[τ ∣τ, ε] ⋅ uτ(y, y∗).

The set of Bayesian Nash equilibria for state (θ, τ, ε) is denoted by BNE (θ, τ, ε). It is important

to remember that the setup of the model explicitly allows for X to be a set of pure strategies.

The definition of a BNE does not allow players to mix over different elements of X, and therefore,

if we choose X to be a set of pure strategies, mixed equilibria are not allowed. The set of BNE

therefore can be empty, and it is also possible that the set of BNE is empty without allowing

for mixing, while it would not be empty if we were to allow for mixing. The definition moreover

does not allow for asymmetric equilibria - in which players would be randomly assigned to role

1 or 2, and in which either the resident, or the mutant, or both would condition their behaviour

on whether they are player 1 or 2. It is also possible that the set of BNE is empty if asymmetric

equilibria are not allowed for, and not empty if we do allow for asymmetric equilibria.

What is and what is not a BNE will typically depend on ε. Since we are interested in

evolutionary stability, we want to look at what happens for small ε. If for small enough ε all

BNE, as well as all conditional probabilities, change continuously as a function of ε, and if the

limiting equilibria for ε ↓ 0 equal the equilibria at ε = 0, then the equilibria in this limit will be

relevant for the stability of type θ against τ . At ε = 0 the resident only meets copies of itself,

and therefore the following, simpler equations make (x∗, y∗) a symmetric pure BNE at ε = 0.

x∗ ∈ arg max
x∈X

uθ(x,x∗) (1)

y∗ ∈ arg max
y∈X

(1 − σ) ⋅ uτ(y, x∗) + σ ⋅ uτ(y, y∗) (2)

The average material payoffs, or fitnesses, of the different types depend on what they do, and

who they are matched with. If θ-types play x and τ -types play y, then the resulting material
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payoffs, or fitnesses, are

Πθ(x, y, ε) = Pr[θ∣θ, ε] ⋅ π(x,x) + Pr[τ ∣θ, ε] ⋅ π(x, y)

Πτ(x, y, ε) = Pr[θ∣τ, ε] ⋅ π(y, x) + Pr[τ ∣τ, ε] ⋅ π(y, y)

If we assume that a BNE is played, then Πθ(x, y, ε) will, obviously, depend on θ, but also on

what τ is, and Πτ(x, y, ε) will, besides on τ , also depend on what θ is. This is suppressed in

the notation. In case of multiple equilbria, the payoffs will also depend on which equilibrium is

played.

Which strategies the resident can play in a BNE will become independent of which mutant

τ we are considering at ε = 0. If we consider a strategy profile (x∗, y∗) that is a BNE at ε = 0 for

a resident θ and a mutant τ , then we can denote their payoffs as follows3:

Πθ(x∗) = π(x∗, x∗)

Πτ,θ(x∗, y∗) = (1 − σ) ⋅ π(y∗, x∗) + σ ⋅ π(y∗, y∗)

One could call Πθ(x∗) the fitness of the resident θ for x∗, and one could call Πτ,θ(x∗, y∗) the

invasion fitness of mutant τ for (x∗, y∗) – which is assumed to be a BNE. If there is a unique

x∗ such that x∗ ∈ arg maxx∈X uθ(x,x∗), then one could call Πθ = Πθ(x∗) the fitness of the

resident. This fitness is then naturally independent of the mutant type. If there is moreover

also a unique y∗ such that y∗ ∈ arg maxy∈X (1 − σ) ⋅ uτ(y, x∗) + σ ⋅ uτ(y, y∗), then one could call

Πτ,θ = Πτ,θ(x∗, y∗) the invasion fitness of mutant τ , and this will typically depend on the resident

type θ. In the examples below, we will, among other things, calculate these for resident Homo

Hamiltonensis and mutant regular altruists.

Definition 2. A type θ ∈ Θ is evolutionarily stable against a type τ ∈ Θ if there exists an ε > 0

such that Πθ(x∗, y∗, ε) > Πτ(x∗, y∗, ε) in all Nash equilibria (x∗, y∗) in all states s = (θ, τ, ε) with

ε ∈ (0, ε). A type θ is evolutionarily stable if it is evolutionarily stable against all types τ ≠ θ in

Θ

The main result in Alger and Weibull (2013) is that, under some restriction on the payoff

function π, a type that they call Homo Hamiltonensis is evolutionarily stable against all types

that are not behavioural alikes. Moreover, they show that all types that are not behaviourally

equivalent to Homo Hamiltonensis are evolutionarily unstable, and can be invaded, provided

that the set of mutants is sufficiently large, so that it includes a mutant that would choose the

strategy that one would have to play to achieve this higher material payoff. Homo Hamiltonensis

3This notation is not in the original paper.
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is a special case of what they label a Homo Moralis, and Homo Moralis has a utility function

that puts positive weights on her own material payoff, and on the (hypothetical) payoff that she

and the individual she is matched with would get, if both were to play the strategy that she

plays herself.

Definition 3. A Homo Moralis with morality parameter κ maximizes the following utility func-

tion:

uκ = (1 − κ) ⋅ π (x, y) + κ ⋅ π (x,x)

A Homo Hamiltonensis is a Homo Moralis with κ = σ.

The restriction that is imposed on the payoff function π in the central result is that if we

consider a situation where a Homo Hameltonensis plays against a copy of itself, the best response

in all Nash equilibria would have to be unique. Also, π, as well as all utility functions that define

the types, are assumed to be continuous.

Before we can state their central result, we need a bit more notation. For each type θ ∈ Θ,

βθ ∶X ⇒X denotes the best-reply correspondence:

βθ(y) = arg max
x∈X

uθ(x, y)∀y ∈X

,

Moreover, Xθ ⊆X is the set of fixed points under βθ,

Xθ = {x ∈X ∶ x ∈ βθ(x)}

In particular, Xσ is the fixed-point set for Homo Hamiltonensis.

For any type θ ∈ Θ, let Θθ be the set of types τ that, as vanishingly rare mutants among

residents of type θ, are behaviorally indistinguishable from the residents4

Θθ = {τ ∈ Θ ∶ ∃x ∈Xθ such that (x,x) ∈ BNE (θ, τ,0)}

Finally, the type set Θ will be said to be rich if, for each strategy x ∈ X, there exists some

type θ ∈ Θ for which this strategy is strictly dominant: uθ(x, y) > uθ(x′, y)∀x′ ≠ x,∀y ∈X. Such

a type θ will be said to be committed to its strategy x.

4There are some problems with that definition. Behavioral alikes are only required to behave alike at ε = 0,
while that does not have to imply that they also behave alike for ε ∈ (0, ε) for some ε > 0. In Akdeniz, Graser, and
van Veelen (2020) we give an example where behavioral alikes do strictly better at ε > 0, and therefore can invade.
Also it is problematic that for being a behavioral alike, it is enough to behave alike at one BNE, while there may
be other BNE at which they behave differently. Being a behavioral alike excludes mutants from payoff scrutiny,
while these mutants may actually do better at all other equilibria, other than the one at which it behaves the
same as the resident. In this paper, however, we focus on a different problem.
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If βσ (x) is a singleton for all x ∈Xσ, then homo hamiltonensis is evolutionarily stable against

all types τ ∉ Θσ. If Θ is rich, Xθ∩Xσ = ∅, and Xθ is a singleton, then θ is evolutionarily unstable.

The central question of Alger and Weibull (2013) is whether, if evolution operates on pref-

erences, we should expect altruistic preferences to evolve, or moral ones. The theorem states

that, under some condition, Homo Hamiltonensis (which has moral preferences with a moral-

ity parameter equal to the assortment parameter) is evolutionarily stable against all types that

are not behaviourally equivalent, and, also under conditions, that proper different preferences

are evolutionarily unstable. This suggests that the question of the paper is settled in favour

of moral preferences, as soon as moral preferences lead to behaviour that is different from the

behaviour that altruistic preferences lead to. The example below, along with Propositions 1 and

2, challenges that.

3 An example

Consider the strategy set X = [1,∞) and the payoff function5

π(x, y) = a(xβ + yβ) 1
β − x2

This can be seen as a continuous public goods game, where the production function of the

public good is a(xβ + yβ) 1
β , and the cost of providing the input is x2. We assume that β > 0.

For 0 < β < 1, this game has strategic complements. For β > 1, it has strategic substitutes. For

β → ∞, this game converges to what one could call the maximum effort game with quadratic

costs; π(x, y) = amax{x, y} − x2. Please note that this choice of a strategy set and a material

payoff function satisfies all the requirements needed for the central result to apply.

To make the solutions easy to read, we will make a depend on β, and choose a = 22−
1
β . For

this choice of a, if there is a pure equilibrium at ε = 0 between a resident Homo Hamiltonensis

and any mutant, or between a resident regular altruists and any mutant, it will require the Homo

Hamiltonensis, or the regular altruist, to play 1 + σ, regardless of the β (see Appendix 7.1; this

follows directly from the first order condition, which is the same for both types). Also between a

resident Homo Hamiltonensis and a mutant regular altruist, or vice versa, the only candidate for

a pure BNE is for both to play 1 + σ, in this case for every ε ∈ [0,1]. Whether such BNE exist,

depends on β. We can recognize three cases, separated by two thresholds, β1(σ) and β2(σ).
How these thresholds depend on σ is described in Appendix 7.1. The first is always the lower

one.

5The relevant properties of the example remain the same if we choose X = [0,∞) with the same payoff function,
but for calculating the mixed equilibria, it helps avoiding needless complications if we chose X = [1,∞).
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Figure 1: Behavior of a resident Homo Hamiltonensis (red) or a resident regular altruist (blue)
in a Bayesian Nash equilibrium according to the definition in Alger and Weibull (2013) applied
to our example, with X = [1,∞) and σ = 1

2
. At ε = 0, the equilibrium behaviour does not depend

on what type the mutant is.

Resident Homo Hamiltonensis

If we take type θ to be a Homo Hamiltonensis, then for β < β2(σ), the x∗ that satisfies x∗ ∈
arg maxx∈X uθ(x,x∗) is x∗ = 1 + σ, and it is the only x∗ that does. This is illustrated for β = 2

and β = 4 and σ = 1
2

in panels D and E in Fig. 2 These fixed points define the equilibrium

behaviour of a resident Homo Hamiltonensis in a BNE at ε = 0 (see equation 1). For every

mutant that at ε = 0 would play a pure strategy y∗ against a resident that plays 1 + σ, these

strategies combine to a strategy profile (x∗, y∗) that is a BNE at ε = 0 (see equation 2). With

continuity, this extends to some interval (0, ε), in which a continuously changing pure strategy

profile (x∗ε , y∗ε ), with (x∗0, y∗0) = (x∗, y∗), would satisfy the definition of a BNE.

For β > β2(σ), on the other hand, there is no fixed point of equation 1 in pure strategies

(see panel F in Fig. 2). That means that at ε = 0, the set of BNE is empty for a resident Homo

Hamiltonensis in combination with every possible mutant. This also extends at least to some

small enough interval of positive ε’s.
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Figure 2: All panels plot arg maxx∈X uθ(x,x∗) as a function of x∗. The definition of a BNE
at ε = 0 requires that we choose x∗ to be a fixed point. For the top three, type θ is a regular
altruist, for the bottom three, type θ is a Homo Hamiltonensis. The β’s are 2 (left), 4 (middle),
and 8 (right).

A first important consequence is that for β > β2(σ), Homo Hamiltonensis therefore automat-

ically satisfies the definition of evolutionary stability. The reason for this is that anything is

true for all elements of the empty set (see Definition 2). In this case, it would be hard to defend

that this definition accurately reflects the indirect evolutionary approach. By lack of a BNE,

neither the material payoffs earned by the resident, nor the material payoffs earned by any of

the mutants are defined. Satisfying the definition of evolutionary stability therefore cannot be

based on comparisons of those.

Resident regular altruist

If we now take type θ to be a regular altruist, then all of these observations apply again, but

now the relevant threshold is β1(σ) instead of β2(σ). This is also illustrated in Fig. 2, panel A

for a β below β1(σ), and panel B and C for a β above β1(σ). Given that β1(σ) < β2(σ), that

means that there are now three regimes, visualized in Fig. 1.

Pure equilibria for both types of residents: β < β1 (σ)

For β below the lowest of the two thresholds, both a resident Homo Hamiltonensis and a resident

regular altruist would play x∗ = 1 + σ at ε = 0 against any mutant. For a mutant that plays a

pure strategy at ε = 0 against a resident playing x∗ = 1 + σ, a BNE exists, both with a resident

Homo Hamiltonensis, and with a resident regular altruist. No such mutant can invade either of
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the two, as they would get lower material payoffs against both of them (unless the mutant also

plays y∗ = 1 + σ, in which case they get the same payoffs).

Pure equilibria for neither resident: β > β2 (σ)

For β above the highest of the two thresholds, both for a resident Homo Hamiltonensis, and for

a resident regular altruist, the set of BNE is empty for every mutant. Both of them therefore

automatically get labeled evolutionarily stable, and for both of them, this does not reflect the

indirect evolutionary approach.

Pure equilibria for resident Homo Hamiltonensis, but not for resident regular al-

truists: β1(σ) < β < β2(σ)

In the middle interval, Homo Hamiltonesis as a resident plays pure strategy x∗ = 1 + σ, while

the equilibrium behaviour of resident regular altruists is undefined, as they have empty sets of

BNE against all mutants. Moreover, for a resident Homo Hamiltonensis, mutants that would

mix against them are not considered, when determining whether or not it satisfies the definition

of evolutionary stability. That includes regular altruists, that, as mutants, would also mix

against a resident Homo Hamiltonensis, if they could. This points to a second way in which

the definition does not reflect the indirect evolutionary approach for this example. The material

payoffs between a resident Homo Hamiltonensis and a mutant regular altruist are not defined,

and yet, according to the definition, a resident Homo Hamiltonensis is evolutionary stable against

a mutant regular altruist – even if, as we will see below, these would get higher material payoffs

as mutants if they were allowed to mix.

Homo Hamiltonensis never outperforms regular altruists

It is important to note that in this example, there is no β for which a mutant regular altruist ever

gets material payoffs that are lower than the material payoffs of a resident Homo Hamiltonensis.

In this example, they are either playing the same strategy, and get the same material payoffs

(for low β’s), or the behaviour of a regular altruists as a mutant is not defined (for intermediate

β’s), or the behaviour of neither of them is defined (for high β’s). It is also important to note

that without mixing, this is not just a property of a far-fetched example. Because the first order

condition for a fixed point is the same for a Homo Hamiltonensis and a regular altruists, the

difference between them can only come from the second order condition, or from local maxima

not being global maxima (see Appendix 7.1). That means that the typical way for interior fixed

points of the two types not to coincide, is for one of them not to have a fixed point. Finally it

is important to keep in mind that this example satisfies the requirements of the central result
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in Alger and Weibull (2013), while it is clear that Homo Hamiltonensis satisfies the definition of

evolutionary stability through a loophole for β > β1(σ).

4 Allowing for mixing

4.1 Method 1

The failure of the definition of evolutionary stability to reflect the indirect evolutionary approach

for this example is caused by the fact that the material payoffs needed for comparisons are not

defined, when the set of BNE’s is empty. A natural thing to consider, in order to avoid this, is

to allow for mixed equilibria. There are two ways in which one can do this. In this subsection,

we will discuss the first way of including mixing. This produces non-empty sets of BNE, and

equilibrium behaviour in which Homo Hamiltonensis and regular altruists (both extended to

include lotteries in their domain) choose different strategies. Between the two, whenever their

equilibrium behaviours differ, it is the regular altruists that get the higher material payoffs.

After this subsection, we will discuss a second way of including mixed equilibria, but we will

do this more generally before applying it to this example. With this second approach, there are

also non-empty sets of BNE, but now the difference in equilibrium behaviour between Homo

Hamiltonensis and regular altruists disappears again.

A definition of a BNE that allows for mixed equilibria

With the first approach to allowing for mixed equilibria, we simply change the definition of a

BNE so that it also allows for mixed equilibria. We do this by replacing pure strategies x∗ and

y∗ by probability measures µ∗ and ν∗

Definition 4. In any state s = (θ, τ, ε) ∈ S, a strategy pair (µ∗, ν∗) is a (Bayesian) Nash

Equilibrium (BNE) if the following holds for all x∗ in the support of µ∗ and all y∗ in the support

of ν∗

x∗ ∈ arg max
x∈X

Pr[θ∣θ, ε] ⋅ ∫ uθ(x, z) dµ∗(z) + Pr[τ ∣θ, ε] ⋅ ∫ uθ(x, z) dν∗(z)

y∗ ∈ arg max
y∈X

Pr[θ∣τ, ε] ⋅ ∫ uτ(y, z) dµ∗(z) + Pr[τ ∣τ, ε] ⋅ ∫ uτ(y, z) dν∗(z)

Changing from Definition 1 to 4 implies that we have extended the domain of the utility

functions of Homo Hamiltonensis and regular altruists, so that they also apply to lotteries, and

that we have done so by assuming expected utility. For a regular altruist, that is more or less

13



Figure 3: Equilibrium behavior of a resident Homo Hamiltonensis 1.0 (red) or a resident regular
altruist (blue) in Bayesian Nash equilibria according to the definition in Alger and Weibull (2013),
but extended to allow for mixed equilibria, again for σ = 1

2
. At ε = 0, the equilibrium behaviour

does not depend on what type the mutant is. In the limit of β ↓ β1, the probability on the
lower value for the regular altruist is 0, and so is the probability on the middle value for regular
altruists, and on the lower value for Homo Hamiltonensis 1.0 in the limit of β ↓ β2

the only reasonable option, but for Homo Hamiltonensis, as we will see below, there are also

other ways to extend the domain of the utility function. Using expected utility however is

not unnatural as a first step in exploring how we can make non-empty sets of equilibria with

diverging behaviours. In order to have a relatively short way of referring to the version of Homo

Hamiltonensis that we get by taking the Homo Hamiltonensis from a setting with pure strategies

only, and extending it to cover lotteries by assuming expected utility, we will call this extended

version Homo Hamiltonensis 1.0. This also helps distinguishing it from the alternative way of

extending, that we will refer to as Homo Hamiltonensis 2.0. For regular altruists, the only

relevant extension is to combine it with expected utility.

Nothing changes for β < β1(σ)

If we do indeed allow for mixing in this way, then for 0 < β < β1(σ), nothing changes; a BNE for

a resident Homo Hamiltonensis 1.0 would require it to play x∗ = 1 + σ, and the same is true for

a resident regular altruist. Also between a resident Homo Hamiltonensis and a mutant regular

altruist, the unique BNE is still (x∗, y∗) = (1 + σ,1 + σ) for every ε ∈ [0,1].

14



Figure 4: For σ = 1
2

and β = 5, this represents the properties of the BNE between a resident
Homo Hamiltonensis 1.0 and a mutant regular altruist for all ε ∈ [0,1]. The middle panel shows
the equilibrium strategy of the resident Homo Hamiltonensis 1.0, which is 1+σ = 3

2
for all ε, and

the pure strategies that a regular altruists is mixing over, as functions of ε. The bottom panel
shows the probability with which the regular altruist plays the lower of the two pure strategies.
The top panel shows the material payoffs of the two types in such populations.

Altruists start mixing, and earn higher material payoffs for β1(σ) < β < β2(σ)

For β1(σ) < β < β2(σ), a resident Homo Hamiltonensis 1.0 would still play a pure strategy 1+ σ
at ε = 0 for every mutant, but a resident regular altruist would play a mix. Moreover, between

a resident Homo Hamiltonensis and a mutant regular altruist, the mutant altruist would mix.

An important observation here is that a resident Homo Hamiltonensis 1.0 can be invaded (by

a mutant regular altruist, among others), while a resident regular altruist cannot be invaded

by anything. In direct competition, regular altruist outperform Homo Hamiltonensis 1.0 at all

shares ε and for all β’s in this interval. As an example, Fig. 4 plots all relevant properties of

the BNE, allowing for mixing, for σ = 1
2

and β = 5, as functions of ε; it plots the pure strategy
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Figure 5: Equilibrium behaviour between a resident Homo Hamiltonensis 1.0 (red) and a
mutant regular altruist (blue) at ε = 0. The mutant regular altruist always outperforms the
resident Homo Hamiltonensis 1.0 at ε = 0 (see Fig. 6).

Figure 6: Material payoffs for the BNE, depicted in Fig. 5 between a resident Homo Hamilto-
nensis 1.0 (red) and a mutant regular altruist (blue) at ε = 0.

chosen by the Homo Hamiltonensis 1.0; the two pure strategies that regular altruists are mixing

over; the equilibrium probability on the first; and both types’ material payoffs, all for σ = 1
2
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and β = 5. There, we can see that not only can regular altruists invade (the material payoffs of

regular altruists are higher than the material payoffs of Homo Hamiltonensis 1.0 at ε = 0), and

not only can Homo Hamiltonensis 1.0 not invade regular altruists (the material payoffs of regular

altruists is also higher than the material payoffs of Homo Hamiltonensis 1.0 at ε = 1), but regular

altruists actually have higher payoffs for every mutant share ε ∈ [0,1]. This is representative for

all σ and all β between β1(σ) and β2(σ); regular altruists outperform Homo Hamiltonensis 1.0

at all ε ∈ [0,1] for all σ ∈ [0,1] and all β ∈ [β1(σ), β2(σ)].

Both types mix, and regular altruists still earn higher material payoffs than Homo

Hamiltonensis 1.0 for β > β2(σ)

For β > β2(σ), both a resident Homo Hamiltonensis 1.0 and a resident regular altruists would

mix, at least at or close to ε = 0. Also here, a resident Homo Hamiltonensis 1.0 can be invaded,

while a resident regular altruist cannot (see also Figs. 5 and 6).

Summarizing, we can say that with the first way of allowing for mixing, we created non-empty

sets of BNE for all β’s, and we did get Homo Hamiltonensis 1.0 and regular altruists to behave

differently, but as soon as that difference arises, regular altruists get higher (not lower) material

payoffs than Homo Hamiltonensis 1.0.

4.2 Method II

In the example, we have introduced mixing by extending the definition of a BNE. At this step, we

assumed expected utility, and thereby we created an extended version of Homo Hamiltonensis

that we referred to as Homo Hamiltonensis 1.0. There is however also an alternative way to

introduce mixing. We will refer to the Homo Hamiltonensis that we find with this alternative

approach as Homo Hamiltonensis 2.0. The ways in which those are different will be discussed

below.

An important observation, that we will make in Proposition 1 below, is that, while with

the second approach, regular altruists stop outperforming Homo Hamiltonensis, also almost all

of the difference between Homo Hamiltonensis and regular altruists goes away. More precisely,

every equilibrium between two Homo Hamiltonensis 2.0 is also an equilibrium between regular

altruists. Before we get to that result, we describe the intuition why Homo Hamiltonensis would

be able to resist invasions without mixing, and how we can extend that intuition to mixing.

That helps if we want to not only see how Homo Hamiltonensis 1.0 and 2.0 are different, but

also why the second one would be able to resist invasions, and the first one would not, in case

they lead to different behaviours.
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4.3 The intuition behind stabiliy when all equilibria are pure

If we have a (fitness) game ⟨X,π⟩ in which X is a set of pure strategies, and for which there is

exactly one pure BNE between every pair of types, the intuition for why Homo Hamiltonensis

is evolutionarily stable, is beautifully uncomplicated. This intuition is described in Alger and

Weibull (2013), and because this also plays an important role here, we will repeat it in a perhaps

slightly more elaborate way.

Homo Hamiltonensis chooses an x that maximizes (1 − σ) ⋅ π(x, y) + σ ⋅ π(x,x). Being the

resident, it only meets copies of itself at ε = 0. Therefore, if x∗ denotes what Homo Hamiltonensis

plays in equilibrium at ε = 0, this x∗ is the x that maximizes (1 − σ) ⋅ π(x,x∗) + σ ⋅ π(x,x). This

implies that Homo Hamiltonensis chooses an equilibrium strategy x∗ against which the strategy

that maximizes the material payoff of the mutant, would be to also play x∗. If we moreover

assume that the best response is unique, as Alger and Weibull (2013) do in their central result,

then every type that plays a strategy that is not x∗ will have a material payoff, or invasion

fitness, that is lower than the material payoff, or fitness, of Homo Hamiltonensis at ε = 0.

By choosing a strategy that already maximizes invasion fitness, Homo Hamiltonensis therefore

preempts possible invaders.

Of course the material payoffs at ε = 0 should also be informative about the payoffs for

mutant shares ε close to 0. If we assume, for simplicity, that a resident Homo Moralis and

mutant type τ , at sufficiently low shares of the mutant τ , always play a unique, pure, and

symmetric BNE, that changes continuously as a function of ε, then there will be some ε such

that, if the share of mutants ε is below ε, the fitness of Homo Hamiltonensis is larger than that of

the mutant, and the mutant will be pushed out. Making sure that payoffs change continuously,

and also accommodating the possibility of multiple equilibria, complicates the formalizing of this

intuition, but that is what Alger and Weibull (2013) do in their central result.6

A utility function that makes its carrier choose a strategy x∗ that does not maximize (1 −
σ) ⋅ π(x,x∗) + σ ⋅ π(x,x) by the same logic is vulnerable to invasion; if there is a strategy y∗

for which (1− σ) ⋅ π(y∗, x∗) + σ ⋅ π(y∗, y∗) is higher than π (x∗, x∗), then a mutant strategy that

would play this strategy y∗ would be able to invade.

4.4 Expanding the intuition for when mixed equilibria are allowed for

For the more general setting, we would also consider the possibility that mutant preferences play

mixed strategies, and that it would take a mixed equilibrium strategy to preempt invasions. In

order to do that, we define Homo Hamiltonensis 2.0 as a preference that, when faced with an

6Accommodating multiple equilibria by requiring things to be true for all BNE is actually one of the root
causes of the problems that arise if the set of BNE is empty.
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individual that plays distribution ν, would choose a distribution µ that maximizes

(1 − σ)∫ ∫ π(x, y)dµ(x)dν(y) + σ∫ ∫ π(x, y)dµ(x)dµ(y) (3)

As a resident, such a Homo Hamiltonensis 2.0 would, at ε = 0, play a distribution µ∗ that

maximizes

(1 − σ)∫ ∫ π(x, y)dµ(x)dµ∗(y) + σ∫ ∫ π(x, y)dµ(x)dµ(y) (4)

This makes Homo Hamiltonensis 2.0 play the distribution that, against itself, maximizes invasion

fitness.7

Homo Hamiltonensis 1.0, on the other hand, when facing a distribution ν, would choose x so

as to maximize

(1 − σ)∫ π(x, y)dν(y) + σπ(x,x)

If it has multiple best responses, it can randomize over them, and since the value is the same

for all best responses, any distribution over them would also be a µ that maximizes

(1 − σ)∫ ∫ π(x, y)dµ(x)dν(y) + σ∫ π(x,x)dµ(x) (5)

Randomizing in equilibrium can, obviously, be needed in order to construct a strategy that is a

best response to itself, as it was in our example.

The difference between equations (3) and (5) is in the second term. The second term in (5)

only considers symmetric strategy profiles (x,x), and weighs them with the probability that µ

puts on different values for x. This way it reflects the hypothetical payoff one would get if both

would choose the same strategy. The second term in (3) on the other hand weighs the payoffs

for all possible strategy profiles with the probabilities with which they occur if both players

randomize according to µ. This reflects the hypothetical expected payoff that one would get if

both were to choose the same distribution. If σ = 1 – in which case Alger and Weibull (2013)

would refer to Homo Hamiltonensis as Homo Kantiensis – then Homo Kantiensis 1.0 would

choose the strategy that one would want to be chosen by everyone, and Homo Kantiensis 2.0

would choose the distribution that one would want to be chosen by everyone.

7Slightly more formally:

Observation 1. If distribution µ∗ maximizes (4), then the invasion fitness for any mutant type τ at any
equilibrium (µ∗, ν∗) at ε = 0 is less than or equal to the fitness of the resident at µ∗.

Proof. The proof is straightforward; if there would be a type that played an equilibrium at ε = 0 with a higher
invasion fitness, then that contradicts µ∗ being a maximum.
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The fact that Homo Hamiltonensis 2.0 as a resident by definition plays the distribution that

would give the resident a fitness that matches the maximum invasion fitness implies that, if the

second terms in (3) and (5) differ, then invasion fitness is not maximized at the equilibrium with

a resident Homo Hamiltonensis 1.0, which therefore can be invaded.

There are of course settings in which the equilibrium behaviours of Homo Hamiltonensis 1.0

and 2.0 coincide. When restricted to a set of pure strategies, this difference obviously disappears,

as it takes us back to the situation without mixing. There are moreover many combinations of

games and distributions ν for which the distribution µ that maximizes (3) also maximizes (5)

and vice versa.

4.5 Getting Homo Hamiltonensis 2.0 directly out of the model

We started with an example in which X is a set of pure strategies. We then expanded the Homo

Hamiltonensis from that setting to also include lotteries. This we did in two different ways, one

leading to Homo Hamiltonensis 1.0, and one to Homo Hamiltonensis 2.0. There is also a way

in which one can get to Homo Hamiltonensis 2.0 more directly. Instead of defining the strategy

set X as a set of pure strategies, one can also define X to be the set of probability distributions

over that set of pure strategies. In our example, that would be if we choose X to be the set of

distribution functions over [1,∞), instead of just [1,∞). This would then have to be combined

with a restriction on π, which, with the new choice for X, is now defined over combinations

of distribution functions. This restriction would have to be that it satisfies “expected material

payoffs”. If we momentarily stick to the notation in which x and y are pure strategies, and µ

and ν are distributions over pure strategies, then π (µ, ν) = ∫ ∫ π(1x,1y)dµ(x)dµ∗(y), where 1x

and 1y are degenerate distributions on x and y, and π(1x,1y) would have to be what π(x, y) is

for the setting with pure strategies only. We can then redefine the (fitness) game ⟨X,π⟩ so that

X is now the set of distributions, and π is defined as we just did, provided that this new ⟨X,π⟩
still satisfies all the relevant requirements, such as X being a Hausdorff space.8

4.6 Any equilibrium between Homo Hamiltonensisses 2.0 is also an

equilibrium between regular altruists

While Homo Hamiltonensis 2.0 cannot be invaded – unlike Homo Hamiltonensis 1.0 – this way of

allowing for mixing does makes the “stark contrast” between altruists and Homo Hamiltonensis

8For consistency with the notation in Alger and Weibull (2013), one could then choose to rename distributions
µ and ν, and call those x and y, and find new names for the pure strategies, that we referred to as x and y,
because that is what they were in the case when X was just the set of pure strategies. Here we want to be able
to go back and forth between these two, so we will continue to use µ and ν for distributions, and x and y for pure
strategies.
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go away. As we will see below, any equilibrium µ∗ for a resident Homo Hamiltonensis 2.0 is

also an equilibrium for a resident regular altruist with α = σ. In order to see why, we can first

consider equilibria in which such an equilibrium distribution µ has a density f ∶X → R+
0 .

For Homo Hamiltonensis 2.0, a necessary condition for distribution µ with density f to be

optimal, when facing an individual that plays distribution ν with density g ∶ X → R+
0 , would be

that for all x with a positive density, the following would have to hold

(1 − κ)∫ π1(x, y)g(y)dy + κ{∫ π1(x, y)f(y)dy + ∫ π2(y, x)f(y)dy} = 0

where π1(x, y) is the derivative of π to its first, and π2(x, y) is the derivative of π to its second

argument.

If this would not hold for a certain x at which f(x) > 0, then one can increase the value of

(3), either by moving some probability mass from x to the left, if this expression is less than

zero at x, or by moving probability mass to the right, if it is larger than zero. In equilibrium,

this would then have to hold at ν = µ, or g = f , in which case we can rewrite this as

∫ π1(x, y)f(y)dy + κ∫ π2(y, x)f(y)dy = 0,

which would have to hold at all x for which f(x) > 0. That makes this expression constant 0, so

this also implies
d

dx
[∫ π1(x, y)f(y)dy + κ∫ π2(y, x)f(y)dy] = 0.

For a regular altruist with altruism parameter α, the necessary condition for optimality, for

similar reasons, is

∫ π1(x, y)f(y)dy + α∫ π2(y, x)f(y)dy = 0,

and for κ = α = σ, those conditions are the same. For altruists, however, this moreover implies

that all pure strategies present in the mix have the same utility, and, if none of the strategies not

in the mix have a higher utility, that is also sufficient for it to be a Nash equilibrium. For the

generalized Homo Moralis, this is not the case. For every pure strategy in the mix, the marginal

contribution to the goal function may be the same, but that does not exclude the possibility

that second order effects imply that this is not a maximum.

This also holds more generally.

Proposition 1. If µ∗ is an equilibrium for a resident Homo Hamiltonensis 2.0, then it is also

an equilibrium for a resident regular altruist with α = σ
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Proof. For a given µ, one can think of the marginal contribution of pure strategy x to the utility

of a generalized Homo Hamiltonensis as

ux = (1 − σ)∫ π(x, y)dµ(y) + σ (∫ π(x, y)µ(y) + ∫ π(y, x)dµ(y))

= ∫ π(x, y)dµ(y) + σ∫ π(y, x)dµ(y)

A necessary condition for the utility function of a generalized Homo Hamiltonensis to be max-

imized, is that there should not be a pure strategy y and a set S with µ(S) > 0 for which

uy > ∫S uxdµ(x)
µ(S) ; if there would be such a combination, then one could increase the utility by

shifting mass away from S and to y. This implies that the marginal contribution is the same

for almost all strategies in the support of µ, and that this is at least as high as the marginal

contribution for all strategies not in the support of µ. This is also a necessary and sufficient

condition for µ to be a symmetric Nash equilibrium between regular altruists with altruism

parameter α = σ.

Proposition 1 only provides a one-way implication; all equilibria between Homo Hamiltonensis

are also equilibria between regular altruists. The converse is not true. This leaves some space

for examples in which a population of regular altruists that is playing a specific equilibrium can

be invaded. If we consider a setting with 2 pure strategies, and allow for mixing over those, we

can think of a coordination game.9

⎡⎢⎢⎢⎢⎣

1 0

0 c

⎤⎥⎥⎥⎥⎦
with c > 1. We can formulate this so that it fits the setup of Alger and Weibull (2013) by

letting x be the probability of playing the first strategy, and 1 − x be the probability of playing

the second strategy, which means that π (x, y) = xy+c (1 − x) (1 − y). For regular altruists, there

are two equilibria, independent of σ; x = 1 and x = 0. For Homo Hamiltonensis,10 the latter

is an equilibrium for all σ ∈ [0,1] too, but x = 1 is an equilibrium only for σ ≤ 1
c
. For σ > 1

c
,

x = 1 is not an equilibrium for Homo Hamiltonensis, and, moreover, the equilibrium at x = 1

can be invaded by any strategy that plays x = 0, which includes Homo Hamiltonensis. If Homo

9We would like to thank an anonymous reviewer for this nice example.
10Since the set of pure strategies is finite, the version without mixing does not fit the setup of the model in

Alger and Weibull (2013). If we do allow for mixing, we therefore refrain from calling the Homo Hamiltonensis
with mixing Homo Hamiltonensis 2.0, as we did for a setting in which the game without mixing already fits the
requirements of their central result. This example nonetheless illustrates the possibility that the set of equilibria
for Homo Hamiltonenis with mixing is a strict subset of the equilibria for regular altruists. There are also examples
where the game with pure strategies only already fits the requirements of the central result in Alger and Weibull
(2013) – for instance the maximum effort game we get if we take the limit of β →∞ in our central example. We
would be happy to provide such an example, but that would require more algebra.
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Hamiltonensis would replace the regular altruists, it would however end up playing the x = 0

equilibrium, which is also an equilibrium between regular altruists.

In many cases, moreover, the equilibria for Homo Hamiltonensis 2.0 and regular altruists just

coincide, as they for instance do in our example. With this approach to mixing, the blue lines

in Fig. 3 come to represent both the equilibrium behaviour of a resident regular altruists, and

the equilibrium behaviour of a resident Homo Hamiltonensis 2.0. More generally, Proposition

1 implies that if both have unique equilibria, they must coincide. Given that the remaining

difference between Homo Hamiltonensis 2.0 and regular altruists only shows up when the former

has multiple equilibria, one could consider thinking of evolutionary stability, not of preferences,

but of combinations of a preference and an equilibrium. In that case, one could say that Homo

Hamiltonensis 2.0 is evolutionarily stable at all of its equilibria. Regular altruists may have a

larger set of equilibria, and equilibria for regular altruists that are not also equilibria for Homo

Hamiltonensis 2.0 are not evolutionarily stable.

4.7 Overview

We started the example with a choice for ⟨X,π⟩ that satisfies the requirements for Alger and

Weibull (2013)’s central result to apply. Their Theorem 1 implies that Homo Hamiltonensis – in

this case having preferences over pure strategy profiles – satisfies their definition of evolutionary

stability for our example. However, it does so by bypassing the comparison of material payoffs

that is the basis of the indirect evolutionary approach that the authors claim to follow. There

are some values of β for which the behaviour of Homo Hamiltonensis and regular altruists is well-

defined, and identical, but for other β’s, the behaviour of a mutant regular altruist is not defined,

and for yet other β’s neither the behavior of a mutant regular altruist, nor the behaviour of a

resident Homo Hamiltonensis is defined. Their central result, applied to this example, correctly

implies that Homo Hamiltonenis satisfies their definition of evolutionary stability for all β, but it

is hard to maintain that this definition reflects the indirect evolutionary approach if the material

payoffs that this method is meant to compare are not defined.

If we try to solve this problem by allowing for mixing with Method I, then the equilibrium

behaviour of a resident Homo Hamiltonenis 1.0 and the equilibrium behaviour of a mutant

regular altruist are defined for our example. Their behaviours are moreover proper different for

β > β1, but regular altruists now get higher instead of lower material payoffs.

If we try to solve this problem by allowing for mixing with Method II instead, then we

find that Homo Hamiltonensis 2.0 does get material payoffs that mutants can at best match,

but we also find that the difference between Homo Hamiltonensis 2.0 and regular altruists all

but disappears. Proposition 1 shows that this is not something peculiar to our example, and
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that for any game, any equilibrium between two Homo Hamiltonensis 2.0 is also an equilibrium

between two regular altruists. In many cases (for instance if both have unique equilibria), their

equilibrium behaviour as residents (and therefore also if one is the resident and the other a

mutant) moreover simply coincides. This helps understand why, with mixing, regular altruists

are evolutionarily stable for all β > 0 in our example. It also helps understand that if Homo

Hamiltonensis 1.0 does something that regular altruists would not do, then Homo Hamiltonensis

1.0 can be invaded.

Finally, there are two details that might be worth mentioning. The first is that also if we

allow for mixed strategies, as we did in Definition 4, then that is not a guarantee that BNE’s will

always exist (see Appendix 7.4). That should not come as a surprise, as Homo Hamiltonensis

picks the (mixed) strategy with the highest invasion fitness, and since the existence of an ESS

in strategy evolution is not guaranteed, there will be cases in which Homo Hamiltonensis will

always be able to find a mutant strategy that can invade.

The second thing to notice is that in their paper, Alger and Weibull (2013) include an example

in which strategies x and y themselves are interpreted as mixed strategies over a finite set of

pure strategies. That fits their setup in the same way that the example at the end of Section 4.6

does. Such a setting does however come with restrictions on the set of payoff functions π(x, y)
– they would have to be bilinear, which is the same as being consistent with expected material

payoffs if the set of pure strategies is finite. Therefore, if we choose a payoff function that is not

bilinear – which is also allowed for – it cannot have this interpretation. The setup in Alger and

Weibull (2013) therefore is open to the possibility that x represents a mixed strategy (as we have

also seen in Section 4.5), but it is specifically also open to the possibility that x is something

else, given the lack of further restrictions that would have to be imposed on π if x could only be

interpreted as a distribution over pure strategies.

5 Coordination on asymmetric equilibria

The theory in Alger and Weibull (2013) does allow for some degree of coordination. When there

are multiple symmetric pure BNE’s, they assume that the population as a whole coordinates

on one of them. What the current theory does not allow for, is coordination on asymmetric

equilibria. Allowing for asymmetric equilibria in the set of BNE would however be an alternative

way to reduce the number of instances for which sets of BNE are empty. Before we do exactly

that, we go back to the setting without asymmetric equilibria, and without mixing. We consider

the same game as in Section 3, but with a slightly larger strategy set; X = [0,∞) instead of

X = [1,∞). The reason for the different strategy sets is just that X = [1,∞) gives simpler
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Figure 7: Behavior of a resident Homo Hamiltonensis (red) or a resident regular altruist (blue)
in a Bayesian Nash equilibrium according to the definition in Alger and Weibull (2013) applied
to our example, with X = [0,∞) and σ = 1

2
. At ε = 0, the equilibrium behaviour does not depend

on what type the mutant is.

equilibria with mixing, while X = [0,∞) gives more elegant equilibria if we allow for asymmetry.

The change in X makes a bit of a difference for the way β1 depends on σ, but other than that,

the starting point for both is a situation with pure, symmetric BNE, where the equilibrium

behaviour of a resident Homo Hamiltonensis and a resident regular altruist either coincides, or

it is not defined for regular altruists, or for neither (Fig. 7).

5.1 Method I

There are two ways in which one can allow for asymmetric equilibria. In this subsection, we will

discuss the first way. This produces non-empty sets of BNE, and equilibrium behaviour in which

Homo Hamiltonensis and regular altruists choose different strategies. Between the two, regular

altruists get the higher material payoffs whenever their equilibrium behaviour differs. After this

subsection, we will discuss a second way of including allowing for asymmetric equilibria, but we

will do this more generally before applying it to this example. With this second approach, there

are also non-empty sets of BNE, but now the stark contrast in equilibrium behaviour between

Homo Hamiltonensis and regular altruists goes away again.

A definition of a BNE that allows for asymmetric equilibria

With the first approach to allowing for asymmetric equilibria, we simply change the definition of

a BNE. We do this by replacing strategies x∗ and y∗ by vectors (x∗1, x∗2) and (y∗1 , y∗2) that specify

what to play in role 1 and role 2, respectively. This also implies that there is a randomization
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device that determines who gets to play which role in every pair. Half of the players of any type

will then end up in one role, half in the other.

Definition 5. In any state s = (θ, τ, ε) ∈ S, a strategy pair ((x∗1, x∗2), (y∗1 , y∗2)) ∈ X4 is a

(Bayesian) Nash Equilibrium (BNE) if

x∗1 ∈ arg max
x∈X

Pr[θ∣θ, ε] ⋅ uθ(x,x∗2) + Pr[τ ∣θ, ε] ⋅ uθ(x, y∗2),

x∗2 ∈ arg max
x∈X

Pr[θ∣θ, ε] ⋅ uθ(x,x∗1) + Pr[τ ∣θ, ε] ⋅ uθ(x, y∗1),

y∗1 ∈ arg max
y∈X

Pr[θ∣τ, ε] ⋅ uτ(y, x∗2) + Pr[τ ∣τ, ε] ⋅ uτ(y, y∗2)

y∗2 ∈ arg max
y∈X

Pr[θ∣τ, ε] ⋅ uτ(y, x∗1) + Pr[τ ∣τ, ε] ⋅ uτ(y, y∗1).

Symmetric equilibria are special cases, where x∗1 = x∗2 and y∗1 = y∗2 , so this properly generalizes

the definition of a BNE to include asymmetric equilibria.

Changing from Definition 1 to 5 implies that we have extended the domain of the utility

functions of a Homo Hamiltonensis and a regular altruist, by assuming that the utility function

is a weighted sum of the utilities that a player gets in role 1 and role 2 – where it is natural

(but inconsequential) to choose those weights to be 1
2
. As with mixing, for a regular altruist,

that is more or less the only reasonable option, but for Homo Hamiltonensis, as we will see

below, there are also other ways to extend the domain of the utility function from a setting

with symmetric equilibria only. We will use the same relatively short way of referring to the

different versions of Homo Hamiltonensis as we did with mixing; the extended version of Homo

Hamiltonensis implied by Definition 5 we will call Homo Hamiltonensis 1.0, and the alternative

way of extending, that we will discuss later, we will refer to as Homo Hamiltonensis 2.0. Those

are the same names as the extensions with mixing, but they are locally defined, in the sense that

in Section 4 these names referred to different ways of allowing for mixed strategy profiles, and

in this section they refer to different ways of allowing for double strategy profiles, that prescribe

strategies played in both roles.

Equilibrium properties

If we do indeed allow for asymmetric equilibria in this way, then for β > β1(σ), a resident regular

altruist in a BNE will choose different strategies for the different roles (x∗1 ≠ x∗2). Whether a

BNE exists at ε = 0 of course still depends on the mutant, but for any mutant that makes a BNE

exist, the resident behavior is the same. This is depicted in Fig 8. In the interval [β1′ , β1(σ)],
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Figure 8: Equilibrium behavior of a resident Homo Hamiltonensis 1.0 (red) and a resident
regular altruist (blue), both in Bayesian Nash Equilibria according to the definition in Alger
and Weibull (2013), but extended to allow for asymmetric equilibria. At ε = 0, the equilibrium
behaviour does not depend on what type the mutant is. Between β1′ , which does not depend on
σ, and equals 2, and β1, there are two equilibria for a resident regular altruist; a symmetric one
and an asymmetric one. Between β2′ , which does depend on σ, and equals 4 for σ = 1

2
, and β2,

this is true for a resident Homo Hamiltonensis.

moreover, there is both a symmetric and an asymmetric option for the equilibrium behavior of

a resident regular altruist. The threshold β1′ does not depend on σ, and equals 2.

All of this also applies to a resident Homo Hamiltonensis 1.0, but then with β2′(σ) and

β2(σ) instead of β1′ and β1(σ); there is an interval, [β2′(σ), β2(σ)], in which both options are

there, while beyond β2(σ), a resident Homo Hamiltonensis can only play asymmetrically. The

threshold β2′(σ) does depend on σ, and equals 4 for σ = 1
2
.

The equilibrium behaviour and material payoffs of a resident Homo Hamiltonensis 1.0 is

well-defined for all β, even though it is not always uniquely determined. The same is true for a

resident regular altruist, and on top of this, they behave properly different for β > β1(σ). With

the difference between them, comes the fact that a resident Homo Hamiltonensis 1.0 can be

invaded, as soon as β > β1(σ), while regular altruists cannot. As a matter of fact, a resident

Homo Hamiltonensis 1.0 can be invaded by a mutant regular altruist for β > β1(σ). Fig 9 depicts

equilibrium strategies in a BNE between a resident Homo Hamiltonensis 1.0 and a mutant regular

altruist at ε = 0, and Fig. 10 shows that a mutant regular altruist always has higher material

payoffs than a resident Homo Hamiltonensis 1.0 at invasion.
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Figure 9: Equilibrium behaviour between a resident Homo Hamiltonensis 1.0 (red) and a
mutant regular altruist (blue) at ε = 0. In the interval in which there are two possibilities for a
resident Homo Hamiltonensis 1.0 (a symmetric and an asymmetric one) we chose the asymmetric
one, which brings higher material payoffs for the resident. Changing to the symmetric option
for β between β2′(σ) and β2(σ) would of course also come with a change in behavior for the
mutant regular altruist in the same interval, but in either instance, the mutant regular altruist
outperforms the resident Homo Hamiltonensis 1.0 (see also Fig. 10).

Figure 10: Material payoffs for the BNE, depicted in Fig. 9 between a resident Homo Hamil-
tonensis 1.0 (red) and a mutant regular altruist (blue) at ε = 0.
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5.2 Method II

Here, we define Homo Hamiltonensis 2.0 as a preference that, when faced with an individual

that plays y = (y1, y2), would choose a vector x = (x1, x2), that maximizes

(1 − σ)1

2
(π(x1, y2) + π(x2, y1)) + σ

1

2
(π(x1, x2) + π(x2, x1)) (6)

As a resident, such a Homo Hamiltonensis 2.0 would, at ε = 0, play a vector x∗ = (x∗1, x∗2) that

maximizes

(1 − σ)1

2
(π(x1, x∗2) + π(x2, x∗1)) + σ

1

2
(π(x1, x2) + π(x2, x1)) (7)

This makes Homo Hamiltonensis 2.0 play the (possibly asymmetric) equilibrium that, against

itself, maximizes invasion fitness.11

Homo Hamiltonensis 1.0, on the other hand, when facing a vector y = (y1, y2), would choose

x1 so as to maximize

(1 − σ)π(x1, y2) + σπ(x1, x1) (8)

and x2 so as to maximize

(1 − σ)π(x2, y1) + σπ(x2, x2) (9)

As a resident, such a Homo Hamiltonensis 1.0 would, at ε = 0, choose an x∗1 that maximizes

(1 − σ)π(x1, x∗2) + σπ(x1, x1) (10)

and an x∗2 that maximizes

(1 − σ)π(x2, x∗1) + σπ(x2, x2) (11)

A symmetric equilibrium for a resident Homo Hamiltonensis 1.0 is also a symmetric equi-

librium for a resident Homo Hamiltonensis 2.0, and vice versa. Asymmetric equilibria on the

11Slightly more formally:

Observation 2. If x∗ = (x∗1 , x
∗

2) maximizes (7), then the invasion fitness for any mutant type τ at any equilib-
rium (x∗, y∗) at ε = 0 is less than or equal to the fitness of the resident at x∗.

Proof. The proof is straightforward; if there would be a type that played an equilibrium at ε = 0 with a higher
invasion fitness, then that contradicts x∗ being a maximum.
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other hand typically differ between the two. Also, from the utility functions, it is clear that for

Homo Hamiltonenis 1.0, what matters are the hypothetical payoffs π(x1, x1) and π(x2, x2), and

for Homo Hamiltonenis 2.0, what matters are the hypothetical payoffs π(x1, x2) and π(x2, x1).
The fact that Homo Hamiltonensis 2.0 as a resident by definition plays the distribution that

would give the resident a fitness that matches the maximum invasion fitness implies that, if the

equilibrium behaviour of Homo Hamiltonensis 1.0 differs from that of Homo Hamiltonensis 2.0,

then invasion fitness is not maximized at the equilibrium with a resident Homo Hamiltonensis

1.0, which therefore can be invaded.

5.3 Getting Homo Hamiltonensis 2.0 directly out of the model

There is also a way in which one can get to Homo Hamiltonensis 2.0 more directly. Instead

of defining the strategy set X as a set of pure strategies, one can also define X as the prod-

uct set of this set of pure strategies and the same set of pure strategies. In our example,

that would be if we choose X to be [0,∞) × [0,∞), instead of just [0,∞). The new π would

then also have to be defined over combinations of two elements of X, or, in other words, com-

binations ((x1, x2)(y1, y2)) of four elements of [0,∞). The natural choice for a payoff func-

tion for our example would be π ((x1, x2)(y1, y2)) = 1
2
(a(xβ1 + y

β
2 )

1
β − x21 + a(x

β
2 + y

β
1 )

1
β − x22).

More in general, one would have to choose the payoff function π allowing for coordination on

asymmetric equilibria so that it puts a positive weight on what the payoffs for strategy pro-

files (x1, y2) and (x2, y1) would be without coordination on asymmetric equilibria. A nat-

ural choice is for those weights to be equal. The restrictions this imposes on π are that

π ((x1, x2), (y2, y1)) = 1
2
(π ((x1, y2), (x1, y2)) + π ((x2, y1), (x2, y1))) .

If we redefine the (fitness) game ⟨X,π⟩ like this, then this fits the setup of the model from

Alger and Weibull (2013) — provided that this new ⟨X,π⟩ still satisfies all the relevant require-

ments, such as X being a Hausdorff space.

5.4 Any equilibrium between Homo Hamiltonensissis 2.0 is also an

equilibrium between regular altruists

Here we show that any equilibrium x∗ = (x∗1, x∗2) for a resident Homo Hamiltonensis 2.0 is

also an equilibrium for a resident regular altruist with α = σ. In this case, this is relatively

straightforward.

Proposition 2. If x∗ = (x∗1, x∗2) is an equilibrium for a resident Homo Hamiltonensis 2.0, then

it is also an equilibrium for a resident regular altruist with α = σ.
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Proof. If x∗ = (x∗1, x∗2) is an equilibrium for a resident Homo Hamiltonensis 2.0, then it is a fixed

point, where (x1, x2) = (x∗1, x∗2) maximizes

(1 − σ)1

2
(π(x1, x∗2) + π(x2, x∗1)) + σ

1

2
(π(x1, x2) + π(x2, x1))

Two necessary conditions for this to be true are that x1 maximizes this expression at x1 = x∗1 if

x2 is fixed at x∗2, and that x2 maximizes this expression at x2 = x∗2 if x1 is fixed at x∗1. The first

of those therefore requires that

(1 − σ)1

2
(π(x1, x∗2) + π(x∗2, x∗1)) + σ

1

2
(π(x1, x∗2) + π(x∗2, x1))

is maximized at x1 = x∗1 which is the same as

π(x1, x∗2) + σπ(x∗2, x1)

being maximized at x1 = x∗1. In combination with its mirror image for fixing x1 at x1 = x∗1, these

also define what a fixed point is for a regular altruist.

As Proposition 1 does with mixing, Proposition 2 only provides a one-way implication; all

equilibria between Homo Hamiltonensis are also equilibria between regular altruists. The con-

verse is not true; there can be equilibria between regular altruists that are not equilibria between

Homo Hamiltonensis 2.0. That means that at such an equilibrium, these could be invaded. A

Homo Hamiltonensis 2.0, however, will always settle at behaviour that is also equilibrium be-

haviour between regular altruists. Also, in many cases the equilibria just coincide. In our

example, Homo Hamiltonensis 2.0 matches the equilibrium behaviour of regular altruists (the

blue lines in Fig. 8) when there is a unique equilibrium, and between β1′ and β1, the asymmetric

equilibrium for a regular altruist is also an equilibrium for Homo Hamiltonensis 2.0, but the

symmetric equilibrium is not.

6 Discussion

Alger and Weibull (2013) set out to answer the question whether in a setting with assortment, we

should expect altruistic preferences to evolve, or moral ones. Their central result suggests that

this evolutionary competition is won by the latter. Under conditions specified in the paper, their

central result states that Homo Hamiltonensis satisfies their definition of evolutionary stability,

and preferences that make one behave differently are evolutionarily unstable. They also suggest

that there can be a “stark contrast” between the behaviour of Homo Hamiltonensis and regular
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altruists.

We find that this paints an incorrect picture. First of all, it is important to realize that

Homo Hamiltonensis can satisfy their definition of evolutionary stability through a loophole,

when the set of Bayesian Nash Equilibria for a resident Homo Hamiltonensis and any mutant is

empty. In this case the equilibrium behaviour of a resident Homo Hamiltonensis is not defined,

so any statement about its evolutionary stability is not really based on behaviour or material

payoffs. Also when the equilibrium behaviour of a resident Homo Hamiltonensis is defined, but

the behaviour of a mutant regular altruist is not, it is not justified to state that the first is

evolutionarily stable against the second.

If we try to close those loopholes by allowing for mixing, or for coordination on asymmetric

equilibria, then this can be done in two ways. The first creates a stark contrast, but then

regular altruists win the evolutionary competition. The second makes Homo Hamiltonensis

not invadable, but then the contrast between Homo Hamiltonensis and regular altruists all but

disappears; our Propositions 1 and 2 imply that every equilibrium for a Homo Hamiltonensis 2.0

(the version for which it cannot be beaten by regular altruists) is also an equilibrium between

regular altruists.

These propositions are only one-way implications, and it is in fact possible to find games for

which there is an equilibrium between regular altruist that can be invaded. However, if Homo

Hamiltonensis 2.0 would take over the population, then any equilibrium that it could play is also

an equilibrium between regular altruists. At those equilibria, regular altruists moreover could

not be invaded. Also, for many games, their equilibria just coincide; for instance for games in

which both have unique equilibria, Propositions 1 and 2 imply that these must coincide.

The options in a setting with assortment and imperfect information, therefore, are that

either there is a stark contrast, but then regular altruists beat Homo Hamiltonensis, or Homo

Hamiltonensis cannot be beaten, but then almost all of the contrast between morality and

altruism dissipates.

7 Appendices

7.1 First order conditions and thresholds

Homo Moralis The utility function of Homo Moralis is uκ = (1 − κ) ⋅π (x, y)+κ ⋅π (x,x). If we

assume that the material payoff function π is continuous and twice differentiable, then the first

order condition for maximizing it with respect to x is

(1 − κ) ⋅ π1 (x, y) + κ ⋅ (π1 (x,x) + π2 (x,x)) = 0
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where π1 is the derivative of π to its first argument, and π2 is the derivative of π to its second

argument. In a symmetric, pure equilibrium, where x = y, this can also be written as

π1 (x,x) + κ ⋅ π2 (x,x) = 0

Regular altruist The utility function of a regular altruist is uα = π (x, y) +α ⋅ π (y, x). The

first order condition for maximizing this utility function with respect to x is

π1 (x, y) + α ⋅ π2 (y, x) = 0

In a symmetric pure equilibrium, where x = y, this can also be written as

π1 (x,x) + α ⋅ π2 (x,x) = 0

If α = κ = σ, these first order conditions are the same.

7.2 Second order conditions

Homo Moralis For Homo Moralis, the second order condition requires that (1−κ) ⋅π1,1(x, y)+
κ ⋅ (π1,1(y, x) + π1,2(y, x) + π2,1(y, x) + π2,2(y, x)) is less than 0 at x = y, or, in other words, that

π1,1(x,x) + κ ⋅ (2π1,2(x,x) + π2,2(x,x)) < 0

.

Regular altruist For regular altruists, the second order condition requires that π1,1(x, y) +
α ⋅ π2,2(y, x) is less than 0 at x = y, or, in other words,

π1,1(x,x) + α ⋅ π2,2(x,x) < 0

The second order conditions therefore are not the same, even if α = κ = σ. It is moreover possible

that there is an x for which the first and second order conditions are satisfied, while x is a local,

but not a global maximum. This is the case for some β’s in our example.

7.3 Our example

The first order condition for a Homo Moralis with morality parameter κ = σ, or a regular altruist

with altruism parameter α = σ, in combination with our example, π(x, y) = a(xβ + yβ) 1
β − x2,

gives:
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Figure 11: Utilities for Homo Hamiltonensis when σ = 1
2

and x∗ = 1 + σ, and for different β’s.
For β = 6.7 and β = 6.75, x∗ = 1.5 is a fixed point, but for β = 6.8 it is not.

[a ⋅ βxβ−1 1

β
(xβ + yβ) 1

β −1 − 2x]
y=x

+ σ [a ⋅ βyβ−1 1

β
(xβ + yβ) 1

β −1]
y=x

= 0

a (1 + κ) [xβ−1(2xβ) 1
β −1] − 2x = 0

a (1 + σ)2
1
β −1 = 2x

With a = 22−
1
β , this makes

x = 1 + σ

That implies that for our example, the only candidate for a pure, symmetric equilibrium is

x = 1 + σ.

One can show that the second order condition for a Homo Hamiltonensis holds if β < 3+σ
1−σ .

There is however a range of β’s for which the second order condition still holds at x = 1+σ, but

for which, if we take x∗ = 1 + σ, x = 1 + σ is not a global maximum (see Fig. 11). That implies

that there is no fixed point, and the β at which that starts happening is β2 (σ). For σ = 1
2
, this

threshold is β2 ( 1
2
) ≈ 6.792.

For a regular altruist, one can show that the second order condition holds if β < 3. Also here,

there is a range of β’s for which the second order condition holds at x = 1+σ, but for which, if we

take x∗ = 1+σ, x = 1+σ is not a global maximum. Where that starts happening, depends on X

and on σ (with one exception). For X = [0,∞), β1 = ln 2
ln4−ln 3

, which happens to be independent

of σ. For X = [1,∞), β1 does depend on σ, and for σ = 1
2

it is β1 ( 1
2
) ≈ 2.72.
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Figure 12: Utilities for a regular altruist when X = [1,∞), σ = 1
2
, and x∗ = 1 + σ, and for

different β’s. For β = 2.6 and β = 2.7, x∗ = 1.5 is a fixed point, but for β = 2.8 it is not.

If we allow for mixing, as we do in Section 4.1, then regular altruists and Homo Hamiltonensis

will play pure strategies for values of β below β1(σ) and β2(σ), respectively, and mixed strategies

for values of β above β1(σ) and β2(σ). If we allow for coordination on asymmetric equilibria, as

we do in Section 5.1, then symmetric equilibria stop existing at the same thresholds. Asymmetric

equilibria however start existing for lower values of β, and therefore there are intervals, with β1(σ)
and β2(σ) as their respective upper bounds, in which both mixed and pure equilibria exist. For

regular altruist, the lower bound of this interval is β1′ = 2. This bound is independent of X and

σ. For Homo Hamiltonensis, the lower bound does depend on σ – but not on X – and for σ = 1
2

it is β2′ ( 1
2
) = 4.

7.4 A game with mixing, but without BNE at ε = 0

Consider the Rock-Scissors-Paper game, parametrized as in Weibull (1997), here with a ∈
(σ − 1,0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 + a 0

0 1 2 + a
2 + a 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

This is not a game that fits the setup of the model in Alger and Weibull (2013) in the absence of

mixing, but with mixing it nonetheless illustrates that mixing does not guarantee the existence

of a BNE for a Homo Hamiltonensis. With strategies x = [x1, x2, x3] and y = [y1, y2, y3], we

therefore consider the utility function of a type θ that is a Homo Hamiltonensis:
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uθ(x, y) = (1 − σ)[x1, x2, x3]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 + a 0

0 1 2 + a
2 + a 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ σ[x1, x2, x3]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 + a 0

0 1 2 + a
2 + a 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1 + (1 − σ) ((1 + a)(x1y2 + x2y3 + x3y1) − (x1y3 + x2y1 + x3y2))

+ σa(x1x2 + x2x3 + x3x1)

A fixed point x∗ therefore requires that x∗ maximizes

uθ(x,x∗) = 1 + (1 − σ) ((1 + a)(x1x∗2 + x2x∗3 + x3x∗1) − (x1x∗3 + x2x∗1 + x3x∗2))

+ σa(x1x2 + x2x3 + x3x1)

For a fixed point in the interior of the simplex, a necessary condition would be that

duθ(x,x∗)
dx1

∣x=x∗ =
duθ(x,x∗)

dx2
∣x=x∗ =

duθ(x,x∗)
dx3

∣x=x∗

In other words, at x = x∗, the following should hold:

(1 − σ) [(1 + a)x∗2 − x∗3] + κ [a(x2 + x3)]

= (1 − σ) [(1 + a)x∗3 − x∗1] + κ [a(x1 + x3)]

= (1 − σ) [(1 + a)x∗1 − x∗2] + κ [a(x1 + x2)]

This implies that all three probabilities should be equal; x = x∗ = [ 1
3
, 1
3
, 1
3
]. However, utility is

not maximized there; with x∗ = [ 1
3
, 1
3
, 1
3
], we find that

uθ(x,x∗) = 1 + (1 − σ) ((1 + a)1

3
(x1 + x2 + x3) −

1

3
(x1 + x2 + x3))

+ σa(x1x2 + x2x3 + x3x1)

= 1 + (1 − σ) ⋅ a ⋅ 1

3
+ σa(x1x2 + x2x3 + x3x1)

The first terms are independent of x, and for x = [ 1
3
, 1
3
, 1
3
] the last term is 1

3
⋅ κ ⋅ a < 0, while for

x = [1,0,0], x = [1,0,0], or x = [1,0,0], the last term is 0, which makes the utility for any of the
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three pure strategies higher than the utility at x = [ 1
3
, 1
3
, 1
3
].

If we take x∗ = [x∗1,1 − x∗1,0], then we find, again by filling in x∗, that

uθ(x,x∗) = 1 + (1 − σ) ((1 + a)(x1(1 − x∗1) + x3x∗1) − (x2x∗1 + x3(1 − x∗1)))

+ σa(x1x2 + x2x3 + x3x1)

For a fixed point on this edge of the simplex, a necessary condition would be that

duθ(x,x∗)
dx1

∣x=x∗ =
duθ(x,x∗)

dx2
∣x=x∗ <

duθ(x,x∗)
dx3

∣x=x∗

In other words, the following should hold at x = x∗:

(1 − σ) [(1 + a)(1 − x∗1)] + σ [a(x2 + x3)] = (1 − σ) [−x∗1] + σ [a(x1 + x3)]

At x = x∗ = [x∗1,1 − x∗1,0], this would be

(1 − σ) [(1 + a)(1 − x∗1)] + σ [a(1 − x∗1)] =(1 − σ) [−x∗1] + σ [a(x∗1)]

(1 − σ)(1 − x∗1) + a(1 − x∗1) =(1 − σ) [−x∗1] + σ [a(x∗1)]

1 − σ + a =(1 + σ) [a(x∗1)]
1 − σ + a
(1 + σ)a =x∗1

This would be negative for a ∈ (σ − 1,0).
None of the three pure strategies are BNE either. If we take for instance x∗ = [1,0,0], then

uθ(x,x∗) = 1 + (1 − σ) ((1 + a)x3 − x2) + σa(x1x2 + x2x3 + x3x1)

For x = [1,0,0], this is uθ(x,x∗) = 1, but for x = [0,0,1] this is uθ(x,x∗) = 1 + (1 − σ)(1 + a) > 1.
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