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Abstract

Using commuting data for Brisbane, Australia, we find that accounting for measure-
ment error in travel times causes the magnitude of parameters in mode and location
choice models to increase approximately three-fold and 30–40%, respectively. Errors
appear to be somewhat systematic, with travel times being underestimated for short
journeys and vice versa for long journeys—especially by public transport. We find
similar results when we use alternative transport cost measures and independent
commuting data from London. Our findings are likely to have important implications
for transport and land use policy as well as the many types of economic models in
which travel times—and transport costs, more generally—occupy a central role.
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Although this may seem a paradox, all exact science is
dominated by the idea of approximation.

Bertrand Russell
The Scientific Outlook

1. Introduction

Despite occupying a central role in the fields of spatial, urban, and transport economics,

accurate data on travel times and transport costs are often hard to come by. Rarely do

researchers observe actual travel times, with most data either self-reported by travellers—

and hence affected by errors of perception—or imputed from imperfect information—and

hence affected by errors of imputation.1 Importantly, there is no a priori reason to

expect that measurement error in travel times is a “neutral” statistical process. Indeed,

Hausman’s “iron law of econometrics” posits that random measurement error will—via

the statistical process of attenuation—cause estimated parameters to be biased towards

zero (Hausman, 2001).2 For these reasons, a growing body of transportation literature

considers the effects of measurement error, especially differences in reported vis-à-vis

imputed travel times (see, e.g. Walker et al., 2010; Yamamoto and Komori, 2010; Bhatta

and Larsen, 2011; Varotto et al., 2017; Varela et al., 2018). As an example, Walker

et al. (2010) finds that “. . . models that do not correct for measurement error may

underestimate travelers’ values of time”—just as predicted by Hausman’s “iron law”.

Here, we study the second source of measurement error noted above, that is, so-called

errors of imputation. Specifically, we consider how uncertainty in the home location of

commuters within zones introduces measurement error into travel times and affects the

estimated parameters in mode and location choice models. In doing so, we build on a

body of literature that extends at least back to Train (1978). More recent studies treat

the uncertainty that arises from spatial aggregation, or “zoning”, as an instance of the

modifiable area unit problem, which they seek to mitigate by either more detailed zones

1 Even travel time data sourced from individual mobile and Bluetooth devices are usually measured with
error and/or aggregated to protect personal privacy.

2 Other statistical processes—like publication selection effects, for example—can introduce positive bias to
the magnitude of estimated parameters (see, e.g., Loken and Gelman, 2017; Andrews and Kasy, 2019).
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(see, e.g. Chang et al., 2002; Guo and Bhat, 2004; Martínez et al., 2007), or individual

travel time data (see, e.g. Lovelace et al., 2014; Kuehnel et al., 2020). Notwithstanding

the merits of these methods, both can encounter problems with data availability and

computational tractability. In contrast, we explicitly quantify measurement error in travel

times and directly account for its effects. Our study is perhaps closest to Yamamoto and

Komori (2010), who find that accounting for uncertainty in the distance from home to

public transport (“PT”) stops biases the parameters in mode choice models towards zero.

In contrast to Yamamoto and Komori (2010), however, we consider measurement error

for both car and PT; for the whole commute between home and work; and in both mode

and location choice models.

To frame our analysis, we estimate parts of the spatial general equilibrium (“SGE”) model

developed in Ahlfeldt et al. (2015), hereafter “ARSW”, which has become a workhorse

model in urban economics (see, e.g., Monte et al., 2018; Severen, 2021; Dericks and

Koster, 2021). In ARSW, workers choose their transport mode and home/work locations

in response to travel times by car and PT. To estimate the model, we link Census data

on the home/work locations and main mode of travel for almost all workers in the

city of Brisbane, Australia to car and PT travel times that are imputed from a journey

planner, namely OpenStreetMap (2021). In doing so, we use sampling to characterise

the variation in travel times that is introduced by uncertainty in the home location of

commuters within zones. Like ARSW, we use these data to estimate mode and location

choice models. Unlike ARSW, however, we account for measurement error in travel

times. We find the latter yields significant improvements in model performance and

causes parameter estimates to increase in magnitude. This bias does not appear to be

easily addressed as a form of heterogeneity or endogeneity, nor is it driven by unusual

observations, such as intra-zonal commutes or low-density zones. Measurement error

appears to have a systematic component, with travel times for short commutes being

underestimated, and vice versa for long commutes. We find similar results when we

approximate measurement error as a percentage of the mean travel time, or when we use

alternative transport cost measures and independent commuting data from London.

We note three important implications of these findings. First, models that do not account

for measurement error seem likely to underestimate the causal effect of travel times—

and transport costs, more generally—on mode and location choice. This bias seems

sufficiently large that it may distort transport and land use policy settings. Second,

we suggest that researchers judiciously allow for measurement errors in travel times

and transport costs when estimating models, even when they lack detailed information
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on the magnitude of these errors. Allowing for measurement error in an approximate

fashion may be preferable to treating the data deterministically when it is not. Third,

our findings highlight several areas for further research, including but not limited to

quantifying the contribution of other sources of uncertainty and accounting for the effects

of measurement error in other related economic settings—especially those characterised

by heterogeneous geographies, multi-modal transport costs, and congestion.

This paper is structured as follows: Section 2 outlines the methodology and data, Section

3 presents the results, Section 4 discusses the findings, and Section 5 concludes.

2. Methodology

2.1. Models

In the SGE model developed in ARSW, car and PT travel times affect worker’s choice of

transport mode and, in turn, their home/work locations. In the following sub-sections,

we summarise the parts of this model that are relevant to this study.

2.1.1. Location choice

Consider a representative worker, o, that is choosing their home/work locations i and j

in accordance with preferences, Uijo, which are represented by the utility function:

Uijo = zijo
Bi
dij

(
cijo
β

)β ( lijo
1− β

)1−β
, (1)

where zijo denotes the worker’s idiosyncratic preference for locations i and j that we

discuss in more detail below; Bi denotes the level of residential amenities in i; dij denotes

the dis-utility of commuting between i and j; cijo denotes a composite consumption good;

β is the share of expenditure on cijo; and lijo denotes residential floor space.

ARSW assume that all workers supply one unit of labour and earn wage wj . Let qi denote

the price of floor space, lijo, and assume the consumption good, cijo, is the numeraire,
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such that its price is equal to one in all locations. Maximising Equation (1) subject to the

budget constraint wij = qilijo + cijo then yields the following indirect utility function:

uijo = zijo
Biwj

dijq
1−β
i

. (2)

Equation (2) implies that a worker’s preference for home/work locations i and j increases

with amenities, Bi, and wages, wj , but decreases with commuting costs, dij , and rents,

q1−β
i . Wages and rents wj and qi; local amenities Bi; and commuting costs dij , can adjust

endogenously to leave workers indifferent between locations in spatial equilibrium.

ARSW assume that zijo observes a Frechét distribution F (zijo) = exp
(
−TiEjz−ε

ijo

)
and

integrate over zijo to yield the probability, πij , that a worker lives in i and works in j:

πij =
TiEj

(
dijq

1−β
i

)−ε
(Biwj)ε∑S

r=1
∑S
s=1 TrEs

(
drsq

1−β
r

)−ε
(Brws)ε

, (3)

where Ti, Ej > 0 are scale parameters and ε > 1 is a parameter to be estimated that

denotes the degree of worker homogeneity. That is, larger values of ε imply that workers

have more homogeneous preferences over locations. Equation (3) defines the model of

worker location choice that sits at the heart of the SGE model developed in ARSW.

To proceed, ARSW assume commuting costs dij = exp(κτ ij), where κ is a parameter to be

estimated and τ ij denotes average travel time, which we discuss in more detail in Section

2.1.2. Equation (3) can then be readily manipulated to yield a reduced-form (Poisson)

“gravity” model, nij = exp(δi + δj − ε ln dij) = exp(δi + δj − ντ ij). Here, nij denotes the

number of workers that commute from i to j; δi = ln
[
TiB

ε
i q

−(1−β)ε
i

]
and δj = ln

[
Ejw

ε
j

]
denote origin and destination effects, respectively; and the composite semi-elasticity,

ν ≡ εκ defines the effect of τ ij on worker’s choice of home/work location.

2.1.2. Mode choice

In a multi-modal setting, the average travel time between locations i and j, τ ij , is defined

by the mode-share weighted average of travel times by individual modes. ARSW consider
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two modes—that is, car and PT—and subsequently define τ ij as follows:

τ ij = E
[
m̂c
i t
c
ij + m̂p

i t
p
ij

]
= E

[
m̂c
i t
c
ij + (1− m̂c

i )t
p
ij

]
, (4)

where m̂c
i ,t

c
ij , m̂

p
i , and tpij denote mode shares and travel times for car and PT, respectively.

ARSW use a logit model to predict m̂c
i over home locations, which is combined with data

on tcij and tpij to compute τ ij per Equation (4) (cf. Supplementary Appendix S.6.3. Ahlfeldt

et al., 2015). In doing so, m̂c
i , t

c
ij , t

p
ij , and, in turn, τ ij are treated deterministically.

We can, however, go further than ARSW in three ways. First, we use our data to estimate

a logit mode choice model for individual home/work locations i and j, mc
ij:

mc
ij =

ncij
nij

=
exp(µctcij + µptpij + ζ0)

1 + exp(µctcij + µptpij + ζ0) , (5)

where ncij denotes the number of workers that commute by car between home/work

locations i and j; nij denotes the total number of commuters; µc and µp are parameters

to be estimated, where we expect µc < 0 and µp > 0; and ζ0 denotes an intercept.3

Second, per Section 2.2, we use methods to account for the measurement error in tcij and

tpij and that, in turn, allow us to estimate the unobserved latent (“true”) car and PT travel

times, tc∗ij and tp∗
ij . Third, we treat tc∗ij and tp∗

ij —and subsequent estimates of mode shares

m̂c
ij and average travel times τij—as random variables with their own distributions.

By extending ARSW in these three ways, we can define an alternative, more detailed

measure for the distribution of average travel time, τij:

τij = m̂c
ijt

c∗
ij + (1− m̂c

ij)t
p∗
ij , (6)

which differs from Equation (4) through the use of estimated mode shares for individual

pairs of home/work locations, m̂c
ij; the use of estimated latent travel times, tc∗ij and tp∗

ij ,

and by treating m̂c
ij , t

c∗
ij and tp∗

ij as random variables each with their own distributions. In

contrast to ARSW, we use Equations (5) and (6) to compute a distribution for τij , which

we use to estimate the location choice model in Section 2.1.1.

3 That is, we expect that longer car travel times will lead to lower car mode share and vice versa for longer
PT travel times. The mode share model in Equation 5 can be given microeconomic foundations in a
random-utility framework in which individual workers choose modes in response to car and PT travel
times, given idiosyncratic preferences for modes that are assumed to follow an EV1 distribution.

6



2.2. Methods

ARSW adopts a recursive process that, first, estimates the mode choice model; second,

computes average travel times; and third, estimates the location choice model. To enable

comparisons to ARSW and subsequent literature, we follow a similar recursive process.

Turning first to the conventional ARSW setting that does not allow for measurement error,

we estimate variants of the following set of equations:

ncij ∼ B(nij , µctcij + µptpij + ζ0) (Mode choice)

τ ij = E
[
m̂c
ijt

c
ij + (1− m̂c

ij)t
p
ij

]
(Compute mean τ ij)

nij ∼ P(δi + δj − ντ ij) (Location choice)

First, we estimate the Binomial mode choice model, ncij ∼ B(. . .), with logit link. Second,

we use the latter to estimate mode shares, m̂c
ij , which are combined with mean travel

times, tcij and tpij , to compute the mean average travel times, τ ij . Third, we use τ ij to

estimate the Poisson location choice model, nij ∼ P(. . .). In this setting, car and PT travel

times, tcij and tpij , and the resulting estimates for τ ij , are treated deterministically.

Second, we extend this set of equations to account for measurement errors in travel times

and other parameters as follows:

ncij ∼ B(nij , µctc∗ij + µptp∗
ij + ζ0) (Mode choice)

tc∗ij ∼ Logn(tcij , (scij)2) tp∗
ij ∼ Logn(tpij , (s

p
ij)

2)

τij = m̂c
ijt

c∗
ij + (1− m̂c

ij)t
p∗
ij (Compute distribution of τij)

nij ∼ P(δi + δj − ντ∗
ij) (Location choice)

τ∗
ij ∼ Logn(τ ij , s2

τij ).

This departs from ARSW in three ways. First, when estimating the mode choice model,

ncij ∼ B(. . .), we allow for measurement error in car and PT travel times, tcij and tpij . This

yields two extra equations for the latent car and PT travel times, tc∗ij ∼ Logn(. . .) and

tp∗
ij ∼ Logn(. . .). We assume tc∗ij and tp∗

ij follow Lognormal distributions with means tcij
and tpij and standard deviations, scij and spij that we calculate from the data described in

Section 2.3. This ensures the latent travel-times are constrained to be positive. Second, we

compute a distribution for average travel time, τij , that accounts for variation in estimates

7



for m̂c
ij , t

c∗
ij , and tp∗

ij . Third, when estimating the location choice model, nij ∼ P(. . .), we

allow for measurement error in average travel time, τij . Specifically, we assume the latent

average travel time τ∗
ij follows a Lognormal distribution with mean τ ij and standard

deviation, sτij , that we compute from the estimated distribution for τij .

We are primarily interested in the effects of measurement error in tcij , t
p
ij , and τij on

estimates for the parameters µc, µp, ν, δi, and δj . To this end, we estimate all models

using Bayesian methods, which allow us to directly account for measurement error in a

systematic way.4 In doing so, we attempt to understand the effects of measurement error

separately from other common sources of bias, such as heterogeneity and endogeneity.

One disadvantage of Bayesian methods is their increased computational time, which can

extend to several days for the more complex measurement error models.

2.3. Data

We draw on two main sources of data. First, we extract commuting data from the

Australian Census that was undertaken on 9 August 2016 for all 236 SA2s in the Brisbane

Greater Capital City Statistical Area (“GCCSA”). The Australian Bureau of Statistics (“ABS”)

describes an SA2 as “. . . a community that interacts together socially and economically”

whereas the GCCSA is designed to capture the extent of the labour market (ABS, 2021).

In the 2016 Census, 2.3 million residents and 1.0 million workers were recorded in the

Brisbane GCCSA, where SA2s have a median population of 8,715 and a median area

of 7.3 square kilometres. For all 587,601 full-time workers, we extract the SA2s where

they usually live and work—yielding 236 × 236 = 55,696 SA2-to-SA2 observations—as

well as their main mode of travel, that is, private vehicle, PT, or walking/cycling. We

exclude full-time workers that worked from home (“WFH”) on the day of the Census and

remove observations associated with SA2s for which we do not observe any commutes,

or that have fewer than 9 residents or jobs.5 This leaves us with 229 × 233 = 53,357

SA2-to-SA2 observations. The Census is a rich but incomplete source of data; we do not

know, for example, workers’ precise home and work locations nor their departure time,

commute frequency, or route—including intermediate destinations.
4 Specifically, all models are estimated using the statistical package R running in the RStudio environment

with the brms package (R Core Team, 2023; RStudio Team, 2023; Bürkner, 2017).
5 More specifically, we remove observations that originate in Brisbane Port–Lytton (pop. 9), Lake Manchester–

England Creek (pop. 0), Carole Park (pop. 7), New Chum (pop. 0), Mount Coot-tha (pop. 0), Greenbank
Military Camp (pop. 0), and Enoggera Reservoir and also those observations that are destined for Enoggera
Reservoir (emp. 5), Lake Manchester–England Creek (emp. 5), and Greenbank Military Camp (emp. 9).
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Second, to these 53,357 observations, we append travel time data for August 2016 that are

imputed from Open Street Maps, “OSM”, which is an open-access, multi-modal journey

planner (OpenStreetMap, 2021).6 As we do not know the precise home location of

commuters within SA2s, we randomly sample 20 points per SA2 based on the distribution

of the population across smaller census “meshblocks”. For work locations, we adopt a

more conventional deterministic approach: First, we snap geometric centroids to the

nearest pedestrian link in OSM and, second, where necessary we manually adjust the

destination to the approximate employment centroid as it appears from aerial imagery. As

one might expect, such manual adjustments are more important in larger, less populated

SA2s where employment is unevenly distributed. We then compute travel times by car

and PT from each of the 20 origins per SA2 to each destination per SA2, which enables

us to generate a distribution of travel times for each combination of home and work

locations. Appendix A illustrates the results of this sampling process for one SA2-to-SA2

pair. For PT, we assume a 07:30am departure time and include access time, wait time,

in-vehicle time, and egress time. We drop 920 observations associated with two SA2s that

are inaccessible by car (Redland Islands and Scarborough–Newport–Moreton Islands)

and 2,644 observations for which one or fewer PT travel time was returned, which

were mainly associated with five remote, rural SA2s—namely, Boonah, Dayboro, Kilcoy,

Woodford–D’Aguilar, and Mount Coot-tha. This leaves us with 49,793 observations for

227 home/work locations (SA2s) and 571,333 full-time workers, which represents 97.2%

of those recorded as residing and working in Brisbane GSCCA on the day of the Census.

Figure 1 presents data that are relevant to the estimation of mode choice models. The

top left and right panels present histograms of mean travel times by car and PT, tcij
and tpij , for which the commute-weighted average is approximately 25 and 63 minutes,

respectively. The bottom-left panel in Figure 1 then presents scatter plots of tcij versus tpij .

Notwithstanding the positive correlation (0.754), we observe considerable variation that

likely reflects the effects of geographic barriers—such as the Brisbane River, which carves

a meandering path through the city—as well as mode-specific infrastructure/services,

such as railways, busways, tunnels, bridges, and ferries.7 Our methodology exploits

variation in travel times between modes within origin-destination pairs to identify their

6 We download 2016 data on the PT network in GTFS format from TransitFeeds (2021) and pedestrian
network in OSM format from Geofabrik (2020). We manually edit the latter to add some missing links.

7 Perhaps the most notable—but by no means only—example is the Eleanor Schonell Bridge (“ESB”) that
connects Dutton Park and St Lucia. The ESB is accessible only to those travelling by PT, walking, or
cycling, who gain a considerable travel time advantage compared to driving. Charles-Edwards et al. (2015)
use individual data to analyse travel patterns before and after the opening of the ESB in 2006 and find
significant effects on non-car mode share and home locations. Inspection of our data confirms that PT
travel times are most competitive for journeys that benefit from mode-specific infrastructure, like the ESB.
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Figure 1: Top: Histograms of car (left) and PT (right) travel times, tcij and tpij , respectively. Bottom: Scatter
plots of tcij versus tpij (left) and car mode share, mc

ij versus tpij − t
c
ij (right), where the solid line

denotes the smoothed trend. Dashed vertical and horizontal lines indicate the mean.

effects on mode choice. In later sections, we consider whether this variation is exogenous.

The bottom-right panel in Figure 1 then plots car mode share, mc
ij , versus the difference

in travel times, tpij − tcij . We find considerable variation in car mode share mc
ij , which is

positively associated with the difference in travel times, tpij − tcij , as we might expect.

Figure 2 presents data that are relevant to the estimation of location choice models. In

the left panel, we present a histogram of commuting flows, which reveals considerable

heterogeneity, that is, our data comprise of a large number of small commuting flows

and a small number of large commuting flows. In the right panel, we find the expected

negative slope between lnnij and mean average travel time, τ ij , where we compute

the latter per Equation (4). To finish, Figure 3 illustrates a key aspect of our data:

measurement error in travel times arising from uncertainty in the home location of
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Figure 2: Left panel: Histogram of commuting flows, nij . Right panel: Commuting flows, lnnij , versus
average travel time, τij , where we compute the latter as per Equation (4).

Figure 3: Commuting flows for car (left) and PT (right) versus relative uncertainty in travel times, where
the latter is measured by the ratio of the standard error in travel times to the mean travel times,
sij / tij , for each mode. Grey shaded points denote intra-zonal flows.

commuters within zones. Specifically, the left and right panels of Figure 3 plot commuting

flows by car (ncij) and PT (npij) versus relative uncertainty in travel times, which we define

as the ratio of the estimated standard deviations and mean travel times, sij / tij . For car,

we observe a positive association between scij / t
c
ij and ncij , that is, large car commuting

flows are associated with more uncertain travel times, especially for intra-zonal flows. For

PT, in contrast, we observe no clear association between spij / t
p
ij and ncij . This is the first

hint that measurement error in travel times may have heterogeneous effects by mode.

Indeed, the commute-weighted average sij / tij is approximately 10.0% and 13.4% for

car and PT, respectively, which suggests that estimates of tpij are relatively more uncertain

than those for tcij . This, in turn, likely reflects the effects of variation in access time, wait

time, and in-vehicle time when travelling by PT from different home locations.
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3. Results

3.1. Mode choice

3.1.1. Benchmark models

First, we estimate three mode choice models. Model A includes car and PT travel times,

tcij and tpij , and an intercept, ζ0, in a Binomial model, B(. . .), with logit link:

ncij ∼ B(nij , µctcij + µptpij + ζ0) (Model A)

where ncij denotes the number of workers that commute by car (“successes”) between

their home in i and their work in j; nij denotes the total number of commuters (“trials”);

and µc and µp are parameters to be estimated, where we expect µc < 0 and µp > 0.

To control for unobserved sources of heterogeneity that affect mode share, Model B adds

group-level (“random”) effects for individual home/work locations, ζi and ζj:

ncij ∼ B(nij , µctcij + µptpij + ζi + ζj)

ζi ∼ N (0, σ2
i ) ζj ∼ N (0, σ2

j ). (Model B)

Where we follow convention and assume the group-level effects ζi and ζj observe Normal

distributions with variances σ2
i and σ2

j , respectively.

Third, Model C uses a control function to address concerns with endogeneity. In the first

stage, we regress both car and PT travel times, tcij and tpij , against an instrument, Zij , and

home and work group-level effects, ζzi and ζzj , using the following model:

tij ∼ Logn(ηZij + (1 + ηiZij)ζzi + (1 + ηjZij)ζzj )

ζzi ∼ N (0, σ2
iz) ζzj ∼ N (0, σ2

jz) ηi ∼ N (0, σ2
ηi) ηj ∼ N (0, σ2

ηj ), (Model C–CF)

where we assume tcij and tpij follow Lognormal distributions and we allow the effects of

Zij to vary with ζzi and ζzj per the group-level parameters ηi and ηj . For Zij , we use the

Euclidean distance between the centroids of i and j, which we assume to be exogenous.

In the second stage, we include the two residuals from the first stage, zcij and zpij , in an
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extended mode choice model:

ncij ∼ B(nij , µctcij + µptpij + υczcij + υpzpij + ζi + ζj)

ζi ∼ N (0, σ2
i ) ζj ∼ N (0, σ2

j ), (Model C)

If the parameters υc and υp are non-zero, then we have evidence of endogeneity.

To begin, we estimate Models A, B, and C without measurement error. Then we extend

each of the three models to allow for measurement error in car and PT travel times, tcij
and tpij . The measurement error version of Model A, for example, becomes:

ncij ∼ B(nij , µctc∗ij + µptp∗
ij + ζ0)

tc∗ij ∼ Logn(tcij , (scij)2) tp∗
ij ∼ Logn(tpij , (s

p
ij)

2) (Model A*)

where the parameters tc∗ij and tp∗
ij denote unobserved latent car and PT travel times that

are estimated along with the other model parameters. Here, we assume tc∗ij and tp∗
ij

follow Lognormal distributions with means, tcij and tpij , and variances, (scij)2 and (spij)2,

respectively, where scij and spij denote the estimated standard errors from the sampled

travel time data described in Section 2.3. We use an identical multi-level structure to

extend Models B* and C* to allow for measurement error in car and PT travel times.

Table 1 presents regression results for these mode choice models, where columns 1–3

and 4–6 pertain to models without (Models A, B, and C) and with (Models A*, B*,

and C*) measurement error, respectively.8 In all models, we standardise car and PT

travel times, tcij and tpij , such that their parameters, µc and µp, measure the effect of a

one standard deviation increase in travel time. Turning first to the summary statistics,

we find Model C*—that is, Model C with measurement error—performs the best, per

the leave-one-out information criterion (“loo-ic”).9 In terms of the parameters µc and

µp, the models with measurement error (columns 4–6) return estimates that are, on

avearage, approximately three-times larger in magnitude when compared to the same

models without measurement error (columns 1–3). Interestingly, the attenuation bias

introduced by measurement error is sufficiently large in our setting that estimates of

µc are zero in Model B (column 2), which is contrary to expectations. This may imply

that the attenuation bias introduced by measurement error can be especially severe in

8 We use weakly-informative priors, N (0, 1), for population- and group-level parameters, and defaults
otherwise. As we have a large number of observations, the choice of priors has little effect on the results.

9 The loo-ic measures the out-of-sample performance of each model using efficient leave-one-out cross-
validation (for details, see Vehtari et al., 2017). Lower values of loo-ic are preferred.
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Model
Without measurement error With measurement error

A B C A* B* C*

Car, µc −1.925 0.009 −1.593 −5.881 −2.574 −5.184
(0.011) (0.025) (0.051) (0.073) (0.063) (0.106)

PT, µp 4.267 1.931 3.577 14.581 7.764 10.798
(0.021) (0.044) (0.090) (0.164) (0.135) (0.201)

OD effects (ζi, ζj) No Yes Yes No Yes Yes
Control function No No Yes No No Yes

loo-ic 182,439 50,858 48,443 40,710 37,044 32,100
R2 0.869 0.992 0.993 0.999 0.999 0.999

Table 1: Regression results for mode share models per Section 3.1.1 (s.e. in parentheses). In all models,
the dependent variable is car commuting flows, ncij; we standardise car and PT travel times, tcij
and tpij , so the parameters, µc and µp, denote the effect of a one standard deviation increase; and
n = 49,793. Columns 1–3 and 4–6 report results without and with measurement error, respectively.
Models A and A* include tcij and tpij—or, their latent counterparts, tc∗

ij and tp∗
ij —and an intercept;

Models B and B* include group-level effects for home and work locations, ζi and ζj to control for
unobserved heterogeneity; and Models C and C* use a control function to address endogeneity,
where we instrument tcij and tpij with the crow-flies distance between the centroids of i and j, Zij .

multi-variate settings where the “true” parameter values have opposing signs. Notably,

efforts to control for heterogeneity and endogeneity do not mitigate the attenuation bias,

even if they do yield improved model performance. In general, these results suggest the

estimation of mode choice models is sensitive to attenuation bias caused by measurement

error in addition to the more common problems of heterogeneity and endogeneity.

3.1.2. Sensitivity tests

We subject Model C* to several sensitivity tests, for which the results are presented in

Table 2.10 Like Table 1, columns 1–3 and 4-6 in Table 2 report results without and with

measurement error, respectively. First, Models C-1 and C*-1 test whether the use of

free-flow car travel times from OSM biases the results by including an estimate of the

10 For clarity, Model C* is specified as follows:

ncij ∼ B(nij , µctc∗
ij + µptp∗

ij + υczcij + υpzpij + ζi + ζj)

tc∗
ij ∼ Logn(tcij , (scij)2) tp∗

ij ∼ Logn(tpij , (s
p
ij)

2)

ζi ∼ N (0, σ2
i ) ζj ∼ N (0, σ2

j ) (Model C*)

The first level defines the mode choice model; the second level defines the models of latent travel times,
tc∗
ij and tp∗

ij ; and the third level defines the home/work group-level effects. We are interested in estimates
of the parameters µc and µp, which denote the effects of tc∗

ij and tp∗
ij on mode choice, and tc∗

ij and tp∗
ij .
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Without measurement error With measurement error

C-1 C-2 C-3 C*-1 C*-2 C*-3

Car, µc −0.306 −1.663 −2.504 −4.972 −5.332 −5.613
(0.074) (0.076) (0.109) (0.177) (0.107) (0.117)

PT, µp 4.451 3.181 4.808 10.892 11.176 11.703
(0.098) (0.136) (0.197) (0.211) (0.212) (0.224)

Car congestion Yes No No Yes No No
Inter-zonal No Yes No No Yes No
Urban No No Yes No No Yes

loo-ic 47,536 42,357 33,994 32,093 29,848 26,336
R2 0.993 0.994 0.992 0.999 0.998 0.998

Table 2: Regression results for mode share models per Section 3.1.2 (s.e. in parentheses). In all models, the
dependent variable is car commuting flows, ncij and we standardise car and PT travel times, tcij and
tpij , so the parameters, µc and µp, denote the effect of a one standard deviation increase. Columns
1–3 and 4–6 report results without and with measurement error, respectively. To Model C*, Models
C-1 and C*-1 (n = 49,793) add a measure of extra car travel time due to congestion. Models
C-2 and C*-2 (n = 49,566) re-estimate Model C* for a sub-sample that includes only inter-zonal
commutes, whereas Models C-3 and C*-3 (n = 32,580) includes only urban SA2s.

extra car travel time that is due to congestion in the morning and evening peak periods.11

Controlling for congestion does not, however, affect the parameter estimates in Model

C*-1 vis-á-vis Model C*, which may indicate that accounting for measurement error in

free-flow travel times helps to control for congestion. Second, although Models C-2 and

C*-2 limit the sample to inter-zonal commuting flows, we find parameter estimates that

are essentially the same as Models C and C*, respectively. Third, and in a similar fashion,

Models C-3 and C*-3 include only urban SA2s with population densities above 500 people

per square kilometre. Both models return slightly larger parameter estimates, especially

Model C-3 vis-á-vis Model C. This may indicate that excluding low-density zones helps

to reduce, but not eliminate, the effects of measurement error. Nonetheless, all three

sensitivity tests confirm that measurement error in travel times introduces significant

attenuation bias into estimates of the parameters in mode choice models.

To conclude this section, we consider estimates of the latent travel times t∗ij from Model

C*. Figure 4 plots t∗ij (vertical axes) versus sampled travel time, tij (horizontal axes)

for car (left panel) and PT (right panel) for a random sample of 500 observations with

non-zero commuting flows, that is, ncij > 0 and npij > 0. The dashed diagonal lines denote

where t∗ij = tij; the size of points denotes the number of commuters, nij; the grey bars

denote the 95% credible interval of t∗ij; and the solid line indicates a non-parametric,

11 These data are sourced from a commercial travel demand model owned by Veitch Lister Consulting. We
are grateful to Michiel Jagersma and Azim Bhutta for their help in extracting these data.
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Figure 4: Latent t∗ij (vertical axes) from Model C* versus sampled tij (horizontal axes) travel times for car
(left panel) and PT (right panel) for a random sample of 500 observations with positive commuting
flows, that is, ncij > 0 and npij > 0. The dashed diagonal line denotes where t∗ij = tij; the size of
points denotes the number of commuters, nij ; and the vertical error bars denote the 95% credible
intervals for t∗ij . In both panels, we show non-parametric, non-linear GAM trend lines.

non-linear GAM trend line. In both panels, we observe subtle but systematic differences

between latent and sampled travel times, with the former exceeding the latter at small

values, and vice versa for large values—especially for PT. The relationships in Figure

4 provide preliminary evidence that the measurement error that affects our sampled

travel time data may have a systematic component, rather than being purely random.

Specifically, our method for sampling potential home locations within SA2s appears to

systematically underestimate the travel time of short commutes and vice versa for long

commutes. In Section 4, we discuss some of the underlying processes, such as parking

and sorting, which may explain these systematic biases in travel time data.

3.2. Location choice

3.2.1. Benchmark models

To estimate location choice models, we first construct our measure of average travel time,

τij . From the preferred mode choice model, Model C*, we predict mode share, m̂c
ij , and

extract posterior estimates of the latent car and PT travel times, tc∗ij and tp∗
ij . We use these
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Figure 5: Comparing estimates of average travel time, τij , for a random sample of 500 observations with

positive commuting flows, nij > 0. Left panel: Commuting flows, lnnij (vertical axis), versus
τij (horizontal axis) and their 95% credible intervals. The solid (black) line shows a linear trend
whereas the dashed (blue) line shows a weighted trend, with weights equal to the inverse of the
estimated variance of τij , that is, 1/s2

τij
. Right panel: Estimates of τij and their 95% credible

intervals (vertical axis) versus the measure used in ARSW, τ ij (horizontal axis). The dashed
diagonal line denotes where both measures are equal and the solid line denotes a GAM trend line.

data per Equation (6) to calculate a distribution for τij . Figure 5 plots our estimates of τij
for a random sample of 500 observations with positive commuting flows, nij > 0. The left

panel plots lnnij (vertical axis) versus our estimates of τij (horizontal axis) and their 95%

credible intervals. We add two lines: The solid (black) line shows a linear trend whereas

the dashed (blue) line shows a weighted trend, with weights equal to the inverse of the

variance of τij , that is, 1 / s2
τij . The latter has a more negative slope, which provides the

first informal evidence that uncertainty in τij may give rise to attenuation bias. The right

panel of Figure 5 compares τij (vertical axis) to that used in ARSW (horizontal axis). The

former exceeds the latter at low values and vice versa at high values, like the differences

between latent and sampled travel times that are evident in Figure 4. Uncertainty in τij
appears to be somewhat systematic, decreasing with lnnij and increasing with τij .

Using our preferred measure of average travel time, τij , we now estimate variants of the

location choice model. First, Model D includes the mean τ ij and an intercept, δ0:

nij ∼ P(δ0 − ντ ij), (Model D)

where the parameter ν ≡ εκ is our focus. Second, Model E follows ARSW by including
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home/work fixed effects, δi and δj , to control for heterogeneity between locations:

nij ∼ P(δi + δj − ντ ij). (Model E)

Third, Model F uses a control function to address endogeneity in τ ij . First, we regress τ ij
against an instrument, Zij; home/work location effects δzi and δzj ; and interaction terms

between Zij , δzi , and δzj . We assume τ ij follows a Lognormal distribution and again use

the Euclidean distance between the centroids of i and j for Zij , which yields:

τ ij ∼ Logn(ηZij + (1 + ηiZij)δzi + (1 + ηjZij)δzj )

δzi ∼ N (0, σ2
iz) δzj ∼ N (0, σ2

jz) ηi ∼ N (0, σ2
ηi) ηj ∼ N (0, σ2

ηj ), (Model F–CF)

In the second stage, we include the residuals from the first stage, ετij , to yield:

nij ∼ P(δi + δj − ντ ij + υτ ετij). (Model F)

As before, if the parameter υτ is non-zero, then we have evidence of endogeneity.

Like Section 2.1.2, we first estimate Models D, E, and F without measurement error and,

second, extend each model to allow for measurement error in average travel time, τij .

For example, Model D*—that is, the measurement error version of Model D—becomes:

nij ∼ P(δ0 − ντ∗
ij)

τ∗
ij ∼ Logn(τ ij , (sτij)2), (Model D*)

where we compute the standard deviation in average travel times, sτij , from the distri-

bution of estimates for τij . Models F* and G* extend Models F and G using an identical

multi-level structure to account for measurement error in average travel time, τij .

In Table 3, columns 1–3 and 4–6 present results without (Models D, E, and F) and

with (Models D*, E*, and F*) measurement error, respectively. Model F* (column 6)

has the lowest loo-ic and yields an estimate for ν = 0.1607 (s.e. 0.0005), which is

approximately one-third larger than the same model without measurement error (Model

F) and 50% larger than the model that is closest to ARSW (Model E). For the models

without measurement error, the inclusion of controls for heterogeneity (Model E) and

endogeneity (Model F) serve to significantly improve model performance and yield larger

estimates for ν, but do not fully mitigate the attenuation bias that is introduced by

measurement error. These results suggest the estimation of location choice models is
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Without measurement error With measurement error

D E F D* E* F*

ν 0.0550 0.1056 0.1203 0.1854 0.1422 0.1607
(0.0001) (0.0001) (0.0002) (0.0003) (0.0004) (0.0005)

OD effects (δi, δj) No Yes Yes No Yes Yes
Control function No No Yes No No Yes

loo-ic 1,865,606 347,669 329,673 393,491 210,722 204,818
R2 0.039 0.860 0.880 0.974 0.991 0.991

Table 3: Regression results for location choice models per Section 3.2.1 (s.e. in parentheses). In all models,
the dependent variable is commuting flows, nij , and n = 49,793. Columns 1–3 and 4–6 report
results without and with measurement error, respectively. Models D and D* include the average
travel time, τ ij—or, its latent counterpart, τ∗

ij —and an intercept; Models E and E* control for
unobserved heterogeneity by including fixed effects for home and work locations, δi and δj; and
Models F and F* use a control function to address endogeneity, where we instrument tcij and tpij
with the crow-flies distance between the centroids of i and j, Zij .

sensitive to the attenuation bias introduced by measurement error, in addition to the

more common problems of heterogeneity and endogeneity. That said, the level of this

bias is an order of magnitude smaller than what we find for the mode choice models.

3.2.2. Sensitivity tests

We subject Models F and F* to several sensitivity tests, for which the results are presented

in Table 4.12 We structure Table 4 as before: Columns 1–3 and 4-6 report results without

and with measurement error, respectively. First, Models F-1 and F*-1 use a sub-sample

of the data that includes only inter-zonal commuting flows. Compared to Models F

and F*, we find estimates for ν that are approximately 10% smaller. Second, and in a

similar fashion, Models F-2 and F*-2 use a sub-sample of the data that includes only

urban SA2s with population densities above 500 people per square kilometre. Here,

the effect goes the other way: Compared to Models F and F*, we find estimates for

ν that are approximately 10% larger. Third and finally, Models F-3 and F*-3 estimate

zero-inflated models, which allow for additional binomial processes to give rise to more

12 For clarity, Model F* is specified as follows:

nij ∼ P(δi + δj − ντ∗
ij + υτ ετij)

τ∗
ij ∼ Logn(τ ij , (sτij)2), (Model F*)

The first level defines the location choice model whereas the second level defines the model of latent
average travel times. We are mainly interested in estimates of the parameters ν, τ∗

ij , δi and δj .
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Without measurement error With measurement error

F-1 F-2 F-3 F*-1 F*-2 F*-3

ν 0.1125 0.1282 0.1077 0.1429 0.1712 0.1339
(0.0002) (0.0003) (0.0002) (0.0005) (0.0007) (0.0005)

Inter-zonal Yes No No Yes No No
High density No Yes No No Yes No
Zero-inflated No No Yes No No Yes

loo-ic 267,885 232,514 298,623 196,384 148,941 198,303
R2 0.925 0.893 0.701 0.992 0.992 0.878

Table 4: Regression results for location choice models per Section 3.2.2 (s.e. in parentheses). In all models,
the dependent variable is commuting flows, nij . Columns 1–3 and 4–6 report results without and
with measurement error, respectively. Compared to Models F and F*, Models F-1 and F*-1 (n =
49,566) use a sub-sample of the data that includes only inter-zonal commutes, whereas Models F-2
and F*-2 (n = 32,580) use a sub-sample that includes only urban SA2s. Models F-3 and F*-3 (n =
49,793) estimate zero-inflated Poisson models, which include an additional binomial process.
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Figure 6: Analysing results for Model F*-3 for a random sample of 500 observations with positive commuting
flows, nij > 0. The left panel shows lnnij (vertical axis) versus average travel time, τij (horizontal
axis). The dashed (grey) and solid (blue) lines show linear trends versus the means of the
computed and latent estimates, τ ij and τ∗

ij , respectively. The right panel plots τ ij (horizontal
axis) versus τ∗

ij (vertical axis) and its 95% credible intervals. The dashed diagonal line denotes
where τ ij = τ∗

ij and the solid line denotes a GAM trend line.

zeros than is generated by the Poisson processes alone.13 We find evidence to support

zero-inflated models in our setting: Models F-3 and F*-3 perform better than Models

13 Zero-inflated Poisson models can be motivated on empirical and theoretical grounds. Empirically, the ABS
randomly perturbs Census data to protect individual privacy, introducing extra zeros into data with small
counts, like ours. And, from a theoretical perspective, additional zeros may be introduced when workers’
choice of home/work locations is constrained by their schedules as well as their budget.
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F and F*, respectively, and return smaller estimates for ν. Nonetheless, in all three

tests, the models with measurement error (columns 4–6) return estimates for ν that are

approximately 30–40% larger than those without (columns 1–3). To finish, Figure 6

analyses results for Model F*-3 for a random sample of 500 observations with positive

commuting flows, nij > 0. The left panel shows lnnij (vertical axis) versus average travel

time, τij (horizontal axis), where the dashed (grey) and solid (blue) lines represent linear

trends for computed (τ ij) and latent estimates (τ∗
ij), respectively. The latter trend line has

a steeper slope that is consistent with a larger coefficient for ν. The right panel of Figure

6 then plots τ ij (horizontal axis) versus τ∗
ij (vertical axis) and its 95% credible intervals.

Like Figure 4, these results indicate that long commutes tend to be overestimated.

3.2.3. Approximating errors

Many existing models are likely to use data for which estimates of the associated meas-

urement error are not available nor easily generated. This raises an interesting question:

In the absence of this data, is it possible to approximate the measurement errors, sτij?

To this end, Table 5 presents regression results for variants of Model F*-3 where we

approximate sτij as a percentage, F , of the mean average travel time, τ ij—that is, we

set sτij = F τ ij—where we let F vary from 0%–50%. In Table 5, F = 30% (column 4)

has the lowest loo-ic, where ν = 0.1973 (s.e. 0.0015). The latter is approximately twice

that for Model F-3, which does not allow for measurement error, and 50% more than

Model F*-3, which calculates sτij from the distribution of estimates for τij and where the

commute-weighted average of sτij / τ ij = 14.9%. The results in Table 5 are interesting for

two reasons. First, approximating measurement error appears preferable to treating τij
deterministically—as can be seen by comparing the loo-ic values for the model where F =
0% to those that allow for measurement error. Second, the “true” level of measurement

error and attenuation bias is likely to exceed our estimates—possibly because we only

capture uncertainty in the home location of workers within zones—as can be seen by

comparing the loo-ic for Model F*-3 (198,303) to those in Table 5.

To finish, we test whether our findings are robust to alternative data. First, we replace

estimates of average travel time with estimates of average generalised costs (“AGCs”)

that are sourced from a conventional (“four step”) travel demand model. AGCs seek

to measure both the monetary and non-monetary costs of commuting. By replacing

average travel time with AGCs, we can check whether our results are due to aspects
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Model
Approximate measurement error, sτij = F τ ij

F = 0% F = 10% F = 20% F = 30% F = 40% F = 50%

ν 0.1077 0.1567 0.1855 0.1973 0.2093 0.2242
(0.0002) (0.0007) (0.0013) (0.0015) (0.0016) (0.0020)

loo-ic 298,623 190,518 174,961 174,070 175,028 176,251
R2 0.701 0.924 0.972 0.986 0.989 0.990

Table 5: Regression results for location choice models per Section 3.2.3 (s.e. in parentheses). In all models,
the dependent variable is commuting flows, nij , and n = 49,793. Column 1 (Model F-3) treats
average travel time, τ ij , deterministically. Columns 2–6 (Model F*-3) approximates measurement
errors, sτij = F τ ij , where F varies from 10%–50% per the column headers.

of our methodology, such as the approach to sampling car and PT travel times, the

somewhat simplistic mode choice model, or the construction of τij . Appendix B, Table 6

presents results for location choice models estimated using AGCs, where we approximate

measurement error as in Table 5. We find similar results to the latter, with F = 30%

yielding the best model performance and an estimate for ν that is approximately twice as

large as the deterministic version of the same model. Second, we use entirely independent

data for London that is sourced from Dericks and Koster (2021) and for which results are

presented in Appendix B, Table 7. When we treat τ ij deterministically (column 1), we

estimate ν = 0.1003 (s.e. 0.0002), which is close to the 0.1005 (s.e. 0.0006) reported

in Table 4 of Dericks and Koster (2021). When we approximate measurement error,

however, we find F = 40% (column 5) yields the best performance, for which ν = 0.2135

(s.e. 0.0012). Thus, we find strikingly similar results when we estimate location choice

models using alternative transport cost measures and independent data from London.

4. Discussion

First, we consider the policy implications of the downward bias in parameters found

in Section 3. To do so, we compare the effects of a simple intervention, that is, a 5%

reduction in travel times for PT.14 For mode choice, the model without measurement

error (Model C) predicts that this intervention would cause the car mode share to

decline by approximately 1.6 percentage points, from 80.6% to 79.0%, whereas the

14 A 5% reduction in PT travel times might be achieved via higher densities around PT stops/stations to
reduce walk time (Loutzenheiser, 1997; F. Zhao et al., 2003); frequent, connected PT networks (Walker,
2012); priority measures, all-door boarding, and off-board fare collection for buses (Currie and Lai, 2008;
Stewart and El-Geneidy, 2014; Tirachini, 2013); and shorter rail dwell-times (Kuipers et al., 2021).
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model with measurement error (Model C*) predicts that car mode share would decline

by 7.6 percentage points. For location choice, differences in the predicted change in

population and employment between Models F*-3 and Model F-3—that is, with and

without measurement error—are shown in Figure 7. Although these differences are

more subtle, Model F*-3 predicts larger increases in employment in secondary locations

outside the city centre.15 In general, these results indicate that mode choice models

are more affected by attenuation bias. This may suggest that mode choice models are

more susceptible to unobserved selection effects that, in turn, affect travel times. One

such process is “intra-zonal sorting”, whereby workers select into locations within zones

that have lower-than-average travel times. And, although location choice models are

somewhat less biased, evidence finds that even small changes in the distribution of people

and jobs (“land use”) can have significant effects on transport outcomes (see, e.g., Y. Zhao

and Kockelman, 2002; Yang et al., 2013). For these reasons, we suggest the attenuation

bias in mode and location choice models may be large enough to distort transport and

land use policies. This includes, most obviously, the ex-ante economic appraisal of possible

investments using cost-benefit analysis as well as the potential contribution of policies to

wider strategic outcomes, like improved accessibility and reduced carbon emissions.

Second, we consider whether the bias that we find has implications for other model

parameters. Specifically, in ARSW the home/work location effects, δi and δj , represent

combinations of other structural model parameters—that is, δi = ln
[
TiB

ε
i q

−(1−β)ε
i

]
=

lnTi + ε lnBi − ε(1 − β) ln qi and δj = ln
[
Ejw

ε
j

]
= lnEj + ε lnwj . As such, changes

in estimates of δi and δj can have implications for these parameters. Similarly, spatial

economic “sorting models” will often estimate a first-stage gravity model in which the

origin/destination effects—also known as area-specific constants, or “ASCs”—represent

the overall level of utility that is attached to locations (see, e.g., Teulings et al., 2018). The

ASCs are often used in second-stage regressions to estimate related economic parameters,

such as the willingness-to-pay for local amenities (see, e.g., Van Duijn and Rouwendal,

2013). To gain insight into whether measurement error affects estimates of δi and δj to

an extent that it might bias subsequent analyses, Figure 10 in Appendix D plots δi and δj
versus measures of rents, ln qi, and wages, lnwj—that we also source from the Census.

In ARSW’s model, the slope of the trend lines for δi versus ln qi and δj versus lnwj should

approximate −ε(1 − β) and ε, respectively. When we compare the results for models

15 Compared to the Base, Model F*-3 predicts that employment and population will centralise and suburban-
ise, respectively, per Appendix C, Figure 9. Here, we consider only the effects of changes in travel time and
do not allow for subsequent effects on related markets, such as the housing and labour market. As such,
this represents a partial equilibrium analysis that, in our view, is likely to overstate the land use response.
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Figure 7: The difference in the change in population (bottom panel) and employment (top panel) caused by
a 5% reduction in PT travel times between location choice models with (Model F*-3) and without
(Model F-3) measurement error. Compared to Model F-3, Model F*-3 predicts larger increases in
population in suburban areas with access to PT and secondary employment locations. The solid
(black) lines illustrate the extent of urban passenger rail services.
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with and without measurement error, however, we do not observe any obvious systematic

differences in the implied relationships. This finding provides some solace, as it suggests

that the downward bias in parameter estimates that is introduced by measurement error

in travel times does not necessarily “spill over” into subsequent analyses that make use of

the estimates for δi and δj . That said, we cannot preclude the presence of systematic bias

in the home/work location effects and advise researchers to proceed with caution.

Third, we suggest it may be prudent for researchers to allow for measurement error in

travel times—and transport costs, more generally—when estimating models, even if they

lack detailed information on the magnitude of these errors. In Section 3.2.3 (cf. Table 5),

we find approximating measurement error improves the performance of location choice

models and yields larger parameters. We expect measurement error will be most relevant

in settings that are characterised by spatially heterogeneous geographies, multi-modal

transport networks, and congestion effects. In such environments, agents seem likely

to adjust their behaviour over multiple unobserved margins that introduce uncertainty

into imputed travel times. Although the use of smaller, more detailed zones might

mitigate some sources of error, we do not expect it to eliminate it entirely. Indeed, the

location choice models in Table 6 use AGCs that are sourced from a travel demand model

with smaller zones than the SA2s that we use for our analyses, yet reveal similar levels

of attenuation bias.16 Notwithstanding these findings, we caution that approximating

measurement error treats the data-generating process for uncertainty in travel times

as a “black box”. This may, in turn, amplify other problems, such as misspecification.

For this reason, although we suggest that—in the absence of detailed data—researchers

should consider approximating measurement error, it is important to do so judiciously.

Specifically, where models are estimated using approximate measurement errors, then

we recommend carefully inspecting estimates of the latent travel times to ensure they

remain plausible. With sufficient care, allowing for measurement error in an approximate

fashion is likely to be better than treating the data deterministically when it is not.

Finally, we note three related areas for further research. First, uncertainty in the home

locations of workers within zones is only one potential source of measurement error in

travel times. Further research could seek to quantify other sources of uncertainty—such

as work location, departure time, commute frequency, and route choice—and investigate

16 Smaller zones may reduce positive bias in long PT journeys, which seems likely to arise when workers “sort”
into home locations that are accessible to PT and have shorter travel times than is found from random
sampling. That said, we suggest smaller zones are unlikely to reduce negative bias in short car journeys,
especially if the latter reflects unobserved time spent searching for parking and subsequent access/egress.
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their implications for model parameters. Second, we see a need for more research

into how parking costs—both monetary and non-monetary—are best incorporated into

travel demand models. Such research could adapt and extend the methods developed in

Ostermeijer et al. (2019), which uses property transactions to estimate spatial variation

in the implicit price of parking. Third, further research could consider whether other

models in spatial, urban, and transport economics are also affected by measurement error.

This includes models that are commonly used in transport economics, such as destination

choice models (“distribution”), as well as spatial economic and international trade models

(see, e.g., Allen and Arkolakis, 2014; Anderson and Van Wincoop, 2004, respectively).

5. Conclusions

Using commuting data for Brisbane, Australia, we find that accounting for measurement

error in travel times causes the magnitude of parameters in mode and location choice

models to increase approximately three-fold and 30–40%, respectively. Errors appear to

be somewhat systematic, with travel times for short car journeys being underestimated

and vice versa for long PT journeys. The biases are not readily addressed as a form of

heterogeneity or endogeneity, nor are they due to unusual observations, such as intra-

zonal commutes or low-density zones. Similar findings emerge when we approximate

the level of error and use alternative transport cost measures or independent data from

London. We note three main implications of our results. First, models that do not account

for measurement error may underestimate the causal effect of travel times and transport

costs, more generally, to an extent that it distorts transport and land use policy. Second,

we advise researchers to judiciously allow for measurement errors in travel times and

transport costs, even if they lack detailed information on the magnitude of the errors.

And, third, our results highlight several promising areas for further research, including

but not limited to quantifying the effects of other sources of uncertainty and accounting

for measurement error in other economic models.
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A. Appendix A: Example of sampled journeys

Figure 8: Sampled journeys by car (top) and PT (bottom) from Chelmer – Graceville to Brisbane City. The
authors thank Azim Bhutta from Veitch Lister Consulting for making this map.
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B. Appendix B: Additional regression results

Model
Approximate measurement error, sτij = F τ ij

F = 0% F = 10% F = 20% F = 30% F = 40% F = 50%

ν 0.9386 1.2999 1.5865 1.8846 2.1740 2.4009
(0.0199) (0.0042) (0.0080) (0.0138) (0.0199) (0.0277)

loo-ic 268,102 177,404 168,583 168,542 168,886 169,010
R2 0.922 0.994 0.995 0.995 0.995 0.995

Table 6: Regression results for location choice models estimated using data from Brisbane (s.e. in paren-
theses). In all models, the dependent variable is commuting flows, nij; we include home/work
location fixed effects; and n = 49,793. We measure transport costs using AGCs that are sourced
from a travel demand model that is calibrated to a normal weekday in 2016 using data from various
sources, including but not limited to the Census. For each home/work location, we calculate AGCs
as a weighted average across all workers that commute by car, PT, and walking/cycling for all
time periods on a normal weekday. We aggregate AGCs from more detailed travel zones to SA2s,
between which there exists a many-to-one relationship. As AGCs are measured on a different
scale to travel times, the estimates for ν are not directly comparable between the two measures.
Column 1 treats AGCs deterministically (F = 0%). Columns 2–6 then approximate the magnitude
of measurement error, sτij = F τ ij , where we allow F to vary from 10%–50% per the column
headers. We find the lowest (best) loo-ic criterion for the model where F = 30% (column 4), for
which the parameter estimate is twice as large as F = 0%. We also note that models estimated
using AGCS perform better than those estimated using travel times, which suggests travel demand
models provide information that is relevant to modelling location choice.

Model
Approximate measurement error, sτij = F τ ij

F = 0% F = 10% F = 20% F = 30% F = 40% F = 50%

ν 0.1003 0.1309 0.1654 0.1916 0.2135 0.2324
(0.0002) (0.0004) (0.0007) (0.0009) (0.0012) (0.0016)

loo-ic 212,573 154,737 130,382 125,320 124,780 125,019
R2 0.889 0.980 0.990 0.993 0.993 0.994

Table 7: Regression results for location choice models estimated using data from London sourced from
Dericks and Koster (2021) (s.e. in parentheses). From the full sample of 966,289 observations used
in Dericks and Koster (2021), we randomly sample n = 50,000 observations. In all models, the
dependent variable is commuting flows, nij . Column 1 treats average travel time, τ ij , determinist-
ically (F = 0%), which yields an estimate for ν = 0.1003 (s.e. 0.0002) that is close to the 0.1005
(s.e. 0.0006) reported in Table 4 of Dericks and Koster, 2021. Columns 2–6 then approximate the
magnitude of measurement error, sτij = F τ ij , where we allow F to vary from 10%–50% per the
column headers. We find the lowest (best) loo-ic criterion when F = 40% (column 5), where ν =
0.2135 (s.e. 0.0012). That is, more than twice that of the model without measurement error.
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C. Appendix C: Change in population and employment
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Figure 9: The percentage change in population (bottom panel) and employment (top panel) of full-time
workers caused by a 5% reduction in PT travel times predicted by Model F*-3 compared to the Base.
The population increase in suburban locations with access to PT and/or where walking/cycling is
viable, whereas employment increases in locations around the city centre. The solid (black) lines
illustrate the extent of urban passenger rail services.
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D. Appendix D: Home and work location effects
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Figure 10: Estimates of δi (top panels) and δj (bottom panels) from models without (left panels) and
with (right panels) measurement error, respectively, versus average rent, ln qi (top panels) and
income, lnwj (bottom panels). We extract data on average rent per bedroom for occupied private
dwellings and the average gross income for full-time workers per SA2 from the Census. The
vertical error bars denote the 95% credible interval for the estimates of fixed effects and we add
a normal linear trend line (solid black) and a weighted trend line (dashed blue), where weights
are defined by the inverse of the variance of the estimates of each fixed effect. The size of the
dots indicate the total number of commuters that live (top) and work (bottom) in each SA2.
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