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Abstract

To investigate the role of intra-regional trade integration on economic growth in Latin America,
we develop a multilevel spatial production network model with time-varying parameters. The
theoretical model is established for a multi-country and multi-sectoral economy. The reduced-form
econometric framework relies partly on observation-driven dynamic processes. The finite-sample
properties of the maximum likelihood estimates are investigated through a Monte Carlo study.
The empirical study is for six countries in Latin America. The findings suggest that intra-country
spillovers configure an important factor for explaining growth, while the importance of domestic
spillovers is limited. The growth volatility is substantively reduced since 2005.
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1 Introduction

This paper introduces an econometric framework for measuring time-varying cross-sectional

dependence in multilevel spatial models where variables can interact at different levels of

aggregation. In particular, we consider a dynamic spatial model in which the spillover

effects of domestic (within) and international (between) trade linkages can be disentangled.

The spatial econometric model is obtained as a reduced form of a structural economic model

that is consistent with equilibrium conditions for a multi-country multi-sectoral economy;

see the discussion on production networks in Long and Plosser (1983) and Carvalho and

Tahbaz-Salehi (2019). Furthermore, we build on the dynamic panel data model with a

time-varying parameter as proposed in Blasques et al. (2016), by introducing a set of time-

varying parameters which allow for cross-sectional dependence to change dynamically over

time. The empirical relevance of the model is shown by measuring the importance of trade

integration on growth dynamics in Latin America.

Our research contributes to two strands of literature. First, we contribute to the spatial

econometrics literature, where spatial autoregressive models have been used for different

purposes, including estimating regional price elasticity (Aquaro et al., 2021; Mueller and

Loomis, 2008), assessing the effects of extreme temperatures across regions using a network

approach (Winter et al., 2016; Sain et al., 2011), estimating the rate of convergence in the

context of spatial Solow and spatial Schumpeterian growth models (Fingleton and López-

Bazo, 2006; Ertur and Koch, 2007), and analyzing spatial dependence in financial markets

(Wied, 2013; Arnold et al., 2013; Herskovic et al., 2020). In all of these studies, the spatial

parameter itself is treated as a static time-invariant parameter. Blasques et al. (2016)

have however developed an econometric framework with a time-varying spatial dependence

parameter using a score-driven filter introduced in Creal et al. (2013) and Harvey (2013).

We extend this framework by considering a set of time-varying dependence parameters

which are attributable to different levels of data aggregation.
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Second, we contribute to the economics literature concerning production networks and

trade where the importance of trade integration for growth in the context of a network of

sectoral spillovers is discussed; see e.g. Bernard and Moxnes (2018). Since the early 1990s,

government policies have aimed to promote trade integration as a mechanism for boosting

growth and reducing growth volatility. Whether trade integration has resulted in positive

or negative effects on growth is an outstanding question. In the seminal work of Frankel

and Romer (1999) it is argued that trade brings positive effects to growth. Dollar and

Kraay (2004) suggest that trade has reduced poverty levels worldwide. Obstfeld and Rogoff

(2001) document that trade has limited growth effects due to several market frictions such

as trade costs and labor market rigidities. Finally, in Goldberg and Pavcnik (2007) it is

suggested that country-specific factors may have exacerbated the negative distributional

effects of trade liberalization.

The mechanism of how trade impacts growth is discussed widely in the literature and it

is often said to be either due to learning-by-importing or learning-by-exporting (Amiti and

Konings, 2007), or to improving firm capabilities (Grossman and Helpman, 1991). The role

of domestic factors is also widely stated as a factor of how trade can lead to growth, see,

for example, Easterly et al. (1993), Hall and Jones (1999), and Rodrik (1999). Empirical

studies on trade and growth have faced some challenging inference issues. For example, the

measurement of trade liberalization and its identification by means of instrumental variable

regressions, have led to interesting studies, including Frankel and Romer (1999), Sachs and

Warner (1999) and Wacziarg and Welch (2008). To the best of our knowledge, there is no

econometric methodology that is capable of distinguishing domestic and external growth

spillovers within an economic modeling framework. In this paper, we propose an economet-

ric dynamic model that aims to disentangle these domestic and external spillovers effects

simultaneously. This formulation accounts for the equilibrium conditions for multi-country

multi-sectoral models in a production network. Hence, our reduced form econometric model

is consistent with the structural equations of economic trade models.
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Our empirical model formulation and analysis differs from earlier contributions. For

example, the estimation procedure controls for growth volatility that can be misguidedly

attributed to either domestic or external spillovers (Forbes and Rigobon, 2002). Further,

we apply our methodology to disentangle the growth spillover effects of intra-regional trade

(between) from domestic (within) linkages in selected Latin American countries: Argentina,

Brazil, Chile, Colombia, Mexico and Peru. The results suggest that between spillovers

configure an important factor for explaining growth dynamics, while the within importance

has a limited impact. Hence, intensifying domestic linkages has a reduced potential for

boosting growth. In addition, our empirical findings suggest that growth volatility has

consistently declined over time, especially after the large increase of export growth in 2005.

The remainder of the paper is organized as follows. Section 2 introduces the dynamic

spatial model for production networks of multi-country model. In Section 3 the details

of the econometric estimation method are discussed. Section 4 presents the results of a

Monte Carlo simulation study. Section 5 presents the results of the empirical study on

intra-regional trade in Latin America. Section 6 concludes.

2 A dynamic spatial model for production networks

In this section, we consider a structural economic model for production networks of multi-

country economies. The structural equations provide a justification from an economic

theory perspective of the reduced-form econometric model specification in Section 3. It

further provides a theoretical interpretation of the empirical findings reported in Section

5 for Latin America countries. The economic model is an extension of the formulation in

Carvalho and Tahbaz-Salehi (2019) for a setting with multiple countries and with sectoral

input-output linkages for each country.

Consider an economic trade system for N countries, labeled as country i = 1, . . . , N ,

and for J sectors, labeled as sector j = 1, . . . , J . Assume that the final good’s producers
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in each sector employ a Cobb-Douglas production technology with constant return to scale

to transform intermediate inputs and labor into final products. The output of sector j in

country i at time t is given by

Yi,j,t = Φi,jZi,j,tH
αi,j
i,j,t

J∏
k=1

{(
N∏

v 6=i=1

ME
v,j,k,t

)(1−xi,j,k)λi,v(
Mi,j,k,t

)xi,j,k}ϕi,j,k

(1)

where Zi,j,t is a Hicks-neutral productivity shock, Hi,j,t is the labor demand of sector j

in country i, Mi,j,k,t represents the materials demanded by sector j from the sector k in

country i, ME
v,j,k,t is the materials demanded by sector j in country i from sector k in

country v, Φij is a normalization constant whose value only depends on model parameters1,

αi,j > 0 denotes the share of labor in sector j’s production technology, xi,j,k represents

the preference for using domestic inputs and (1− xi,j,k) for foreign inputs, λi,v is the trade

preferences with country v with
∑N

v 6=i λi,v = 1, and ϕi,j,k is the input preference for sector

k’s products. The assumption of constant returns to scale in each sector implies that

αi,j +
∑J

k=1 ϕi,j,k = 1. Each sector uses both domestic and imported materials from other

sectors; this fact represents a source of interconnectedness in our economic network model.

Next, we determine the optimal input allocation. The final producers choose their

demand for labor and intermediate inputs in order to maximize profits

πi,j,t = Yi,j,t −Ψi,tHi,j,t −
J∑
k=1

Mi,j,k,t −
N∑
v 6=i

J∑
k=1

ME
v,j,k,t (2)

where Ψi,t denotes wages2. The first order conditions corresponding to firms in sector j are

1In what follows, we set the value of this constant to

Φi,j =

J∏
k=1

{
ϕi,j,kx

xi,j,k

i,j,k (1− xi,j,k)(1−xi,j,k)
∏
v

λ
(1−xi,j,k)λi,v

i,v

}−ϕi,j,k

α
−αi,j

i,j .

This choice has no bearing on the results.
2In addition, the price index is normalized towards one for simplicity.
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given by

Ψi,tHi,j,t = αi,jYi,j,t , Mi,j,k,t = ϕi,j,kxi,j,kYi,j,t and ME
v,j,k,t = ϕi,j,kλi,v(1− xi,j,k)Yi,j,t.

In addition, it is assumed that the economy is populated by a representative household who

supplies one unit of labor inelastically and has logarithmic preferences over the J goods

produced by the J sectors, given by

υi (C1,t, . . . , CJ,t) =
J∑
j=1

βi,j log(Ci,j,t/βi,j) (3)

where Ci,j,t is the amount of final good j consumed. The constant βi,j measures various

goods’ shares in the household’s utility function, normalized such that
∑J

j=1 βi,j = 1. The

consumers budget constraint is given by
∑J

j=1Ci,j,t ≤ Ψi,t, where it is assumed that Ψi,t =

Yi,t, which implies that wages are the only source of income. Hence, we are omitting capital

rents. Therefore, the first order condition implies that Ci,j,t = βi,jΨi,t.

2.1 The equilibrium

By plugging the expressions for Hi,j,t, Mi,j,k,t and ME
v,j,k,t into equation (1), the equilibrium

value for total output in country i, Y ∗i,t, is given by3

log Y ∗i,t =
J∑
j=1

s∗i,j,t logZi,j,t (4)

where s∗i,j,t = Y ∗i,j,t/Y
∗
i,t is defined as the Domar weight, which measures the importance of

a given sectoral income in the economy. In addition, the market clearing condition that

3The model assumptions imply that
∑J
j=1 si,j,tαi,j = 1.
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governs the economy at any point in time is determined by

Yi,j,t = Ci,j,t +
J∑
k=1

Mi,k,j,t +
N∑

v 6=i=1

J∑
k=1

ME
i,k,j,t|v −

N∑
v 6=i=1

J∑
k=1

ME
v,j,k,t (5)

where ME
i,j,k,t|v denotes material exports from country i to country v. Meanwhile, Mi,k,j,t is

the sector k import from sector j. This reveals the importance of sector j as input supplier

in the economy. Therefore, when replacing the first order conditions in equation 5, the

equilibrium value for the Domar weight satisfies the following condition

[
1 +

J∑
k=1

ϕi,j,k(1− xi,j,k)

]
si,j,t = βi,j +

J∑
k=1

ϕi,k,jxi,k,jsi,k,t+

N∑
v 6=i=1

J∑
k=1

ϕv,k,j(1− xv,k,j)λv,i
(Zv,j,t)

−αv,j

(Zi,jt)−αi,j
sv,k,t.

(6)

In contrast to Carvalho and Tahbaz-Salehi (2019), which determines a constant equilibrium

value for the Domar weight, the multi-country setup causes this ratio to be time-dependent

due to productivity fluctuations, (Zi,j,t, Zv,j,t). Hence, the equilibrium value for the Domar

weight can be expressed as

s∗i,j,t =
N∑
τ=1

J∑
k=1

ai,jτ,k,tβτ,k, (7)

where ai,jτ,k,t is a positive time-varying coefficient that depends on model parameters as well

as productivity shocks in country i and v’s (see Appendix A for details). Finally, the

equilibrium value for the sectoral income can be expressed as

Y ∗i,j,t =

(
N∑
τ=1

J∑
k=1

ai,jτ,k,tβτ,k

)
exp

(
J∑
j=1

(
N∑
τ=1

J∑
k=1

ai,jτ,k,tβτ,k

)
logZi,j,t

)
, (8)

where the productivity of trade partner v does not directly affect the equilibrium value of

Y ∗i,j,t, but it does amplify the effects of Zi,j,t through the time-varying coefficient ai,jτ,k,t. This

implies growth spillovers.
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2.2 Model representation

We now proceed to linearize the market clearing condition given in equation (5), around

the equilibrium value,

ỹi,j,t =βi,j
Ψ̃i,t

s∗i,j,t
+

J∑
k=1

ϕi,k,jxi,k,j
Y ∗i,k,t
Y ∗i,j,t

ỹi,k,t

+
N∑

v 6=i=1

J∑
k=1

ϕv,k,j(1− xv,k,j)λv,i
Y ∗v,k,t
Y ∗i,j,t

ỹv,k,t −
J∑
k=1

ϕi,j,kxi,j,kỹi,j,t

(9)

where the data ỹi,j,t is given by

ỹi,j,t =
Yi,j,t − Y ∗i,j,t

Y ∗i,j,t

and the expressions ϕi,k,jxi,k,j and ϕv,k,j(1 − xv,k,j)λv,i are elements of the input-output

matrix with trade linkages. The input-output (IO) matrix summarizes trade relationships

within industries and between countries. Therefore, the input-output matrix can be repre-

sented by a weighted directed graph on N × J vertices, with the element {ωi,k,j,t} revealing

the importance of sector j as input supplier to sector k, and
∑J

k=1 ωi,k,j,t = 1. Similarly,

{ωiv,k,j,t} reveals the importance of sector j as input supplier to sector k in country v, with∑N
v 6=i=1

∑J
k=1 ω

i
v,k,j,t = 1. Those linkages are represented as known matrices.

Meanwhile, the equilibrium output ratios can be reformulated such that

ρwi,k,t =
Y ∗i,k,t(

1 +
∑J

k=1 ϕi,j,kxi,j,k

)
Y ∗i,j,t

(10)

and,

ρbv,k,t =
Y ∗v,k,t(

1 +
∑J

k=1 ϕi,j,kxi,j,k

)
Y ∗i,j,t

(11)

with ρwi,k,t and ρbv,k,t are time-varying parameters aimed at capturing within and between

spillovers from domestic and international technological gains. We further discuss the role

8



of these time-varying spillover parameters in the following section. In addition we consider

identification restrictions and additional structure imposed for the estimation of our empir-

ical model. Finally, the linearized market clearing condition in terms of growth rates can

be represented by

yi,j,t = bi,j,t +
J∑
k=1

ρwi,k,tωi,k,j,tyi,k,t +
N∑

v 6=i=1

J∑
k=1

ρbv,k,tω
i
v,k,j,tyv,k,t + µi,j,t (12)

where yi,j,t = ỹi,j,t − ỹi,j,t−1 and

bi,j,t =
βi,j

1 +
∑J

k=1 ϕi,j,kxi,j,k

(
Ψ̃i,t

s∗i,j,t
− Ψ̃i,t−1

s∗i,j,t−1

)
,

µi,j,t =
J∑
k=1

ωi,k,j,tỹi,k,t−1(ρ
w
i,k,t − ρwi,k,t−1) +

N∑
v 6=i=1

J∑
k=1

ωiv,k,j,tỹv,k,t(ρ
b
v,k,t − ρbv,k,t−1)

with (ρwi,k,t − ρwi,k,t−1) and (ρbv,k,t − ρbv,k,t−1) the disturbance terms. The dynamics of the

spillovers parameters is further described in section 3. Meanwhile, bi,j,t measures the ag-

gregate effect of output growth, broadly captured by the intercept in linear regressions. In

what follows, we assume constant intercept. Notice that spillovers variables are not properly

accounted for in growth decomposition analysis.

2.3 Time-varying spatial dependence

In this section, we discuss the role of the time-varying spillover parameters ρwi,k,t and ρbv,k,t

for growth. The within sector spillover, ρwi,k,t, captures the relative importance of sector k

with respect to the input provider j in country i’s total output. Because the Domar weight

depends on a series of productivity shocks captured by the time-varying coefficient ai,jτ,k,t, an

increase of this ratio reflects productivity improvements in the sectors (in country i as well

in trade partners v’s) for which k is an input provider, resulting in higher demand for k’s

inputs. Sector j is an input provider of sector k, therefore, there is an indirect effect to j.

9



Similarly, the between spillover, ρbv,k,t, reflects the relative importance of sector k in country

v’s total output with respect to the importance of sector j in country i’s total output.

Therefore, an increase on the productivity level in sectors for which the sector k in country

v is an input provider, would increase the demand for k’s inputs. In addition, the between

spillover captures the direct effect of sectoral productivity shocks Zv,j,t in the trade partner

country v. An increase on the sectoral productivity level of country v relative to country i,

would result in positive knowledge spillovers in sector j, in a way of learning-by-exporting.

These mechanisms configure the trade spillovers to growth, typically summarized in

either learning-by-importing or exporting (Amiti and Konings, 2007) or improving firm

capabilities (Grossman and Helpman, 1991; Pavcnik, 2002). Notice that trade spillovers

play the role of growth amplifiers whenever there is a productivity improvement on trade

partners.

In the remainder of this paper, we will impose a further spatial structure on these

parameters, which will allow us to turn this structural economic model into an empirical

dynamic spatial model with identifiable parameters that can be estimated from the data.

In particular, we assume that these parameters follow a common factor-structure across

countries and sectors,

ρwi,k,t = ρwt + vwi,k,t and ρbv,k,t = ρbt + vbv,k,t (13)

where ρwt and ρwt are the common (or fully pooled) time-varying between and within spillover

coefficients, respectively, and where vwi,k,t and vbv,k,t are mean zero processes which are also

conditional on all past data Ft−1, i.e. E(vwi,k,t|Ft−1) = 0 and E(vbv,k,t|Ft−1) = 0. This model

effectively allows for country-specific and sector-specific spillover parameters ρwi,k,t and ρbv,k,t,

while at the same time ensuring that the conditional expectation of the spillover parameters
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are country and sector invariant, i.e.

E(ρwi,k,t|Ft−1) = E(ρwt |Ft−1) and E(ρbv,k,t|Ft−1) = E(ρbt |Ft−1).

In the empirical study, we will show that our model, even with these restrictions, is capable

of capturing both the cross-sectional variation and temporal dynamics of the data well.

The factor model structure for the spillover parameters introduces dynamic conditional

volatility in the error term. This feature is implied by the country-specific and sector-specific

spillover variations vwi,k,t and vbv,k,t which are placed in the error term of our empirical model

in a way of
∑J

k=1 v
w
i,k,tωi,k,j,tyi,k,t and

∑N
v 6=i=1

∑J
k=1 v

b
v,k,tω

i
v,k,j,tyv,k,t, respectively. Hence,

both terms are subject to temporal dynamics. The dynamic conditional volatility property

then follows from the expressions in (13) and by substituting ρwi,k,t and ρbv,k,t in (12).

3 A reduced-form dynamic spatial econometric model

In this section, we introduce a reduced-form spatial econometric model that describes the

structural growth rate model in equation (12). The spatial econometric model is based on

a multilevel score-driven specification that accommodates time-varying spatial spillovers,

not only within countries, but also between sectors, and between countries. The model

extends existing score-driven spatial models, as in Blasques et al. (2016) and Catania and

Billé (2017), by introducing a multilevel dynamic spatial spillover structure. Consider the

following vector-valued model formulation

yt = b1 + ρwt W
w
t yt + ρbtW

b
t yt + Ztφ+ εt, εt ∼ pε(ε|Σt), (14)

where yt = (y′1,t, . . . , y
′
N,t)

′ is an (N · J)-dimensional vector of multilevel cross-sectional

observed trade (or trade growth) at time t. Here yi,t = (yi,1,t, . . . , yi,J,t)
′, where yi,j,t is

the trade for country i = 1, . . . , N , sector j = 1, . . . , J , at time t = 1, . . . , T , and εt is the
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(N ·J)-dimensional vector of error terms with probability density function pε that has mean

zero and a time-varying covariance matrix Σt. Furthermore, we have that Zt is a matrix of

exogenous regressors, with φ denoting the associated parameter vector of coefficients. ρwt

and ρwt are the common time-varying between and within spillover coefficients from equation

(13), and Ww
t and W b

t are block weighting matrices that capture domestic and international

trade interactions. More specifically, Ww
t and W b

t take the following forms

Ww
t =



Ww
1,1,t 0 . . . 0

0 Ww
2,2,t . . . 0

...
...

. . .
...

0 0 . . . Ww
N,N,t


, W b

t =



0 W b
1,2,t . . . W b

1,N,t

W b
2,1,t 0 . . . W b

2,N,t

...
...

. . .
...

W b
N,1,t W b

N,2,t . . . 0


,

where W b
i,k,t, for i, k = 1, . . . , N , is a J × J known weighting matrix that is constructed

from the input-output (IO) matrices.

The model given in equation (14) entails that each entry yi,j,t of the vector yi,t depends

on the other entries yv,j,t for v 6= i = 1, . . . , N and j = 1, . . . , J . It can be shown that the

model can capture nonlinear feedback effects across units by rewriting it as

yt = Xtγ +WtρtXtγ + (Wtρt)
2Xtγ + . . .+ εt +Wtρtεt + (Wtρt)

2εt + . . . (15)

where Xt = (1, Zt), γ = (b, φ′)′, ρt = (ρwt INJ , ρ
b
tINJ)′, and Wt = (Ww

t ,W
b
t ), which implies

that Wtρt = ρwt W
w
t + ρbtW

b
t . Equation (15) reveals that εi,j,t and Xi,j,tγ for unit (i, j)

spills over to other units (v, j). The extent to which the between spillovers depend on the

magnitude of the link (v, j)−(i, j), which is captured in the matrix W b
t . On the other hand,

the magnitude of the within spillovers, (i, k) − (i, j) for all k 6= j = 1, . . . , J , are captured

by the matrix Ww
t .

In order to ensure that the matrix INJ−Wtρt is invertible, we impose that the weighting

matrices Ww
t and W b

t are row normalized such that the sum of the entries of each row is
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equal to 1/2. In this way, the sum of the weighting matrices Ww
t +W b

t is a row normalized

matrix with row entries summing to 1. Furthermore, we restrict ρwt to take values in the

interval (−2c, 2c) and ρbt to take values in the interval (−2 + 2c, 2 − 2c), where c ∈ [0, 1].

Under these restrictions, the sum of the elements in each row of ρwt W
w
t + ρbtW

b
t is in the

range between -1 and 1. This ensures the invertibility of the matrix INJ−Wtρt, see Kelejian

and Prucha (2010). We note that the standard spatial model without multilevel spillovers

is a special case of this formulation when ρbt = ρwt and c = 1/2.

As in Blasques et al. (2016), we consider a specification of the dynamic parameters of

the model ρwt , ρbt and Σt based on the observation-driven or score-driven framework of Creal

et al. (2013) and Harvey (2013). For the time-varying spatial dependence parameters ρwt

and ρbt , a monotone increasing link function h : R 7→ (−1, 1) is considered to ensure that

ρwt takes values in (−2c, 2c) and ρbt takes values in (−2 + 2c, 2− 2c) for some c ∈ [0, 1]. In

particular, we consider the following specification

ρwt = 2c× h(fwt ), ρbt = 2(1− c)× h(f bt ),

where fwt and f bt are time-varying parameters that take values on the real line and c ∈ [0, 1]

is treated as a parameter to be estimated. The time-varying parameters fwt and f bt are

specified as autoregressive processes driven by so-called score innovations, we have

fκt+1 = ωκ + Aκfκt +Bκsκt , κ = w, b, (16)

with ωκ, Bκ and Aκ being fixed (static) unknown parameters, for κ = w, b, and with the

score innovations sκt being defined as the score function (first derivative) of the predictive

log-density for yt, that is

sκt = ḣ(fκt )
∂ρκt
∂h

∂`t
∂ρκt

, `t = log pε(εt|Σt) + log |INJ −Wtρtyt|, (17)
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for κ = w, b, where ḣ(x) = ∂h(x)/∂x and εt = yt−Xtγ−Wtρtyt are in accordance with the

model equation in (14). This score-driven model specification entails a unit scaling factor

for the score as also considered in Blasques et al. (2016). In a similar way, we specify the

time-varying variance Σt. We consider Σt = σ2
t INJ with σ2

t = exp(fσt ) where fσt represents

the common log-variance of the error vector εt. The scalar time-varying parameter fσt is

specified as an autoregressive process that is also driven by score innovations, we have

fσt+1 = ωσ + Aσfσt +Bσsσt , sσt = σ2
t

∂`t
∂σ2

t

, (18)

where `t is defined in (17) and ωσ, Bσ and Aσ are static parameters which are to be

estimated together with the other static parameters in the model.

The specification of the model depends on the choice of the probability density function

of the error, pε. We consider two formulations of the model. The first model is based on the

multivariate normal distribution. The second model is based on the multivariate Student’s

t-distribution. For a multivariate normal εt, the predictive log-density of yt is given by

`t = log |INJ −Wtρtyt| −
JN

2
log(2πσ2

t )−
ε′tεt
2σ2

t

,

and the score innovations are

sκt = ḣ(fκt )

[
(ytW

κ
t )′εt
σ2
t

− tr
(
(INJ −Wtρtyt)

−1W κ
t

)]
, κ = w, b,

sσt =
ε′tεt
2σ2

t

− JN

2
, (19)

where tr(·) is the trace operator. On the other hand, when we consider the case that

the error terms are from a multivariate Student’s t distribution with degrees of freedom
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parameter λ, the predictive log-density of yt is

`t = log |Z(fwt , f
b
t )
−1|+ log

(
Γ(λ+JN

2
)

|σ2
t IJN |1/2(λπ)N/2Γ(λ

2
)

)
− λ+ JN

2
log

(
1 +

ε′tεt
σ2
t λ

)

while the score innovations are given by

sκt = ḣ(fκt )

[
(λ+ JN)(ytW

κ
t )′εt

λσ2
t + ε′tεt

− tr
(
(INJ −Wtρtyt)

−1W κ
t

)]
, κ = w, b,

sσt =
(λ+ JN)ε′tεt
2(λσ2

t + ε′tεt)
− JN

2
. (20)

A key advantage of the Student’s t version of the model is that the score innovations are, to

some extent, robust against outliers. Therefore, it controls for extreme observations in the

residuals that may otherwise be misguidedly attributed to a sudden change of the spatial

correlation parameters ρwt and ρbt . The Student’s t model can also approximate arbitrarily

well the model with normal errors as λ → ∞ entails that the t-score innovations collapse

to those obtained from the normal distribution case.

The parameters of the model can be estimated by the method of Maximum Likelihood

(ML) as the likelihood function is available in closed form. The parameter vector of the

model is θ = (ωw, ωb, ωσAw, Ab, Aσ, Bw, Bb, Bσ, b, φ, c)′ for the normal case and it includes

also the parameter λ for the Student’s t case. The ML estimator is defined as the parameter

vector that maximizes the likelihood function LT , given by

LT (θ) =
T∑
t=1

`t(θ),

where `t(θ) denotes the predictive log-density expressed as a function of the parameter

vector θ. Numerical optimization is used to obtain the ML estimate in practice. The ML

estimator of the dynamic score-driven spatial model follows standard asymptotic properties

as formally discussed in Blasques et al. (2016).
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4 Monte Carlo study

We carry out a Monte Carlo simulation study in order to evaluate the small sample proper-

ties of the ML estimator of the parameter vector in the dynamic spatial models with normal

errors and Student’s t errors. For simplicity, we consider a specification of the spatial mul-

tilevel model without exogenous variables and with constant error variance. The sample

sizes of N and T are chosen in accordance with the sizes of the dataset which is used in the

empirical study of Section 5. The model for data generation process is given by

yt = b1 + ρwt W
w
t yt + ρbtW

b
t yt + εt, εt ∼ pε(ε|σ2IJN), (21)

where the spatial dependence parameters are given as in (16) with the constraint Aw =

Ab = A and the link function of the spillover parameters h is selected to be the hyperbolic

tangent, that is h() = tanh(). The spatial weight matrices, Ww
t and W b

t , are row-normalized

as discussed in Section 2 and they are randomly generated and subsequently are taken

as fixed and known. The weighting parameter c is estimated together with the other

static parameters. We consider both Gaussian (normal) and Student’s t distribution for

the error term. The following combinations for the sample size are considered: (N, T ) =

(50, 50), (50, 150), (150, 50) and (150, 150). The results of the study are based on 500 Monte

Carlo replications.

Table 1 reports a summary of the estimation results. We clearly find that almost all

parameter estimates are unbiased irrespective of the sample size. This becomes apparent

from the fact that the averages of the estimated parameters are close to the corresponding

true parameter values. The parameters of the dynamic component of the model, especially

Bw and Bb, show some small-sample biases which, however, tend to disappear when the

sample size increases, both for N and T . Furthermore, the standard deviations of the

parameter estimates decrease when the sample size increases. These findings of decreasing

biases and standard deviations indicate that the parameter estimates are consistent.
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Table 1: Mean and standard deviation (in parenthesis) of the estimated parameters.

(N, T ) (50, 50) (50, 150) (150, 50) (150, 150)

θ True Gaussian

b 0.05 0.0510 (0.0057) 0.0505 (0.0028) 0.0513 (0.0046) 0.0501 (0.0022)
Bw 0.03 0.0414 (0.1762) 0.0382 (0.0378) 0.0343 (0.0247) 0.0294 (0.0053)
Bb 0.02 0.0143 (0.1068) 0.0218 (0.0203) 0.0214 (0.0309) 0.0206 (0.0041)
A 0.9 0.8637 (0.1106) 0.8735 (0.0604) 0.8702 (0.0797) 0.8993 (0.0234)
σ2 0.01 0.0100 (0.0003) 0.0100 (0.0002) 0.0100 (0.0002) 0.0100 (0.0001)
c 0.5 0.4965 (0.0853) 0.4943 (0.0701) 0.4945 (0.0619) 0.5014 (0.0174)
ρ̄w = tanh( ωw

1−A) 0.5 0.4901 (0.1141) 0.5063 (0.0961) 0.4871 (0.0905) 0.4984 (0.0323)

ρ̄b = tanh( ωb

1−A) 0.2 0.1827 (0.1341) 0.1977 (0.0837) 0.1795 (0.1020) 0.1981 (0.0166)

θ True Student’s t

b 0.05 0.0490 (0.0064) 0.0502 (0.0033) 0.0523 (0.0047) 0.0508 (0.0023)
Bw 0.03 0.1027 (0.1869) 0.0790 (0.0821) 0.0629 (0.0405) 0.0506 (0.0115)
Bb 0.02 0.0228 (0.1430) 0.0242 (0.0358) 0.0316 (0.0551) 0.0207 (0.0042)
A 0.9 0.9081 (0.0983) 0.8837 (0.0615) 0.8698 (0.0697) 0.8885 (0.0301)
σ2 0.01 0.0099 (0.0010) 0.0100 (0.0005) 0.0100 (0.0007) 0.0100 (0.0004)
c 0.5 0.5097 (0.1452) 0.5077 (0.1194) 0.5111 (0.1004) 0.5017 (0.0342)
ρ̄w = tanh( ωw

1−A) 0.5 0.4789 (0.1110) 0.5081 (0.1177) 0.4797 (0.1381) 0.4879 (0.0893)

ρ̄b = tanh( ωb

1−A) 0.2 0.2180 (0.1473) 0.2110 (0.1119) 0.1690 (0.1575) 0.1915 (0.0835)

λ 8 6.0817 (3.0288) 8.0147 (1.2126) 8.0220 (0.8076) 8.0551 (0.6525)

Figure 1 reports kernel densities of the parameter estimates for the Student’s t version of

the model. We learn from these kernel densities that the estimated parameters converge to

the true parameter values while the shapes of the densities appear to approach the normal

distribution, when the sample sizes increases. Overall, these results further confirm the

reliability of the ML estimator of the parameter vector θ in relatively small samples, which

are approximately equal to the sample sizes considered in the empirical study of the next

section.

5 Dynamic spatial spillovers in Latin America trade

To assess in detail whether trade integration imply growth in Latin America (LA), we

carry out an empirical study. The economic history of the LA countries is repleted with

an assortment of economic crises. To mitigate those impacts, it is suggested that policies
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Figure 1: Kernel density estimates for Student’s t model parameters. Vertical lines indicates
the true parameter values. Red lines corresponds to N = 50 and blue lines to N = 150.
Dashed lines corresponds to T = 150 and continuous lines to T = 50.

promoting trade openness would allow for “risk-sharing”, leading to a reduction on growth

volatility. However, empirical studies are rarely able to confirm this policy effect by the

data. Obstfeld and Rogoff (2001) document the failure of risk-sharing due to several mar-

ket frictions such as trade costs. In this empirical study, we adopt our dynamic spatial

econometric model which allows us to disentangle the different dynamic effects of domestic

and international trade spillovers for growth. Hence, we can identify the types of trade

integration that impact the growth more strongly.

The number of intra-regional trade agreements in the LA region has increased since
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the 1990s. Major trade arrangements include CAFTA-DR, the Southern Common Market

(Mercosur) in South America, the Andean Community (CAN), the Caribbean Community

and Common Market (CARICOM), the Central American Common Market (CACM), and

the Latin American Integration Association (ALADI). As a result, the Latin America’s

intra-regional exports, as percentage of total exports, averaged 18 percent between 1990

and 2018, which is only below the Euro Area when compared to other regions in the

world4. Whether this trade integration has resulted in positive or negative spillovers is an

ongoing research question, which requires researchers to unmask the role of domestic versus

international spillovers. The importance of domestic factors for growth in open economies

has been widely studied in the literature; see, for example, Easterly et al. (1993), Hall and

Jones (1999), and Rodrik (1999). These authors argue that domestic factors have amplified

external shocks in small open economies. In order to understand the shocks mechanism of

transmission affecting an economy, it is required to zoom into the sectoral (and even micro)

dynamics. Acemoglu et al. (2016) argue that sectoral network-based propagation is larger

than the direct effects of the shocks, whereby demand-side shocks propagate upstream

(to input-supplying sectors) and supply-side shocks propagate downstream (to customer

sectors).

5.1 Data description

The empirical study is based on a country panel of quarterly time series that cover the period

from the 1st quarter of 1990 to the 4th quarter of 2019 (1990.Q1 – 2019.Q4, T = 120). We

investigate the evolution of the time-varying dependence parameters over the sample, aimed

at determining the importance of domestic (within) and external (between) sectoral trade

linkages for growth. Solely due to limitations in data availability, our study is narrowed to

six countries (N = 6): Argentina, Brazil, Chile, Colombia, Mexico and Peru. Nevertheless,

4Intra-regional trade between 1990 and 2018 averaged 12 percent within African countries, 13 percent
within emerging and developing Asian countries and 50 percent in the Euro Area. Information gathered
from the Direction of Trade Statistics (DOTS), International Monetary Fund (IMF).
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these economies account for roughly 80 percent of the total Latin America GDP5.

Sectoral growth

We have constructed a novel value-added data set of nine economic sectors: (1) Agriculture;

(2) Mining & quarrying; (3) Manufacturing; (4) Public utilities; (5) Construction; (6)

Wholesale, hotels & restaurants; (7) Transports & telecommunication; (8) Finance & real

state, and (9) Community & government services. The value-added information is collected

from the Economic Commission for Latin America (CEPAL) and from the Statistical Offices

of all six LA countries.

Table 2 presents the descriptive statistics of the sectoral growth grouped into countries

and sectors. Peru has the highest average sectoral growth in the sample, while Mexico has

the lowest growth. The Argentinean sectoral growth ranks as the most volatile given that it

has the highest standard deviation. The Mexican growth is the least volatile. Transport &

telecommunication has the highest average growth for all six LA countries, while its Man-

ufacturing sector has the lowest growth. Furthermore, the overall growth in Construction

is the most volatile, while the sector of Community & government services has the lowest

standard deviation. To preserve the significant heterogeneity in variance across sectors, and

in accordance with our definition of deviation to equilibrium values, we have standardized

the observations separately for each sector and each country (hence, the sample mean is zero

and the sample variance is unity, for each sector and each country). In Figure 2 we present

the overall average sectoral growth rate for the six LA countries. This time series highlights

that growth rates have large swings between bottoms and peaks. Also, the growth in LA

appears to get amplified after a crisis.

5World Development Indicators (WDI) of the World Bank.
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Table 2: Data summary for the sectoral growth rates 1991.Q1-2019.Q4, group average

Country Mean St.Dev. Min. Max.

Argentina 0.0320 0.0075 -0.1968 0.2680
Brazil 0.0263 0.0034 -0.1426 0.1733
Chile 0.0462 0.0041 -0.1348 0.2265
Colombia 0.0338 0.0035 -0.1256 0.1802
Mexico 0.0250 0.0024 -0.1256 0.1500
Peru 0.0501 0.0044 -0.1398 0.2523

Sector Mean St.Dev. Min. Max.

Agriculture 0.0310 0.0051 -0.1622 0.2924
Mining and quarrying 0.0260 0.0043 -0.1276 0.2298
Manufacturing 0.0252 0.0037 -0.1589 0.1920
Public utilities 0.0405 0.0039 -0.1361 0.2206
Construction 0.0378 0.0120 -0.3319 0.3436
Wholesale, hotels and restaurants 0.0386 0.0041 -0.1768 0.1835
Transport and communication 0.0510 0.0024 -0.0817 0.1733
Finance and real state 0.0408 0.0016 -0.0777 0.1418
Community and government services 0.0291 0.0006 -0.0605 0.0984

Figure 2: Average sectoral growth rate in Latin American countries. The five shaded areas
correspond to (from left to right): i) Mexican tequila crisis; ii) Asian financial crisis; iii)
Social and political turmoils; iv) US financial Crisis; and v) Commodity price shock.
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Spatial weights matrix

The input-output (IO) tables are gathered from the Eora global supply chain database6.

Each IO table includes 25 sectors and it is published on an annual basis from 1990 until

2016. The number of sectors are aggregated to 9 sectors in such a way that the IO matrix

matches the sectoral growth database.

5.2 Empirical results

Table 3 presents the estimation results for our proposed spatial econometric model. We

consider the model with both static spillovers and time-varying score-driven spillovers, and

also with Gaussian and Student’s t distributions for the error term. In all four variations of

our econometric model, we include a time-varying variance for the error term as specified

in equation (18). Therefore, the static models differ from the dynamic models only because

of the presence of time-varying spatial spillover parameters. When considering the static

model, the estimation results indicate strong empirical evidence of spatial dependence. This

finding is especially apparent from the small standard errors and high values of the estimated

spillover parameters ρw and ρb. In addition, given the differences in the reported values of

the Akaike Information Criterion (AICc), there is strong evidence that the Student’s t model

fits the data better than the Gaussian model. When focusing on the dynamic specifications

of our model, the results suggest that the dynamic spatial score-driven models significantly

outperform their static counterparts, regardless of the distributional assumption. This

finding can be elicited from the lower values of the AICc for the dynamic models. The data

therefore indicates the presence of time-variation in the spillover parameters ρwt and ρbt .

Finally, the regression estimates for real oil prices and real effective exchange rates (REER)

are positive and significant, indicating that REER correlates positively with growth.

6The EORA database has been used for several international organizations such as the World Bank
(the World Development Report, 2020), the International Monetary Fund (World Economic Outlook, 2016;
Regional Economic Outlook: Sub-Saharan Africa, 2015), the United Nations (World Investment Report,
2018), among others.
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Figure 3 presents the time-varying within and between spillover parameter estimates for

the Gaussian and Student’s t models. We observe that the estimated within spillover varies

in the range from 0.75 to 1. In contrast, the estimated between spillover fluctuates in the

range from −0.2 to 0.5. Furthermore, the estimated between spillover appears to follow a

cyclical pattern and declines after crisis periods, while the estimated within spillover seems

to show a slightly decreasing pattern. When comparing the results for the Gaussian and

Student’s t models, we observe that there are no major differences in their time-varying

paths of the spatial dependence parameters. The Student’s t model shows slightly more

smoother changes in the level compared to the one for the Gaussian model. We do expect

this finding because the Student’s t distribution penalizes outliers in the data more heavily,

leading to a time-varying parameter that is more robust. This feature is well documented in

the literature; see, for example, Harvey (2013) and Creal et al. (2013). A discussion on the

economic interpretation of our results for the within and between time-varying spillovers is

presented in Section 5.3 below.

Figure 3: Panel (a) displays the time-varying within spillover parameter for Student’s t
(black solid line) and Gaussian (red dashed line) distributions. Panel (b) displays the
time-varying between spillover parameter. The five shaded areas are as in Figure 2.

(a) Within spillovers (b) Between spillovers
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Table 3: Parameter estimates for the static and time-varying spatial models with Gaussian and
Student’s t distributions. Robust standard errors (sandwich form) are displayed in parenthesis.
The last two rows report the values for maximized log-likelihood (logLik) and corrected Akaike
Information Criterion (AICc), with finite sample correction to the penalty term.

Static Model Time-varying model
N tλ N tλ

constant 0.0067 0.0069 -0.0003 -0.0026
(0.0090) (0.0088) (0.0111) (0.0108)

ρw 0.9327 0.9451
(0.0260) (0.0261)

ρb 0.2565 0.2494
(0.0297) (0.0300)

c 0.5417 0.7262
(0.0777) (0.0482)

oil price 0.0011 0.0015 0.0080 0.0069
(0.0102) (0.0101) (0.0121) (0.0126)

REER 0.1046 0.1013 0.1008 0.0968
(0.0101) (0.0102) (0.0102) (0.0102)

ωw 0.2429 0.1466
(0.1678) (0.0671)

ωb 0.0681 0.1162
(0.0293) (0.0623)

Bw 0.0904 0.0168
(0.1287) (0.0128)

Bb 0.0406 0.0862
(0.0109) (0.0316)

A 0.8149 0.7986
(0.0917) (0.0897)

ωσ -0.1319 -0.0994 -0.1451 -0.1092
(0.0430) (0.0732) (0.0463) (0.0721)

Aσ 0.7492 0.8361 0.7301 0.8267
(0.0591) (0.0929) (0.0659) (0.0943)

Bσ 0.0290 0.0665 0.0271 0.0862
(0.0026) (0.0143) (0.0027) (0.0316)

λ 27.9616 27.9470
(5.7398) (5.6734)

logLik -7794.4 -7749.0 -7769.2 -7723.6
AICc 15606 15518 15565 15477
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Figure 4 presents the plots of the estimated time-varying volatility σ2
t for the Gaussian

and Student’s t models. In both cases, the overall volatility level appears to significantly

decline after 2005. The declining volatility can possibly be explained by the large increase of

export growth in 2005. However, other country-specific factors may have contributed to the

moderation of growth volatility such as the introduction of inflation targeting in economic

policy or the implementation of fiscal rules. Therefore, further research would be required

in order to identify the specific factors underlying the moderation of growth volatility.

Some short-term increases in the estimated time-varying volatility appear to be associated

with some specific economic and financial crises in specific countries. For instance, the

Mexican tequila and Asian crises in the periods 1994/1995 and 1997/1998 anticipate the

largest spikes in volatility. The tequila crisis was triggered by a sudden devaluation of the

Mexican peso of around 15 percent on December 20 of 1994. This devaluation has prompted

foreign investors to re-adjust their investment portfolios by reducing exposure to Mexico

and other LA countries, leading to a significant capital outflow. Similarly, the Asian crisis

was triggered by currency depreciation that caused stock markets to collapse in Thailand,

the Philippines, Malaysia and Indonesia. This crisis has impacted Latin America, primarily,

through trade channels and the financial system. In particular, in 1995 the Asian countries

involved in the crisis accounted for around 15 percent of world imports of agricultural

raw materials, minerals, metals and petroleum, which are principal export products of LA

countries. The depression of external demand has caused a significant reduction in prices,

leading to weaker economic outlooks for LA countries. We refer the reader to Edwards

(1998) for a much more detailed discussion on the economic impact of both crises. In recent

years, the financial crisis of 2008/2009 and the fall of commodity prices in 2014/2015 appear

to precede temporary increases in volatility. This may have been caused by the financial

crisis in the US which has impacted LA countries through trade channels by lowering the

external demand for export products, resulting in capital outflows due to lower economic

outlooks.
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Figure 4: Time-varying volatility σ2
t for the Gaussian model (red dashed line) and the

Student’s t model (black solid line). The five shaded areas are as in Figure 2.

5.3 Spillovers and labor efficiency

The growth spillovers ρwt and ρbt aim at capturing productivity improvements due to both

domestic and international trade interactions, respectively. Given economic factors such

as inappropriate technologies, policy-induced barriers to technology adoption, and within-

country misallocations across sectors (possibly caused by policy distortions), countries may

not benefit from growth spillovers generally. As a result, productivity disparities widen

with respect to the technological frontier; see the discussion in Gancia and Zilibotti (2009).

The common approach for estimating the distance to a technological frontier is based

on determining the ratio of output per worker of a given country, with respect to a high-

tech economy such as the United States (US). In the discussion below, we refer to this

ratio as labor efficiency. Therefore, when spillovers are positively correlated with labor

efficiency, there is technology adoption emerged from either domestic or international trade.

Otherwise, market inefficiencies are constraining growth benefits. The labor efficiency ratio
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is defined as follows

Li,t = log

(
Yi,t/Hi,t

YUS,t/HUS,t

)
(22)

where Yi,t is the output in constant 2010 dollars and Hi,t is the number of employed people,

at time t and in country i, with i = US referring to these variables for US. When assuming

equal Domar weights among economies, the labor efficiency ratio reflects the weighted

sum of productivity ratios across sectors (Zi,j,t/ZUS,j,t), compare equation (4). The labor

efficiency ratio in Latin America has continuously declined over the 1995Q1-2019.Q4 period.

This decline has been primarily attributed to the lack of technological progress rather than

unperformed contribution of production factors (Restuccia and Roggerson (2008), Cole

et al. (2005)).

Whether the lack of technological adoption can be attributed to domestic inefficiencies

or international market distortions is an unresolved question. We attempt to provide some

insights with the aim to answer this question by adopting a linear regression model with

the labor efficiency ratio as the dependent variable and with between and within spillovers

(together with intercept, time trend and seasonal dummies) as the explanatory variables.

Table 4 presents a summary of the main regression results (upper panel) for each country.

The between spillovers are positively correlated with labor efficiency in Latin America, in

particular for the countries Argentina, Colombia and Peru. The pooled regression estimate

(over all six countries) is 0.032 and strongly significant. Furthermore, the within spillovers

are negatively correlated with labor efficiency, in particular for the countries Argentina,

Brazil and Peru. The pooled regression estimate is −0.064 and also significant. Ceteris

paribus, the negative estimates for within spillovers reveal some level of domestic market

inefficiencies which prevent to exploit growth benefits from inter-sectoral interactions. The

estimation results are fairly robust. In the lower panel of Table 4, the regression results are

presented for the same regression model, with the yearly lagged labor efficiency ratio (t−4)

added as an explanatory variable. The pooled within spillover estimate remain negative.
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Table 4: Regression estimates and their robust (sandwich) standard errors in parenthesis.
The panel regression model has the quarterly labor efficiency ratio Li,t as dependent variable, with between

and within spillovers as explanatory variables, and with Student’s distributed errors. The results in the

upper panel are for this regression model that also include trend and seasonal dummies (estimates not

reported) as explanatory variables. The results in the lower panel are for the same model but with the yearly

lagged dependent variable (Li,t−4 as an additional explanatory variable. The sample period is 1995.Q1 –

2019.Q4. The estimates are presented for each country and the pooled estimates over all countries are

presented in column “LA”. The maximized log-likelihood (logLik) and the Akaike information criteria

corrected for finite samples (AICc) are also reported.

LA Argentina Brazil Chile Colombia Mexico Peru

Intercept -0.7726 -0.4706 -0.7154 -0.6744 -1.1401 -0.7213 -1.7198
(0.0359) (0.1201) (0.0489) (0.0393) (0.2028) (0.0546) (0.1056)

Between 0.0316 0.1186 0.0181 0.0219 0.1137 0.0005 0.0777
(0.0104) (0.0364) (0.0155) (0.0110) (0.0531) (0.0139) (0.0299)

Within -0.0644 -0.1716 -0.1379 -0.0385 -0.0939 0.1102 -0.1417
(0.0367) (0.1279) (0.0533) (0.0396) (0.2037) (0.0558) (0.1086)

logLik -253.0 -150.2 -240.9 -249.3 -89.5 -212.6 -155.9
AICc 5.3 3.3 5.1 5.3 2.1 4.5 3.2

LA Argentina Brazil Chile Colombia Mexico Peru

Intercept -0.4580 -0.0707 -0.5887 -0.3822 -0.0476 -0.2423 -0.4585
(0.0865) (0.1015) (0.0903) (0.0701) (0.1379) (0.0765) (0.1087)

Li,t−4 0.4133 0.6293 0.2277 0.3516 0.8962 0.5942 0.7316
(0.0966) (0.0659) (0.0902) (0.0865) (0.0544) (0.0774) (0.0489)

Between 0.0192 0.0645 0.0097 0.0255 -0.0073 -0.0001 0.0306
(0.0099) (0.0247) (0.0161) (0.0077) (0.0167) (0.0107) (0.0144)

Within -0.0513 -0.2112 -0.0814 -0.0812 -0.1565 -0.0257 -0.0842
(0.0350) (0.0962) (0.0501) (0.0302) (0.0946) (0.0422) (0.0524)

logLik -251.4 -169.9 -236.1 -262.9 -164.7 -233.8 -214.6
AICc 5.5 3.8 5.2 5.7 3.7 5.1 4.7

The positive estimates for the regression coefficients of the between spillovers confirm

the hypothesis of technological adoption from trade interaction; see the discussions in Amiti

and Konings (2007), Grossman and Helpman (1991) and Pavcnik (2002). Furthermore, the

finding of the negative estimates for the coefficients of the within spillover is consistent

with the results presented in Caliendo et al. (2021). These results strongly suggest that

internal frictions (affecting transactions across sectors within countries) are more relevant

than external frictions (affecting transactions across countries) for explaining world growth

28



dynamics. The overall finding is that the economic growth in Latin America is positively

correlated with technological progress emerged from international trade, as suggested by the

between spillover results. Also, the inter-sectoral interactions within countries are growth

reducing, and, hence, are suggesting that market distortions prevent technological progress.

6 Conclusion

We have developed an econometric spatial model with time-varying dependence parameters

for the analysis of trade within a multi-country and a multi-sectoral economy. A reduced-

form econometric framework is derived from the economic theory of a production network

model. The time-varying dependence parameters can be attributed to to domestic (within)

and international trade (between) linkages, and for different levels of data aggregation. The

multivariate linear model can be based on either Gaussian or Student’s t error distributions.

The model parameters are estimated by standard maximum likelihood methods. It is argued

that the resulting estimates are consistent and asymptotically normal. These asymptotic

properties are verified for small-samples in a Monte Carlo study.

In the empirical study, we analyse the growth effects of intra-regional trade in six Latin

American countries. The estimation results suggest that i) spillovers emerged from trade

interactions (between) configure an important factor for explaining growth dynamics, and

ii) the importance of spillovers emerged from domestic (within) linkages has declined. The

former is associated with an increase on productivity levels, while the latter is connected

with domestic labor market rigidities. In addition, our estimation results provide strong

evidence of a continuous decline in growth volatility after the increase on export growth

in 2005. Finally, we believe that our proposed methodology configures an important base-

line for other economic analysis beyond trade, in topics such as migration, capital flows,

economic disparities and income convergence.
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Appendix

A The equilibrium value for the Domar weight

The equilibrium value for the Domar weight in equation (6) can be alternatively expressed

as

ηi,jsi,j,t = βi,j +
J∑
k=1

κi,k,jsi,k,t +
N∑

v 6=i=1

J∑
k=1

κiv,k,jR
i
v,j,tsv,k,t, (A23)

where ηi,j =

[
1 +

J∑
k=1

ϕi,j,k(1 − xi,j,k)

]
, κi,k,j = ϕi,k,jxi,k,j, κ

i
v,k,j = ϕv,k,j(1 − xv,k,j)λv,i, and

Ri
v,j,t =

(Zv,j,t)
−αv,j

(Zi,jt)
−αi,j .
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The equivalent matrix representation is given by

st = Υ−1t δ, (A24)

with st = {s1,1,t, . . . , s1,J,t, . . . , sN,1,t, . . . , sN,J,t}′ a vector collecting the Domar weights, while

γ = {β1,1, . . . , β1,J , . . . , βN,1, . . . , βN,J}′ such that Υ = {ψn,m} is a NJ ×NJ matrix, where

ψn,m ≤ 0 for all m 6= n, 1 ≤ n, n ≤ NJ . Therefore, Υ is an M-matrix, with positive

diagonal values, hence, the elements of its inverse are positive integers (see Perron-Frobenius

Theorem). The Υ matrix is represented as follows

Υt =



η1,1 − κ1,1,1 −κ1,2,1 . . . −κ1,J,1 −κ12,1,1R1
2,1,t . . . −κ1N,J,1R1

N,1,t

...
. . .

...
...

...
...

...

−κ1,1,J . . . . . . η1,J − κ1,J,J −κ12,1,JR1
2,J,t . . . −κ1N,J,JR1

N,J,t

...
...

...
. . .

...
...

...

−κN1,1,1RN
1,1,t . . . . . . . . . ηN,1 − κN,1,1 . . . −κN,J,1

...
...

...
...

...
. . .

...

−κN1,1,JRN
1,J,t . . . . . . . . . . . . . . . ηN,J − κN,J,J



,

(A25)

where it is assumed that the condition ηi,j − κi,j,k > 0 holds, for any pair {i, j, k}. Hence,

the model solution for equation (A24) can be represented by

si,j,t =
N∑
τ=1

J∑
k=1

ai,jτ,k,tβτ,k, (A26)

where ai,jτ,k,t is the corresponding element of Υ−1t with i indicating the row number and other

indices selecting the appropriate column.
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