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Abstract

In multiple-output quantile regression the simultaneous study of multiple response

variables requires multivariate quantiles. Current definitions of such quantiles often

lack a clear probability interpretation, as the defined quantiles can cover large parts

of the distribution where little probability mass is located or their enclosed area does

not equal the quantile level. We suggest superlevel-sets of conditional multivariate

density functions as an alternative multivariate quantile definition. Such a quantile

set contains all points in the domain for which the density exceeds a certain level.

By applying this to a conditional density, the quantile becomes a function of the con-

ditioning variables. We show that such a quantile has favorable mathematical and

intuitive features. For implementation, we, first, use an overfitted Gaussian mixture

model to fit the multivariate density and, next, calculate the multivariate quantile

for a conditional or marginal density of interest. Operating on the same estimated

multivariate density guarantees logically consistent quantiles. In particular, the quan-

tiles at multiple percentiles are non-crossing. We use simulation to demonstrate that

we recover the true quantiles for distributions with correlation, heteroskedasticity, or

asymmetry in the disturbances and we apply our method to study heterogeneity in

household expenditures.
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1 Introduction

Regression quantiles (Koenker and Bassett, 1978) allow researchers to investigate relation-

ships between variables not only at the center, but over the entire conditional distribution of

the response. This advantage over conventional mean regression led to a rapidly expand-

ing literature on quantile regression with countless applications in virtually all scientific

disciplines (see, e.g., Koenker, 2017, for a comprehensive survey).

Now, an observation rarely comes as a single quantity and statistical analyses often

require to explore the joint quantiles of multiple response variables. The simplest approach

is to decompose the multiple-output problem into individual sub-problems, each of which

considers a different focal response variable as a function of the other variables (e.g., Ali

et al., 2016). Although the information about the joint conditional dependence between

the variables is retained, these quantiles are inherently one-dimensional and do not fully

reflect the multivariate structure of the response. Substantial extensions to multiple-output

regression quantiles aim to order the observed points in the multivariate data space, typi-

cally in relation to a global center (see, Chaudhuri, 1996; Chakraborty, 2003; Hallin et al.,

2010; Kong and Mizera, 2012). The literature offers numerous such multivariate quantile

proposals and the exact approaches differ widely in their properties and computational

ease (an overview is provided in the classic paper of Serfling, 2002, a more recent review

can be found in Hallin and Šiman, 2018). However, the demarked quantile regions often

very much depend on the underlying empirical distribution and thus, are not guaranteed

to cover a certain preset probability (Hallin et al., 2021; del Barrio et al., 2022). In case

the response variables feature non-linear dependencies or multi-modalities, the determined

center may also lie well afield of the bulk of the data and the constructed quantile region

can cover large parts of the support of a distribution with little or no probability mass (Zuo

and Serfling, 2000; Carlier et al., 2016). This turns the resulting statistical objects to be

difficult to interpret in practice.
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In this paper, we introduce an intuitive definition of a multivariate quantile that avoids

both of the above mentioned problems. Specifically, we define the quantile region of a multi-

variate response variable, seen as a function of a set of other variables, as the superlevel-set

of a conditional multivariate density, that is, the set of points for which the conditional

density function equals or exceeds a specific threshold. This threshold is set in relation to

the chosen α-level of the quantile such that a probabilistic interpretation is automatically

supported. Since we directly build on the multivariate distribution of the variables, instead

of their multivariate center, the quantile contours adapt to the underlying data, even for

highly asymmetric and multi-modal shapes.

We embed this definition of a multivariate superlevel-set quantile in a practical three

step estimation procedure: (i) fitting a general multivariate distribution to the observed

data, (ii) deriving a conditional distribution of interest, and (iii) applying the quantile def-

inition to this estimated conditional distribution. This way, we can construct multivariate

as well as univariate quantiles for variables, or a variable, conditional on certain values

for a set of other variables. Since all quantiles are retrieved from a single, global distribu-

tion, inconsistencies, such as decreasing conditional quantile functions at increasing α-level

values, are automatically avoided.

Various methods can be used to estimate the multivariate density (see, e.g., Hartigan,

1987; Müller and Sawitzki, 1991; Polonik, 1995). However, we have two requirements: the

calculation of marginal and conditional distributions given the estimation result, and of the

(full, marginal and conditional) cumulative distribution function must be supported. We

approach the density estimation task from a Bayesian perspective with a flexible prior for

the unknown distribution (Escobar and West, 1995; Müller et al., 1996). Specifically, we

opt for an overfitted finite mixture model with a hierarchical Dirichlet prior on the mixing

weights (Nobile and Fearnside, 2007; Rousseau and Mengersen, 2011). An efficient Markov

Chain Monte Carlo algorithm makes it easy to sample the unknown parameters together
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with the number of components from a joint posterior (Malsiner-Walli et al., 2016), and

in the end to quantify the parameter uncertainty in the quantile estimates. Thus, we can

retrieve multivariate and univariate conditional as well as marginal quantiles in a coherent,

computational attractive framework and also improve upon Bayesian considerations of

multiple-output quantile regression (see, Cai, 2010; Taddy and Kottas, 2010; Bhattacharya

and Ghosal, 2021; Guggisberg, 2022).

The rest of the paper is organized as follows. In Section 2, we discuss our proposal

of a conditional multivariate superlevel-set quantile in relation to prototypical one- and

multidimensional quantile definitions, and establish its theoretical properties with regard to

equivariance, nestedness and uniqueness. In Section 3, we detail our setup of an overfitted

finite mixture model for the joint distribution of the data. The construction principle

of the quantiles is discussed in Section 4. In Section 5, we evaluate the finite-sample

performance of our overfitted mixture approach in relation to some selected benchmarks

in a simulation study. Thereby, we focus on the univariate conditional quantile concept,

due to the lack of competing estimation methods for the same multidimensional estimand.

Section 6 illustrates univariate and multivariate conditional quantile inferences on a typical

application from the economic literature. We conclude with a discussion in Section 7.

Details on the sampling algorithm and additional simulation results are collected in the

appendices. The computer codes are written in MATLAB (The Math Works Inc., 2020)

and Julia (Bezanson et al., 2017), and will be made public available upon publication of

the manuscript.

2 Multivariate Quantiles

We begin with a discussion on different notions of multivariate quantiles. Thereby, we start

with one-dimensional (i.e., scalar-valued) considerations and build up towards the multi-
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dimensional (i.e., vector-valued) case. Finally, we introduce our proposal of a multivariate

superlevel-set quantile and establish its theoretical properties.

2.1 Scalar-valued Approaches

The simplest notion of a multivariate quantile is that of a vector with the classical univariate

quantiles as its components. Let Y = (Y1, . . . , YK)′ denote a random K-dimensional vector

of response variables in RK . The α-quantile of the k-th random variable Yk is the number

QYk(α) such that Pr[Yk ≤ QYk(α)] is at least α:

QYk(α) = inf
{
y ∈ R : FYk

(
y
)
≥ α

}
, α ∈ (0, 1) , (1)

with FYk(·) the right-continuously defined cumulative distribution function of Yk.

A straightforward extension, to account for potential dependencies between the response

components, is to define the quantiles of a response variable conditional on the remaining

variables. Accordingly, let Y (−k) denote the vector without the k-th response variable. The

conditional quantile of Yk is a function of the α-level and a (specified) value y(−k) of Y (−k):

QYk|Y (−k)=y(−k)
(α) = inf

{
y ∈ R : FYk|Y (−k)=y(−k)

(
y
)
≥ α

}
= inf

{
y ∈ R : Pr[Yk ≤ y|Y (−k) = y(−k)] ≥ α

}
= inf

{
y ∈ R : E[ρα(Yk − y)|Y (−k) = y(−k)]

}
,

(2)

where FYk|Y (−k)=y(−k)
is the cumulative distribution function of Yk conditional on the event

that variable Y (−k) takes on value y(−k), and ρα(z) = (1 − α)|z|I[z<0] + αzI[z≥0] is the

standard check function (see, Koenker and Bassett, 1978).

In the standard (i.e. Koenker-Basset) quantile regression approach the conditional

quantile QYk|Y (−k)=y(−k)
(α) is a linear function of y(−k), that is, a+b′y(−k). This is a global
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approach and a and b are obtained by solving

inf
{
a ∈ R, b ∈ RK−1 : E[ρα(Yk − a− b′Y (−k))]

}
, (3)

with the expectation taken over Yk and Y (−k). If Y follows a multivariate Gaussian, the

solution to the problem in Eq. (3) coincides with that of Eq. (2), for every value of y(−k).

However, if the distribution is not multivariate Gaussian, the probability statement in

Eq. (2) will not hold, since the expectation is taken over Y , whereas the expectation in

Eq. (2) is only taken over Yk. Though, in the standard quantile regression setting the

“regressors” are assumed fixed, in the context of multiple-output problems this assumption

does not hold. Thus, the simultaneous study of multiple-outcome variables requires a

vector-valued take on quantiles.

2.2 Vector-valued Approaches

The directional adaptation of the univariate Koenker-Bassett approach defines the multi-

variate quantile as the intersection of a collection of sets (Hallin et al., 2010; Kong and

Mizera, 2012). Included in this collection are not only the half-spaces for each of the K-

variables, but also the half-spaces for all of their linear combinations. These half-spaces

are constructed as follows. Define SK−1 as the K − 1 dimensional unit sphere, that is, the

set of vectors in RK with unit length. Choose a direction u ∈ SK−1 and define Γu as a

K× (K− 1) matrix of unit vectors such that (u,Γu) is an orthonormal basis of RK . Next,

we obtain the α-level regression quantile of the univariate random variable u′Y , in the

(standard) Koenker-Basset sense, using the K− 1 dimensional random vector Γ′uY , which

is orthogonal to u′Y . That is, we solve

(au, bu) = arg inf
{
a ∈ R, b ∈ RK−1 : E[ρα(u′Y − a− b′Γ′uY ]

}
.

6



This generates a hyperplane u′y = au + b′uΓ′uy for every u ∈ SK−1 that splits RK in two

half-spaces with α of the total probability mass on one side and (1−α) probability mass on

the other side. The hyperplane for the combination (α,u) equals the one for (1− α,−u).

The final multivariate quantile is the intersection of all half-spaces for u ∈ SK−1. The

separated region is bounded by the so-called directional quantile contour.

A more direct solution is the elliptical quantile (Hlubinka and Šiman, 2013; Hallin and

Šiman, 2016). Here, we search for an ellipsoid such that α% of the probability mass is

within the ellipsoid. Clearly, there exists an infinite number of such ellipsoids. Hallin and

Šiman (2016) make the ellipsoid unique by suggesting to solve

inf
{
A ∈ RK×K , b ∈ RK , c ∈ R : E [ρα(Y ′AY + Y ′b− c)]

}
, (4)

subject to A being symmetric, positive semidefinite and having determinant equal to 1.

The optimal c is the α-quantile of the random variable Y ′AY + Y ′b. This guarantees

that at the optimum c∗ = c∗(A, b) we have Pr[Y ′AY + Y ′b − c∗ ≤ 0] = α. In words, α

probability mass is inside the ellipsoid defined by A and b. Intuitively, the optimal values

A∗ and b∗ are set to minimize the spread of the quadratic form Y ′AY + Y ′b above and

below c∗. The final quantile Qelliptical
Y (α) is then defined as1

Qelliptical
Y (α) = {y ∈ RK : y′A∗y + y′b∗ − c∗ ≤ 0}. (5)

Figure 1 compares the directional Koenker-Bassett quantiles (areas within the gray

straight lines indicating 20 different directions) and elliptical quantiles (areas within the

black lines) on two different bivariate Gaussian mixture distributions for α = .8. Given

that α probability is in each half-space, the probability within the enclosed region will be

much smaller than α. For comparison, the ellipsoids are guaranteed - by construction - to

1 Substituting the inequality in (5) for an equality defines the quantile as the contour of the ellipsoid.
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Figure 1: Directional Koenker-Bassett and elliptical quantile contours for two examples of
non-Gaussian data. Scatter plots include 1,000 simulated observations from two bivariate
Gaussian distributions. Areas enclosed within the gray lines give the 80% directional
quantile (20 different directions); areas enclosed within the thin black line give the 80%
elliptical quantile.

cover the specified probability and thus, the 80% elliptical quantile regions are much larger.

However, both the directional and the elliptical quantile definitions, cover large parts of R2

with very low probability mass, which turns the multivariate statistical objects difficult to

interpret in practice.

Alternatively, Wei (2008) proposes the median of the distribution to construct the di-

rectional quantiles. The boundary of the quantile region gives the α-coverage interval in

a particular direction from the median and is parameterized with a smooth spline as a

function of the angle of the direction. Though, the resulting quantile covers α probabil-

ity, the dependence on the median as a global center, limits its applicability to unimodal

distributions. Likewise, for the examples in Figure 1, this quantile definition will yield a re-

gion containing large areas with low probability mass, since the density at the multivariate

median is close to zero.

In sum, the directional quantile approach yields statistical objects that are difficult to

interpret: the probability coverage is not known beforehand and the enclosed areas may not

accurately reflect the concentration of probability mass in the data. The coverage proba-
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bility problem can be resolved with the elliptical and Wei (2008) quantile approaches. Still,

the quantile regions remain misleading in terms of the location of the probability mass. On

top of these two limitations, the above mentioned multivariate quantile definitions do not

directly allow one to obtain multivariate quantiles conditional on a set of variables. One

therefore cannot easily study how the multivariate quantile depends on other (control) vari-

ables. Such dependence is at the heart of the popularity of univariate quantile regression.

2.3 The Superlevel-Set Approach

We take a different approach and directly define the multivariate quantile as a property of

the density function of a subset of Y conditional on another, non-overlapping, subset of Y .

This allows us to easily investigate quantile dependencies. Let K ⊆ {1, 2, . . . , K} be the

set of indices of focal response variables, and C ⊂ {1, 2, . . . , K} the indices of the variables

collected in the conditioning set, where K 6= ∅ and K ∩ C = ∅.2 If |K| > 1, we obtain a

multivariate distribution. C might be equal to {1, . . . , K} \K, ∅, or something in between.

For notation, K or C in a subscript selects the corresponding elements from a vector,

matrix or function. Accordingly, let YK(t|yC) be the set of values yK ∈ R|K| such that the

conditional distribution of Y K given concrete values for the variables in the output-vector

yC, and (potential) covariates in an input-vector x, equals at least t:

YK(t|yC) = {yK : fY K|Y C=yC

(
yK|x,yC

)
≥ t}. (6)

Eq. (6) gives a so-called superlevel-set of the conditional multivariate density. The corre-

sponding superlevel-set quantile is

QY K|Y C=yC(α) = YK(t∗α|yC), where

t∗α = sup{t : Pr[Y K ∈ YK(t|yC)|Y C = yC] ≥ α}.
(7)

2Note that we do not require K ∪ C = {1, 2, . . . ,K}.
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The quantile QY K|Y C=yC(α) aims to cover α probability mass with the smallest possi-

ble set. Whether this goal is exactly attainable depends on the smoothness of Pr[Y K ∈

YK(t|yC)|Y C = yC] as a function of t. This function will be non-smooth in case the con-

ditional density of Y K contains areas where the probability density is exactly constant. A

small increase in t, may then lead to a jump in Pr[Y K ∈ YK(t|yC)|Y C = yC]. If this jump

is located such that Pr[Y K ∈ YK(t|yC)|Y C = yC] = α has no solution, QY K|Y C=yC(α) will

contain more than α probability. In case the conditional density is uniform on [0, 1]|K|, we

have QY K|Y C=yC(α) = [0, 1]|K| for all α ∈ [0, 1]. However, this rather extreme situation will

not often occur in practice. In most cases, we have Pr[Y K ∈ QY K|Y C=yC(α)|Y C = yC] = α.

The exact probability coverage of QY K|Y C=yC(α) is easy to obtain, in fact it is a by-product

of the algorithm presented in Section 4.1.

We do not restrict the shape of the multivariate quantile. If the density function is uni-

variate, our definition gives a union of bounded intervals. If the distribution is multimodal,

QY K|Y C=yC(α) is a union of sets. If the distribution features nonlinear dependencies, the

shape of QY K|Y C=yC(α) can be far from elliptical. In Figure 2 we show the 80% multivariate

quantile for the same distributions as used in Figure 1. We obtain intuitive multivariate

quantiles for the multi-modal distribution as well as the distribution that features non-

linear dependence. Finally, the explicit conditioning on Y C = yC allows us to study how

the multivariate quantile of Y K depends on the value yC.

The so-defined multivariate superlevel-set quantile enjoys desirable theoretical prop-

erties of a well-behaved quantile concept, that is, (affine) equivariance, nestedness, and

uniqueness (see Hallin and Šiman, 2018). We prove these properties next.

Property 1 (equivariance) For a vector a and a given invertible matrix A, both of ap-

propriate size: yK ∈ QY K|Y C=yC(α) ⇐⇒ a+AyK ∈ Qa+AY K|Y C=yC(α) for all yK ∈ R|K|,

yC ∈ R|C| and α ∈ (0, 1)

Proof. Let fY K|Y C=yC(·) denote the conditional density of Y K and fa+AY K|Y C=yC(·) denote
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Figure 2: Multivariate superlevel-set quantile contours for two examples of non-Gaussian
data. Scatter plots include 1,000 simulated observations from two bivariate Gaussian dis-
tributions. Areas enclosed within the lines (i.e., quantile contours) correspond to 80%
probability mass.

the conditional density of the transformed random vector a +AY K. Next, let t∗α be the

α-quantile threshold of Y K and define t̃ = |A|−1t∗α. Given fa+AY K|Y C=yC(a + AyK) =

|A|−1fY K|Y C=yC(yK) for any yK ∈ RK and yC ∈ RC

yK ∈ YY K(t∗α|yC) ⇐⇒ fY K|Y C=yC(yK) ≥ t∗α

⇐⇒ fa+AY K|Y C=yC(a+AyK)|A| ≥ t∗α = |A|t̃

⇐⇒ fa+AY K|Y C=yC(a+AyK) ≥ t̃

⇐⇒ a+AyK ∈ Ya+AY K(t̃|yC).

It follows Pr[a +AY K ∈ Ya+AY K(t̃|yC)|Y C = yC] = Pr[Y K ∈ YY K(t∗α|yC)|Y C = yC] such

that Qa+AY K|Y C=yC(α) = a +AQY K|Y C=yC(α). Consequently, the quantile is equivariant

under invertible linear transformations. �

Property 2 (nestedness) The quantile regions form a sequence of nested sets such that

QY K|Y C=yC(α1) ⊆ QY K|Y C=yC(α2) for 0 < α1 ≤ α2 < 1 and all yC ∈ R|C|.

Proof. The nestedness property follows directly from the construction of the quantiles.
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The set YK(t|yC) increases with decreasing t and therefore, the probability

Pr[Y K ∈ YK(t|yC)|Y C = yC] does not decrease as t decreases. Thus, it follows t∗α2
≤ t∗α1

and we obtain QY K|Y C=yC(α1) = YK(t∗α1
|yC) ⊆ YK(t∗α2

|yC) = QY K|Y C=yC(α2). �

Property 3 (uniqueness) Only one subset of R|K| satisfies the definition of the multi-

variate quantile QY K|Y C=yC(α) for a given α and yC.

Proof. Assume there are two distinct sets Y1 and Y2 both satisfying Eq. (7). If both

corresponding threshold values are identical, the sets are identical. If the threshold values

are not identical, it holds t∗α1
> t∗α2

or t∗α1
< t∗α2

, and the sets Y1 and Y2 cannot both satisfy

the definition of the multivariate quantile. �

3 Finite Mixture Regression

We proceed with the estimation of the multivariate density for observed data, that is,

we aim to describe the joint distribution of K response variables given a common set

of G covariates for N observations with a flexible multivariate model. Henceforth,

let yn = (yn1, . . . , ynK) be the K-dimensional output-vector of response variables and

xn = (xn1, . . . , xnG) be the G-dimensional input-vector of covariates for the n-th observa-

tion unit. We consider the distribution of yn to be an M -component mixture of multivariate

Gaussian densities where the component means can be a function of xn:

f
(
yn|xn

)
=

M∑
m=1

κmφ
(
yn; gm(xn),Σm

)
, (8)

with scalar-valued component mixing weights {κm}, subject to constraints: κm ≥ 0 and∑M
m=1 κm = 1; component-specific regression functions:

gm(xn) = µm +Bmxn, (9)
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with location vectors {µm} of dimension K × 1, coefficient matrices {Bm} of dimen-

sion K ×G, component-specific error covariance matrices {Σm} of dimension K ×K; and

density function φ(·).

The Gaussian mixture formulation is quite general and, given the information encoded

in the (exogenous) explanatory variables, covers a wide range of multivariate models. For

M > 1, we obtain a flexible parameterization and for M = 1, a multivariate linear for-

mulation is recovered. The number of components is treated as unknown and estimated

jointly with the component-specific parameters from the data. Note that other compo-

nent distribution choices, e.g., the multivariate skew-Gaussian or the multivariate skew-t

(e.g., Lin et al., 2007; Frühwirth-Schnatter and Pyne, 2010), are possible as well. How-

ever, given enough Gaussian components, large classes of conditional multivariate densities

can be approximated, with sufficient accuracy (Roeder and Wasserman, 1997). Though

the assumption of a Gaussian base-distribution restricts the specified model to continu-

ous response variables, this limitation does not apply to the definition of the multivariate

superlevel-set quantile.

3.1 Prior Distributions

We assume an intentionally overfitted model with a finite but comparatively large number

of components. The mixture is reduced to the final model through a sparse hierarchical

prior on the collection of possible density functions. Accordingly, we specify a hierarchical

Dirichlet prior for the component mixing weights:

κ|{ρm} ∼ D
(
ρ1, · · · , ρM

)
, (10)

where the component-specific concentration parameters {ρm} follow a Gamma distribution:

ρm ∼ G
(
a1, 1/(a2M)

)
, (11)
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with hyperparameters a1, a2 > 0. The component locations are given a multivariate Gaus-

sian prior:

µm|v0,V 0 ∼ N
(
v0,V 0

)
, (12)

with an improper Gaussian prior placed on the component prior mean v0 and a hierarchical

prior on the component prior variance V 0:

v0 ∼ N
(
v,V

)
, (13)

V 0 = diag(R2
1λ1, . . . , R

2
KλK), (14)

λk ∼ G
(
b1, 1/b2

)
, (15)

where v = median(yn) and V −1 = 0. {Rk} correspond to the response variable-specific

value ranges and {λk} are local shrinkage factors following a Gamma distribution with

hyperparameters b1, b2 > 0 (see, Brown and Griffin, 2010). We complete our model with

a multivariate Gaussian prior for the vector of component-specific regression coefficients:

vec(Bm) ∼ N
(
c0,C0

)
with prior mean c0 and prior variance C0; and a conjugate inverse-

Wishart prior for the component-specific error covariance matrices: Σm ∼ IW
(
S0, s0

)
with scale matrix S0 = I and degrees of freedom s0 > 2 + K, to rule out variances equal

or close to zero.

Asymptotically, the hierarchical Dirichlet prior on the mixing weights (Eq. (10)–(11))

matches a Dirichlet process prior with expectation E(ρm) = 1/M and variance

Var(ρm) = 1/(a2M
2) (see, Ishwaran et al., 2001). Thus, as the number of mixture dis-

tributions M increases, the relative size of the component mixing weights {ρm} decreases,

and the sequence of Gaussian mixtures becomes increasingly sparse. The hyperparameters

a1 and a2 have a regularizing effect such that the posterior distribution of the weights is

encouraged to concentrate at zero for superfluous components. The multivariate Normal-

Gamma prior (Eq. (13)–(15)) then puts strong shrinkage on the component means via the
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prior variance, particularly for heavily overlapping densities, to reduce the bias (caused

by spurious components) for components with a small number of observations (see also,

Richardson and Green, 1997; Stephens, 2000; Yau and Holmes, 2011).

3.2 Posterior Inference

Given data on N observations, we obtain posterior results via a data-augmented MCMC

algorithm (Diebolt and Robert, 1994). Thus, we associate each observation yn to a latent

allocation variable zn ∈ {1, . . . ,M} such that:

f
(
yn|zn = m,xn

)
= φ

(
yn; gm(xn),Σm

)
, (16)

Pr[zn = m] = κm. (17)

Exact details on the full conditionals and the sampling steps are provided in Appendix A.

After each MCMC iteration a random permutation step is added to ensure that the sampler

explores all modes of the full posterior distribution (Frühwirth-Schnatter, 2001). Most parts

of this algorithm are quite standard with two exceptions: the full conditional distribution

for the shrinkage factors (Malsiner-Walli et al., 2016) and the multivariate random-walk

Metropolis-Hastings step for the component-specific concentration parameters.

In case component-specific posterior means or variances are needed, one needs to solve

the label-switching problem present in most mixture models. We identify the component

labels in a separate post-processing procedure. We cluster the component-specific posterior

MCMC samples using a K-centroids Mahalanobis distance-based algorithm to reduce the

dimensionality of the relabeling problem and to capture elliptical shapes and different

volumes of the posteriors (a detailed description is given in Malsiner-Walli et al., 2016).

This identification scheme can easily be applied to non-Gaussian mixture settings as well.
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4 Implementation

Given samples from the posterior of the Gaussian mixture model, we can obtain posterior

quantile estimates of Y K given Y K = yC, either at the posterior means or for each posterior

draw. The latter allows a straightforward evaluation of the posterior uncertainty in the

quantile estimates, while the former involves lower computational costs. Note that using

posterior means requires the label-switching problem to be solved, as previously discussed.

Specifically, we aim to construct multivariate and univariate quantiles given some value

of the other response variables, and some value for the covariates. Accordingly, the con-

ditional distribution of Y K given the estimated model parameters collected in Θ, concrete

values for the variables in the output-vector yC, and the covariates in the input-vector x,

is needed. It is easy to show that this conditional distribution is again a M -component

mixture of Gaussians:

fY K|Y C=yC

(
yK|x,yC,Θ

)
=

M∑
m=1

ωCm(yC,x)φ
(
yK;µK|Cm (yC,x),ΣK|Cm

)
, (18)

with component-specific conditional mean µ
K|C
m (yC,x) and component-specific conditional

variance ΣK|Cm :

µK|Cm (yC,x) = gm,K(x) + Σm,K,CΣ
−1
m,C,C

(
yC − gm,C(x)

)
, (19)

ΣK|Cm = Σm,K,K −Σm,K,CΣ
−1
m,C,CΣm,C,K , (20)

and (updated) conditional mixing weight ωCm defined in terms of the Gaussian components

in the conditioning set:

ωCm(yC,x) =
κmφ

(
yC; gm,C(x),Σm,C,C

)∑M
l=1 κlφ

(
yC; gl,C(x),Σl,C,C

) . (21)

The constructed conditional distribution serves as input for the respective quantile formu-

lation in the following subsections.
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4.1 Multivariate Quantiles

The conditional Gaussian mixture distribution at given parameter values is used to numer-

ically solve the optimization problem that defines the multivariate superlevel-set quantile

(see, Eq. (7)). The procedure is summarized in Algorithm 1.

First, we select a subset of R|K| with a sufficiently large density, that is, we take the

Cartesian product of the intervals [F−1Yk|Y C=yC
(ε), F−1Yk|Y C=yC

(1− ε)] for each k ∈ K, where ε

is a small value close to zero and F−1Yk|Y C=yC
(·) is the quantile function for variable Yk given

Y C = yC (see also Eq. (18)). We then place ngrid grid points on each interval, running

from the corresponding ε-marginal to the (1− ε)-marginal quantile, to split the subset into

(ngrid − 1)|K| hypercubes. Next, we calculate the enclosed probability content for each hy-

percube based on the estimated cumulative density functions. Finally, we add hypercubes

Algorithm 1: Calculating the multivariate level-set quantile

Input : chosen coverage probability α
conditional distribution function FY K|Y C=yC(y)
grid boundary probability ε
dimension-specific grid point number ngrid

Output: actual coverage probability p
numerical quantile Q̃ = Q̃Y K|Y C=yC(α) of size n

|K|
grid

1 for k ∈ K do
2 gridk = equally spaced ngrid vector with values

from F−1Yk|Y C=yC
(ε) to F−1Yk|Y C=yC

(1− ε);
3 Q̃Y K|Y C=yC(α) = |K|-dimensional array of zeros

4 P = empty |K|-dimensional array to hold probabilities per hypercube
5 for (i1 ∈ 2 : ngrid), (i2 ∈ 2 : ngrid), . . ., (i|K| ∈ 2 : ngrid) do
6 Pi1,i2,...,i|K| = Pr[Yk ∈ [gridk,ik−1, gridk,ik ] ∀k ∈ K|Y C = yC]

7 p = 0
8 while p < α do
9 I = set of indices for which P equals max{P}

10 p = p+
∑

i∈I Pi
11 for i ∈ I do

12 Q̃i = α
13 Pi = 0
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in the order of the highest probability to Q̃Y K|Y C=yC(α) until the chosen α-coverage prob-

ability is exceeded or (exactly) reached. Hypercubes with the same probability are added

simultaneously.

The discretization of the probability space results in a numerical approximation of the

multivariate quantile. This approximation is accurate as long as the number of grid points

is sufficiently large. Otherwise, the enclosed probability content may be too large and the

resulting quantile boundaries will be non-smooth. To avoid hypercubes at the border of

the grid, ε should be set to a small value. In Figure 2, for instance, we set ε = 0.001 and

ngrid = 250. Note, that a too small ε value and/ or a too high grid point number will

increase the necessary computation time.

4.2 Conditional Univariate Quantiles

Likewise, we can construct conditional univariate quantiles, in the traditional sense, di-

rectly from the (estimated) conditional distributions. For the conditional Gaussian mix-

ture distribution, we obtain the univariate quantiles numerically as the solution to a simple

root-finding problem. Algorithm 2 provides a stylized description of the procedure on the

example of a variable k conditional on the values of all variables in C, where {k} ∩ C = ∅.

First, we partition the output-vector and the corresponding mean and error variance

estimates to calculate the conditional component-specific moments µ
k|C
m (yC,x) and Σ

k|C
m

(see, Eq. (19) and (20)), and conditional mixing weights ωCm(yC,x) (see, Eq. (21)). Next, we

derive the quantile directly from the distribution function of the corresponding conditional

Gaussian mixture, that is, we use a simple bisection method to find the value q for which

FYk|Y C=yC(q) = α. Thereby, the conditional component quantiles specify the interval for

the root-finder, with the smallest and largest component α-quantiles providing the lower

and upper bounds, respectively.
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Algorithm 2: Calculating the conditional univariate quantiles

Input : chosen coverage probability α
index of focal response variable k
value of response variables yC
estimated component-specific parameters {gm(xn)}, {Σm}, {κm}

Output : conditional univariate quantile Qk|Y C=yC(α)

1 for m ∈ {1, . . . ,M} do

2 Calculate conditional moments x̄m = µ
k|C
m (yC,x) and s2m = Σ

k|C
m

3 Calculate component-specific quantiles qm = µ
k|C
m (yC,x) + Σ

k|C
m Φ−1(α)

4 Calculate conditional weight wm = ωCm(yC,x)

5 for all k ∈ K do

6 Define h(q) =
∑M

m=1wmΦ
(
(q − x̄m)/

√
s2m)− α

7 Use bisection to find root of h(q) starting with interval [minm qm,maxm qm]

Φ−1(α) is the (inverse) of the standard Gaussian distribution function.

4.3 Quantile-Specific Measures

Since inference for any set of quantile levels is based on a global posterior, quantile crossing,

that is, the problem of non-monotonicity of the quantile contours, is automatically avoided.

Hence, we can infer a valid posterior distribution for any linear combination of response

variables. Likewise, we can create a simple model of treatment and control to calculate

marginal quantile effects.

We define the local marginal effect in the α-level quantile of response variable Yk con-

ditional on Y C = yC for a change from x to x+ ∆g:

βgk|C(α|yC,x) = QYk|Y C=yC

(
α|x+ ∆g

)
−QYk|Y C=yC

(
α|x
)
, (22)

where ∆g is a vector with a small value δg at position g and zeros elsewhere (Doksum,

1974). Alternatively, the marginal effect can be considered a derivative with δg dividing

the result of Eq. (22). Similar marginal effects can be defined for changes in the conditioning

variables yC in a straightforward way.

The derived marginal quantile effects permit a direct local interpretation at a certain
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value of x and yC, or a global interpretation through a (weighted) average across all observa-

tions, 1
N

∑N
n=1 β

g
k|C(α|yn,C,xn,C). The computation of the corresponding interval estimates

for posterior uncertainty quantification is straightforward: Eq. (22) is evaluated for each

posterior draw and the results are summarized either in terms of a posterior variance or

the highest posterior density region.

5 Simulation Study

We compare the performance of our Gaussian mixture-based quantiles to existing ap-

proaches in a Monte Carlo simulation study. The lack of a generally accepted multivariate

quantile definition restricts this simulation exercise to univariate conditional quantiles.

Still, a good fit of the conditional Gaussian mixture distributions readily translates into

good estimation performance for the multivariate quantiles. We consider five data gener-

ating processes with varying degrees of asymmetry and non-convexity in the multivariate

response distributions:

1. Multivariate Gaussian:

yn ∼ N (µ,Σ) with µ = [.2, .2, .2]′ and Σjj = .4, Σjk = .25 (∀j 6= k).

2. Multivariate Student-t:

yn ∼ tr(µ,Σ) with r = 5, µ = [.2, .2, .2]′ and Σjj = .4, Σjk = .25 (∀j 6= k).

3. Multivariate log-Gaussian:

yn ∼ logN (µ,Σ) with µ = [.2, .2, .2]′ and Σjj = .4, Σjk = .25 (∀ j 6= k).

4. Conditional heteroskedasticity:

yn ∼ N (µ,Ωn) with µ = [.2, .2, .2]′ and Ωn = exp(zn)Σ where zn ∼ N (0, 1)

and Σjj = .4, Σjk = .25, ∀j 6= k.

5. Multivariate Gaussian mixture:
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yn ∼ N (µzn ,Σzn) with Pr[zn = m] = .33, for m = 1, 2, 3, µ1 = [2, 2, 2], µ2 = [0, 0, 0],

µ3 = [−2, .5, 1] and Σ1,jj = .4, Σ1,jk = .25, Σ2 = I, Σ3,jj = .7, Σ3,jk = .5.

For each data generating process, we generate 1, 000 data sets with a sample size of 10, 000.

We analyze each simulated data set with four methods. (1) The conditional univariate

quantiles retrieved from fitting our multivariate Gaussian mixture model to the data. We

assume an overfitted mixture distribution of order M = 5 and set the hyperparameters for

the hierarchical Dirichlet prior on the mixing weights to a1 = 10 and a2 = 40 to keep the

conditional allocation probabilities to spurious components small. The hyperparameters for

the Gamma prior on the component prior variance are set to b1 = .5 and b2 = .5. We keep

every 10-th of 50, 000 MCMC draws after an initial burn-in phase of 10, 000. (2) A standard

univariate quantile regression model with the linear regression quantiles estimated indepen-

dently for each response variable. Here, the regression quantiles essentially correspond to

a constant. (3) A univariate linear quantile regression model with the other response vari-

ables of the output-vector in the conditioning set, and (4) a univariate non-linear quantile

regression model with the level and squared response variables in the conditioning set.3

All models are evaluated on the basis of the average squared deviation of the estimated

regression quantiles from the true conditional α-level quantiles for α ∈ {.2, .4, .6, .8}. The

exact definitions of the respective population quantile functions are provided as a supple-

mentary appendix. We use posterior means as point estimates for the Bayesian models.

The corresponding simulated mean squared errors are summarized in Table 1. In general,

the expansion of the model input-space, that is, using the other variables in the output-

vector, greatly increases the predictive performance. The multivariate Gaussian mixture

model recovers the conditional quantiles of the symmetric uni-/ and the multi-modal set-

tings well as compared to the univariate linear and non-linear specifications. Likewise, the

3 All univariate quantile regression models are implemented with the rq fnm function (Xu, 2020). We

use the bisection implementation of Sartorius (2020) for deriving the Gaussian mixture-based quantiles.
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Table 1: Mean squared errors for five simulated multivariate response distributions

Gaussian Student-t log-Gaussian
conditional Gaussian

heteroskedast. mixture

α = .2

QReg .216 .367 .214 .353 1.960

QReg with y(−k) .000 .013 .004 .024 .539

QReg with y(−k), (y(−k))
2 .000 .008 .002 .012 .269

MQReg .000 .004 .001 .003 .004

α = .4

QReg .196 .332 .328 .315 1.517

QReg with y(−k) .000 .001 .007 .002 .487

QReg with y(−k), (y(−k))
2 .000 .001 .004 .001 .253

MQReg .000 .003 .026 .002 .003

α = .6

QReg .197 .330 .492 .315 1.244

QReg with y(−k) .000 .001 .011 .002 .404

QReg with y(−k), (y(−k))
2 .000 .001 .005 .002 .247

MQReg .000 .003 .048 .001 .003

α = .8

QReg .216 .361 .850 .350 1.084

QReg with y(−k) .000 .013 .002 .024 .197

QReg with y(−k), (y(−k))
2 .000 .009 .001 .012 .124

MQReg .000 .004 .081 .002 .002

a QReg: univariate linear quantile regression; QReg with y(−k): univariate linear quantile regression

with the other response variables in the conditioning set; QReg with y(−k), (y(−k))
2: univariate non-

linear quantile regression with the other level and squared response variables in the conditioning set;

MQReg: multivariate Gaussian mixture quantile regression.

b The reported mean squared errors are averaged across response variables and simulation draws.

asymmetries in the conditional heteroskedasticity design are accurately recovered, particu-

larly in the lowest and highest quantiles of the conditional response distributions. Only for

the extremely skewed multivariate log-Gaussian distribution our Gaussian mixture model’s

fit decreases in the tails.
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For DGP 5, the Multivariate Gaussian mixture, Figure 3 compares the estimated quan-

tiles of response variable y1 against the true conditional Gaussian mixture α-level quantiles

for different values of y2 (on the horizontal axis) and y3 (across the different subplots). The

estimated conditional univariate Gaussian mixture quantiles perfectly match the true con-

ditional quantiles while the conditional univariate linear and non-linear quantiles only give

global approximations. Likewise, as illustrated in Figure 4, the asymmetries in the con-

ditional heteroskedasticity process are perfectly retained, particularly for the highest and

lowest quantiles of the conditional response distributions. For the simulated uni-modal

and symmetric distributions all three models provide similar estimates (the figures of the

remaining simulation designs are collected in a supplementary appendix).

Figure 3: Estimated (dashed lines) vs. true (solid lines) conditional quantiles of DGP 5, a
multivariate Gaussian mixture response distribution, for α ∈ {.2, .4, .6, .8}
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Figure 4: TEstimated (dashed lines) vs. true (solid lines) conditional quantiles of DGP 4,
a conditional heteroskedasticity response distribution, for α ∈ {.2, .4, .6, .8}
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6 Empirical Application

The study of heterogeneity in household consumption patterns is a classical application of

quantile regression in economics. In the following, we analyze the variation in annual real

expenditures on food, housing and utilities (i.e., fuels, gas, electricity, telephone and public

services) jointly with household income. The data are a subset of households from the U.S.

Consumer Expenditure Survey collected by the Bureau of Labor Statistics in 2015.4 We

only consider households consisting of one or two earners, living in an owned or rented

property, and having two or less children. This leaves us with N=29,988 observations for

K = 4 response variables. The household income is the amount the household earned in

4 The corresponding survey interview files are public available via https://www.bls.gov/cex/pumd_

data.htm. The analysis is based on the variable labels: houspq (housing), foodpq (food), utilpq (utilities)

and fincbtxm (income before taxes). The replication codes will be made available after publication.

24

https://www.bls.gov/cex/pumd_data.htm
https://www.bls.gov/cex/pumd_data.htm


Figure 5: Empirical distribution of the three expenditures categories food, housing, and
utilities conditional on income before taxes
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the chosen year before taxes. Figure 5 illustrates the empirical distribution of the three

expenditure categories conditional on income. Note that the sum of the expenditures does

not amount to the overall consumption of the household and thus, the considered categories

are not complete.

Again, we assume an overfitted mixture distribution of order M = 5. We a-priori favor

allocations to several components, to address the asymmetries in the empirical distribution,

and set the hyperparameter for the hierarchical Dirichlet prior on the mixing weights to

a1 = 10 and a2 = 40. The data is additionally log-transformed in order to fit the income

as well as expenditure distributions with fewer mixture components. The hyperparameters

for the Gamma prior on the component prior variance are set to b1 = .5 and b2 = .5. We

keep every 40-th of 200, 000 MCMC draws after an initial burn-in phase of 400, 000. The

quantile estimates are presented on the original scales. For the multivariate (conditional)

quantiles, we obtain the distribution for the original data from the distribution function of

the log-transformed data. For univariate (conditional) quantiles, the inverse transformation

can be directly applied to the estimated quantile.

Figure 6 shows the bivariate quantiles for expenditures on food and housing

(K = {food, housing}) conditional on marginal α-level values of income (C = {income}).
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Figure 6: Bivariate quantiles for the two expenditure categories food and housing condi-
tional on different levels of income. Blue lines correspond to α ∈ {.2, .4, .6, .8} conditional
on the indicated quantiles of income, red lines correspond to an income increase of $6, 000

We implicitly marginalize over the utilities expenditures. The blue lines correspond to the

multivariate quantiles at α ∈ {.2, .4, .6, .8}, the red lines give the multivariate quantiles

conditional on an income increase of $6, 000. Conditional on the four income levels, those

households with the least food and housing expenditures (.2-quantile, smallest enclosed

area) do not react considerably to the income increase for all four income levels. In con-

trast, those in the highest expenditures for housing and food (.8-quantile, largest enclosed

area) do increase their spending substantially after a raise in income. This effect is strongest

for the lowest income quantile. Moreover, the mulitvariate quantiles do not indicate clear

substitution effects between the two categories.

Next, we investigate the quantiles from a univariate perspective. Figure 7 depicts the

quantile-varying marginal effect for a raise in income of $6, 000. The associated consump-

tion changes greatly vary along the income distribution: Low-income households dedicate
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Figure 7: Quantile-varying marginal effects for the three expenditures categories food,
housing, and utilities conditional on different levels of income. Shaded areas indicate the
corresponding 90% confidence intervals for four α-level values of income
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most of the additional income to necessities that relate to spending on food and shelter. In

contrast, households in the middle of the income distribution enjoy greater discretionary

power and thus, seem to adjust their food and utilities expenditures the most. Households

in the highest quantiles of the income distribution hardly increase their spending on food

and utilities at all.

7 Conclusion

We propose a new multivariate superlevel-set conditional quantile definition specified di-

rectly on the (estimated) multivariate density function. The superlevel-set is defined as

the set of all outcomes in the sample space for which the conditional density equals, or

exceeds a certain threshold. For a given α level, we search for the density-threshold such

that the probability content of the superlevel-set is as close as possible to α, but not smaller

than α. This multivariate quantile has several favorable properties: it has a clear coverage

probability interpretation, works for various distributional forms, can have a non-convex

shape, and is equivariant, nested, and unique.
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To estimate the multivariate density, we use a finite overfitted Gaussian mixture model.

This model adapts to heteroskedastic and non-convex disturbances. The mixture model can

itself be used as a multiple-output quantile regression model when focusing on univariate

conditional quantiles. Even though we only consider the multivariate Gaussian distribution

as component distribution, the principle is also applicable to a model using a mixture of

non-Gaussian distributions.

With the implementation via the Gaussian mixture model, we provide a widely appli-

cable model for estimating multivariate and univariate (conditional) quantiles without the

need to specify the exact multivariate density. The resulting multivariate quantiles are easy

to interpret and apply, for example to study substitution effects. As such, we present a

comprehensive and computationally attractive Bayesian framework that greatly simplifies

the application of flexible multiple-output quantile regression models in practice.
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A Posterior Simulation Algorithm

1. Simulate mixture parameters conditional on zn (n = 1, . . . , N, m = 1, . . . ,M):

� Sample {κm} fromD(ρ1, . . . , ρM) where ρm = ρm+Nm andNm = #{n : zn = m},

the number of observations allocated to the m-th component.

� Sample {µm} from N (vm,V m):

– vm = V m(V −10 v0 + Σ−1m Nmȳm) with ȳm = 1
Nm

∑
n:zn=m

(yn −Bmxn).

– V m = (V −10 +NmΣ−1m )−1

� Sample {Bm} from N (cm,Cm):

– cm = Cm

(
C−10 c0 +

∑
n:zn=m

(xn ⊗ I)Σ−1m (yn − µm)
)

– Cm = (C−10 +
∑

n:zn=m

xnx
′
n ⊗Σ−1m )−1

� Sample {Σm} from IW(Sm, sm):

– sm = s0 + Nm

– Sm = S0 +
∑

n:zn=m

(yn − µm −Bmxn)(yn − µm −Bmxn)′

2. Sample zn to classify observations conditional on mixture parameters (n = 1, . . . , N):

� πm ≡ Pr[zn = m|ym,κ,µ,B,Σ] ∝ κmφ
(
yn; gm(xn),Σm

)
.

� Sample {zn} from M(π1, . . . , πM).

3. Sample hyperparameters:

� Sample {ρm} simulatneously via a random walk Metropolis Hastings step with

proposal density log(ρm) ∼ N (log(ρm), s2ρm) from

34



p(ρm|κ) ∝ p(ρm)
Γ(Mρm)

Γ(ρm)M

(
M∏
m=1

κm

)ρm−1

� Sample {λk} from a generalized inverted Gamma distribution GIG(b1−M/2, 2b2, δk)

where δk =
M∑
m=1

(µm,k − v0,k)2/R2
k is the distance between the component loca-

tions and prior means.

� Sample v0 from N
( M∑
m=1

µk/M,V 0/M
)

with V 0 = diag(R2
1λ1, . . . , R

2
KλK).

If no observation is allocated to component m during classification in step 2, all component-

specific parameters of this empty component are sampled from their priors.
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SUPPLEMENTARY APPENDIX

to Multivariate quantile regression using superlevel sets of

conditional densities

Population Quantile Functions The conditional population quantiles from the simu-

lation exercise are based on the distribution of yn given the true parameters. We consider

each time the quantile of a focal response variable k conditional on all other variables in

the output-vector, that is, K = {k} and C = {1, . . . , K} \ {k}.

1. Multivariate Gaussian:

QYk|Y C=yC

(
α
)

= µk|C(yC) + Σk|CΦ−1(α),

with conditional mean µk|C(yC) and conditional variance Σk|C:

µk|C(yC) = µk + Σk,CΣ
−1
C,C

(
yC − µC

)
,

Σk|C = Σkk − Σk,CΣ
−1
C,CΣC,k.

2. Multivariate Student-t:

QYk|Y C=yC

(
α
)

= µk|C(yC) + Σk|CF−1(α; rk),

where F−1(·) is the inverse of the cumulative distribution function of a Student-t

with degrees of freedom rk = r+K − 1, conditional mean µk|C(yC) equivalent to the

multivariate Gaussian, and conditional variance Σk|C:

Σk|C =
r +

(
yC − µC

)
Σ−1C,C

(
yC − µC

)′
rk

(
Σkk − Σk,CΣ

−1
C,CΣC,k

)
,

(see, e.g., Ding, 2016).
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3. Multivariate log-Gaussian:

QYk|Y C

(
α
)

= exp{µk|C (log yC) + Σk|CΦ−1(α)},

with µk|C(·) and Σk|C equivalent to the multivariate Gaussian.

4. Conditional heteroskedasticity:

We approximate the population quantile with the conditional quantile of a multi-

variate M = 1, 000 component mixture of Gaussians, with components µm = µ,

Ωm = exp(zm)Σ where zm is simulated from N (0, 1), and equal mixture weights

κm = 1/M . The calculation of the quantiles follows Algorithm 2 and Eq. (18)–(21).

Further Simulation Results Figures 1 to 3 provide the conditional quantiles for the

three remaining data generating processes in Section 5. Again, we compare the estimated

versus true conditional quantiles of response variable y1 given a range of values of y2 and

fixed values for y3 for α ∈ {.2, .4, .6, .8}. All settings are investigated with three methods:

• QReg with y(−k): univariate linear quantile regression with the other response vari-

ables in the conditioning set,

• QReg with y(−k), (y(−k))
2: univariate non-linear quantile regression with the other

level and squared response variables in the conditioning set, and

• MQReg: multivariate Gaussian mixture quantile regression.
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Figure 1: Estimated (dashed lines) vs. true (solid lines) conditional quantiles of DGP 1, a
multivariate Gaussian response distribution, for α ∈ {.2, .4, .6, .8}
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Figure 2: Estimated (dashed lines) vs. true (solid lines) conditional quantiles of DGP 2, a
multivariate Student-t response distribution, for α ∈ {.2, .4, .6, .8}
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Figure 3: Estimated (dashed lines) vs. true (solid lines) conditional quantiles of DGP 3, a
multivariate log-Gaussian response distribution, for α ∈ {.2, .4, .6, .8}
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