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Abstract

All parameters in structural vector autoregressive (SVAR) models are locally identified when
the structural shocks are independent and follow non-Gaussian distributions. Unfortunately,
standard inference methods that exploit such features of the data for identification fail to
yield correct coverage for structural functions of the model parameters when deviations
from Gaussianity are small. To this extent, we propose a robust semi-parametric approach
to conduct hypothesis tests and construct confidence sets for structural functions in SVAR
models. The methodology fully exploits non-Gaussianity when it is present, but yields
correct size / coverage regardless of the distance to the Gaussian distribution. Empirically
we revisit two macroeconomic SVAR studies where we document mixed results. For the oil
price model of Kilian and Murphy (2012) we find that non-Gaussianity can robustly identify
reasonable confidence sets, whereas for the labour supply-demand model of Baumeister and
Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance
of using weak identification robust methods to assess estimation uncertainty when using
non-Gaussianity for identification.
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1 Introduction

In this paper we develop robust inference methods for non-Gaussian structural vector autore-

gressive (SVAR) models. To outline our contribution, consider the SVAR model

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1ϵt , (1)

where Yt is a K × 1 vector of variables, c is an intercept, B1, . . . , Bp are the autoregressive

matrices, A is the invertible contemporaneous effect matrix and ϵt is the K × 1 vector of

structural shocks with mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of {Yt} are

insufficient to identify all parameters in A (e.g. Kilian and Lütkepohl, 2017). Instead, higher

order moments or non-Gaussian distributions can be exploited to (locally) identify A. The most

well known result follows from the Darmois–Skitovich theorem and is central to the literature on

independent components analysis (ICA): if the components of ϵt are independent and at least

K − 1 have a non-Gaussian distribution, then A can be recovered up to sign and permutation

of its rows Comon (1994). Based on such results several recent works have exploited non-

Gaussianity to improve identification and conduct inference in SVAR models (e.g. Lanne and

Lütkepohl, 2010; Moneta et al., 2013; Lanne et al., 2017; Kilian and Lütkepohl, 2017; Maxand,

2020; Lanne and Luoto, 2021; Gouriéroux et al., 2017, 2019; Tank et al., 2019; Herwartz, 2019;

Bekaert et al., 2021, 2020; Fiorentini and Sentana, 2022; Braun, 2021; Sims, 2021; Brunnermeier

et al., 2021; Drautzburg and Wright, 2021; Davis and Ng, 2022).1,2

Unfortunately, as we show in this paper, standard inference methods for non-Gaussian

SVARs are not robust in situations where the densities of the structural shocks are too “close”

to the Gaussian density. Intuitively, what matters for correctly sized inference is not non-

Gaussianity per se, but a sufficient distance from the Gaussian distribution. When the true

distributions of the structural shocks are close to the Gaussian distribution, local identifica-

tion deteriorates and coverage distortions occur in confidence sets for structural functions, e.g.

structural impulse response functions or forecast error variance decompositions.3 The problem

is somewhat analogous to the weak instruments problem where it is well known that non-zero

correlation between the instruments and the endogenous variables is not sufficient for standard

inference methods to be reliable; the correlation must be sufficiently large in order for conven-

tional IV asymptotic theory to provide an approximation which accurately reflects the finite

sample situation.4 Similarly, in our setting, non-Gaussianity alone is not sufficient for standard

(pseudo) maximum likelihood or generalised method of moments methodologies to yield correct

coverage when the distance to the Gaussian distribution is not sufficiently large. As such we

refer to this phenomenon as “weak non-Gaussianity”.

1See Montiel Olea et al. (2022) for a recent review of this approach and a related approach based on heteroskedas-
ticity.

2ICA type identification results have been applied/extended for various related models such as linear simultaneous
equations models, graphical models and factor models (e.g. Shimizu et al., 2006; Bonhomme and Robin, 2009;
Wang and Drton, 2019).

3Simulation studies in, among others, Gouriéroux et al. (2017, 2019) and Lanne and Luoto (2021) have previously
highlighted such coverage distortions for parameter estimates in the case of “weakly” non-Gaussian distributions,
see also Lee (2022); Lee and Mesters (2022a) for more discussion of the same issue in static ICA models.

4See e.g. the recent review by Andrews et al. (2019).
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In this paper, we propose a solution to this problem by combining insights from the econo-

metric literature on weak identification robust hypothesis testing as well as the statistical lit-

erature on semiparametric inference. Specifically, we treat the SVAR model with independent

structural shocks as a semiparametric model where the densities of the structural shocks form

the non-parametric part.

For this set-up we provide two main results. First, we adopt a semi-parametric generalisation

of Neyman’s C(α) statistic in order to test the possibly weakly identified (or under / unidentified)

parameters of the SVAR. More precisely, the semi-parametric score statistic that we propose

is based on a quadratic form of the efficient score function, which projects out all scores for

the nuisance parameters, including the scores corresponding to the density functions of the

structural shocks, from the conventional score function for the parameter of interest. This

projection, along with the fact that the potentially weakly/non- identified parameter is fixed

under the null when conducting the test (as is standard in score-type testing procedures), enables

us to circumvent the (weak-)identification problem and we show that the semi-parametric score

test has a χ2 limit under the null hypothesis regardless of how close the shock distributions are

to the Gaussian distribution (i.e. the point of identification failure). The choice to base the

score test on the efficient score function is also beneficial in terms of power as such efficient

score tests have been shown to possess power optimality properties in various settings (see e.g.

Choi et al., 1996; van der Vaart, 1998; Lee, 2022).

Second, we propose a method for constructing confidence sets for smooth structural func-

tions. Prominent examples of interest include structural impulse responses and forecast error

variance decompositions. Specifically, we utilise our proposed score test for the weakly identified

parameters in a Bonferroni-based procedure (cf. Granziera et al., 2018; Drautzburg and Wright,

2021) which is guaranteed to provide correct coverage asymptotically, regardless of the degree

of non-Gaussianity in the shock distribution.

Overall, our methods are computationally simple and efficient. The implementation of the

semiparametric score test typically only requires estimating regression coefficients, a covariance

matrix and the log density scores of the structural shocks, and does not require, for instance,

bootstrap methods to obtain critical values. To estimate the log density scores, we use B-

spline regressions as developed in Jin (1992) and also considered in Chen and Bickel (2006) for

independent component analysis. This approach is computationally convenient and allows our

methodology to work under a wide variety of possible distributions for the structural shocks.5

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to

the nominal size. This is in contrast to several existing methods that are not robust to weak

non-Gaussianity and show substantial size distortions for non-Gaussian distributions that are

close to the Gaussian density. We also analyse the power of the proposed procedure and find

that the power of the semi-parametric score test generally exceeds that of alternative robust

methods such as weak identification robust GMM methods. Finally, we show that while the

Bonferroni approach for constructing confidence sets is (by construction) conservative, it does

5The general approach is applicable with other choices of log density score estimators, e.g. the local polynomial
estimators proposed in Pinkse and Schurter (2021). The main requirement is that the chosen estimator should
satisfy the high-level conditions stated in Lemma A.1.
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often substantially reduce the length of the confidence bands for structural impulse responses

when compared to alternative methods.

In our empirical study we revisit two prominent macroeconomic SVAR applications and ask

whether non-Gaussian distributions can help to robustly identify structural functions of interest.

Specifically, we revisit (i) the labour supply-demand model of Baumeister and Hamilton (2015)

and (ii) the oil price model of Kilian and Murphy (2012).6 Our findings are mixed.

In the labour supply-demand model of Baumeister and Hamilton (2015) we find that allowing

for non-Gaussian structural shocks does not lead to a tight confidence set for the supply and

demand elasticities. In contrast, when non-robust methods are used, as in Lanne and Luoto

(2019) for instance, non-Gaussianity appears to pin down the elasticities in a narrow set. These

findings strongly support the usage of robust confidence sets when assessing uncertainty around

parameter estimates obtained using non-Gaussianity as an identifying assumption.

For the oil price model of Kilian and Murphy (2012) non-Gaussian structural shocks provide

substantially more identifying power. In fact, we show that our robust methodology yields a

finite confidence set for the short-run oil supply elasticities, thus avoiding the need to impose

a priori bounds on these elasticities. For instance, the bounds imposed in Kilian and Murphy

(2012) have been criticised for being too tight in Baumeister and Hamilton (2019) and have led

to a large literature that assesses their importance, see Herrera and Rangaraju (2020) for an

overview. We show that exploiting non-Gaussian shocks leads to finite bounds that are within

the range of estimates documented in the literature, hence providing a data driven solution to

the determination of appropriate bounds.

This paper relates to several strands of literature. First and foremost, the paper contributes

to the literature that exploits non-Gaussianity of the structural shocks for identification (see

the references above). There are two papers that are specifically related to the current paper.

First, Drautzburg and Wright (2021) are similarly concerned about identification when using

higher order moment restrictions for identification. To circumvent distortions in confidence sets

they exploit the identification robust S-statistic of Stock and Wright (2000) as well as a non-

parametric independence test for conducting inference. The benefit of the S-statistic is that it is

not necessary to assume full independence of the structural shocks. Instead, typically only the

third and fourth order higher cross moments are set to zero, leaving all higher order moments

unrestricted. A downside of such a robust moment approach is that it requires the existence of

substantially higher order moments. For instance, when using fourth order moment restrictions

the convergence of the S-statistic requires the existence of at least eight moments. We provide

a detailed comparison between the approaches in our simulation study.

Second, this paper builds on Lee and Mesters (2022a) and Lee (2022) who consider a similar

score testing approach in static ICA models. The crucial differences are that (a) those papers

require that the observations are independent and identically distributed across time and (b)

they focus on testing a hypothesis for a potentially weakly- or un-identified parameter and do not

consider functions of identified and possibly unidentified parameters. Relaxing the independence

assumption is non-trivial in this context; we show a new (uniform) local asymptotic normality

6The assumption of independence among the structural shocks is maintained throughout this paper. Therefore
in each application we test for the existence of independent components following Matteson and Tsay (2017);
see also Montiel Olea et al. (2022).

4



result for semi-parametric SVARs. Further, in the SVAR setting the objects of economic interest,

such as IRFs, are typically functions of both well-identified and possibly unidentified parameters.

This paper provides a robust inference procedure for such objects.

Besides the non-Gaussian SVAR literature, we note that our approach is inspired by the

identification robust inference literature in econometrics (e.g. Stock and Wright, 2000; Kleiber-

gen, 2005; Andrews and Cheng, 2012). The crucial difference in our setting is that the nuisance

parameters which determine identification status are infinite dimensional, i.e. the densities of

the structural shocks. Despite this difference, conceptually our approach is similar to the score

testing approach developed for weakly identified parametric models in Andrews and Mikusheva

(2016). To handle infinite dimensional nuisance parameters we build on the general statistical

theory discussed in Bickel et al. (1998) and van der Vaart (2002). While the majority of the

statistical literature focuses on efficient estimation in semi-parametric models, a few papers have

contributed to testing in well identified models (e.g. Choi et al., 1996; Bickel et al., 2006). The

major difference with our paper is that in our setting, a subset of the parameters of interest are

possibly weakly- or un- / under- identified, which violates a key regularity condition assumed

in this literature.

The remainder of this paper is organised as follows. In Section 2, we briefly illustrate how

non-Gaussian distributions can help with identification and how the weak identification problem

arises. Section 3 casts the SVAR model as a semi-parametric model and Section 4 establishes

a number of preliminary results. The semi-parametric score testing approach is presented in

Section 5 and inference for smooth structural functions is covered in Section 6. Section 7

evaluates the finite-sample performance of the proposed methodology and Section 8 discusses

the results from the empirical studies. Section 9 concludes.

2 An illustration of non-Gaussian identification

In this section, we briefly illustrate how non-Gaussian structural shocks can help to identify the

parameters of the SVAR model. Furthermore, we provide an intuitive explanation for the weak

identification problem that arises when the error distributions are close to Gaussian.

As an example, consider a bivariate SVAR model as defined in equation (1), but assume for

simplicity that (i) the number of lags is zero (p = 0) and (ii) that the contemporaneous effect

matrix A is a rotation matrix.7 Under these assumptions, the matrix A can be parametrised

by a scalar parameter α and the model can be written as

Yt = A−1ϵt , where A−1 =

[
cosα − sinα

sinα cosα

]
.

The parameter of interest is the scalar α that determines the rotation matrix A. If for example

α = 0, A equals the identity matrix and each of the structural shocks only impacts its respective

component in Yt. For 0 < α < π, or integer multiples thereof, the off-diagonal elements are

non-zero so that the shocks affect all variables, with signs depending on the value of α.

7Note, that the assumption for A being a rotation matrix can be asymptotically justified if the data Yt is jointly
re-scaled to have mean zero and identity variance matrix (pre-whitening). For details, see Gouriéroux et al.
(2017).
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To illustrate how non-Gaussian distributions for ϵt may help to identify α, we study the

expected log-likelihood Eℓα(Yt) in the model above for different distributions of the structural

shocks ϵk,t. For instance, if ϵk,t ∼ N (0, 1) for all k we have

Eℓα(Yt) ∝ −1

2
E
[
(A−1ϵt)

′A−1ϵt
]
= −1 ,

and the log likelihood takes the same value for all α. This reflects the standard identification

problem: without additional identifying restrictions, the impact effects of the structural shocks

are not identifiable when the shocks are Gaussian.

Figure 1 visually illustrates this result and shows how it changes when we move away from

the Gaussian distribution in the direction of the student-t distribution. The left panels shows

the expected log likelihood as a function of α, whereas the right panels show the contour plots

of the log-likelihood together with a red and a blue line indicating the vector Yt (i.e. a linear

combination of the structural shocks ϵt), corresponding to two different choices for α.

As we move away from the Gaussian distribution the expected gradient of ℓα(Yt) with respect

to α becomes non-zero in the vicinity of the true parameter (here set as α = π). Equivalently,

in the contour plots the red and blue lines reach different level curves. This means that different

choices of α lead to different values of the log-likelihood and hence, α is locally identifiable. That

only local identification occurs is clear, as the same level curves are reached in each quadrant

of the contour plot, with each quadrant corresponding to a permutation and/or sign change of

the rows of A. These examples illustrate how non-Gaussianity of the structural shocks can help

to identify parameters up to permutation and sign changes.

The problem of weak non-Gaussianity arises when the distance from the Gaussian distribu-

tion is not very large. In such scenarios, changes in α only imply minor changes in the level

of the likelihood, so that the likelihood ends up being rather flat around the true parameter

α. Compare for instance, the panels corresponding to the t(5) density and the t(15) density.

In the case of the t(5) density, the red and blue vectors end on clearly distinguishable contour

lines of the log-likelihood and the value of the log likelihood varies substantially around α = π.

In contrast, for the t(15) density, the differences are small and the red and blue vectors almost

reach the same contour line. In the extreme case of Gaussian shocks (i.e. the upper panels of

Figure 1) we find that α is completely unidentified.

Whilst in population we would always be able to locally identify α when the densities of the

structural shocks differ from Gaussian, in finite sample, if the densities of the structural shocks

are close to Gaussianity, the available identifying information may be small relative to sampling

variability. This creates a problem when standard test statistics are used as, in such a setting,

standard (i.e. fixed parameter) asymptotics provide a poor approximation to the finite sample

behaviour of test statistics.

To illustrate this point, consider the standard Wald statistic that is based on the maximum

likelihood estimate for α. When the densities are non-Gaussian α is (locally) identified and the

Wald statistic converges to its usual χ2(1) limit. In contrast, when the densities are Gaussian α

is unidentified and the Wald statistic has a non-standard limit. Such a discontinuity implies that

in finite sample the χ2(1) distribution may provide a poor approximation to the finite sample

behaviour of the test when the true densities are close to Gaussian relative to the sample size.
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Figure 1: Identification with Non-Gaussian Distributions
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Note: The figure shows the expected log-likelihood as a function of α (left panels) and the expected likelihood
contours (right panels) for the SVAR(0) model with different distributions for the structural shocks ϵk,t. The red
and blue lines in the right plots denote the vector Yt corresponding to two different choices for α.

In this paper we address this problem by developing a robust semi-parametric approach for

constructing confidence bands for α. The methodology is based on inverting a score-type test

for α = α0. The key result is that the semi-parametric score statistic is asymptotically χ2 both

in the well identified case and when the structural shocks are close to Gaussianity. This ensures

that the test is reliable for a large class of (true) densities: non-Gaussian, close to Gaussian, or

even Gaussian densities are all permitted provided some regularity conditions are satisfied.8

8Alternatively, one could think of constructing some threshold statistic — analogous to the F -statistic used in
instrumental variable studies — that indicates whenever the distance to the Gaussian distribution is sufficiently
large such that standard methods can be used, see Guay (2021) for such approach when higher order moments are
used for identification. While practically attractive, the results of this paper render developing this alternative
unnecessary as the semi-parametric score test is efficient under strong identification.
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3 Semi-parametric SVAR model

In this section we cast the SVAR model as a semi-parametric model and impose some primi-

tive assumptions that will be maintained throughout the text. For convenience, we adopt the

following notation for the SVAR model

Yt = BXt +A−1(α, σ)ϵt , t ∈ Z , (2)

where Xt := (1, Y ′
t−1, . . . , Y

′
t−p)

′, B := (c,B1, . . . , Bp) and A(α, σ) is a K ×K invertible matrix

that is parametrised by the vectors α and σ.

In general, we will leave the choice for the specific parametrisation of A(α, σ) open to the

researcher. The key restriction is that σ should be recoverable from the variance of Yt −
BXt, whereas α may be unidentified depending on the distribution of the structural shocks.

A canonical choice in this context sets A−1(α, σ) = Σ1/2(σ)R(α), where Σ1/2(σ) is a lower

triangular matrix (with positive diagonal elements) defined by the vector σ and R(α) is a

rotation matrix that is parametrised by the vector α. That said, different parametrisations are

often used in practice (cf Section 8) and our general formulation allows for such alternatives.

We let η = (η1, . . . , ηK) correspond to the density functions of ϵt = (ϵ1,t, . . . , ϵK,t)
′ and

summarise the parameters in

θ = (γ, η) , γ = (α, β) , β = (σ, b) , (3)

where b = vec(B).

Let Y n = (Y1, . . . , Yn)
′ and let Pn

θ denote the distribution of Y n conditional on the initial

values (Y1−p, . . . , Y0). Throughout we work with these conditional distributions; see Hallin and

Werker (1999) for a similar setup. For a sample of size n, our semi-parametric SVAR model is

the collection

Pn
Θ = {Pn

θ : θ ∈ Θ} , Θ = A× B︸ ︷︷ ︸
Γ

×H , (4)

where Γ ⊂ RL, with L = Lα + Lσ + Lb corresponding to the dimensions of (α, σ, b), and

H ⊂
∏K

k=1H with

H :=

{
g ∈ L1(λ) ∩ C1 : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1 is the class of real functions on R which are

continuously differentiable and κ(z) = z2 − 1. The parameter space for the densities ηk is thus

restricted such that ϵk,t has mean zero and variance one. Further restrictions are placed on the

parameter space Θ in the assumptions below.

Assumptions

Having defined the semi-parametric SVAR model, we now proceed to formulate the required

assumptions. Broadly speaking, we split our assumptions into two parts: Assumption 3.1 details

the main assumptions that allow us to establish the properties of the semi-parametric score test
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and Assumption 3.2 defines a set of regularity conditions on densities ηk under which the log

density scores can be consistently estimated using B-splines.9 These scores are an important

ingredient for the methodology discussed below.

The main assumption is stated as follows.

Assumption 3.1: For model (2), we assume that

(i) For all β ∈ B, |IK −
∑p

j=1Bjz
j | ≠ 0 for all |z| ≤ 1 with z ∈ C

(ii) Conditional on the initial values (Y ′
−p+1, . . . , Y

′
0)

′, ϵt = (ϵ1,t, . . . , ϵK,t)
′ is independently and

identically distributed across t, with independent components ϵk,t. Each η = (η1, . . . , ηK) ∈
H is such that each ηk is nowhere vanishing, dominated by Lebesgue measure on R, con-
tinuously differentiable with log density scores denoted by ϕk(z) := ∂ log ηk(z)/∂z, and for

all k = 1, . . . ,K

(a) Eϵk,t = 0, Eϵ2k,t = 1, Eϵ4+δ
k,t < ∞, E(ϵ4k,t) − 1 > E(ϵ3k,t)2, and Eϕ4+δ

k (ϵk,t) < ∞ (for

some δ > 0);

(b) Eϕk(ϵk,t) = 0, Eϕ2k(ϵk,t) > 0, Eϕk(ϵk,t)ϵk,t = −1, Eϕk(ϵk,t)ϵ2k,t = 0 and Eϕk(ϵk,t)ϵ3k,t =
−3;

(iii) For all (α, β) ∈ Γ we have that

(a) A(α, σ) is nonsingular

(b) (α, σ) → A(α, σ) is continuously differentiable

(c) (α, σ) → [Dαl
(α, σ)]k•A(α, σ)

−1
•j and (α, σ) → [Dσm(α, σ)]k•A(α, σ)

−1
•j , with Dαl

(α, σ) :=

∂A(α, σ)/∂αl and Dσm(α, σ) := ∂A(α, σ)/∂σm, are Lipschitz continuous for all

l = 1, . . . , Lα, m = 1, . . . , Lσ and j, k = 1, . . . ,K, where the notation B•j or Bj•

denotes the jth column or row of a matrix B.

Part (i) imposes that the SVAR model (2) admits a stationary and causal solution. Part

(ii) imposes that the densities of the shocks are continuously differentiable and certain moment

conditions hold. Specifically, part (a) normalises the shocks to have mean zero, variance one and

finite four+δ moments.10 Additionally, we require the log density scores ϕk(x) = ∂ log ηk(x)/∂x

evaluated at the shocks to have finite 4+ δ moments. Part (b) simplifies the construction of the

efficient score functions. Whilst this may at first glance appear a strong condition, lemma S12 in

Lee and Mesters (2022b) shows that if (a) holds, then a simple sufficient condition is that the tails

of the densities ηk converge to zero at a polynomial rate.11 The final part (iii) of the assumption

imposes that A(α, σ) is invertible and that the parametrisation chosen by the researcher is

sufficiently smooth. For instance, for the canonical choice A−1(α, σ) = Σ1/2(σ)R(α), when

9Lemma A.1 in the Appendix shows that, under Assumptions 3.1 and 3.2, the B-spline based estimator satisfies
a particular high-level condition; the results of this paper will continue to apply if any alternative density score
estimator which also satisfies this high-level condition is used.

10E(ϵ4k,t) − 1 ≥ E(ϵ3k,t)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ϵ4k,t) − 1 > E(ϵ3k,t)2 rules out (only) cases where 1, ϵk,t and ϵ2k,t are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

11Alternatively, these moment conditions hold if one can interchange integration and differentiation appropriately.
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we model R(α) by the Cayley or trigonometric transformation parts (b) and (c) can easily be

verified to hold.

Next, we impose a number of smoothness conditions on the densities ηk. These assumptions

facilitate the estimation of the log density scores ϕk(z) = ∇z log ηk(z), which are an important

ingredient for the efficient score test discussed below.

Assumption 3.2: Let ϕk,n := ϕk1[ΞL
k,n,Ξ

U
k,n]

, ∆k,n := ΞU
k,n − ΞL

k,n and νn = ν2n,p with 1 < p ≤
1 + δ/4 and n−1/2(1−1/p) = o(νn,p). Suppose that for [ΞL

k,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 it

holds that

(i) P (ϵk /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (∥ηk∥∞ <∞) and differentiable, with a bounded derivative: ∥η′k∥∞ <∞;

(iv) For each n, ϕk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ∥ϕ(3)k,n∥

2
∞δ

6
k,n =

o(νn);
12

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞL
k,n,Ξ

U
k,n]

|ηk(t)| ≥ cδk,n.

These assumptions are similar to those considered in Chen and Bickel (2006). They ensure

that the log density scores can be estimated sufficiently accurately using B-spline regressions (as

explained in section 5).13 Formally, we require that the support of the density ηk is contained

with high probability in the interval [ΞL
k,n,Ξ

U
k,n]. These lower and upper points will correspond

to the smallest and largest knots of the B-splines. Second, condition (ii) ensures that the number

of knots does not increase too fast, relative to the sample size n. Conditions (iii) and (iv) impose

that the density is sufficiently smooth, such that it can be well-fitted by B-splines. The final

condition restricts the tails of the density.

4 Preliminary results

In this section we present two preliminary results for semi-parametric SVAR models that we

believe are useful more broadly. First, we provide a (uniform) local asymptotic normality

[(U)LAN] result for the semi-parametric SVAR model in (2).14 The primary difference with

existing results is that we explicitly perturb the non-parametric part of the model, i.e. the

densities ηk, whereas existing (U)LAN results for VARs hold this fixed (e.g. Hallin and Saidi,

2007). This extension is necessary for deriving the form of the score test proposed in this

paper and can be used in other applications. Second, we analytically derive the efficient score

function for the semi-parametric SVAR model, see e.g. van der Vaart (1998); Bickel et al.

(1998) for general discussions on efficient score functions. Readers who are mainly interested in

implementing the methodology of this paper can safely skip this section.

12The differentiability and continuity requirements at the end-points are one-sided.
13These assumptions are tailored to the specific density score estimator we propose in this paper. Nevertheless, in
principle, other density score estimators may be used. Inspection of the proofs reveals that any such estimator
which satisfies the conclusions of Lemma A.1 can be adopted.

14The uniformity here is over the finite dimensional parameters, γ = (α, β). The results in the present paper
only require uniformity over α, but the additional uniformity over β follows at essentially no additional cost.
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4.1 Uniform Local Asymptotic Normality

Let (γn)n∈N ⊂ Γ be such that γn → γ ∈ Γ, fix η ∈ H and put θ := (γ, η). Let Gk denote the

law on R corresponding to ηk (k = 1, . . . ,K) and define

˙H :=
K∏
k=1

˙Hk, ˙Hk :=

{
hk ∈ C1

b (λ) :

∫
hk dGk =

∫
hkιdGk =

∫
hkκdGk = 0

}
, (5)

where ι is the identity funcion, κ(z) = z2 − 1 (as defined above) and C1
b (λ) denotes the class of

real functions on R which are bounded, continuously differentiable and have bounded derivatives

λ-a.e.. Note that RLα+Lβ × ˙H is a linear subspace of RLα+Lβ ×L∞(λ)K . We make this into a

normed space by equiping it with the norm ∥(c, h)∥ := ∥c∥2+
∑K

k=1 ∥hk∥λ,∞ where ∥·∥2 denotes
the Euclidean norm.

For an arbitrary sequence (cn)n∈N ⊂ RLα+Lβ such that cn := (a′n, d
′
n)

′ → (a′, d′)′ =: c let

γ̃n := γn+cn/
√
n and for an arbitrary (hn)n∈N ⊂ ˙H with hn → h ∈ ˙H let η̃n := η(1+hn/

√
n).

Collect these parameters into θn := (γn, η) and θ̃n := (γ̃n, η̃n) respectively. Denote by pnθ the

density of Pn
θ with respect to λn and Λn

θ̃n/θn
the (conditional) log likelihood ratio:

Λn
θ̃n/θn

:= log

(
pn
θ̃n

pnθn

)
=

n∑
t=1

ℓθ̃n(Yt, Xt)− ℓθn(Yt, Xt) , (6)

where ℓθ(Yt, Xt) denotes the t-th contribution to the conditional log likelihood for the SVAR

model evaluated at θ. We note that this can be explicitly written as

ℓθ(Yt, Xt) = log |det(A(α, σ))|+
K∑
k=1

ηk(Ak•(α, σ)(Yt −BXt)) .

With this notation established we first derive the scores for the full vector of finite dimensional

parameters γ = (α, σ, b). The score functions with respect to the components αl, σl and bl are

ℓ̇θ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +

K∑
k=1

ζl,k,k (ϕk(Ak•Vθ,t)Ak•Vθ,t + 1) , (7)

ℓ̇θ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζl,k,k (ϕk(Ak•Vθ,t)Ak•Vθ,t + 1) , (8)

ℓ̇θ,bl(Yt, Xt) =
K∑
k=1

ϕk(Ak•Vθ,t)× [−Ak•DblXt] , (9)

where Vθ,t := Yt − BXt, A := A(α, σ), Dαl
(α, σ) := ∇αl

A(α, σ), Dσl
(α, σ) := ∇σl

A(α, σ),

Dbl = ∇blB, ζαl,k,j := [Dαl
(α, σ)]k•A

−1
•j , ζ

σ
l,k,j := [Dσl

(α, σ)]k•A
−1
•j and ϕk(z) := ∇z log ηk(z).

We collect these scores in the vector

ℓ̇θ(Yt, Xt) :=

((
ℓ̇θ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̇θ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̇θ,bl(Yt, Xt)

)Lb

l=1
,

)′
.
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Under assumption 3.1, we have the following ULAN result.15

Proposition 4.1 (ULAN): Suppose that assumption 3.1 holds. Then as n→ ∞,

Λn
θ̃n/θn

(Y n) = gn(Y
n)− 1

2
E
[
gn(Y

n)2
]
+ oPn

θn
(1), (10)

where the expectation is taken under Pn
θn

and

gn(Y
n) :=

1√
n

n∑
t=1

[
c′ℓ̇θn(Yt, Xt) +

K∑
k=1

hk(An,k•Vθn,t)

]
,

with An = A(αn, σn). Moreover, under Pn
θn
,

gn(Y
n)⇝ N (0,Ψθ(c, h)), Ψθ(c, h) := lim

n→∞
E
[
gn(Y

n)2
]
.

The corollary below follows from Le Cam’s first Lemma (e.g. van der Vaart, 1998, Example

6.5).

Corollary 4.1: If assumption 3.1 holds, then the sequences (Pn
θn
)n∈N and (Pn

θ̃n
)n∈N are mutu-

ally contiguous.

The importance of this result is that the semi-parametric SVAR model can be locally asymp-

totically approximated by a Gaussian shift experiment, uniformly in γ. This local approximation

can be exploited to derive the form of the score test below as well as its limiting distribution

under local alternatives, but can be more broadly used for other inference problems. One ex-

ample is a setting where an initial
√
n-consistent estimate for α is available, say by imposing

an additional identifying assumption, then the (U)LAN result may be used to obtain semi-

parametrically efficient parameter estimates similarly to as was done in Chen and Bickel (2006)

for the ICA model.16

4.2 Efficient score function

One of the key ingredients in our framework is the efficient score function for the parameter of

interest, α. Loosely speaking this is defined as the projection of the score function for α on the

orthogonal complement of the space spanned by the score functions for the nuisance parameters

(β, η) (e.g. Bickel et al., 1998; van der Vaart, 2002; Newey, 1990; Choi et al., 1996).

In the case of interest here, where the nuisance parameter contains both finite (β) and

infinite-dimensional (η) components, the efficient score function can be calculated in two steps:

(1) compute the projection of the score for γ = (α, β) on the orthocomplement of the space

spanned by the score functions for η, and (2) partition the resulting object into the components

corresponding to α and β and project the former onto the orthocomplement of the latter.

15The proof is based on verifying the conditions of Theorem 2.1.2 in Taniguchi and Kakizawa (2000), which is
due to Swensen (1985, Lemma 1).

16Constructing such an estimator is suggested in Fiorentini and Sentana (2022) based on a non-Gaussian identify-
ing assumption. This could be easily done based on the results in this paper, but in that set-up it would remain
vulnerable to weak deviations from the Gaussian density. Therefore the score testing approach developed below
should be preferred whenever assessing the uncertainty around parameters is required.
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We proceed according to this two-step procedure and now establish the form of the first

projection.

Lemma 4.1:Given Assumption 3.1 the efficient score function for γ in the semi-parametric

SVAR model Pn
Θ at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and η ∈ H is given

by ℓ̃n,θ(Y
n) =

∑n
t=1 ℓ̃θ(Yt, Xt), where

ℓ̃θ(Yt, Xt) =

((
ℓ̃θ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̃θ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̃θ,bl(Yt, Xt)

)Lb

l=1

)′

with components

ℓ̃θ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζαl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

ℓ̃θ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +

K∑
k=1

ζσl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

ℓ̃θ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl [(Xt − µ)ϕk(Ak•Vθ,t)− µ(ςk,1Ak•Vθ,t + ςk,2κ(Ak•Vθ,t))]

where Vθ,t = Yt − BXt, ζ
α
l,k,j := [Dαl

(α, σ)]k•A
−1
•j with Dαl

(α, σ) := ∂A(α, σ)/∂αl, ζ
σ
l,k,j :=

[Dσl
(α, σ)]k•A

−1
•j with Dσl

(α, σ) := ∂A(α, σ)/∂σl, Dbl := ∂B/∂bl, µ := vec(ιK , (ιp ⊗ (IK −B1 −
. . .−Bp)

−1c)), and τk := (τ1,k, τ2,k)
′ and ςk := (ς1,k, ς2,k)

′ are defined as

τk :=M−1
k

(
0

−2

)
, ςk :=M−1

k

(
1

0

)
where Mk :=

(
1 Eθ(Ak•Vθ,t)

3

Eθ(Ak•Vθ,t)
3 Eθ(Ak•Vθ,t)

4 − 1

)
.

The derivation of the efficient scores ℓ̃θ(Yt, Xt) follows along the same lines as in Amari and

Cardoso (1997); Chen and Bickel (2006); Lee and Mesters (2022a). The dependence on η comes

through (a) the log density scores ϕk(z) = ∇z log ηk(z), for k = 1, . . . ,K and (b) the third and

fourth order moments of ϵk in Mk.

For future reference, we partition

ℓ̃θ(Yt, Xt) =

(
ℓ̃θ,α(Yt, Xt)

ℓ̃θ,β(Yt, Xt)

)
,

where ℓ̃θ,α(Yt, Xt) = (ℓ̃θ,αl
(Yt, Xt))

Lα
l=1 and ℓ̃θ,β(Yt, Xt) =

(
(ℓ̃θ,σl

(Yt, Xt))
Lσ
l=1, (ℓ̃θ,bl(Yt, Xt))

Lb
l=1

)′
.

Based on the efficient scores, we define the efficient information matrix for γ by

Ĩn,θ :=
1

n

n∑
t=1

E ℓ̃θ(Yt, Xt)ℓ̃
′
θ(Yt, Xt) with partitioning Ĩn,θ =

(
Ĩn,θ,αα Ĩn,θ,αβ

Ĩn,θ,βα Ĩn,θ,ββ

)
. (11)

With Lemma 4.1 and the efficient information matrix in place, we can define the efficient

score function for α with respect to β and η. In particular this score can be computed by the

13



second projection (e.g. Bickel et al., 1998, p. 74)

κ̃n,θ(Yt, Xt) := ℓ̃θ,α(Yt, Xt)− Ĩn,θ,αβ Ĩ
−1
n,θ,ββ ℓ̃θ,β(Yt, Xt) , (12)

as long as Ĩθ,ββ is positive definite. The corresponding efficient information matrix is given by

Ĩn,θ := Ĩn,θ,αα − Ĩn,θ,αβ Ĩ
−1
n,θ,ββ Ĩn,θ,βα . (13)

We note that the efficient score function κ̃θ(Yt, Xt) and the efficient information matrix Ĩn,θ can
be evaluated at any parameters θ = (α, β, η) and variables (Yt, Xt).

Building tests or estimators based on the efficient score function is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart (2002).

A crucial difference in our setting is that the efficient information matrix might be singular.

For instance, if more than one component of ϵt follows an exact Gaussian distribution, Ĩn,θ is

singular, see Lemma S11 in Lee and Mesters (2022b). The singularity plays an important role

in the construction of the semi-parametric score statistic below.

5 Inference for potentially non-identified parameters

In this section we consider conducting inference on α without assuming that α is locally iden-

tified. Specifically and in contrast to the existing literature, we do not assume that sufficiently

many components of ϵt have a non-Gaussian distribution. Only Assumptions 3.1 and 3.2 are

imposed, under which α may not be (locally) identified.

Our approach is based on testing hypotheses of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α ̸= α0 , β ∈ B , η ∈ H . (14)

The main idea is to consider test statistics whose computation does not require evaluation

under the alternative H1, thus avoiding the need to consistently estimate α. Clearly, based

on the trinity of classical tests, the score test is the only viable candidate and we will proceed

by constructing score tests in the spirit of Neyman-Rao, but adapted for the semi-parametric

setting (e.g. Choi et al., 1996). Such test statistics can then be inverted to yield a confidence

region for α with correct coverage. This confidence region then forms the basis for constructing

confidence intervals for the structural impulse responses as we show in the next section.

In our setting, we rely on the efficient score functions for the SVAR model to construct

test statistics. The functional form of the efficient scores ℓ̃θ(yt, xt) was analytically derived in

Lemma 4.1. These scores can be estimated by replacing the population quantities by sample

equivalents. We have

ℓ̂γ(Yt, Xt) =

((
ℓ̂γ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̂γ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̂γ,bl(Yt, Xt)

)Lb

l=1

)′
(15)
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with components

ℓ̂γ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ℓ̂γ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ℓ̂γ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl

[
(Xt − X̄n)ϕ̂k,n(Ak•Vγ,t)− X̄n(ζ̂k,1Ak•Vγ,t + ζ̂k,2κ(Ak•Vγ,t))

]
where Vγ,t = Yt−BXt and X̄n = 1

n

∑n
t=1Xt.

17 The estimates for the τk’s and ζk’s are obtained

by replacing the population moments defined in Lemma 4.1 by their sample counterparts: τ̂k =

M̂k(0,−2)′ and ζ̂k = M̂k(1, 0)
′, where

M̂k :=

(
1 1

n

∑n
t=1(Ak•Vγ,t)

3

1
n

∑n
t=1(Ak•Vγ,t)

3 1
n

∑n
t=1(Ak•Vγ,t)

4 − 1

)
. (16)

Finally, the estimates of ℓ̂γ(Yt, Xt) depend on ϕ̂k,n(·) which is the estimate for the log density

scores ϕk(z) = ∇z log ηk(z). In practice, we estimate these density scores using B-splines fol-

lowing the methodology of Jin (1992) and Chen and Bickel (2006). To set this up, let bk,n =

(bk,n,1, . . . , bk,n,Bk,n
)′ be a collection of Bk,n cubic B-splines and let ck,n = (ck,n,1, . . . , ck,n,Bk,n

)′

be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i ∈ [Bk,n]. The knots of the splines,

ξk,n = (ξk,n,i)
Kk,n

i=1 are taken as equally spaced in [ΞL
k,n,Ξ

U
k,n].

18

Our estimate for the log density score ϕk is given by

ϕ̂k,n(z) := ψ̂′
k,nbk,n(z) , (17)

where

ψ̂k,n := −

[
1

n

n∑
t=1

bk,n(Ak•Vγ,t)bk,n(Ak•Vγ,t)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vγ,t) . (18)

This shows that computing the log density score estimate (17) only requires computing the

B-spline regression coefficients ψ̂k,n in (18).

Having defined all the components of the efficient score estimates we may estimate the

efficient information matrix for γ by

În,γ =
1

n

n∑
t=1

ℓ̂γ(Yt, Xt)ℓ̂γ(Yt, Xt)
′ . (19)

With the estimates for the efficient scores and information for γ, we can estimate the efficient

score and information for α. This amounts to replacing the population score κ̃n,θ(Yt, Xt) and

17Note that the components are now indexed by γ as the score estimates no longer depend on η, recalling that
θ = (γ, η).

18In practice we take these points as the 95th and 5th percentile of the samples {Ak•Vt}ni=1 adjusted by log(log(n)),
where A = A(α, σ) and Vt = Yt −BXt for a given parameter choice γ = (α, β).

15



information Ĩn,θ in (12) and (13) by their sample counterparts. We have that

κ̂n,γ(Yt, Xt) = ℓ̂γ,α(Yt, Xt)− În,γ,αβ Î
−1
n,γ,ββ ℓ̂γ,β(Yt, Xt) (20)

and

În,γ = În,γ,αα − În,γ,αβ Î
−1
n,γ,ββ În,γ,βα . (21)

Since the information matrix may be singular, we need to make an adjustment. Specifically,

given the truncation rate νn defined in Assumption 3.2, we define a truncated eigenvalue version

of the information matrix estimate as

Ît
n,γ = ÛnΛ̂n(νn)Û

′
n , (22)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of În,γ on the main diagonal

and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let {λ̂n,i}Li=1

denote the non-increasing eigenvalues of În,γ , then the (i, i)th element of Λ̂n(νn) is given by

λ̂n,i1(λ̂n,i ≥ νn). Similar truncation schemes are discussed for reduced rank Wald statistics in

Dufour and Valery (2016).

Based on this, we define the semi-parametric score statistic for the SVAR model as follows.

Ŝn,γ :=

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)′

Ît,†
n,γ

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)
, (23)

where Ît,†
n,γ is the Moore-Penrose pseudo-inverse of Ît

n,γ . We note that the test statistic can be

evaluated at any γ = (α, β). To evaluate the null hypothesis (14) we will use α = α0, i.e. fixing

the unidentified parameters under the null, and β̂n, some
√
n-consistent estimate for the finite

dimensional nuisance parameters.

For such parameter choices, the limiting distribution of Ŝn,γ is derived in the following

theorem.

Theorem 5.1: Let γn = (αn, β) → γ with each γn, γ in Γ and let θn := (γn, η) → (γ, η) = θ

for some η ∈ H. Suppose that under Pn
θn
, β̂n is a

√
n−consistent estimator of β. Define

Sn = n−1/2CZL2 for some C > 0 and let β̄n be a discretized version of β̂n which replaces its

value with the closest point in Sn. Define γ̄n = (αn, β̄n), suppose that assumptions 3.1 and 3.2

hold. Let rn = rank(Ît
n,γ̄n) and denote by cn the 1− a quantile of the χ2

rn distribution, for any

a ∈ (0, 1). Then if θ̃n := (αn, β̃n, η̃n) where
√
n∥β̃n − β∥ = O(1) and η̃n = η(1 + hn/

√
n) with

hn in some compact ˙H⋆ ⊂ ˙H ,

lim
n→∞

Pn
θ̃n
(Ŝn,γ̄n > cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0.

The theorem shows that the efficient score test (23) is asymptotically correctly sized when

we choose the critical value cn to correspond to the 1−a quantile of the chi squared distribution

with degrees of freedom equal to the rank of the truncated efficient information matrix. Several
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comments are in order.

First, we do not impose which estimator β̂n should be adopted as the theorem holds for

any
√
n-consistent estimator. However, given that the efficient scores of γ need to be computed

anyway, it is attractive to rely on one-step efficient estimates for β = (σ, b) as discussed in

van der Vaart (1998, Section 5.7), as this typically improves the (finite sample) power of the

test.19 That said, conventional OLS estimates for the regression coefficients b = vec(B) and the

variance parameters σ can also be used.

Second, the score statistic is evaluated at the discretised estimator β̄n, which takes the

estimate β̂n and replaces its value with the closest point in Sn = n−1/2CZL2 . Note that this

changes each coordinate of β̂n by a quantity which is at most Op(n
1/2), hence the

√
n-consistency

is retained by discretization. Since the constant C can be chosen arbitrarily small this change

has no practical relevance for the implementation of the test.20 Discretization is a technical

device due to Le Cam (1960) that allows the proof to go through under weak conditions, see Le

Cam and Yang (2000, p. 125) or van der Vaart (1998, pp. 72 – 73) for further discussion.

Third, the practical choice for the eigenvalue truncation rate νn, which theoretically needs

to satisfy Assumption 3.2, appears to have little effect on the finite sample results. In our

simulation studies and empirical applications, we always truncate at machine precision which

implies that Ît,†
n,γ is similar to Î†

n,γ , the Moore-Penrose inverse of În,γ . Experimenting with

different, but small, truncation rates appears to matter little in practice.

Fourth, if Ĩθ has full rank, the singularity adjusted score statistic is asymptotically equivalent

to its non-singular version that is computed with Î−1
n,γ̄n instead of Ît,†

n,γ̄n ; it is well known that the

former is (locally asymptotically) optimal in a number of settings.21 Moreover, if the rank of Ĩθ
is positive, the singularity adjusted score statistic is (locally asymptotically) minimax optimal,

as can be shown by an argument analogous to that given in Lee (2022).

Finally, the theorem is stated along (local) sequences of parameter values θ̃n. By standard

arguments one can translate such limit statements along sequences to limit statements that

hold uniformly over certain sets. In the present case a uniform statement would hold over,

for example, sets of the form Pn := {Pn
α,β+d/

√
n,η(1+h/

√
n)

: α ∈ A⋆, ∥d∥ ≤ M,h ∈ ˙H⋆} where

A⋆ ⊂ A, ˙H⋆ ⊂ ˙H are compact, with ˙H as defined in (5), and M ∈ (0,∞).

Confidence set

A confidence set for the parameters α can be constructed by inverting the efficient score test

Ŝn,γ over an arbitrarily fine grid of values for α. Formally, for any a ∈ (0, 1) we define the 1− a

confidence set estimate for α as

Ĉn,1−a := {α ∈ A : Sn,(α,β̄n)
≤ cn,α} ,

19See the simulation results of section 7.
20Indeed, in practice, we always discretise at machine precision, see Algorithm 1 below.
21This can be seen by comparison of the asymptotic local power of this test with the power bound in the
appropriate limit experiment. For example, see Theorem 25.44 in van der Vaart (1998) for the one-dimensional
one-sided case; optimality amongst unbiased tests in the two-sided case can be shown similarly.
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where cn,α the 1− a quantile of the χ2
rn,α

distribution and rn,α = rank(Ît
n,(α,β̄n)

). The following

corollary establishes that the confidence set Ĉn,1−a has asymptotically correct coverage.

Corollary 5.1: Let γn, θn, θ̃n, β̂n, β̄n and γ̄n be as in Theorem 5.1 and suppose that assump-

tions 3.1 and 3.2 hold. Then,

lim
n→∞

Pn
θ̃n

(
αn ∈ Ĉn,1−a

)
≥ 1− a. (24)

The confidence set Ĉn,1−a is the main building block for constructing confidence bands for

the structural functions in the next section. In addition, this set may be of interest in its

own right as in some models the coefficients α have a direct structural interpretation, see for

instance the labour supply-demand model of Baumeister and Hamilton (2015) that is considered

in Section 8.

We finish this section by summarising the practical implementation for the construction of

the confidence set, which naturally includes the implementation for the efficient score test.

Algorithm 1: Confidence set for α

(i) Choose a set A;

(ii) For each α ∈ A:

1 Obtain estimates β̂n = (σ̂n, b̂n), with bn = vec(Bn), and set V̂t = Yt − B̂nXt;

2 For k = 1, . . . ,K, compute the log density scores ϕ̂k(A(α0, σ̂n)k•V̂t) from (17);

3 Compute the efficient scores ℓ̂γ̂n(Yt, Xt) from (15) and the information matrix În,γ̂n

from (19) using γ̂n = (α0, β̂n);

4 Compute κ̂n,γ̂n(Yt, Xt) and În,γ̂n from (20) and (21).

5 Compute the score statistic Ŝn,γ̂n from (23) and accept H0 : α = α0 if Ŝn,γ̂n ≤ cn,

where cn is the 1− a quantile of the χ2
rn distribution with rn = rank(Ît

n,γ̂n
).

(iii) Collect the accepted values for α to form Ĉn,1−a.

The algorithm highlights that the computation costs for computing the confidence set are

modest. In fact, the costs are similar to those for constructing standard weak instrument robust

confidence sets, such as those based on the Anderson-Rubin statistic for instance (e.g. Andrews

et al., 2019). The only difference is that we require K regression estimates (to estimate the log

density scores) as opposed to one.

6 Robust inference for smooth functions

In this section we discuss the methodology for conducting robust inference on smooth functions

of the finite dimensional parameters γ = (α, β). The main functions of interest are the structural

impulse response functions (sIRF), but also forecast error variance decompositions and forecast

scenarios can be considered within the general framework that we develop (e.g. Kilian and

Lütkepohl, 2017). The main difference with the preceding section is that we are now explicitly
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interested in conducting inference on functions of both α and β, where we recall that the

parameters β are
√
n-consistently estimable, but α may not be consistently estimable due to a

potential lack of identification.

We define the general function of interest by

g(α, β) : Dg → Rdg , with Dg ⊃ A× B , (25)

where Dg is the domain of g and dg is some integer. The following assumption restricts the

class of functions that we consider.

Assumption 6.1: g : Dg → Rdg is continuously differentiable with respect to β and the Jacobian

matrix Jγ := ∇β′g(α, β) has full column rank on Dg.

The differentiability condition allows for the application of a uniform delta-method (cf The-

orem A.2 in the appendix), whereas the rank condition ensures that no further degeneracy in

the asymptotic distribution occurs, apart from that caused by α being possibly non-identified.

For concreteness the next example provides the details for a vector of structural impulse

response functions.

Example 6.1: Consider the vector that collects all sIRF at horizon l

IRF(l) = g(α, β) := vec
(
DB(b)lD′A(α, σ)−1

)
,

where

D :=
[
IK 0K×K(p−1)

]
, and B(b) :=



B1 B2 · · · Bp−1 Bp

IK 0 · · · 0 0

0 IK · · · 0 0
...

...
. . .

...
...

0 0 · · · IK 0


.

In our general notation we have dg = K2 and we note that, given Assumption 3.1, this function

is continuously differentiable with respect to β. The Jacobian Jγ ∈ RK2×Lβ has the form Jγ =

[Jγ,1, Jγ,2] where

Jγ,1 :=
[
(A(α, σ)−1)′ ⊗ IK

] { h−1∑
j=0

[
D(B(b)′)h−1−j ⊗ (DB(b)jD′)

]}
Jγ,2 :=

[
IK ⊗DB(b)hD′] ∇σ vec(A(α, σ)

−1) .

Similar details can be worked out for forecast error variance decompositions and other

structural functions of interest.

In general, our objective is to construct a valid 1− q confidence set for g(α, β). Intuitively,

we proceed in two steps: first we construct a valid confidence set for α using the methodology of

the previous section, and second, for each included α we construct a confidence set for g(α, β̂n).

The union over the latter sets provides the final set. Overall, this two-step Bonferroni approach
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is similar to the approach utilised by Granziera et al. (2018) and Drautzburg and Wright (2021).

Formally, let q1, q2 ∈ (0, 1) such that q1 + q2 = q ∈ (0, 1). In the first step we construct

a 1 − q1 confidence set Ĉn,1−q1 for α using Algorithm 1. The asymptotic validity of this set

was proven in Corollary 5.1. Second, for each α ∈ Ĉn,1−q1 we compute ν̂α,n := g(α, β̂n). The

confidence set for ν̂α,n is given by

Ĉn,g,α,1−q2 :=
{
ν : n(ν̂α,n − ν)′V̂ −1

n,α(ν̂α,n − ν) ≤ cq2

}
, (26)

where ν := g(α, β) and V̂n,α = Jγ̂Σ̂nJ
′
γ̂ , with γ̂ = (α, β̂n) and Σ̂n a consistent estimate for the

asymptotic variance of β̂n. The critical value cq2 corresponds to the 1− q2 quantile of a χ2
1−q2

random variable. The following proposition establishes the conditions on the estimates β̂n that

ensure that the confidence set (26) is valid.

Proposition 6.1: Suppose that assumption 6.1 holds and let γn, θn, θ̃n be as in Theorem 5.1.

Suppose β̂n is a sequence of estimates such that

√
n(β̂n − β̃n)

Pn
θ̃n⇝ N (0,Σ) , with Σ positive definite,

and Σ̂n is a sequence of estimates such that Σ̂n

Pn
θ̃n−−→ Σ, then the confidence set Ĉn,g,α in (26)

satisfies

lim
n→∞

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g,αn,1−q2

)
= 1− q2 . (27)

The proposition formally establishes that if β̂n is asymptotically normal along the local

sequences θ̃n, then the confidence set Ĉn,g,α is valid. The proof of this proposition is a straight-

forward application of the (uniform) delta method. Under Assumption 3.1 both OLS and

one-step efficient estimates for the parameters β satisfy the required conditions on β̂n. That is,

the proposition can be restated for such specific estimators after requiring Assumption 3.1 to

hold. Moreover, conventional variance estimators for Σ can be adopted to satisfy the consistency

of Σ̂n, see Kilian and Lütkepohl (2017, Chapter 9) for more details.

The final confidence set for g(α, β), i.e. Ĉn,g, is formed by taking the union of the sets

Ĉn,g,α,1−q2 over α ∈ Ĉn,1−q1 . Formally, we consider

Ĉn,g :=
⋃

α∈Ĉn,1−q1

Ĉn,g,α,1−q2 . (28)

The confidence set Ĉn,g is a valid 1− q confidence set as we formally establish in the following

Corollary.

Corollary 6.1: Let θ̃n be as in Theorem 5.1, Ĉn,1−q1 satisfies Corollary 5.1 and Ĉn,g,αn,1−q2

satisfies Proposition 6.1, then

lim inf
n→∞

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g

)
≥ 1− q .
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This Corollary requires only the conclusions of Corollary 5.1 and Proposition 6.1.22 For

convenience we summarise the practical implementation in the following algorithm.

Algorithm 2: Robust confidence sets for smooth functions

(i) Obtain the confidence set Ĉn,1−q1 for α using Algorithm 1;

(ii) For each α ∈ Ĉn,1−q1

(a) Estimate β̂n and Σ̂n;

(b) Compute V̂n,α = Jγ̂Σ̂J
′
γ̂ with Jγ̂ and γ̂ = (α, β̂n)

(c) Construct the confidence set Ĉn,g,α,1−q2 as in (26);

(iii) Construct Ĉn,g from (28).

As is demonstrated in the subsequent section, for structural impulse responses this approach

often provides confidence sets with shorter average length when compared to alternative robust

confidence set constructions proposed in the literature.

7 Finite sample performance

This section presents the results from a collection of simulation studies that were designed to

evaluate the size and power of the proposed inference procedures. First, we evaluate the size

and power of the score test for α, as discussed in Section 5, and compare its performance to

existing approaches. Second, we evaluate the coverage and length of the confidence intervals

for structural impulse responses using the methodology of Section 6.

7.1 Size of semi-parametric score test

We start by evaluating the empirical rejection frequencies of the score test Ŝn,γ̂n for the semi-

parametric SVAR model. We consider SVAR(p) specifications with p = 1, 2, 4, 8, 12 lags, K =

2, 3 variables and sample sizes T = 200, 500, 1000. We simulate the SVAR(p) model for ten

different choices for the distributions of the structural shocks ϵk,t with k = 1, . . . ,K. The

density functions that we consider and their abbreviated names are reported in Table 1. We

standardise the draws to have mean zero and unit variance.

We parametrise the contemporaneous effect matrix by A(α, σ)−1 = Σ1/2(σ)R(α) where

Σ1/2(σ) is lower triangular and the rotation matrix R(α) is parametrised using the trigonometric

transformation as in Section 2. In the bivariate case, Lα = 1 and we choose α0 = π/5 for the

data-generating process. In the trivariate SVAR, Lα = 3 and we use α0 = (3π/5, 2π/5,−π/5)′.
Furthermore, we choose Σ1/2 such that the diagonal elements of Σ1/2Σ1/2′ are equal to one,

σii = 1 for i = 1, . . . ,K, and its off-diagonal elements are equal to σij = 0.2 for |i− j| = 1 and

σij = 0.1 for |i− j| = 2 (for K = 3). The SVAR coefficient matrices, A1, . . . , Ap are generated

22These are proven under Assumptions 3.1 and 3.2 which, we re-iterate, do not impose that the structural shocks
have non-Gaussian distributions.

21



Table 1: Distributions for Structural Shocks

Abbreviation Name Definition

N (0, 1) Gaussian 1√
2π

exp
(
−1

2x
2
)

t(ν), ν = 15, 10, 5 Student’s t
Γ( ν+1

2 )
√
νπΓ( ν

2 )

(
1 + x2

ν

)(− ν+1
2 )

SKU Skewed Unimodal 1
5N
(
0, 1
)
+ 1

5N
(
1
2 , (

2
3)

2
)
+ 3

5N
(
13
12 , (

5
9)

2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)
+ 1

3N
(
0, ( 1

10)
2
)

BM Bimodal 1
2N
(
− 1, (23)

2
)
+ 1

2N
(
1, (23)

2
)

SPB Separated Bimodal 1
2N
(
− 3

2 , (
1
2)

2
)
+ 1

2N
(
3
2 , (

1
2)

2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)
+ 1

4N
(
3
2 , (

1
3)

2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5)

2
)
+ 9

20N
(
6
5 , (

3
5)

2
)
+ 1

10N
(
0, (14)

2
)

Note: The table reports the distributions that are used in the simulation studies in section 7 to draw the structural
shocks. The mixture distributions are taken from Marron and Wand (1992), see their table 1.

based on full K ×K matrices with elements drawn from a N (0, 1) distribution.23 We use 400

burn-in periods to simulate the SVAR(p) model and use M = 2, 500 Monte Carlo replications.

Tables 2-3 report the empirical rejection frequencies of the semi-parametric score test defined

in Section 5 for testing the hypothesis H0 : α = α0 vs. H1 : α ̸= α0. The test is implemented

following steps 1-5 of Algorithm 1 for α = α0 and using B = 6 cubic B-splines for the

estimation of the log density scores. Table 2 reports the results when estimating the nuisance

parameters β using OLS while Table 3 reports the results from using the one-step efficient

estimates for β which update the OLS estimates using one Gauss-Newton iteration (van der

Vaart, 1998, Section 5.7). All tests are conducted at 5% nominal size.

The first panel in Table 2 reports the OLS based results for T = 200. We find that for

the SVAR(p) with K = 2 variables, the size of the test is generally very close to the nominal

size of 5%. Importantly, this holds even when the shocks are normally distributed and α is not

identified. Further, the size remains correct for all densities that are close to Gaussian, such as

the t(15) and the skewed-unimodal density. For more complicated densities such as the seperate

bi-modal density, some under-rejection is observed.

As the number of parameters in the SVAR increases with the lag size p or the number of

variables K, the rejection rates increase and the test starts to over-reject when T = 200. For

an increase in the number of lags, rejection rates only increase slightly, but when the number

of variables increases, the number of parameters grows quadratically and hence the rejection

rates show a more substantial increase. Importantly, this holds regardless of the true underlying

density considered and is caused by the rather imprecise OLS estimates that are plugged into

the score test statistic.

23To ensure stationarity of the SVAR(p) model, the coefficient matrices are transformed using the approach of
Ansley and Kohn (1986).
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When we increase the sample size (T = 500, T = 1000) these size distortions quickly

disappear and the rejection frequencies converge to the nominal size of the test. Thus, even in

the case of an SVAR with a larger lag length, the testing procedure gives correct inference, as

long as the sample size is not too small. We note that we continue to see under-rejection for

some of the densities far from Gaussianity.

Table 3 reports the empirical rejection frequencies for the same simulation design, but now

one-step efficient estimates are used for the nuisance parameters. The one-step efficient estimates

of β are obtained by updating the OLS estimates of the nuisance parameters β towards the

efficient estimates by one Gauss-Newton iteration. Comparing the rejection rates in Table 3

with those reported in the case of OLS estimates of the nuisance parameters in Table 2, shows

that using the one-step estimates yields substantial improvements in the size of the test in small

samples, especially when the number of lags is large. For example, for the case of an SVAR

with three variables and 12 lags, the size of the rejection rates are very close to the nominal

size of 5%. Further, we note that using one-step efficient updates of β also remedies the under-

rejection observed for some of the Gaussian mixture distributions in Table 2. As the sample size

grows, the difference between Tables 2-3 is less pronounced and the procedures yield comparable

rejection rates.

Overall, we may conclude that the empirical size of the test is close to the nominal size

regardless of the choice for the true densities, i.e. Gaussian, close to Gaussian, or far from

Gaussian. Finite sample size distortions can be largely overcome by using one-step efficient

estimates.

7.2 Comparison to alternative approaches

Next, we compare the performance of the semiparametric score test to a variety of alternative

methods that have been proposed in the literature based on size and power. We distinguish

between two types of tests: (i) tests that do not fix α under the null (e.g. Wald and Likelihood

ratio type tests) and (ii) tests that fix α under the null (e.g. score type tests). Clearly, from

the discussion in Section 2 it follows that we expect the tests in the first category to perform

poorly as they are vulnerable to identification failures.24

In the first category, we consider the pseudo maximum likelihood Wald test (WPML) of

Gouriéroux et al. (2017) which we implement using one (standardised) t(7) density and a (stan-

dardised) t(12) density for the second shock, as in Gouriéroux et al. (2017). We additionally

consider two tests based on the work of Lanne and Luoto (2021): these are the GMM Wald

(WLL) and distance metric (DMLL) tests based on higher (third & fourth) order moment con-

ditions.

In the second category we consider four tests. Firstly we have the pseudo maximum like-

lihood Lagrange Multiplier test (LMPML) that is based on work of Gouriéroux et al. (2017).

This test is based on the score of the pseudo log likelihood which we take, following Gouriéroux

et al. (2017), to be the Student’s t with degrees of freedom fixed at ν = 7 and ν = 12 for the

24Simulation evidence in Lee and Mesters (2022a) has shown that tests that do not fix α under the null often
show severe over-rejection in ICA models when the errors are close to Gaussian.
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Table 2: Empirical rejection frequencies using OLS Estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 4.76 5.48 4.72 4.74 3.98 4.22 2.32 2.40 4.26 2.04
2 2 5.04 5.06 5.56 4.84 4.30 4.52 2.38 2.50 3.86 1.60
2 4 5.00 5.80 5.76 5.42 4.16 4.86 2.72 3.00 3.96 1.78
2 8 6.40 7.00 6.44 5.76 5.38 5.58 3.64 3.28 5.46 2.12
2 12 7.42 7.20 7.30 7.10 6.30 6.22 4.06 4.14 6.16 4.02

3 1 5.38 5.80 5.56 7.04 6.22 6.64 5.68 4.54 5.64 4.68
3 2 6.22 6.66 7.12 7.52 5.92 5.26 5.26 4.36 5.76 4.56
3 4 8.12 7.70 8.88 8.22 7.28 4.88 5.22 3.92 7.16 3.80
3 8 12.16 12.78 11.90 12.58 8.82 7.44 6.84 5.10 9.48 6.24
3 12 16.98 17.32 16.62 15.54 11.32 10.32 10.38 7.94 14.10 8.92

T = 500

2 1 4.48 4.54 4.90 3.98 3.40 4.48 1.60 1.50 3.42 1.26
2 2 4.56 4.66 4.92 4.16 3.80 4.92 1.78 1.76 3.06 1.70
2 4 4.88 4.90 4.94 4.14 3.76 5.50 2.40 2.60 2.88 1.48
2 8 5.48 5.56 4.84 5.42 4.64 6.06 2.94 2.68 4.26 1.24
2 12 6.16 6.04 6.26 5.34 5.54 6.84 3.14 4.00 4.56 1.90

3 1 5.16 5.54 6.00 5.76 5.46 5.96 5.56 4.94 5.14 5.30
3 2 5.58 5.88 6.62 6.56 5.34 5.30 5.26 4.78 5.00 4.68
3 4 6.66 6.36 6.48 6.52 6.16 4.76 4.62 4.30 5.72 4.10
3 8 7.82 8.06 8.20 8.90 7.86 5.50 4.76 3.48 6.18 4.78
3 12 11.06 9.80 10.98 9.96 8.76 6.00 5.70 4.20 7.12 5.18

T = 1, 000

2 1 4.76 4.46 4.36 3.60 3.98 4.66 1.18 1.30 3.04 1.26
2 2 5.40 4.32 4.40 4.08 3.72 4.90 1.64 1.50 3.42 1.32
2 4 4.64 4.64 5.12 4.06 3.86 4.96 1.72 1.92 3.08 1.50
2 8 5.56 4.48 4.66 4.42 4.26 6.40 2.30 2.18 3.52 1.78
2 12 5.26 5.24 5.12 4.74 5.04 7.06 2.94 2.80 3.54 2.24

3 1 5.04 4.92 4.76 4.80 4.72 5.34 4.98 4.72 4.06 4.92
3 2 4.98 5.22 5.64 5.18 5.58 5.60 5.14 4.62 4.72 4.18
3 4 6.16 5.28 5.72 5.24 5.82 5.16 4.80 4.40 4.74 4.68
3 8 6.08 6.80 6.58 6.60 6.34 4.86 5.02 5.08 4.72 4.54
3 12 6.56 7.22 7.30 7.08 7.62 6.48 5.28 5.40 4.60 4.30

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters
β are estimated by OLS. The columns correspond to different choices for the distributions of the structural
shocks, ϵk,t for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on
M = 5, 000 Monte Carlo replications.
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Table 3: Empirical rejection frequencies using One-step Estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 5.92 6.56 5.80 5.36 5.34 4.62 4.84 5.46 4.86 4.88
2 2 5.96 5.18 5.74 5.48 4.90 4.86 5.04 5.38 4.20 4.70
2 4 5.06 4.68 4.88 4.92 4.20 4.08 5.18 5.08 4.44 5.16
2 8 4.36 3.98 4.62 4.18 4.36 4.02 5.76 6.18 4.08 5.76
2 12 3.76 3.88 4.08 3.68 4.24 3.24 5.44 6.64 3.62 5.98

3 1 7.26 7.70 7.62 7.36 7.04 6.66 6.50 6.06 6.26 5.60
3 2 7.20 7.74 8.08 8.10 6.24 7.50 6.22 6.86 6.78 6.08
3 4 6.30 7.02 7.48 7.36 6.92 6.30 6.20 6.44 6.12 5.54
3 8 3.96 4.68 4.80 5.40 4.72 4.32 3.30 4.28 4.42 3.82
3 12 2.30 2.42 2.22 2.90 2.08 2.16 2.64 2.16 2.44 2.96

T = 500

2 1 6.40 6.06 6.44 5.26 5.08 4.72 5.62 5.70 5.02 4.46
2 2 5.98 5.98 6.30 5.60 5.06 4.44 5.90 6.12 4.62 5.96
2 4 6.30 5.62 5.50 5.36 4.86 4.86 5.86 6.38 4.04 6.04
2 8 5.72 4.98 5.62 5.78 4.96 5.18 6.40 6.76 4.92 6.64
2 12 6.00 5.34 6.02 5.02 4.98 5.00 6.18 7.54 4.54 7.78

3 1 8.50 8.36 8.86 7.04 5.82 6.06 5.78 6.02 5.98 6.06
3 2 7.80 8.22 8.22 7.32 6.04 6.70 5.94 5.38 5.70 5.80
3 4 8.60 8.20 7.62 7.50 6.58 5.98 5.98 6.34 6.38 6.40
3 8 8.20 7.62 8.34 8.24 6.86 7.30 7.02 7.96 6.62 6.22
3 12 7.98 8.00 8.04 7.98 6.02 6.90 6.86 7.70 6.14 6.44

T = 1, 000

2 1 6.30 6.10 6.00 5.40 5.34 4.42 5.26 5.92 5.04 5.18
2 2 6.94 5.90 5.80 5.90 5.02 4.68 5.52 6.40 5.02 5.96
2 4 5.90 6.22 6.12 5.90 4.74 4.70 5.68 5.94 4.22 5.88
2 8 6.56 5.66 5.44 5.88 4.70 5.06 5.80 6.08 4.78 6.64
2 12 5.98 6.20 5.86 5.78 4.98 4.60 6.38 6.28 4.52 7.34

3 1 8.16 7.34 7.58 6.64 5.08 5.46 5.48 4.90 5.22 4.86
3 2 8.02 7.82 8.12 6.48 6.02 6.12 5.60 5.56 5.00 4.76
3 4 9.30 7.78 7.94 6.62 5.94 6.36 6.10 5.68 5.56 6.12
3 8 8.24 8.56 7.64 8.10 6.12 6.74 6.58 6.92 5.80 7.10
3 12 7.50 8.32 8.42 7.46 6.56 8.32 6.96 7.96 5.80 6.90

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters β
are estimated by the one-step efficient procedure. The columns correspond to different choices for the distributions
of the structural shocks, ϵk,t for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are
computed based on M = 5, 000 Monte Carlo replications.

25



first and second shocks respectively.25 Secondly, we consider the LM test corresponding to the

GMM setup of Lanne and Luoto (2021) (LMLL). Lastly, we compare to the recently proposed

robust GMM methods of Drautzburg and Wright (2021). We include both tests that they pro-

pose. The first is based on the S-statistic of Stock and Wright (2000) which sets the cross third

and fourth order moments to zero (SDW). Second, we include their non-parametric test which

is based on Hoeffding (1948) and Blum et al. (1961) and sets all higher order cross moments

to zero (BKRDW). The SDW has the benefit that it does not require a full independence as-

sumption, whereas the BKRDW test, similarly to our semi-parametric score test, requires full

independence of the structural shocks. We implement the SDW and BKRDW tests using the

bootstrap procedure described in Drautzburg and Wright (2021).

To evaluate the finite-sample performance, we focus on an SVAR(1) model with K = 2

variables and a sample size of T = 500. We use the same parametrisation and parameter values

as described in the previous subsection to generate the data. However, different to the previous

simulation study evaluating the size of the score test, we report results both for the case where

the structural shocks ϵ1,t, ϵ2,t are identically distributed, but also for the case where the first

shock is fixed to have a Gaussian distribution while the distribution of the second structural

shock varies. Note that in the latter case, theoretically non-Gaussianity can still be used to

identify the parameters of the SVAR if the second structural shock does not follow a Gaussian

distribution. However, identification is generally weaker in this case.

Size comparison

Table 4 compares the size of the different testing procedures. The first panel reports the results

for the case where the two structural shocks, ϵ1,t, ϵ2,t are drawn from the same (non-Gaussian)

distribution while the second panel reports the results where ϵ1,t is fixed to have a Gaussian

distribution.

First as expected, the tests in group (i) — WPML, WLL and DMLL — tend to perform very

poorly, with the simulation results demonstrating both substantial over-rejection and extremely

conservative performance, depending on the test and distribution pair. This leads to the strong

recommendation to avoid tests that are not robust to weak deviations from Gaussian densities.

Overall, all tests in group (ii) perform much better, yet there are some differences that

are worth noting. First, similarly as before the rejection rates for the two efficient score tests

(Ŝ) are close to the nominal size of 5%, regardless of the distribution of the structural shocks

(as in table 3). This holds regardless whether the second structural shock is Gaussian or not.

Next, consider the LM test based on Gouriéroux et al. (2017) (LMPML): in the case with one

Gaussian density, this test is able to control size for all choices of the second density considered.

In the case where both shocks are drawn from the same distribution, this test is able to control

size for most of the distributions, however over-rejects somewhat for the BM, SPB and TRI

distributions. The LM test based on Lanne and Luoto (2021) (LMLL) displays slightly worse

performance, with over-rejections for about half of the distributions considered. Interestingly

many of these over-rejections occur in the first panel, where we may expect that identification

25Note that this test is not actually discussed in Gouriéroux et al. (2017), but the simulations in Lee and Mesters
(2022a) show that it has reliable size for ICA models.
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is somewhat stronger. The identification robust moment tests of Drautzburg and Wright (2021)

(GMMDW and BKRDW) generally perform well, with the former always controlling size correctly

and the latter over-rejecting only in a few cases (e.g. the kurtotic unimodal distribution). This

over-rejection is not due to identification failure but rather slow convergence due to the higher

order moment conditions used.

To summarise, most of the non-robust alternative procedures lead to incorrect inference if

the distribution of the structural shocks is not “sufficiently” non-Gaussian. Furthermore, the

identity of the best-performing alternative procedure crucially depends on which non-Gaussian

distribution generated the data. In contrast, the semi-parametric score test proposed in this

paper gives correct inference regardless of the distribution of the structural shocks and whether

one or both shocks are non-Gaussian.

Table 4: Empirical rejection frequencies for alternative tests

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ϵ1,t ∼ ϵ2,t

Ŝols 4.56 6.24 4.72 4.56 5.16 5.16 4.28 4.40 4.16 4.56

Ŝonestep 5.88 7.28 6.28 4.92 5.28 5.20 4.92 4.48 4.64 5.20
LMPML 4.48 4.84 4.96 4.84 6.36 5.76 20.44 31.68 5.68 32.36
LMLL 6.04 9.88 13.20 25.88 22.36 14.96 5.64 4.72 11.32 5.28
GMMDW 3.40 4.04 3.92 5.24 4.88 4.36 3.04 2.36 3.56 2.96
BKRDW 5.00 4.64 4.00 5.24 6.76 30.56 4.80 4.76 6.44 4.80
WPML 20.44 3.16 1.60 2.40 3.36 3.32 100.00 100.00 3.12 100.00
WLL 74.96 44.08 22.64 1.00 0.44 2.40 0.00 0.00 50.00 0.00
DMLL 11.80 12.56 13.60 14.28 11.96 10.68 5.48 4.92 13.72 4.28

ϵ1,t ∼ N (0, 1)

Ŝols 5.12 4.52 4.64 4.40 4.16 4.36 1.60 1.12 3.48 1.88

Ŝonestep 6.72 6.32 6.20 5.76 5.08 4.56 5.04 5.00 5.24 6.00
LMPML 5.56 6.28 5.68 6.08 9.04 6.80 5.68 6.68 5.04 5.68
LMLL 7.36 6.12 6.40 6.56 7.12 8.08 12.36 13.60 6.24 12.36
GMMDW 3.00 3.84 4.36 5.56 3.60 3.20 3.04 4.52 3.32 4.08
BKRDW 4.52 5.24 5.28 5.88 9.84 49.72 7.56 9.20 13.44 9.32
WPML 22.20 10.40 7.64 2.04 1.88 1.44 95.08 97.68 11.20 97.92
WLL 74.88 67.40 58.64 24.64 14.80 43.84 56.08 50.88 72.36 54.28
DMLL 12.04 11.96 11.48 9.08 9.24 11.64 6.20 5.04 12.72 5.20

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α ̸= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = π/5. Ŝols denotes the
semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMLL, WLL and
DMLL denote the GMM-based LM, Wald and distance metric tests of Lanne and Luoto (2021). LMPML and
WPML denote the pseudo-maximum likelihood LM and Wald tests of Gouriéroux et al. (2017), GMMDW denotes
the GMM-based test of Drautzburg and Wright (2021), BKRDW denotes the non-parametric test of Drautzburg
and Wright (2021). The columns correspond to different choices for the distributions of the structural shocks,
ϵk,t for k = 1, . . . ,K. The distributions are reported in Table 1. The tests of Drautzburg and Wright (2021) use
500 bootstrap replications to simulate the null distribution of the test statistics. Rejection rates are computed
based on M = 2, 500 Monte Carlo replications.
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Power comparison

Next, we compare power among the identification robust tests. We again focus on an SVAR(1)

model with K = 2 variables a sample size of T = 500, and two independent shocks drawn from

the same distribution.

Figure 2 reports the raw (i.e not size-adjusted) power for the semi-parametric score test

using one-step nuisance parameter estimates (red solid line), the semi-parametric score test

using OLS nuisance parameter estimates (black sold line), the pseudo maximum likelihood LM

test (dot - dashed blue line), the Drautzburg and Wright (2021) GMM test (dotted green line)

and the non-parametric Drautzburg and Wright (2021) test (dot - dashed purple line).

For the t distributions in the first row of the figure, the best performing test is the pseudo

maximum likelihood LM test. This is not surprising as this test is based on the t – density and

therefore is close to correctly specified. Nevertheless, the efficient score tests are not far behind,

offering almost comparable power. Moreover, in the other panels, the efficient score tests are

typically the most powerful tests (that also control size), with the one-step update version

performing slightly better. The quality of the other three tests depends to a large extent on

the underlying density. For example, the tests of Drautzburg and Wright (2021) offer very little

power in the t-distribution cases, but for the other distributions their non-parametric test has

power curves which are not much below those of the efficient score test.26

7.3 Coverage and length of confidence sets

Next, we consider evaluating our methodology for constructing confidence sets for smooth func-

tions of the SVAR parameters as discussed in Section 6. We focus on evaluating the coverage

and length of the confidence sets for structural impulse response functions, see Example 6.1 for

the details.

We consider a similar simulation set up as above and discuss the results for the SVAR(1)

model with K = 2, T = 500, and two independent shocks drawn from the same distribution,

as listed in Table 1. In each case, the confidence set is calculated using Algorithm 2 for the

structural impulse response of the first variable to the second shock and we report the coverage

rate and length for horizons 0-12. Further, we compare our approach to the identification robust

methods of Drautzburg and Wright (2021), for which we change step (i) in Algorithm 2 and

replace the efficient score test by the tests of Drautzburg and Wright (2021).

Figure 3 shows the empirical coverage rates. Not surprising we generally find that the two-

step Bonferroni approach is conservative; all empirical coverage rates are above the nominal

90% level. This holds for all horizons, densities and methods considered.

That said, we find that if the efficient score test, based on one-step efficient estimates, is

used as the first step in the Bonferroni method the coverage becomes much closer to the nominal

size. This holds for nearly all densities, the exception being the t densities that are very close

to Gaussian, where there is generally very low power.

26For the kurtotic unimodal distribution the power curve of this test is higher, however this test is substantially
oversized for this density. It should also be noted that the tests of Drautzburg and Wright (2021) are sub-
stantially more computationally demanding than the efficient score based approaches, as they use a bootstrap
approach to obtain the critical value. Relying on asymptotic critical values for these tests yields substantially
worse performance.
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Figure 2: Power in the SVAR(1) model
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Note: The figure reports unadjusted empirical power curves for tests of the hypothesisH0 : α = α0 vs. H1 : α ̸= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500. The x-axis corresponds to different
alternatives for α around α0 = π/5. Ŝols denotes the semi-parametric score test using OLS estimates for β,
Ŝonestep uses one-step efficient estimates. LMPML denotes the pseudo-maximum likelihood test of Gouriéroux
et al. (2017), GMMDW denotes the GMM-based test of Drautzburg and Wright (2021), BKRDW denotes the
non-parametric test of Drautzburg and Wright (2021). The tests of Drautzburg and Wright (2021) use 500
bootstrap replications to obtain critical values. Rejection frequencies are computed using M = 2, 500 Monte
Carlo replications.

Figure 4 shows the length of the confidence intervals. We find that efficient score approach

gives the smallest length among all procedures considered and for all densities. The differences

between the methods varies; for some densities all methods give comparable intervals, but for

others the efficient score approach can give intervals that are up to 30% shorter in length.

We conclude that the two-step Bonferroni method, where the first step is based on the effi-

cient score test, gives substantial efficiency improvements when compared to existing methods.
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Figure 3: Coverage rates of Ĉn,g,α,0.9
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Note: The figure reports empirical coverage rates of confidence intervals at individual horizons for the impulse
response of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2
and T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step
efficient estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2021) and BKRDW

denotes the non-parametric test of Drautzburg and Wright (2021). The tests of Drautzburg and Wright (2021)
use 500 bootstrap replications to obtain critical values. Coverage is computed using M = 2, 500 Monte Carlo
replications.
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Figure 4: Average length of Ĉn,g,α,0.9
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Note: The figure reports average length of confidence intervals at individual horizons for the impulse response
of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2 and
T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient
estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2021) and BKRDW denotes
the non-parametric test of Drautzburg and Wright (2021). The tests of Drautzburg and Wright (2021) use 500
bootstrap replications to obtain critical values. Average length is computed using M = 2, 500 Monte Carlo
replications.
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8 Empirical studies

8.1 Labor supply-demand model of Baumeister and Hamilton (2015)

We revisit the bivariate SVAR(p) model of the U.S. labor market as considered in Baumeister

and Hamilton (2015). We have Yt = (∆wt,∆ηt)
′, where ∆wt is the growth rate of real compen-

sation per hour and ∆ηt is the growth rate of total U.S. employment. The SVAR model for Yt

is parametrised as

Yt = c+B1Yt−1 + · · ·+BpYt−p +B−1
0 Σ1/2 ϵt , (29)

with

B0 =

[
−αd 1

−αs 1

]
, and Σ1/2 =

[
σ1 0

0 σ2

]
.

The parameter αd is the short-run wage elasticity of demand, and αs is the short-run wage

elasticity of supply. The number of lags used is p = 8, the sample is from 1970:Q1 through

2014:Q2, and conventional sign restrictions are imposed on the supply and demand elasticities;

αs > 0 and αd < 0.

Without further identifying information, any fixed point that satisfies the sign restrictions

is a valid point and nothing more can be learned. To improve identification, Baumeister and

Hamilton (2015) introduce carefully motivated priors on the short-run labor supply and demand

elasticities, based on estimates from the micro-econometric and macroeconomic literature, as

well as a long-run restriction on the effect of labor-demand shocks on employment (e.g. Shapiro

and Watson, 1988). We investigate whether such additional identifying assumptions can be

avoided by exploiting possible non-Gaussianity in the supply and demand shocks.

Recently, Lanne and Luoto (2019) adopted the methodology of Lanne and Luoto (2021) to

assess this possibility, but this approach may yield incorrect coverage when the shocks are close

to Gaussian (cf Section 7). Here we will adopt the robust score testing approach of Sections 5

and 6 to construct confidence sets for the elasticity parameters as well as impulse responses to

labor supply and labor demand shocks. Specifically, we construct confidence sets for α using

Algorithm 1 and confidence bands for the impulse responses using Algorithm 2. For both

algorithms, we make use of one-step efficient parameter estimates β̂n.

Before getting there, we recall that our methodology relies on the assumption that the

demand and supply shocks are independent and not merely uncorrelated. Therefore, we start

by testing for independent components using the permutation test of Matteson and Tsay (2017),

see also Montiel Olea et al. (2022). For the given sample period, the test does not reject that

ϵt has independent components (p-value = 0.248), hence we conclude this assumption is not

unreasonable and proceed with constructing confidence sets for the elasticity parameters.

Confidence Sets for (αd, αs)

Figure 5 shows the 95% and 67% joint confidence sets for labor demand (αd) and labor supply

(αs) parameters obtained using Algorithm 1 of Section 5. The confidence sets are constructed

based on a grid of 250,000 equally spaced points for (αd, αs) ∈ [−3, 0)× (0, 3] which covers the
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Figure 5: Confidence Sets for Labor Demand and Supply Elasticities

Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 1 with 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

majority of elasticity estimates reported in the microeconometric literature, as well as findings

from theoretical macroeconomic models (see the discussion in Baumeister and Hamilton (2015)).

The figure shows that overall, non-Gaussianity is not sufficient to pin down a precise region for

the elasticities, though it does rule out parts of the parameter space which would be accepted

under Gaussianity. For sufficiently negative values of the short-run demand elasticity, the

short-run supply elasticity is reasonably well identified from non-Gaussianity with confidence

sets indicating that αs lies in the 0 - 0.3 range for both 95% and 67% confidence level. In

contrast, for values of αd that are less negative (smaller absolute value), the confidence sets

support a wide range of values for the supply elasticity, up to 0.6 at 67% confidence level and

spanning almost all values in the inspected grid at 95% confidence level. Our results match the

findings of Baumeister and Hamilton (2015) who report that the main posterior mass for αs

lies in the 0 - 0.5 range while the posterior for αd indicates that demand elasticities between -3

and 0 are well supported by the model.

Note that the estimate of Lanne and Luoto (2019) obtained using non-Gaussianity identi-

fication (αd = −0.197, αs = 0.765) falls within our confidence set at 95% level. However, they

find narrow confidence sets for the elasticity parameters (asymptotic standard errors of 0.057

for αd and 0.196 for αs, respectively) while our weak-identification robust approach results in

much wider confidence sets, similar to the credible sets of Baumeister and Hamilton (2015).

33



Figure 6: IRF confidence bands for labor demand and supply shocks

Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for impulse responses to labor
supply and labor demand shocks, obtained using 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

Confidence Sets for impulse responses

Figure 6 shows our identification-robust 95% and 67% confidence sets for the impulse responses

to labor-demand and labor-supply shocks. Comparing the impulse response bands to the poste-

rior credible sets reported by Baumeister and Hamilton (2015), we note that the implied impulse

responses are, overall, very similar and show long and persistent responses to the supply and

demand shocks. The main differences are that our 95% identification-robust bands support

slightly negative long-run responses of the real wage and employment to a demand shock, as

well as a more pronounced negative long-run response of employment to a supply shock while

Baumeister and Hamilton (2015)’s credible sets contain only (weakly) positive responses. Com-

paring our results to Lanne and Luoto (2019), we note several differences. First, Lanne and

Luoto (2019) find a significant negative long-run response of the real wage to a supply shock

while our confidence sets do not rule out that the long-run response is weakly positive. Second,

and most important, they find a strong and significant dynamic response of both the real wage

and employment to the labor demand shock, inconsistent with the tight prior variance Baumeis-

ter and Hamilton (2015) impose on the long-run response of employment to a demand shock.

In contrast to their findings, both our 67% and 95% identification-robust confidence bands do
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not rule out that the long-run response of either variable to the demand shock is zero. This

evidence suggests that the long-run restriction of Baumeister and Hamilton (2015) cannot be

rejected solely on the basis of non-Gaussianity.

8.2 Oil price model of Kilian and Murphy (2012)

Next, we revisit the tri-variate oil market SVAR(p) model of Kilian and Murphy (2012). We

have Yt = (∆qt, xt, pt)
′ where ∆qt is the percent change in global crude oil production, xt is an

index of real economic activity representing the global business cycle and pt is the log of the

real price of oil. The SVAR model is parameterised as follows

Yt = c+B1yt−1 + · · ·+BpYt−p +A−1(α, σ) ϵt, A−1(α, σ) =

σ1 αqx · σ5 αqp · σ6
σ2 σ4 αxp

σ3 σ5 σ6

 (30)

where following Baumeister and Hamilton (2019) we use p = 12. In this model, ϵt includes

a shock to the world production of crude oil (“oil supply shock”), a shock to the demand for

crude oil and other industrial commodities associated with the global business cycle (“aggregate

demand shock”), and a shock to demand for oil that is specific to the oil market (“oil-market-

specific demand shock”). In the parametrisation above, αqx is the short-run (impact) demand

elasticity of oil supply while αqp captures the short-run (impact) price elasticity of oil supply.

The baseline model of Kilian and Murphy (2012) makes use of the following sign restrictions

on the impact responses in A−1 to identify impulse responses:27

A−1(α, σ) =

+ + +

+ + −
− + +

 . (31)

In addition, Kilian and Murphy (2012) impose a set of upper bounds on the short-run oil supply

elasticities implied by the model to shrink the identified set for the impulse responses. Specif-

ically, they assume that αqp < 0.0258, αqx < 0.0258 and that αxp > −1.5. These restrictions,

in particular the elasticity bound on αqp, have been criticised by Baumeister and Hamilton

(2019) as being too tight and there is an active debate around which values for these bounds

are reasonable (see Herrera and Rangaraju (2020) for an overview).

We investigate whether the bounds on the elasticities can be avoided by exploiting non-

Gaussian features of the structural shocks. We consider the robust score testing approach of

Sections 5 and 6 to construct confidence sets for the elasticity parameters as well as the impulse

responses to the oil supply shock, the aggregate demand shock and the oil-market-specific

demand shock. Our implementation is similar as in the previous application.28

27Kilian and Murphy (2012) normalize the first shock to be an oil supply disruption, leading to inverted signs in
the first column of A−1. Following Baumeister and Hamilton (2019), we consider a positive oil supply shock.

28We started again by testing for independent components using the permutation test of Matteson and Tsay
(2017). The test does not reject that ϵt has independent components (p-value = 0.24).
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Figure 7: Confidence Sets for (αqx, αqp)

Note: 95% (light blue) and 67% (dark blue) confidence regions for supply elasticities (αqx, αqp) obtained using
Algorithm 1 using 500,000 grid points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) by projection across
accepted values for αxp. The black dashed lines denote the original supply elasticity bounds of 0.0258 imposed
by Kilian and Murphy (2012).

Confidence sets for oil supply elasticities (αqx, αqp)

Figure 7 shows the 95% and 67% joint confidence sets for the price elasticity of oil supply (αqp)

and the demand elasticity of oil supply (αqx) obtained using Algorithm 1 of Section 5 from a

grid of 500,000 points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) with 100 points for αqx

and αqp each and 50 points for αxp. The confidence set for (αqx, αqp) is obtained by projecting

over all values of αxp in the grid. The end points of the grid were chosen by (i) doubling the

bound on αxp imposed by Kilian and Murphy (2012), (ii) allowing for a large range of values for

αqx and (iii) substantially relaxing the bound on the price elasticity of oil supply (αqp) in Kilian

and Murphy (2012) to address the critique of Baumeister and Hamilton (2019). In particular,

the grid end-point of 0.1 for αqp matches the largest supply elasticity bound considered in

the sensitivity analysis of Baumeister and Hamilton (2019)’s model carried out in Herrera and

Rangaraju (2020) and nests the relaxed supply elasticity bound considered in Zhou (2020). To

ensure that our robust confidence set is compatible with the sign restrictions in (31), we impose

these signs in the estimation of the nuisance parameters σ.29

Inspecting the confidence set depicted in Figure 7, we note that non-Gaussianity significantly

helps to identify the price elasticity of the oil supply, but is less able to accurately pin down

the demand elasticity of oil supply. In particular, while the considered grid allows for supply

29Note that the set of sign restrictions on A−1 does not merely pin down a signed permutation of A−1, but also
imposes additional restrictions on the magnitudes of elasticities; see the discussion in Baumeister and Hamilton
(2019, p. 1881).
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Figure 8: IRF Confidence Bands in the Oil Market Model

Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for the impulse responses to
oil supply, aggregate demand and oil-specific demand shocks, obtained using 500,000 equally-spaced grid points
for (αqx, αqp, αxp) ∈ (0, 0.25]× (0, 0.1]× [−3, 0).

elasticities up to 0.1, the bound on the price elasticity of oil supply implied by the 95% and

67% confidence set for αqp falls within the relaxed bound of 0.04 considered by Zhou (2020). In

addition, at the 67% level, the elasticity lies within the bound of 0.0258 originally considered

in Kilian and Murphy (2012). At the 95% level, non-Gaussianity can not rule out that αqp falls

outside this bound. For the demand elasticity of oil supply (αqx), the confidence set spans a

large range of values between zero and 0.22, depending on the value for αqp.

Overall, our results suggest that non-Gaussianity is informative about the oil supply elas-

ticities αqx, αqp in the model of Kilian and Murphy (2012). However, it is not able to justify

the bounds considered in Kilian and Murphy (2012).

Confidence Sets for Impulse Responses

Finally, we turn to inspecting the 95% and 67% confidence bands for impulse responses to

oil supply, aggregate demand and oil-specific supply shocks which are depicted in Figure 8.

We note that our confidence bands overall exhibit response patterns that are similar to the

results reported in Kilian and Murphy (2012) based on sign restrictions and the elasticity

bound of 0.0258. However, our procedure results in substantially wider confidence bands for
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the responses of global real activity and the real price of oil than the ones originally reported

in Kilian and Murphy (2012). In particular, while the responses of oil production are identified

precisely, the responses of global real activity and of the real price of oil exhibit large uncertainty

with insignificant and flat responses to the oil supply shock, significant positive hump-shaped

responses to the aggregate demand shock and mixed response patterns to the oil-specific demand

shock.

9 Conclusion

This paper develops robust inference methods for structural vector autoregressive (SVAR) mod-

els that are identified via non-Gaussianity in the distributions of the structural shocks. We treat

the SVAR model as a semi-parametric model where the densities of the structural shocks form

the non-parametric part and conduct inference on the possibly weakly identified or non identi-

fied parameters of the SVAR, using a semi-parametric generalisation of Neyman’s C(α) statistic.

We additionally provide a two-step Bonferroni-based approach to conduct inference on smooth

functions of all the finite-dimension parameters of the model.

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to the

nominal size, regardless of the true distribution of the shocks. Moreover, the power of the test

is typically higher than alternative methods that have been proposed in the literature.

Finally, we employ the proposed approach in a number of empirical studies. Overall our

findings are mixed. Whilst non-Gaussianity does provide some identifying information for the

structural parameters of interest, it is unable to always pin down the parameter values or impulse

responses precisely. These exercises also highlight the importance of using weak identification

robust methods to asses estimation uncertainty when using non-Gaussianity for identification.
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Appendix

A Proofs and additional results

A.1 Density score estimation

Lemma A.1: Suppose Assumptions 3.1 and 3.2 hold. Let θ̃n = (αn, β̃n, η) → θ where
√
n∥β̃n −

β∥ = O(1). Then the log density score estimates ϕ̂k,n defined as in (17) satisfy for j, k =
1, . . . ,K, k ̸= j

1

n

n∑
t=1

[
ϕ̂k,n(An,k•(Yt −BnXt))− ϕk(An,k•(Yt −BnXt))

]
Wn,t = oPn

θ̃n
(n−1/2), (32)

where An := A(αn, β̃n) and Bn := B(β̃n) and for νn = ν2n,p with 1 < p ≤ 1 + δ/4 and

n−1/2(1−1/p) = o(νn,p) we have

1

n

n∑
t=1

([
ϕ̂k,n(An,k•(Yt −BnXt))− ϕk(An,k•(Yt −BnXt))

]
Wn,t

)2
= oPn

θ′n
(νn). (33)

where Wn,t are any random variables independent from all An,k•(Ys − cn − BnXs) with s > t

and such that supn∈N,1≤t≤n Eθ̃n
W 2

n,t <∞ and 1
n

∑n
t=1W

2
n,t − Eθ̃n

W 2
n,t

Pn
θ̃n−−→ 0.

Proof of Lemma A.1. The proof follows by an argument analogous to that used to prove Lemma
3 of Lee and Mesters (2022a); see Lee and Mesters (2022b) for the proof.

A.2 Main proofs

Proof of Proposition 4.1. Throughout we work conditional on (Y−p+1, . . . , Y0)
′. Define

Wn,t :=
1

2
√
n

[
c′ℓ̇θn(Yt, Xt) +

K∑
k=1

hk(An,k•Vθn,t)

]
,

where An := A(αn, σn), Fn,t := σ(Yt, Xt), Fn := Fn,n and note that (Wn,t,Fn,t)n∈N, t∈[n] forms
an adapted stochastic process. Moreover it is clear that given assumption 3.1(ii),

E [Wn,t|Fn,t−1] =
1

2
√
n

[
c′ E

[
ℓ̇θ(Yt, Xt)|Fn,t−1

]
+

K∑
k=1

E[hk(An,k•Vθn,t)|Fn,t−1]

]
= 0, (34)

almost surely, where the expectation is taken under Pn
θn
.

Next define Zn,t := (zn,t/zn,t−1)
1/2 − 1 where zn,0 = 1 and else

zn,j :=

(
|Ãn|
|An|

)j

×
j∏

t=1

K∏
k=1

ηk(Ãn,k•Ṽn,t)

ηk(An,k•Vn,t)

(
1 + hn,k(Ãn,k•Ṽn,t)/

√
n
)
,

i.e.,

Zn,t :=

[
|Ãn|
|An|

K∏
k=1

ηk(Ãn,k•Ṽn,t)

ηk(An,k•Vn,t)

(
1 + hn,k(Ãn,k•Ṽn,t)/

√
n
)]1/2

− 1.

We now verify conditions (S2) – (S6) of Theorem 2.1.2 in Taniguchi and Kakizawa (2000), having
shown (S1) to hold above. (S2), i.e. that E

∑n
t=1[Wn,t − Zn,t]

2 → 0, where the expectation is
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taken under Pn
θn

is shown to hold in Lemma A.3 below. (S3) – (S6) follow from Lemmas A.7
and A.8. (S3) follows immediately from Lemma A.7; (S5) follows from Lemma A.8 by Markov’s
inequality. For (S4), use the uniform integrability given by Lemma A.7 and Markov’s inequality
to obtain that for any ε > 0, as n→ ∞

Pn
θn

(
max
1≤t≤n

|Wn,t| > ε

)
≤ Pn

θn

(
n∑

t=1

W 2
n,t1{|Wn,t| > ε} > ε2

)

≤ ε−2 1

n

n∑
t=1

E
[
nW 2

n,t1{
√
n|Wn,t| > ε

√
n}
]

→ 0.

For (S6), note that the same UI argument as just used yields that

lim
n→∞

n∑
t=1

E
[
W 2

n,t1{|Wn,t| > δ}
]
= 0,

for some δ > 0 and hence as conditional expectations are contractions in L1,

lim
n→∞

E

∣∣∣∣∣
n∑

t=1

E
[
W 2

n,t1{|Wn,t| > δ}|Fn,t−1

]∣∣∣∣∣ = 0,

implying (S6). (L3) of Theorem 2.1.1 in Taniguchi and Kakizawa (2000) holds since the relevant
measures are both absolutely continuous with respect to Lebesgue measure (cf. Taniguchi and
Kakizawa, 2000, p. 34). By Theorem 2.1.2 of Taniguchi and Kakizawa (2000), under Pn

θn
:

Λn
θ̃n/θn

(Y n)⇝ N (−τ2/2, τ2). (35)

In view of Lemma A.8 and (S1) we have that Ψθ(c, h) := limn→∞ E
[
gn(Y

n)2
]
= τ2 (in which

the dependence on c, h is notationally supressed on the right hand side). Let ε ∈ (0, 1) be
fixed and define En := {max1≤t≤n |Zn,t| ≤ ε} and note that by Theorem 2.1.2 of Taniguchi and
Kakizawa (2000) Pn

θn
En → 1. By Taylor expansion of log(1 + x), on En we have

log(1 + Zn,t) = Zn,t −
1

2
Z2
n,t + Z2

n,tR(Zn,t),

where R(x) ≤M |x| for some M ∈ [0,∞) and so by (S2), on En

Λn
θ̃n/θn

(Y n) = 2
n∑

t=1

log(Zn,t + 1)

=
n∑

t=1

2Zn,t −
1

2

n∑
t=1

2Z2
n,t +

n∑
t=1

Z2
n,tR(Zn,t).

Moreover, by Theorem 2.1.2 of Taniguchi and Kakizawa (2000),

n∑
t=1

Z2
n,tR(Zn,t) ≤M max

1≤t≤n
|Zn,t|

n∑
t=1

W 2
n,t = oPn

θn
(1),

and so using also Lemma A.4

Λn
θ̃n/θn

(Y n) =

n∑
t=1

2Wn,t − τ2/4− 1

2

n∑
t=1

2W 2
n,t + oPn

θn
(1).
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Lemma A.8, comparison of Wn,t and gn(Y
n) and the fact that the above display holds with

Pn
θn
–probability approaching 1 yields the asymptotic expansion (10). The weak convergence of

gn(Y
n) follows by combining (10), (35) and (S5).

Proof of Corollary 4.1. Combine (35) with Example 6.5 in van der Vaart (1998).

Proof of Lemma 4.1. Define

T η|γ
Pθ,H

:=

{
n∑

t=1

K∑
k=1

hk(Ak•Vθ,t) : h = (h1, . . . , hK) ∈ ˙H

}
, Vθ,t := Yt −BθXt. (36)

It suffices to show that (a) ℓ̃θ(Ys, Xs) ∈
[
T η|γ
Pθ,H

]⊥
⊂ L2(P

n
θ ) (componentwise) and (b) under Pn

θ

E

[(
ℓ̇θ(Ys, Xs)− ℓ̃θ(Ys, Xs)

) n∑
t=1

K∑
k=1

hk(Ak•Vθ,t)

]
= 0 for all h ∈ ˙H .

For (a), the fact that ℓ̃θ(Ys, Xs) ∈ L2(P
n
θ ) follows straightfowardly from its form and the moment

conditions in assumption 3.1(ii). Next note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

K∑
k=1

E
[
ℓ̃θ(Ys, Xs)hk(Ak•Vθ,t)

]
= 0

will obtain under Pn
θ if we have that for all k, j,m ∈ [K] with m ̸= j and all 1 ≤ s ≤ n,

1 ≤ t ≤ n,

E [ϕl(ϵm,s)ϵj,shk(ϵk,t)] = 0

E [ϵm,shk(ϵk,t)] = 0

E [κ(ϵm,s)hk(ϵk,t)] = 0

E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = 0,

the first three of which follow from the independence between components and across time of
(ϵt)t≥1. If s ≤ t, then by independence E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = E [(Xs − µ)ϕm(ϵm,s)]E [hk(ϵk,t)] =
0. If s > t, then E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = E [(Xs − µ)hk(ϵk,t)E [ϕm(ϵm,s)|σ(ϵ1, . . . , ϵs−1)]] =
0 again by independence.

For (b), that ℓ̇θ(Ys, Xs) − ℓ̃θ(Ys, Xs) ∈ L2(P
n
θ ) follows from ℓ̃θ(Ys, Xs) ∈ L2(P

n
θ ) (as noted

above) and Lemma A.7. Note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

E

[(
ℓ̇θ(Ys, Xs)− ℓ̃θ(Ys, Xs)

) K∑
k=1

hk(Ak•Vθ,t)

]
= 0

will obtain under Pn
θ if we have that for any m ∈ [K], 1 ≤ t ≤ n, 1 ≤ s ≤ n and

E

[
(ϕm(ϵm,s)ϵm,s + 1− τm,1ϵm,s − τm,2κ(ϵm,s))

K∑
k=1

hk(ϵk,t)

]
= 0

E

[
(ϕm(ϵm,s) + ςm,1ϵm,s + ςm,2κ(ϵm,s))

K∑
k=1

hk(ϵk,t)

]
= 0.

If s ̸= t, both terms follows by independence (over t) of (ϵt)t≥1 and the definition of ˙H . If

s = t the first term follows from the fact that the projection of ϕm(ϵm,t)ϵk,t + 1 on [T η|γ
Pθ,H

]⊥ is
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τk,1ϵk,t + τk,2κ(ϵk,t) as follows from the analogous result in the proof of Lemma 2 of Lee and
Mesters (2022a).30 For the second term, if s ̸= t, then this follows by independence (over t) of
(ϵt)t≥1 and the definition of ˙H . If s = t, then define q(e) := ϕm(e) + ςm,1e + ςm,2κ(e). q(ϵm)

belongs to cl T η|γ
Pθ,H

as q(ϵm,t) ∈ L2(P
n
θ ) and the choice of ς ensures that

E[q(ϵm,t)] = E[q(ϵm,t)ϵm,t] = E[q(ϵm,t)κ(ϵm,t)] = 0,

as is easily verified.31 Define also r(e) := ςm,1e + ςm,2κ(e). Then, by definition of ˙H we have

that r(ϵm,t) ∈ [T η|γ
Pθ,H

]⊥. Hence we can write

ϕm(ϵm,t) = q(ϵm,t)− r(ϵm,t)

where the first right hand side term belongs to cl T η|γ
Pθ,H

and the second to its orthogonal comple-
ment. Therefore, by e.g. Theorem 4.11 of Rudin (1987), −r(ϵ)m,t is the orthogonal projection

of ϕm(ϵm,t) onto [T η|γ
Pθ,H

]⊥ which implies that E
[
(ϕm(ϵm,t)− (−r(ϵm,t)))

∑K
k=1 hk(ϵk,t)

]
= 0.

Proof of Theorem 5.1. Define

Rn,1(β⋆) :=
∥∥∥√nPn

[
ℓ̂γ⋆ − ℓ̃θ⋆

]∥∥∥
Rn,2(β⋆) :=

∥∥∥√nPn

[
ℓ̃θ⋆ − ℓ̃θn

]
+
√
nĨn,θn(γ⋆ − γn)

′
∥∥∥

Rn,3(β⋆) :=
∥∥∥În,γ⋆ − Ĩθ

∥∥∥ ,
where γ⋆ := (αn, β⋆) and θ⋆ := (γ⋆, η). We show that we have

Rn,i(θ̃n)
Pn
θ̃n−−→ 0 for i = 1, 2, 3. (37)

Define bn :=
√
n(β′n−β). We may assume without loss of generality that bn → b and hn → h.32

Let Qn denote the law of (Yt)
n
t=1 corresponding to θ̃n := (αn, β+ bn/

√
n, η(1+hn/

√
n)) and

Pn that corresponding to θ̌n := (αn, β+bn/
√
n, η) (both conditional on the initial observations).

By Corollary 4.1 Qn ◁ ▷Pn and hence (37) follows by Lemma A.10 and Le Cam’s first Lemma
(e.g. van der Vaart, 1998, Lemma 6.4).

Next we show that (37) continues to hold if the argument of the remainders Rn,i is replaced
by β̄n as defined in the theorem. Since β̄n remains

√
n-consistent there is an M > 0 such that

Pn
θ̃n

(√
n∥β̄n − β∥ > M

)
< ε. If

√
n∥β̄n − β∥ ≤ M then β̄n is equal to one of the values in the

finite set S c
n = {β′ ∈ n−1/2CZL2 : ∥β′ − β∥ ≤ n−1/2M}. For each M this set has finite number

of elements bounded independently of n, call this upper bound B. Letting Rn denote any of
Rn,1, Rn,2 or Rn,3 we have that for any υ > 0

Pn
θ̃n

(
∥Rn(β̄n)∥ > υ

)
≤ ε+

∑
βn∈S c

n

Pn
θ̃n

(
{∥Rn(βn)∥ > υ} ∩ {β̄n = βn}

)
≤ ε+

∑
βn∈S c

n

Pn
θ̃n

(∥Rn(βn)∥ > υ)

≤ ε+BPn
θ̃n
(∥Rn(β

∗
n)∥ > υ),

where β∗n ∈ Bn maximises β 7→ Pn
θ̃n

(∥Rn(β)∥ > υ). As (β∗n)n∈N is a deterministic
√
n-consistent

30See Lee and Mesters (2022b) for the proof.
31That cl T η|γ

Pθ,H
is the set of L2 random variables satisfying these equations can be shown by an argument

analogous to that in footnote S5 of Lee and Mesters (2022b).
32Otherwise the same argument can proceed along appropriately chosen subsequences.
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sequence for β we have that Pn
θ̃n
(∥Rn(β

∗
n)∥ > υ) → 0 by (37).

It follows that

√
nPn

[
ℓ̂γ̄n − ℓ̃θn

]
=

√
nPn

[
ℓ̂γ̄n − ℓ̃θ̄n

]
+
√
nPn

[
ℓ̃θ̄n − ℓ̃θn

]
= −Ĩn,θn(0,

√
n(β̄n − β)′)′ + oPn

θ̃n
(1),

and În,θ̄n

Pn
θ̃n−−→ Ĩθ and so K̂n,θ̄n

Pn
θ̃n−−→ K̃θ for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂n,θ :=

[
I −În,θ,αβ Î−1

n,θ,ββ

]
.

We combine these to obtain

√
nPn [κ̂n,γ̄n − κ̃n,θn ]

=
(
K̂n,γ̄n − K̃θn

)√
nPn

[
ℓ̂γ̄n − ℓ̃θn

]
+ K̃θn

√
nPn

[
ℓ̂γ̄n − ℓ̃θn

]
+
(
K̂n,γ̄n − K̃θn

)√
nPnℓ̃θn

= −K̃θn Ĩθn(0,
√
n(β̄n − β)′)′ + oPn

θ̃n
(1)

= −
[
I −Ĩθn,αβ Ĩ−1

θn,ββ

] [Ĩθn,αα Ĩθn,αβ
Ĩθn,βα Ĩθn,ββ

] [
0√

n(β̄n − β)

]
+ oPn

θ̃n
(1)

= oPn
θ̃n
(1).

Next, let Zn := 1√
n

∑n
t=1 κ̂n,γ̄n(Yt, Xt) and re-write it as

Zn =
1√
n

n∑
t=1

κ̃n,θn(Yt, Xt)+
1√
n

n∑
t=1

(κ̂n,γ̄n(Yt, Xt)−κ̃n,θn(Yt, Xt)) =
1√
n

n∑
t=1

κ̃n,θn(Yt, Xt)+oPn
θ̃n
(1).

By (i) of Lemma A.10 and Le Cam’s third lemma (e.g. van der Vaart, 1998, Example 6.7)

1√
n

n∑
t=1

ℓ̃θn(Yt, Xt)⇝ N
(
Ĩθ(0

′, b′)′, Ĩθ

)
under Pθ̃n

,

and hence under Pθ̃n

Zn =
1√
n

n∑
t=1

ℓ̃θn,α(Yt, Xt)− Ĩn,θn,αβ Ĩ
−1
n,θn,ββ

ℓ̃θn,β(Yt, Xt) + oPn
θ̃n
(1)⇝ Z ∼ N (0, Ĩθ).

We additionally have∥∥∥În,γ̄n − Ĩθ
∥∥∥
2
≤
∥∥∥În,γ̄n,αα − Ĩθ,αα

∥∥∥
2
+
∥∥∥În,γ̄n,αβ Î−1

n,γ̄n,ββ
În,γ̄n,βα − Ĩθ,αβ Ĩ

−1
θ,ββ Ĩθ,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix we obtain and the matrix inverse is Lipschitz
continuous at a non-singular matrix we obtain∥∥∥În,γ̄n − Ĩθ

∥∥∥
2
≲
∥∥∥În,γ̄n − Ĩθ

∥∥∥
2
.

Hence by equation (37) with γ̄n replacing γn we have Pθ̃n

(∥∥∥În,γ̄n − Ĩθ
∥∥∥
2
< ν̌n

)
→ 1 where

ν̌n = Cνn for some positive constant C ≥ 1. By Proposition 3.13 and Lemma C.6 of Lee (2022)

Ît,†
n,γ̄n

Pn
θ̃n−−→ Ĩ†

θ and Pn
θ̃n
Rn → 1,
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where Rn := {rank(Ĩt
n,γ̄n) = rank(Ĩθ)}.

Suppose first that r := rank(Ĩθ) > 0. By Slutsky’s lemma and the continuous mapping
theorem we have that

ŜSR
n,γ̄n = Z ′

nÎ
t,†
n,γ̄nZn ⇝ Z ′Ĩ†

θZ ∼ χ2
r

where the distributional result X := Z ′Ĩ†
θZ ∼ χ2

r , follows from e.g. Theorem 9.2.2 in Rao and
Mitra (1971). On Rn cn is the 1−a quantile of the χ2

r distribution, which we will call c. Hence,

we have cn
Pn
θ̃n−−→ c and as a result,ŜSR

n,γ̄n − cn ⇝ X − c where X ∼ χ2
r . Since the χ2

r distribution
is continuous, we have by the Portmanteau theorem

Pn
θ̃n

(
ŜSR
n,γ̄n > cn

)
= 1−Pn

θ̃n

(
ŜSR
n,γ̄n − cn ≤ 0

)
→ 1−P (X − c ≤ 0) = 1−P (X ≤ c) = 1−(1−a) = a ,

which completes the proof in the case that r > 0.
It remains to handle the case with r = 0. We first note that Zn ⇝ Z ∼ N (0, Ĩθ) continues

to hold by our assumptions, though in this case Ĩθ is the zero matrix and hence the limiting
distribution is degenerate: Z = 0.

On the sets Rn we have that Ît
n,γ̄n is the zero matrix, whose Moore-Penrose inverse is also

the zero matrix. Hence on these sets we have ŜSR
n,γ̄n = 0 and cn = 0 and therefore do not reject,

implying
Pn
θ̃n
(ŜSR

n,γ̄n > cn) ≤ 1− Pn
θ̃n
Rn → 0.

It follows that Pn
θ̃n
(ŜSR

n,γ̄n > cn) → 0.

Proof of Corollary 5.1. Apply Theorem 5.1 to conclude:

lim
n→∞

Pn
θ̃n
(αn ∈ Ĉn) ≥ 1− lim

n→∞
Pn
θ̃n
(ŜSR

n,γ̄n > cn) ≥ 1− α.

Proof of Proposition 6.1. Let G be a convex, compact set with G ⊃ {γn : n ≥ N0} for some
N0 ∈ N. Since g is continuously differentiable and G is compact, {∥g′γ∥ : γ ∈ G} is bounded and
hence {g′γn : n ∈ N} is uniformly equicontinuous (cf. Remark A.2). By compactness, γ 7→ g′γ is
uniformly continuous on G. Combined with the mean-value theorem (e.g. Drabek and Milota,
2007, Theorem 3.2.7) this implies that g is uniformly differentiable along (γn)n∈N. By Theorem

A.2 and the fact that N (0,Mn)
TV−−→ N (0,M) if Mn →M ≻ 0,

√
n
(
g(αn, β̂n)− g(αn, β̃n)

) Pn
θ̃n⇝ N

(
0, JγVθΣ

′) .
This and the fact that V̂n,α

Pn
θ̃n−−→ JγΣJ

′
γ ≻ 0 by our hypotheses and the continuous mapping

theorem imply that
ng(αn, β̂n)

′V̂ −1
n,αg(αn, β̂n)⇝ χ2

dg under Pn
θ̃n
.

It follows that

lim
n→∞

Pn
θ̃n
(g(αn, β̃n) ∈ Ĉn,g,αn,1−a) = lim

n→∞
Pn
θ̃n

(
ng(αn, β̂n)

′V̂ −1
n,αg(αn, β̂n) ≤ ca

)
= 1− a.

Proof of Corollary 6.1. This follows directly from the hypotheses and the fact that

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g

)
≥ Pn

θ̃n

({
g(αn, β̂n) ∈ Ĉn,g,αn,1−q2

}
∩
{
αn ∈ Ĉn,1−q1

})
≥ Pn

θ̃n

(
g(αn, β̂n) ∈ Ĉn,g,αn,1−q2

)
+ Pn

θ̃n

(
αn ∈ Ĉn,1−q1

)
− 1.
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A.3 Auxilliary results

Here we record results relating to the model under study in the main text, which are used in
establishing the main results which are proven above.

Define Zt := (Y ′
t , Y

′
t−1, . . . , Y

′
t−p+1)

′, Cθ := (c′θ, 0
′, . . . , 0′)′,

Bθ :=


Bθ,1 Bθ,2 · · · Bθ,p−1 Bθ,p

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , Dθ :=


A−1

θ

0
0
...
0


and note that we can write

Zt = Cθ + BθZt−1 + Dθϵt. (38)

Proposition A.1: Suppose that assumption 3.1 holds. Then Φ := (Zt)t≥0 (with initial value
Z0 = z) is a uniformly ergodic Markov chain on RKp. Moreover for any compact set K ⊂ Rdγ ,
we have that for any (initial value) z ∈ RKp,

sup
θ=(γ,η): γ∈K

∥Qn
θ (z, ·)− πθ(·)∥TV ≤ (M1 + ∥z∥2)γn, for some γ < 1, M1 <∞

and πθ an invariant probability distribution for Φ (under θ) and for M2 <∞

sup
θ=(γ,η): γ∈K

βθ(n) ≤ (4M1 + 3∥z∥2 +M2)γ
⌊n/2⌋,

where βθ(n) are the β-mixing coefficients of Φ.

Proof. That Φ is a Markov chain follows from Proposition 11.6 in Kallenberg (2021). Explicit
computation of the rank of the controllability matrix (Meyn and Tweedie, 2009, equation (4.13))
demonstrates that the associated linear control model is controllable. Moreover under assump-
tion 3.1, (LSS4) and (LSS5) of Meyn and Tweedie (2009) hold and hence by Proposition 6.3.5
in Meyn and Tweedie (2009), Φ is a ψ-irreducible T-chain and every compact subset is a small
set. Aperiodicity of Φ follows from the assumptions on the densities.

The 1-step transition probability is given by the density on RKp × RKp defined as

qθ(y, x) := |Aθ|
K∏
k=1

ηk(Aθ,kVθ), Vθ := y1 − cθ −
p∑

l=1

Bθ,lxl,

where e.g. y1 denotes the first K elements of y and similarly for x. By assumption 3.1, the map
(γ, y, x) 7→ q(γ,η)(y, x) is continuous and positive everywhere on Γ×RKp×RKp. For any compact

B ⊂ RKp put ε :=
∫
inf(γ,x)∈K×B q(γ,η)(y, x) dy and ρ(y) := inf(γ,x)∈K×B q(γ,η)(y, x)/ε.

33 Then

for any A ∈ B(RKp) and any x ∈ B,∫
A
qθ(y, x) dy ≥ ε

∫
A
ρ(y) dy.

Under assumption 3.1 the eigenvalues of Bθ are bounded above by some ρ < 1 for all
θ ∈ T := {(γ, η) : γ ∈ K}. Using this and the Gelfand formula (e.g. Horn and Johnson, 2013,
Corollary 5.6.14) there exists a ρ⋆ < 1 with ∥Bn

θ ∥ ≤ ρn⋆ on T. Since we can re-write (38) as

Zt −mθ = Bθ(Zt−1 −mθ) + Dθϵt, (39)

33Note that ϵ > 0 by the positivity and continuity.
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with mθ :=
(∑∞

i=0 B
i
θ

)
Cθ, we have

Vθ(Zt) := ∥Bθ(Zt−1 −mθ)∥2 + ∥Dθϵt∥2 + 2[Bθ(Zt−1 −mθ)]
′Dθϵt + 1,

and since ϵt is independent of Zt−1, and ∥Dθ∥ ≤ D⋆ <∞ on T,

E[Vθ(Zt)|Zt−1] ≤ ρ2⋆∥Zt−1 −mθ∥2 +D2
⋆ ≤ ρ2⋆Vθ(Zt−1) +D2

⋆.

This, in conjunction with Proposition 5.5.3 and Lemmas 15.2.8 of Meyn and Tweedie (2009)
establishes that the Markov chain satisfies the drift condition (10) in Roberts and Rosenthal
(2004) with λ = (1 + ρ2⋆)/2 < 1, b = D2

⋆ < ∞ and C = Cθ = {z : Vθ(z) ≤ 2D2
⋆/(1 − ρ2⋆)}. By

Proposition 11 in Roberts and Rosenthal (2004) their bivariate drift condition (11) is satisfied
with h(x, y) = [Vθ(x) + Vθ(y)]/2 and α−1 = λ+ b/(d+ 1) < 1. Moreover b0,θ := max{1, α(1−
ε) sup(x,y)∈Cθ×Cθ

R̄θhθ(x, y)} is bounded above by (1− ε)D2
⋆/(1− ρ2⋆) <∞, where R̄θhθ(x, y) is

defined analogously to R̄h(x, y) on p. 41 of Roberts and Rosenthal (2004). By Theorem 16.0.2
of Meyn and Tweedie (2009) there exists an invariant πθ with

∥Qn
θ (z, ·)− πθ∥ ≤ Rr−n, R <∞, r > 1,

where Qθ(z, ·) is the transition probability. That is, Φ is uniformly ergodic.
For the second claim, by Theorem 12 in Roberts and Rosenthal (2004) we have that for any

(initial) z ∈ RKp and some γ < 1, for all θ ∈ T,

∥Qn
θ (z, ·)− πθ∥TV ≤ (M1 + ∥z∥2)γn,

where34

M1 = 1 + sup
θ∈T

∥mθ∥2 + sup
θ∈T

∫
∥z −mθ∥2 dπθ(z) <∞.

The claim regarding the β-mixing coefficients then follows directly from Proposition 3 in Lieb-
scher (2005), with M2 := supθ∈T

∫
∥z∥2 dπθ(z) <∞.35

Lemma A.2: Suppose that assumption 3.1 holds. Define Uθ,t as the (unique, strictly) stationary
solution to (38) (under θ). Then Uθ,t has the representation

Uθ,t = mθ +
∞∑
j=0

Bj
θDθϵt−j , mθ := (I − Bθ)

−1Cθ,
∞∑
j=0

∥Bj
θ∥ <∞.

If ρθ is the largest absolute eigenvalue of the companion matrix Bθ and υ > 0 is such that
ρθ + υ < 1, the for ∥ · ∥ the spectral norm,

E ∥Uθ,t −mθ∥ρ ≤ E ∥Dθϵt∥ρ

1− (ρθ + υ)ρ
, ρ ∈ [1, 4 + δ].

Proof. Rewriting (38) as (39) and applying Theorem 11.3.1 in Brockwell and Davis (1991) yields
the first part. For the second part, let U∗

θJθUθ be a Schur decomposition of Bθ. Then

∥Uθ,t −mθ∥ ≤
∞∑
j=0

∥Bj
θ∥∥Dθϵt−j∥ ≤

∞∑
j=0

∥Jθ∥j∥Dθϵt−j∥ ≤
∞∑
j=0

(ρθ + ν)j∥Dθϵt−j∥.

34That the first supremum is finite is clear since mθ = (I−Bθ)
−1Cθ which is evidently continuous. For the second

supremum note that the integral is taking an expectation with respect to the distribution of the stationary
solution of a VAR model. This is bounded uniformly over θ ∈ T by Lemma A.2, the fact that ∥Dθ∥ is uniformly
bounded on T and the observation that since M 7→ ρ(M) is continuous and T is compact, there is a ρ and υ
with ρ+ υ < 1 such that ρ ≥ ρ(Bθ) for all θ ∈ T.

35The uniform boundedness of M2 follows by an analogous argument as given in footnote 34.
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Since E ∥Dθϵt−j∥ρ = E ∥Dθϵt∥ρ <∞ for all t ∈ N, all j ≥ 0 and ρ ∈ [1, 4 + δ], it follows that

E ∥Uθ,t −mθ∥ρ ≤
∞∑
j=0

(ρθ + ν)jρ E ∥Dθϵt−j∥ρ =
E ∥Dθϵt∥ρ

1− (ρθ + ν)ρ
.

Corollary A.1: Suppose that assumption 3.1 holds and θn = (γn, η) → (γ, η) = θ. Define πθ
as in Proposition A.1 and let Gθn,n be the measure corresponding to the density 1

n

∑n
t=1 ρθn,t

where ρθn,t is the density of the non-deterministic parts of Xt under Pn
θn

(1 ≤ t ≤ n). Then
Gθn,n ⇝ πθ.

Proof. By Proposition A.1, Gθ,n
TV−−→ πθ uniformly on T := {θn : n ∈ N} ∪ {θ}. We also have

that πθn ⇝ πθ. To see this, use the representation in Lemma A.2 and the fact that we can
uniformly bound ∥Bj

ϑ∥ and ∥Dϑ∥ for ϑ ∈ T and j ∈ N to obtain

E ∥Uθn,t − Uθ,t∥ ≤ ∥mθn −mθ∥+ E

∥∥∥∥∥∥
∞∑
j=0

Bj
θn
Dθnϵt−j − Bj

θDθϵt−j

∥∥∥∥∥∥
= o(1) + E ∥ϵt∥

∞∑
j=0

(
∥Bj

θn
∥∥Dθn − Dθ∥+ ∥Dθ∥∥Bj

θn
− Bj

θ∥
)

= o(1)

where the second equality uses the fact the ϵt are identically distributed and the third equality
uses the dominated convergence theorem.36 This implies that Uθn,t ⇝ Uθ,t as n → ∞, i.e.
πθn ⇝ πθ. Combination of these results yields the claim.

Lemma A.3 (UDQM): Suppose that assumption 3.1 holds. Then, with Wn,t and Zn,t defined as
in the proof of Proposition 4.1,

lim
n→∞

E
n∑

t=1

(Wn,t − Zn,t)
2 = 0.

Proof. Write Yn,t andXn,t for random elements which have the same law as Yt, Xt (respectively)
under Pn

θn
. Recall Vn,t := Yn,t −BXn,t and define

qθ(Yn,t, Xn,t) := |A|
K∏
k=1

ηk(Ak•Vt), gθ(Yn,t, Xn,t) := c′ℓ̇θ(Yn,t, Xn,t) +

K∑
k=1

hk(Ak•Vn,t). (40)

Let φ(u) = (c, η1h1, . . . , ηKhK) for u = (c, h) with c ∈ RLα+Lβ , h ∈ ˙H . We initially sup-
pose that θn = θ for all n ∈ N and argue similarly to Lemma 7.6 in van der Vaart (1998).
By Assumption 3.1 and standard computations, the derivative of s 7→ √

qθ+sφ(u) at s = s is
1
2gθ+sφ(u)

√
qθ+sφ(u) (everywhere). Inspection reveals that this is continuous in s. Let ρθ,t be as

defined in Corollary A.1. Define

Iθ,t :=

∫
g2θqθρθ,t dλ.

By the mean-value theorem and Jensen’s inequality we can write∫ (√
qϑ1,n −√

qθ

1/
√
n

)2

ρθ,t dλ ≤ 1

4

∫ ∫ 1

0
(gϑv,n

√
qϑv,n)

2ρθ,t dv dλ =
1

4

∫ 1

0
Iϑv,n,t dv (41)

36Note that ∥Bj
θn

− Bj
θ∥ → 0 pointwise in j and is dominated by 2ρj⋆ where ρ⋆ < 1 is a uniform upper bound on

∥Bϑ∥ for ϑ ∈ T and
∑∞

j=0 2ρ
j
⋆ = 2

∑∞
j=0 ρ

j
⋆ < ∞.
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where ϑv,n := θ + v√
n
φ(u) and the last step follows by Tonelli’s theorem.

It is shown in Lemma A.5 that as n→ ∞,

1

n

n∑
t=1

∫ 1

0
Iϑv,n,t dv =

∫ 1

0

∫
g2ϑv,n

dGθv,n,n dv →
∫
g2θ dGθ <∞, (42)

where Gθ,n is as defined in Lemma A.9. Using this, we can re-write

n∑
t=1

∫ (
√
qϑ1,n −√

qθ −
1

2
√
n
gθ
√
qθ

)2

pθ,t dλ =

∫ (√
n

[√
qϑ1,n√
qθ

− 1

]
− 1

2
gθ

)2

dGθ,n. (43)

By the assumed differentiability, the integrand in the last integral converges pointwise to zero.
Combining this with (41), (42) and (43) with Proposition A.2 we have

lim
n→∞

∫ (√
n
[√
qϑ1,n −√

qθ
]
− 1

2
∆θ(u)

√
qθ

)2

ρ̄θ,n dλ = 0, (44)

where ρ̄θ,n := 1
n

∑n
t=1 ρθ,t and ∆θ(u) := gθ, to emphasise the linearity in u of gθ. We next show

that any un → u, un → u (all in U), and any (vn)n∈N ⊂ [0,∞) with vn ↓ 0,

lim
n→∞

∫ [
∆θn+vnφ(un)(un)

√
qθn+vnφ(un) −∆θn(u)

√
qθn

]2
ρ̄θn,n dλ = 0. (45)

We first note that for any (deterministic) convergent sequence xn → x, we have

[∆θn+vnφ(un)(un)
√
qθn+vnφ(un)](·, xn)− [∆θ(u)

√
qθ](·, x) → 0,

pontwise in y. This follows by the continuity of the relevant functions and that, for ϑ̌n :=
θn + vnφ(un), (i)

(y −Bϑ̌n
xn)− (y −Bθx) = Bϑ̌n

(xn − x) + (Bϑ̌n
−Bθ)x→ 0,

since ϑ 7→ Bϑ is continuous and (ii), since ϑ 7→ Aϑ is continuous,

Aϑ̌n,k•Dblxn −Aθ,k•Dblx = Aϑ̌n,k•Dbl(xn − x) + (Aϑ̌n,k• −Aθ,k•)Dblx→ 0.

The form of ℓ̇ϑ̌n
is the same as that given in (7) – (9) once each ϕk is replaced by

ϕ̃k,n := ϕk +
vnhk/

√
n

1 + vnhk/
√
n
, (46)

and, moreover, since ϑ̌n → θ, the continuity and continuous differentiability conditions in
assumption 3.1 ensure that all non-random terms in the expressions (7) – (9) converge and are
thus bounded.37 Noting this and directly integrating, it follows that

lim
n→∞

∫ (
[∆θn+vnφ(un)(un)

√
qθn+vnφ(un)](y, xn)

)2
dy =

∫
([∆θ(u)

√
qθ](y, x))

2 dy <∞,

and hence by Proposition 2.29 in van der Vaart (1998),∫ (
[∆θn+vnφ(un)(un)

√
qθn+vnφ(un)](y, xn)−∆θ(u)

√
qθ(y, x)

)2
dy → 0.

37Cf. footnote 43.
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Taking vn = 0, un = u and θn = θ in the above yields also∫
([∆θ(un)

√
qθ](y, xn)−∆θ(u)

√
qθ(y, x))

2 dy → 0,

and hence we have that

Qn(x) :=

∫ (
[∆θn+vnφ(un)(un)

√
qθn+vnφ(un)](y, x)− [∆θ(un)

√
qθ](y, x)

)2
dy

converges continuously to 0. Using the form given in (54) for the (non-deterministic) parts of
Xt and noting (as discussed following (54)) that {ρ(Bϑ) : ϑ ∈ {θn : n ∈ N} ∪ θ} is bounded,
and similarly that {∥A−1

ϑ ∥ : ϑ ∈ {θn : n ∈ N} ∪ {θ}} is bounded, it is easy to see that
supn∈N,1≤t≤n E ∥Xt∥ <∞. Hence by Markov’s inequality for any ε > 0, there is anM such that
supn∈N,1≤t≤n P

n
θn
(∥Xt∥ ≤ M) ≥ 1 − ϵ and so the family {Xn,t : n ∈ N, 1 ≤ t ≤ n} is uniformly

tight, where each Xn,t is a random variable (defined on a common probability space) with law
L (Xt|Pn

θn
). Let (tn)n∈N be an arbitrary sequence of positive integers satisfying tn ≤ n and put

X̃n := Xn,tn . The sequence (X̃n)n∈N is uniformly tight. It follows by Prohorov’s theorem that
any subsequence (X̃kn)n∈N contains a further subsequence (X̃mn)n∈N with Xmn ⇝ X for some
random variable X. Since (Qn)n∈N is continuously convergent to the zero function, it follows by
the extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1)
that Qmn(X̃mn) ⇝ 0. Equation (45) will then follow provided we show that (Qn(X̃n))n∈N is
uniformly integrable. For this, dominate the n-th term by

Qn(X̃n) ≤ 2

[∫
[∆ϑ̌n

(un)
√
qϑ̌n

](y, X̃n)
2 dy +

∫
[∆θ(u)

√
qθ](y, X̃n)

2 dy

]
= 2

[
E
[
∆ϑ̌n

(un)(Ỹn, X̃n)
2
∣∣∣X̃n

]
+ E

[
∆θ(u)(Ỹ , X̃n)

2
∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑ̌n
and qθ, respec-

tively. Lemma A.7 and (46) ensure that (∆ϑ̌n
(un)(Ỹn, X̃n)

2)n∈N is UI. Combining this with the
conditional Jensen inequality and the de la Valée Poussin criterion for uniform integrability (e.g.
Bogachev, 2007, Theorem 4.5.9) yields that the first conditional expectation in the preceeding
display is UI. That the second conditional expectation is also UI follows similarly.

To complete the proof, first let θ ∈ Θ be arbitrary, sn := n−1/2, un → u, and use (44), the
mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7(i)) and (45) to obtain∥∥∥∥(√

qθ+snφ(un) −
√
qθ

sn
− 1

2
∆θ(u)

√
qθ

)√
ρ̄θ,n

∥∥∥∥
λ,2

≤
∥∥∥∥(√

qθ+snφ(un) −
√
qθ+snφ(u)

sn

)√
ρ̄θ,n

∥∥∥∥
λ,2

+

∥∥∥∥(√
qθ+snφ(u) −

√
qθ

sn
− 1

2
∆θ(u)

√
qθ

)√
ρ̄θ,n

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∥∥12∆θ+snφ(u)+snδφ(un−u)(un − u)
√
qθ+snφ(u)+snδφ(un−u)

√
ρ̄θ,n

∥∥∥∥
λ,2

+ o(1)

= o(1).

Now return to our original setting with θn = (γn, η) → θ = (γ, η). By the preceding display,
applying the mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7(ii)) at each n
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gives

n∑
t=1

E
[
(Wn,t − Zn,t)

2
]
=

∥∥∥∥(√
qθn+snφ(un) −

√
qθn

sn
− 1

2
∆θn(u)

√
qθn

)√
ρ̄θn,n

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∥∥12 (∆θn+δsnφ(un)(un)
√
qθn+δsnφ(un) −∆θn(u)

√
qθn

)√
ρ̄θn,n

∥∥∥∥
λ,2

= o(1),

where the convergence in the last line is due to (45).

Lemma A.4: In the setting of Proposition 4.1, it holds that

2

n∑
t=1

Zn,t = 2

n∑
t=1

Wn,t − τ4/2 + oPn
θn
(1).

Proof. Throughout expectations are taken under Pn
θn
. Letmn(Xt) := E[Zn,t|Xt] = E[Zn,t|Fn,t−1]

with Fn,t := σ(ϵi : i = 1, . . . , t).38 Form Un,t := Zn,t − mn(Xt) − Wn,t and note that
(Un,t,Fn,t)n∈N,1≤t≤n is a martingale difference array (by (34)). Hence

V

[
n∑

t=1

Un,t

]
=

n∑
t=1

E [Zn,t −Wn,t]
2 +

n∑
t=1

E[mn(Xt)
2]− 2

n∑
t=1

E [(Zn,t −Wn,t)mn(Xt)] .

Observe that

E [(Zn,t −Wn,t)mn(Xt)] = E [E [(Zn,t −Wn,t)mn(Xt)|Xt]] = E [mn(Xt)E [Zn,t|Xt]] = E
[
mn(Xt)

2
]
,

and so by Lemma A.3

0 ≤ V

[
n∑

t=1

Un,t

]
=

n∑
t=1

E [Zn,t −Wn,t]
2 −

n∑
t=1

E[mn(Xt)
2] ≤

n∑
t=1

E [Zn,t −Wn,t]
2 → 0,

which, in combination with (L3) of Theorem 2.1.1 in Taniguchi and Kakizawa (2000) (which is
noted to hold in the proof of Proposition 4.1), yields

2
n∑

t=1

Zn,t − 2
n∑

t=1

Wn,t +
n∑

t=1

E[Z2
n,t|Fn,t−1] = oPn

θn
(1).

It therefore suffices to show that
∑n

t=1 E[Z2
n,t|Fn,t−1]

Pn
θn−−→ τ2/4. For this, first observe that by

Lemma A.8,

1

n

n∑
t=1

(
1

2
∆θn(u)(Yt, Xt)

)2 Pn
θn−−→ τ2

4
.

Next, since the
(
1
2∆θn(u)

)2
are UI by Lemma A.7, applying Theorem 2.22 in Hall and Heyde

(1980), Jensen’s inequality for conditional expectations and the de la Vallée Poussin criterion
for uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9) we have that

1

n

n∑
t=1

(
1

2
∆θn(u)(Yt, Xt)

)2

− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]
L1−→ 0.

38See e.g. Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the conditional expectations.
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To complete the proof it therefore suffices show that

1

n

n∑
t=1

E([
√
nZn,t]

2|Fn,t−1)− E

[(
1

2
∆θn(u)

)2

|Fn,t−1

]
L1−→ 0. (47)

Since E[Un,t|Fn,t−1] = E[Un,t|Xt] for Un,t ∈
{
[
√
nZn,t]

2,
(
1
2∆θn(u)(Yt, Xt)

)2}
,39 we have

E

∣∣∣∣∣ 1n
n∑

t=1

E([
√
nZn,t]

2|Fn,t−1)− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]∣∣∣∣∣
≤ 1

n

n∑
t=1

E

∣∣∣∣∣E([√nZn,t]
2|Fn,t−1)− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]∣∣∣∣∣
≤ 1

n

n∑
t=1

∫ ∫ ∣∣∣∣√n(q1/2θ̃n
− q

1/2
θn

)− 1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ∣∣∣∣√n(q1/2θ̃n
− q

1/2
θn

) +
1

2
∆θn(u)q

1/2
θn

∣∣∣∣ dyρθn,t dx
=

〈∣∣∣∣√n(q1/2θ̃n
− q

1/2
θn

)− 1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ρ̄1/2θn,n
,

∣∣∣∣√n(q1/2θ̃n
− q

1/2
θn

) +
1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ρ̄1/2θn,n

〉
λ

≤
∥∥∥∥[√n(q1/2θ̃n

− q
1/2
θn

)− 1

2
∆θn(u)q

1/2
θn

]
ρ̄
1/2
θn,n

∥∥∥∥
λ,2

∥∥∥∥[√n(q1/2θ̃n
− q

1/2
θn

) +
1

2
∆θn(u)q

1/2
θn

]
ρ̄
1/2
θn,n

∥∥∥∥
λ,2

,

by Cauchy-Schwarz. The proof of (47) (and hence the Lemma) is completed by applying
Lemmas A.3, A.7 and noting∥∥∥∥[√n(q1/2θ̃n

− q
1/2
θn

) +
1

2
∆θn(u)q

1/2
θn

]
ρ̄
1/2
θn,n

∥∥∥∥
λ,2

≤

(∥∥∥∥[√n(q1/2θ̃n
− q

1/2
θn

)− 1

2
∆θn(u)q

1/2
θn

]
ρ̄
1/2
θn,n

∥∥∥∥
λ,2

+
∥∥∥∆θn(u)q

1/2
θn
ρ̄θn,n

∥∥∥
λ,2

)
.

Lemma A.5: Suppose that assumption 3.1 holds. Then (42) in the proof of Lemma A.3 holds.

Proof. The finiteness of the integral on the right hand side follows by direct evaluation using
the moment bounds in assumption 3.1 along with the fact that under πθ, E ∥Xt∥4+δ <∞ which
can be seen on combining Lemma A.2 with the fact that πθ is the law of a stationary solution
to the defining VAR equation (see e.g. Kallenberg, 2021, Theorem 11.11).

By Lemma A.9 and Corollary 2.9 in Feinberg et al. (2016) it is enough to prove the uniform
Gϑvn,n,n – integrability of (g2ϑvn,n

)n∈N for an arbitrary (vn)n∈N ⊂ [0, 1]. As each hk is bounded,

it suffices to show supn∈N
∫ ∣∣∣c′ℓ̇ϑvn,n

∣∣∣2+δ/2
dGϑvn,n,n < ∞ for some δ > 0. The form of ℓ̇ϑvn,n is

the same as that given in equations (7) – (9) once each ϕk is replaced by

ϕ̃k,n := ϕk +
vnhk/

√
n

1 + vnhk/
√
n
,

where, since each hk is bounded, the second term is bounded for large enough n. Since ϑvn,n → θ,
the continuity and continuous differentiability conditions in assumption 3.1 ensure that all non-
random terms in the expressions (7) – (9) converge and are thus bounded.40 The required
bound then follows as, under Gϑvn,n,n we have that Vϑvn,n,t ∼ ϵt, with independent compo-
nents and also independent of Xt, and supn∈N E[|ϵt|4+δ] < ∞, supn∈N E[|ϕk(ϵt)|4+δ] < ∞ and
supn∈N E ∥Xt∥4+δ <∞. The first two moment bounds are immediate from assumption 3.1. The

39Cf. footnote 38.
40Cf. footnote 43.
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latter follows since under each ρθ,t, supn∈N,1≤t≤n E ∥Xt∥4+δ < ∞ which follows as in the proof
of Lemma A.7 and hence

sup
n∈N

∫
∥x∥4+δ 1

n

n∑
t=1

ρθ,t(x) dλ ≤ sup
n∈N,1≤t≤n

∫
∥x∥4+δρθ,t(x) dλ <∞.

Lemma A.6 (Cf. Lemma A.10 in van der Vaart (1988)): Suppose that Assumption 3.1 holds.
Then for any θ̃n which takes the form θ̃n = (αn, βn+ bn/

√
n, η) with bn → b ∈ RLβ a convergent

sequence,

Rn :=
1√
n

n∑
t=1

[
ℓ̃θ̃n(Yt, Xt)− ℓ̃θn(Yt, Xt)

]
+ Ĩn,θn(0

′, b′n)
′ Pn

θn−−→ 0.

Proof. Let qθ be as defined in Lemma A.3 and note that the sequence which is to be shown to
converge to zero (in probability) can be written as the sum of the following two terms

R1,n :=
1√
n

n∑
t=1

[
ℓ̃θ̃n(Yt, Xt)

(
1−

qθ̃n(Yt, Xt)
1/2

qθn(Yt, Xt)1/2

)]
+

1

2
Ĩn,θn(0

′, b′n)
′

R2,n :=
1√
n

n∑
t=1

[
ℓ̃θ̃n(Yt, Xt)

qθ̃n(Yt, Xt)
1/2

qθn(Yt, Xt)1/2
− ℓ̃θn(Yt, Xt)

]
+

1

2
Ĩn,θn(0

′, b′n)
′

To simplify notation, let Zn,t,1 := ℓ̃θ̃n(Yt, Xt)
qθ̃n (Yt,Xt)1/2

qθn (Yt,Xt)1/2
and Zn,t,2 := ℓ̃θn(Yt, Xt). Define

mn(x) :=
∫
ℓ̃θ̃n(y, x)qθ̃n(y, x)

1/2qθn(y, x)
1/2 dy. Evaluated at Xt, this is the conditional (on

Xt) expectation of Zn,t,1. Observe that since E[ℓ̃θn(Yt, Xt)|Xt] = 0 under Pn
θ̃n
,

mn(Xt) =

∫
ℓ̃θ̃n(y,Xt)qθ̃n(y,Xt)

1/2qθn(y,Xt)
1/2 dy

=

∫
ℓ̃θ̃n(y,Xt)qθ̃n(y,Xt)

1/2
[
qθn(y,Xt)

1/2 − qθ̃n(y,Xt)
1/2
]
dy.

Let ρθn,t be the density of (the non-deterministic parts of)Xt under P
n
θn
, ρ̄θn,n := 1

n

∑n
t=1 ρθn,t

and Gθn,n be the measure corresponding to ρ̄θn,n. By Lemma A.3,

lim
n→∞

∫ [√
n
(
q
1/2
θn

− q
1/2

θ̃n

)
ρ̄
1/2
θn,n

+
1

2
b′nℓ̇θnq

1/2
θn
ρ̄
1/2
θn,n

]2
dλ = 0. (48)

Additionally,

lim
n→∞

∫ ∥∥∥ℓ̃θnq1/2θn
ρ̄
1/2
θn,n

− ℓ̃θ̃nq
1/2

θ̃n
ρ̄
1/2
θn,n

∥∥∥2 dλ = 0. (49)

To demonstrate this we first note that by inspection of their forms, it is clear that for ϑn equal
to either θ, θn or θ̃n and any xn → x, ℓ̃ϑn(y, xn)qϑn(y, xn)

1/2 → ℓ̃θ(y, x)qθ(y, x)
1/2 (pointwise in

y). Moreover, noting the fact that these integrals are expectations conditional on X and using
the forms given in Lemma 4.1 along with the continuity given by Assumption 3.1 we have that

lim
n→∞

∫ ∥∥∥ℓ̃ϑn(y, xn)q
1/2
ϑn

(y, xn)
∥∥∥2 dy =

∫ ∥∥∥ℓ̃θ(y, x)q1/2θ (y, x)
∥∥∥2 dy <∞. (50)

Hence by Proposition 2.29 in van der Vaart (1998) we have that

lim
n→∞

∫ ∥∥∥ℓ̃ϑn(y, xn)q
1/2
ϑn

(y, xn)− ℓ̃θ(y, x)q
1/2
θ (y, x)

∥∥∥2 dy = 0. (51)
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Since this also applies with ϑn = θ we may conclude that

Qn(x) :=

∫ ∥∥∥ℓ̃ϑn(y, x)q
1/2
ϑn

(y, x)− ℓ̃θ(y, x)q
1/2
θ (y, x)

∥∥∥2 dy (52)

converges continuously to the zero function. By Corollary A.1 and the extended continuous
mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) it follows that Qn(X̃n)⇝
0 where X̃n has law Gϑn,n. We next show that Qn(X̃n)n∈N is uniformly integrable. Dominate
the n-th term by

Qn(X̃n) ≤ 2

[∫ ∥∥∥ℓ̃ϑn(y, X̃n)
∥∥∥2 qϑn(y, X̃n) dy +

∫ ∥∥∥ℓ̃θ(y, X̃n)
∥∥∥2 qθ(y, X̃n) dy

]
≤ 2

[
E
[∥∥∥ℓ̃ϑn(Ỹn, X̃n)

∥∥∥2∣∣∣∣X̃n

]
+ E

[∥∥∥ℓ̃θ(Ỹ , X̃n)
∥∥∥2∣∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑn and qθ respectively.
Under Assumption 3.1(ii) and using Lemma A.2 and the forms given in Lemma 4.1 it is easily

seen that each of

(∥∥∥ℓ̃ϑn(Ỹn, X̃n)
∥∥∥2)

n∈N
and

(∥∥∥ℓ̃θ(Ỹ , X̃n)
∥∥∥2)

n∈N
are uniformly integrable. The

uniform integrability of the corresponding conditional expectations above then follows from
Jensen’s inequality for conditional expectations and the de la Vallée - Poussin criterion for
uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9). We may now conclude that

lim
n→∞

∫ ∥∥∥ℓ̃ϑnq
1/2
ϑn
ρ̄
1/2
ϑn,n

− ℓ̃θq
1/2
θ ρ̄

1/2
ϑn,n

∥∥∥2 dλ = 0, .

Using this result twice (once with ϑn = θn and once with ϑn = θ̃n) we obtain (49). Combination
of (48) and (49) with the continuity of the inner product yields

lim
n→∞

〈
ℓ̃θ̃nq

1/2

θ̃n
ρ̄
1/2
θn,n

,
√
n
(
q
1/2
θn

− q
1/2

θ̃n

)
ρ̄
1/2
θn,n

〉
λ
−
〈
ℓ̃θnq

1/2
θn
ρ̄
1/2
θn,n

, −1

2
b′nℓ̇θnq

1/2
θn
ρ̄
1/2
θn,n

〉
λ

= 0.

Since ∫ √
nmnρ̄θn,n dλ =

〈
ℓ̃θ̃nq

1/2

θ̃n
ρ̄
1/2
θn,n

,
√
n
(
q
1/2
θn

− q
1/2

θ̃n

)
ρ̄
1/2
θn,n

〉
λ

and 〈
ℓ̃θnq

1/2
θn
ρ̄
1/2
θn,n

, −1

2
b′nℓ̇θnq

1/2
θn
ρ̄
1/2
θn,n

〉
λ

= −1

2
Ĩn,θn(0

′, b′n)
′.

Combining these displays allows us to conclude that to establish thatR2,n → 0 in Pn
θn
-probability

it will suffice to show the same for R′
2,n := 1√

n

∑n
t=1 Zn,t,1 − mn(Xt) − Zn,t,2. As is easy

to verify, (Zn,t,1 − mn(Xt) − Zn,t,2,Fn,t)n∈N,1≤t≤n forms a martingale difference array with
Fn,t := σ(ϵ1, . . . , ϵt). It follows that it suffices to show that (under Pn

θn
)

V

[
1√
n

n∑
t=1

Zn,t,1 −mn(Xt)− Zn,t,2

]
=

1

n

n∑
t=1

V [Zn,t,1 −mn(Xt)− Zn,t,2] → 0.

In view of (49) for this, it suffices to show that

1

n

n∑
t=1

E[∥mn(Xt)∥2] =
∫

∥mn(x)∥2ρ̄θn,n(x) dx→ 0.

For this, definemn(y, x) := ℓ̃θ̃n(y, x)qθ̃n(y, x)
1/2
[
qθn(y, x)

1/2 − qθ̃n(y, x)
1/2
]
and note thatmn(y, xn) →
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0 pointwise for any convergent xn → x. We additionally have by Cauchy-Schwarz that∥∥∥∥∫ mn(y, xn) dy

∥∥∥∥ ≤
[∫

∥ℓ̃θ̃n∥
2qθ̃n(y, xn) dy

]1/2 [∫ (
qθn(y, xn)

1/2 − qθ̃n(y, xn)
1/2
)2

dy

]1/2
.

As can be easily verified,
∫
∥ℓ̃θ̃n∥

2qθ̃n(y, xn) dy is upper bounded by a term of the form M1 +

M2∥xn∥2 (with M1,M2 finite positive constants which do not depend on n). Additionally
(qθn(y, xn)

1/2 − qθ̃n(y, xn)
1/2)2 → 0 pointwise in y and is upper bounded by 2qθn(y, xn) +

2qθ̃n(y, xn) which satisisfies
∫
2qθn(y, xn) + 2qθ̃n(y, xn) dy = 4 =

∫
4qθ(y, x) dy for each n ∈ N.

Therefore, by the generalised Lebesgue dominated convergence theorem∫ (
qθn(y, xn)

1/2 − qθ̃n(y, xn)
1/2
)2

dy → 0.

It follows that ∥mn(xn)∥2 → 0 pointwise for any xn → x. Re-using the bound from above, we
note that

∥mn(Xt)∥2 ≤ 4(M1 +M2∥Xt∥2)

and hence ∥mn(Xt)∥2 is Gθn,n-uniformly integrable by Lemma A.2.41 Moreover, by corollary
A.1, Gθn,n ⇝ πθ and hence by Theorem 3.5 in Serfozo (1982)

1

n

n∑
t=1

E[∥mn(Xt)∥2] =
∫

∥mn∥2 dGθn,n →
∫

0 dπθ = 0.

This establishes that R2,n

Pn
θn−−→ 0. For R1,n, define fn(y, x) := cnqθn(y, x)

1/2qθ̃n(y, x)
1/2ρ̄θn,n(x),

where

c−1
n :=

∫
q
1/2
θn
q
1/2

θ̃n
ρ̄θn,n dλ = 1− 1

2

∫
(q

1/2
θn

− q
1/2

θ̃n
)2ρ̄θn,n dλ.

We have

−n
(
q
1/2
θn

− q
1/2

θ̃n

)2
=

(√
n
[
q
1/2

θ̃n
− q

1/2
θn

]
− 1

2
b′nℓ̇θnq

1/2
θn

)2

+

(
1

2
b′nℓ̇θnq

1/2
θn

)2

− b′nℓ̇θnq
1/2
θn

√
n
(
q
1/2

θ̃n
− q

1/2
θn

)
,

and so by Lemma A.3 and the continuity of the inner product∫
(q

1/2
θn

− q
1/2

θ̃n
)2ρ̄θn,n dλ =

1

n

∫
b′nℓ̇θnq

1/2
θn
ρ̄
1/2
θn,n

√
n
(
q
1/2

θ̃n
− q

1/2
θn

)
ρ̄
1/2
θn,n

dλ

− 1

n

∫ (
1

2
b′nℓ̇θnq

1/2
θn

)2

ρ̄θn,n dλ+ o(n−1)

=
1

2
(n−1/2bn)

′İθn(n
−1/2bn) + o(n−1),

where İθn :=
∫
ℓ̇θn ℓ̇

′
θn
qθn ρ̄θn,n dλ.

42 It follows that c−1
n = 1 − an with an → 0 and nan =

1
4b

′
nİθnbn + o(1). By Taylor’s theorem log(1 − an) = −an + R(1 − an)a

2
n with Rn(1 − x) → 0

as x → 0. Hence log cnn = −n log(1 − an) = nan − nR(1 − an)a
2
n = 1

4b
′
nİθnbn + o(1). Pn

θn
is the measure corresponding to the product density

∏n
t=1 qθnρθn,t. Let Qn

n be the measure

corresponding to the product density
∏n

t=1 cnq
1/2
θn
q
1/2

θ̃n
ρ̄θn,n. Writing Λn := Λn(Q

n
n, P

n
θn
) for their

41Lemma A.2 bounds the moments of the (demeaned) stationary solution; it is easy to see that this provides a
uniform (in t, n) upper bound for our process (conditional on the initial values).

42This sequence of matrices is bounded (see e.g. intermediate results used in the proof of Proposition 4.1).
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log-likelihood ratio and using notation from the proof of Proposition 4.1, by (35)

Λn = log cnn + 2
n∑

t=1

log(Zn,t + 1)
Pn
θn⇝ Z,

where Z has a normal distribution. By Example 6.5 in van der Vaart (1998) Pn
θn
◁Qn

n and so by

Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) it suffices to show that Rn,1
Qn

n−−→ 0.
For this we first note that if

1

n

n∑
t=1

ℓ̃θn ℓ̇
′
θn − Ĩn,θn

Qn
n−−→ 0, (53)

then we have Rn,1
Qn

n−−→ 0 as

1

n

n∑
t=1

∫ ∥∥∥∥∥∥ℓ̃θ̃n√n
1−

q
1/2

θ̃n

q
1/2
θn

+
1

2

√
nℓ̃θn ℓ̇

′
θn(bn/

√
n)

∥∥∥∥∥∥ cnq1/2θn
q
1/2

θ̃n
ρ̄θn,n dλ

≤ cn

∫ ∥∥∥ℓ̃θ̃nq1/2θ̃n

∥∥∥√n ∣∣∣∣q1/2θ̃n
− q

1/2
θn

− 1

2
√
n
b′nℓ̇θnq

1/2
θn

∣∣∣∣ ρ̄θn,n dλ
= o(1),

where the convergence follows from Lemma A.3 and the continuity of the inner product. It
remains to prove (53). For this it suffices to observe that

Qn
n

∥∥∥∥∥ 1n
n∑

t=1

ℓ̃θn ℓ̇
′
θn − Ĩn,θn

∥∥∥∥∥ ≤ |cn − 1|
∫ ∥∥∥ℓ̃θn ℓ̇′θn∥∥∥ q1/2θn

q
1/2

θ̃n
ρ̄θn,n dλ+

∫ ∥∥∥ℓ̃θn ℓ̇′θn∥∥∥ q1/2θn
|q1/2
θ̃n

− q
1/2
θn

|ρ̄θn,n dλ

= o(1),

by Cauchy-Schwarz and the facts that supn∈N ∥∥ℓ̃θn ℓ̇′θn∥q
1/2
θn
ρ̄
1/2
θn,n

∥λ,2 < ∞ (under assumption

3.1), ∥q1/2
θ̃n
ρ̄
1/2
θn,n

∥λ,2 = 1, cn → 1 and ∥|q1/2θn
− q

1/2

θ̃n
|ρ̄1/2θn,n

∥λ,2 → 0 by Lemma A.3.

Lemma A.7: Suppose assumption 3.1 holds and let ∆θ(u) be as defined as in Lemma A.3. If
θn = (γn, η) → (γ, η) = θ, the sequence (∆θn(u))n∈N has uniformly bounded 4 + δ moments
under Pn

θn
, i.e.

sup
n∈N,1≤t≤n

∫
|∆θn(u)|4+δ dPn

θn <∞.

In consequence, it is uniformly square Pn
θn
-integrable.

Proof. The continuity and continuous differentiability conditions in assumption 3.1 ensure that
all non-random terms in the expressions (7) – (9) converge and are thus bounded.43 Note that
under Pn

θn
, Ak•Vθn,t ∼ ηk and is independent of both Xt and Aj•Vθn,t for j ̸= k. Given this

independence and the forms given in (7) – (9) it suffices to show that

E[|ϕk(ϵk)|4+δ] <∞, E[|ϵk|4+δ] <∞, sup
n∈N,1≤t≤n

E ∥Xt∥4+δ <∞,

where the expectation is taken under Pn
θn

and we note that ηk does not depend on n. The first
two of these follow immediately from the moment assumptions in part (ii) of assumption 3.1.

43These terms are of the form 1, A(αn, σn)Dbl (with l an integer) or [Dxl(αn, σn)]k•[A(αn, σn)
−1]•j for k, j ∈

{1, . . . ,K} and x ∈ {α, σ} (with l an integer).
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For the last term, by recursing backwards we obtain

Zt =
t−1∑
j=0

Bj
θCθ +

t−1∑
j=0

Bj
θDθϵt−j + Bt

θZ0. (54)

Assumption 3.1(i) ensures that the matrices Bj
θ are absolutely summable and

∑∞
j=0 B

j
θ = (I −

Bθ)
−1 exists (e.g. Lütkepohl, 2005, Section A.9.1). Moreover, T := {θn : n ∈ N} ∪ {θ} is

compact, and the spectral radius M 7→ ρ(M) is a continuous function, then {ρ(Bϑ) : ϑ ∈ T} is
compact, which ensures that this set is bounded above by some υ < 1. Let m1,m2 ∈ N with
m2 ≥ m1 and let Bϑ = U∗

ϑJϑUϑ be a Schur decomposition of Bϑ (see e.g. Horn and Johnson,
2013, Theorem 2.3.1). Let ∥ · ∥ be the spectral norm and note that we have ∥Uϑ∥ = 1 and hence
by Lemma 5.6.10 in Horn and Johnson (2013), for any ε > 0 with υ + ε < 1 we have∥∥∥∥∥∥

m2∑
j=0

Bj
ϑ −

m1∑
j=0

Bj
ϑ

∥∥∥∥∥∥ ≤
m2∑

j=m1

∥Bj
ϑ∥ ≤

m2∑
j=m1

∥Jϑ∥j ≤
m2∑

j=m1

(υ + ε)j .

Since
∑∞

j=0(υ+ ε)
j = 1

1−υ−ε <∞, in view of the preceding display, the convergence
∑∞

j=0 B
j
θ =

(I − Bθ)
−1 is uniform in θ ∈ T. Since θ 7→ Cθ is continuous, this immediately implies that

supn∈N,1≤t≤n

∥∥∥∑t−1
j=0 B

j
θn
Cθn

∥∥∥4+δ
< ∞. Similarly using the same uniform bound, that (ϵt)t≥1

are i.i.d. and since θ 7→ ∥Dθ∥ is continuous we have that

sup
n∈N,1≤t≤n

E

∥∥∥∥∥∥
t−1∑
j=0

Bj
θn
Dθnϵt−j

∥∥∥∥∥∥
4+δ

≤ sup
n∈N

∥Dθn∥4+δ E ∥ϵt∥4+δ sup
n∈N,1≤t≤n

t−1∑
j=0

∥Bj
θn
∥4+δ <∞.

Hence by Minkowski’s inequality we have that supn∈N,1≤t≤n E ∥Xt∥4+δ < ∞, where the expec-
tation is taken under Pn

θn
.

Lemma A.8: Suppose assumption 3.1 holds and let ∆θ(u) be as defined as in Lemma A.3. If
θn = (γn, η) → (γ, η) = θ and Gθ is defined as in Lemma A.9, then under Pn

θn
,

lim
n→∞

E

∣∣∣∣∣ 1n
n∑

t=1

∆θn(u)(Yt, Xt)
2 − τ2

∣∣∣∣∣
2

= 0, with τ2 := Gθ∆θ(u)
2 <∞.

Proof. Let ϑn indicate either θn or θ. By inspection of their forms it is clear that for any
xn → x, [∆ϑn(u)(y, xn)]qϑn(y, xn)

1/2 → [∆θ(u)(y, x)]qθ(y, x)
1/2 pointwise in y. By inspection of

their form, the continuity given by Assumption 3.1 we have

lim
n→∞

∫
[∆ϑn(u)(y, xn)]

2qϑn(y, xn) dy =

∫
[∆θ(u)(y, x)]

2qθ(y, x) dy <∞,

i.e. Qn converges continuously to Q where

Qn(x) :=

∫
[∆ϑn(u)(y, x)]

2qϑn(y, x) dy, Q(x) :=

∫
[∆θ(u)(y, x)]

2qθ(y, x) dy.

We can bound

Qn(x) ≤ 2
[
E
[
∆θn(u)(Ỹn, X̃n)

2
∣∣∣X̃n

]
+ E

[
∆θ(u)(Ỹ , X̃n)

2
∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑn and qθ respectively.
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Under Assumption 3.1(ii) and an argument similar to that of Lemma A.7 it is easily seen

that each of
(
∆θn(u)(Ỹn, X̃n)

2
)
n∈N

and
(
∆θ(u)(Ỹ , X̃n)

2
)
n∈N

are uniformly integrable. The

uniform integrability of the corresponding conditional expectations above then follows from
Jensen’s inequality for conditional expectations and the de la Vallée - Poussin criterion for
uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9). Corollary A.1 in conjunction with
Theorem 3.5 of Serfozo (1982) then yields that Gθn,θn,n∆θn(u)

2 → Gθ∆θ(u)
2 < ∞, where

Gϑ,θ,n(A) :=
∫ ∫

1A(y, x)qϑ(y, x) dy dρ̄θ,n(x) and the finiteness follows from the form of ∆θ(u),
assumption 3.1(ii) and Lemma A.2.44 The convergence follows on combining Lemma A.7,
Proposition A.1 and Corollary 19.3(ii) of Davidson (1994).

Lemma A.9: Suppose that assumption 3.1 holds. Let ρθ,t be the density of Xt := vec(Yt−1, . . . , Yt−p)
(i.e. the non-deterministic parts of Xt) under θ. Let Gϑ,n be the measure defined by Gϑ,n(A) :=∫
A qϑ

1
n

∑n
t=1 ρθ,t dλ and Gθ the measure defined by Gθ(A) :=

∫
A qθ(y, x) d(λ(y) ⊗ πθ(x)) for qϑ

as defined as in (40). Let (ϑn)n∈N ⊂ Θ be an sequence with ϑn = (γn, η) → (γ, η) = θ. Then,

Gϑn,n
TV−−→ Gθ.

Proof. By the form of θ 7→ qθ we have that qϑn → qθ (pointwise) as n → ∞. Hence, for any x,
qϑn(·, x) → qθ(·, x) pointwise and since each qϑn(·, x) and qθ(·, x) is a probability density with
respect to Lebesgue measure, by Proposition 2.29 in van der Vaart (1998),

Qn(x) :=

∫
|qϑn(y, x)− qθ(y, x)| dy → 0,

pointwise in x. Let (ψn)n∈N be a sequence of measurable functions on RKp with ψn ∈ [0, 1] and
πθ,n the probability measure corresponding to the density 1

n

∑n
t=1 ρθ,t. Then∣∣∣∣∫ ∫ ψn(y, x)(qϑn(y, x)− qθ(y, x)) dy dπθ,n(x)

∣∣∣∣ ≤ ∫ Qn(x) dπθ,n(x).

Since Qn(x) ≤
∫
qϑn(y, x) dy +

∫
qθ(y, x) dy and

∫ [∫
qϑn(y, x) dy +

∫
qθ(y, x) dy

]
dπθ,n(x) =

2 =
∫
2
∫
qθ(y, x) dy dπθ(x), the Qn(x) are uniformly πθ,n – integrable.45 Hence by Corollary

2.9 of Feinberg et al. (2016),
∫

Qn(x) dπθ,n(x) → 0. The proof is completed by noting that by
Proposition A.1, ∣∣∣∣∫ ∫ ψn(y, x)qθ(y, x) dy dπθ,n(x)−

∫
ψn dGθ

∣∣∣∣→ 0.

Lemma A.10: Let γn = (αn, β) → (α, β) = γ and θn = (γn, η) → (γ, η) = θ for γn, γ ∈ Γ.
Let γ̃n = (αn, βn) → (α, β) = γ, θ̃n := (γ̃n, η) → (γ, η) = θ with bn :=

√
n(βn − β) → b and

θ̌n := (γ̃n, η̃n) → θ with η̃n := η(1 + hn/
√
n) for hn → h in ˙H . Then, under the conditions of

Theorem 5.1,

(i) If Zn,1 :=
1√
n

∑n
t=1 ℓ̃θn(Yt, Xt) and Zn,2 := Λn

θ̌n\θn
(Y n), then under Pn

θn
,

Zn ⇝ Z ∼ N
((

0
−1

2σ
2
b,h

)
,

(
Ĩθ Ĩθ(0

′, b′)′

(0′, b′)Ĩθ σ2b,h

))
.

44ρ̄θ,n := 1
n

∑n
t=1 ρθ,t.

45The uniform integrability follows since, by the integral equality, Proposition A.1 and Proposition A.2,∫ ∣∣∣∣∫ qϑn(y, x) dy +

∫
qθ(y, x) dy − 2

∫
qθ(y, x) dy

∣∣∣∣ dπθ,n(x) → 0.
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(ii) We have that

1

n

n∑
t=1

(
ℓ̂θ̃n(Yt, Xt)− ℓ̃θ̃n(Yt, Xt)

)
= oPn

θ̃n
(n−1/2)

(iii) Ĩn,θn → Ĩθ := Gθ ℓ̇θ ℓ̇
′
θ and Pn

θ̃n

(
∥În,θ̃n − Ĩθ∥2 < νn

)
→ 1 where νn is defined in Assumption

3.2 and Gθ in Lemma A.9.

(iv) We have that

Rn :=
1√
n

n∑
t=1

[
ℓ̃θ̃n(Yt, Xt)− ℓ̃θn(Yt, Xt)

]
+ Ĩn,θn(0

′,
√
n(βn − β)′)′

Pn
θn−−→ 0.

Proof. For part (i), let zn,t be

zn,t :=

(
ℓ̃θn(Yt, Xt)

′, c′ℓ̇θn(Yt, Xt) +
K∑
k=1

hk(Ak•Vθn,t)

)′

,

and Fn,t := σ(ϵ1, . . . , ϵt). Under assumption 3.1(ii), E ∥zn,t∥22 < ∞ and {zn,t,Fn,t : 1 ≤ t ≤
n, n ∈ N} is a martingale difference array (all under Pn

θn
) such that

1

n

n∑
t=1

E
[
zn,tz

′
n,t

]
=

[
Ĩn,θn Ĩn,θn(0

′, b′n)
′

(0′, b′n)Ĩn,θn σ2n,b,h

]
→
[

Ĩθ Ĩθ(0
′, b′)′

(0′, b′)Ĩθ σ2b,h

]
,

noting Lemma 4.1 and Theorem 12.14 of Rudin (1991). That σ2n,b,h converges to a σ2b,h is part

of the conclusion of Proposition 4.1. That Ĩn,θn → Ĩθ follows from Lemma A.8. Moreover,
the Lindeberg condition in (67) is satisfied since {∥zn,t∥2 : 1 ≤ t ≤ n, n ∈ N} is uniformly
Pn
θn
-integrable. That this is true for ∥zn,t,2∥2 follows from A.7. That it is also true for ∥zn,t,1∥2

can be shown by an analogous argument. Part (i) then follows from Propositions 4.1, A.3 and
Lemma A.8.

Next, define An := Aθ̃n
and Bn := Bθ̃n

and note that each An,k(Yt − cn −BnXt) ≂ ϵk,t ∼ ηk
under Pn

θ̃n
. Hence we can compute certain properties of the efficient score using the equality in

distribution:

ℓ̃θ̃n,αl
(Yt, Xt) ≂

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(ϵk,t)ϵj,t +

K∑
k=1

ζαn,l,k,k [τk,1ϵk,t + τk,2κ(ϵk,t)] (55)

ℓ̃θ̃n,σl
(Yt, Xt) ≂

K∑
k=1

K∑
j=1,j ̸=k

ζσn,l,k,jϕk(ϵk,t)ϵj,t +

K∑
k=1

ζσl,k,k [τk,1ϵk,t + τk,2κ(ϵk,t)] (56)

ℓ̃θ̃n,bl(Yt, Xt) ≂
K∑
k=1

−An,k•Db,l [ϕk(ϵk,t)(Xt − EXt)− EXt (ςk,1ϵk,t + ςk,2κ(ϵk,t))] (57)

where we note that the same observation implies that τk,n = τk and ςk,n = ςk for each n.
46 By our

assumptions on the map (α, σ) 7→ A(α, σ), we have ζαn,l,k,j → ζα∞,l,k,j := [Dαl
(α0, σ)]k•A(α, σ)

−1
•j

and ζσn,l,k,j → ζσ∞,l,k,j := [Dσl
(α, σ)]k•A(α, σ)

−1
•j . Note that the entries of Db,l are all zero except

for entry l (corresponding to bl) which is equal to one.
We verify (ii) for each component of the efficient score (55)-(57). Components (55) and (56)

46In the preceding display we have written ζαn,l,k,k and ζσn,l,k,k rather than ζαl,k,k and ζσl,k,k to indicate their

dependence on θ̃n.
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follow similarly and we focus on (55). We define

φ1,n,t :=
K∑
k=1

K∑
j=1,j ̸=k

ζl,k,j,nϕk(An,k•Vn,t)An,j•Vn,t ,

and

φ̂1,n,t :=
K∑
k=1

K∑
j=1,j ̸=k

ζl,k,j,nϕ̂k,n(An,k•Vn,t)An,j•Vn,t ,

with Vn,t = Yt − BnXt, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,n| which converges to ζ :=
maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,∞| <∞. We have that

1√
n

n∑
t=1

(φ̂1,n,t−φ1,n,t) ≤
√
n

K∑
k=1

K∑
j=1,j ̸=k

ζn

∣∣∣∣∣ 1n
n∑

t=1

ϕ̂k,n(An,k•Vn,t)An,j•Vn,t − ϕk(An,k•Vn,t)An,j•Vn,t

∣∣∣∣∣ ,
Since each

∣∣∣ 1n∑n
t=1 ϕ̂k,n(An,k•Vn,t)An,j•Vn,t − ϕk(An,k•Vn,t)An,j•Vn,t

∣∣∣ = oPθn
(n−1/2) by applying

the Lemma A.1 with Wn,t = An,j•Vn,t (noting that An,k•Vn,t ≃ ϵk,t and An,j•Vn,t ≃ ϵj,t are
independent with Eθn(An,j•Vn,t)

2 = 1 by Assumption 3.1(ii), hence the WLLN implies the
required convergence) and the outside summations are finite, it follows that

1√
n

n∑
t=1

(φ̂1,n,t − φ1,n,t) = oPn
θ̃n
(1) . (58)

That τ̂k,n
Pn
θ̃n−−→ τk follows from Lemma A.12. Now, consider φ2,τ,n,t defined by

φ2,τ,n,t :=

K∑
k=1

ζαn,l,k,k [τk,1An,k•Vn,t + τk,2κ(An,k•Vn,t)] .

Since sum is finite and each |ζαn,l,k,k| → |ζα∞,l,k,k| <∞ it is sufficient to consider the convergence
of the summands. In particular we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vn,t = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vn,t → 0,

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vn,t) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vn,t) → 0,

in probability, since An,k•Vn,t ≂ ϵk,t ∼ ηk and (ϵk,t)t≥1 and (κ(ϵk,t))t≥1 are i.i.d. mean-zero
sequences with finite second moments such that the CLT holds.

Together these yield that

1√
n

n∑
t=1

(φ2,τ̂n,n,t − φ2,τ,n,t) → 0 in Pn
θ̃n
-probability. (59)

Putting (58) and (59) together yields the required convergence for components of the type (55).
We note that the required convergence for components of type (56) follows using identical steps.
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For components (57) let an,k,l := −An,k•Dbl and note for ς̃k,n,1 := ς̂k,n − ςk,

1√
n

n∑
t=1

(ℓ̂θ̃n,bl(Yt, Xt)− ℓ̃θ̃n,bl(Yt, Xt))

=
K∑
k=1

an,k,l
1√
n

n∑
t=1

[
(Xt − EXt)

[
ϕ̂k(An,k•Vn,t)− ϕk(An,k•Vn,t)

]]
+

K∑
k=1

an,k,l
1√
n

n∑
t=1

[
(EXt − X̄n) (ϕk(An,k•Vn,t) + ς̂k,n,1An,k•Vn,t + ς̂k,n,2κ(An,k•Vn,t))

]
−

K∑
k=1

an,k,l
1√
n

n∑
t=1

[EXt (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))] .

Noting first that an,k,l → a∞,k,l := Ak•Dbl , each of the terms on the right hand side converges
to zero in probability. For the first term, this follows from Lemma A.1 applied with Wn,t :=
an,k,l(Xt − EXt), noting that this is independent of An,k•Vn,t by Assumption (ii).47 For the
second term, this follows from A.12, the CLT applied to An,k•Vn,t ≃ ϵk,t, κ(An,k•Vn,t) ≃ κ(ϵk,t)
and ϕk(An,k•Vn,t) ≃ ϕk(ϵk,t) and the fact that X̄n− 1

n

∑n
t=1 EXt converges to zero in probability

by e.g. Corollary 19.3 in Davidson (1994), Lemma A.2 (which provides a uniform upper bound
for the 4 + δ moments of the Xt) and Proposition A.1. For the third term, this follows from
A.12 and the CLT applied to An,k•Vn,t ≃ ϵk,t and κ(An,k•Vn,t) ≃ κ(ϵk,t).

The first part of (iii) follows from Lemma A.8. To verify the second part of (iii) we will
show that ∥∥∥În,θ̃n − Ĩθ

∥∥∥
2
≤
∥∥∥În,θ̃n − Ĭn,θ̃n

∥∥∥
2
+
∥∥∥Ĭn,θ̃n − Ĩθ

∥∥∥
2
= oPn

θ̃n
(ν1/2n ). (60)

where Ĩθ := E[ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)
′] = 1

n

∑n
t=1 E[ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)

′] with the expectation taken

under Gθ, În,θ :=
1
n

∑n
t=1 ℓ̂θ(Yt, Xt)ℓ̂θ(Yt, Xt)

′ and Ĭn,θ :=
1
n

∑n
t=1 ℓ̃θ(Yt, Xt)ℓ̃θ(Yt, Xt)

′.

To obtain the rates we start with ∥Ĩθn−Ĩθ∥2, for which we show that each component satisfies
the required rate. To set this up, let Qr,s

l,m,t,n = ℓ̃θ̃n,rl(Yt, Xt)ℓ̃θ̃n,sm(Yt, Xt), where r, s ∈ {α, σ, b}
and l,m denote the indices of the components of the efficient scores. Fix any r, s and l,m and
note that it suffices to show

1

n

n∑
t=1

Qr,s
l,m,t,n − Eθ̃n

Qr,s
l,m,t,n +

1

n

n∑
t=1

Eθ̃n
[Qr,s

l,m,t,n]− Eθ[Q
r,s
l,m,t,∞] = oPn

θ̃n
(ν1/2n ).

For the first term, by the fact that ℓ̃θ̃n has uniformly bounded 4 + δ moments,48 Proposition
A.1 and Theorem 1 of Kanaya (2017) we obtain

1

n

n∑
t=1

Qr,s
l,m,t,n − Eθ̃n

Qr,s
l,m,t,n = OPn

θ̃n

(
n(1/p−1)/2

)
= oPn

θ̃n
(ν1/2n ), p ∈ (1, 1 + δ/4].

That the second term is o(ν
1/2
n ) follows by the assumed Lipschitz continuity of the map defining

the ζ’s, that of each β 7→ A(α, σ)k• (which holds locally at θ) and Lemma A.11.
For the other component of the sum, let r ∈ {α, σ, b} and let l denote an index, we write

Ûn,t,rl := ℓ̂θ̃n,rl(Yt, Xt), Ũt,rl := ℓ̃θ̃n,rl(Yt, Xt) and Dn,t,rl := ℓ̂θ̃n,rl(Yt, Xt)− ℓ̃θ̃n,rl(Yt, Xt).

Since it is the absolute value of the (r, l)− (s,m) component of În,θ̃n − Ĭn,θ̃n , it is sufficient

to show that
∣∣∣ 1n∑n

t=1 Ûn,t,rlDn,t,sm + 1
n

∑n
t=1Dn,t,rlŨt,sm

∣∣∣ = oPn
θ̃n
(ν

1/2
n ) as n→ ∞ for any r, s ∈

47The convergence condition follows by combining Proposition A.1, Lemma A.2 (which provides a uniform upper
bound for the 4 + δ moments of the Xt) and Corollary 19.3 of Davidson (1994).

48Argue as in Lemma A.7.
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{α, σ, b} and l,m. By Cauchy-Schwarz and lemma A.13∣∣∣∣∣ 1n
n∑

t=1

Dn,t,rlŨt,sm

∣∣∣∣∣ ≤
(
1

n

n∑
t=1

Ũ2
t,sm

)1/2(
1

n

n∑
t=1

D2
n,t,rl

)1/2

= OPn
θ̃n
(1)×oPn

θ̃n
(ν1/2n ) = oPn

θ̃n
(ν1/2n ),

∣∣∣∣∣ 1n
n∑

t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣ ≤
(
1

n

n∑
t=1

Û2
n,t,rl

)1/2(
1

n

n∑
t=1

D2
n,t,sm

)1/2

= OPn
θ̃n
(1)×oPn

θ̃n
(ν1/2n ) = oPn

θ̃n
(ν1/2n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rlŨt,sm

]2
≤ 2

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm

]2
+2

[
1

n

n∑
t=1

Dn,t,rlŨt,sm

]2
= oPn

θ̃n
(νn)

and hence ∥În,θ̃n − Ĭn,θ̃n∥2 ≤ ∥În,θ̃n − Ĭn,θ̃n∥F = oPn
θ̃n
(ν

1/2
n ). We can combine these results to

obtain:

∥În,θ̃n − Ĩθ∥2 ≤ ∥În,θ̃n − Ĭn,θ̃n∥2 + ∥Ĭn,θ̃n − Ĩθ∥2 = oPn
θ̃n
(ν1/2n ) + oPn

θ̃n
(ν1/2n ) = oPn

θ̃n
(ν1/2n ).

Part (iv) follows directly from Lemma A.6.

Lemma A.11: In the setting of Lemma A.10

(i) 1
n

∑n
t=1 Eθ̃n

Xt − EθXt = o(ν
1/2
n ),

(ii) 1
n

∑n
t=1[Eθ̃n

Xt][Eθ̃n
Xt]

′ − [EθXt][EθXt]
′ = o(ν

1/2
n ).

(iii) 1
n

∑n
t=1 Eθ̃n

[Xt − Eθ̃n
Xt][Xt − Eθ̃n

Xt]
′ − Eθ[Xt − EθXt][Xt − EθXt]

′ = o(ν
1/2
n ).

Proof. For (i) we decompose as

Eθ̃n
Xt − EθXt = [Eθ̃n

Xt − Eθ̃n
X̃t] + [Eθ̃n

X̃t − Eθ X̃t] + [Eθ X̃t − EθXt]

where X̃t denotes a stationary solution to the VAR equation. Note that for all ϑ ∈ {θ̃n : n ∈
N} ∪ {θ} and some ρ⋆ < 1

1

n

n∑
t=1

∥EϑXt − Eϑ X̃t∥2 =
1

n

n∑
t=1

∥Eϑ Zt−1 − Eϑ Z̃t−1∥2

≤ ∥Cϑ∥2 ×
1

n

n∑
t=1

 ∞∑
j=t

∥Bj
ϑ∥

2

≤ ∥Cϑ∥2 ×
1

n

n∑
t=1

 ∞∑
j=t

ρj⋆

2

=
∥Cϑ∥2

(1− ρ⋆)2
× 1

n

n∑
t=1

ρ2t⋆

=
∥Cϑ∥2

(
1− ρ

2(n+1)
⋆

)
(1− ρ⋆)2(1− ρ2⋆)

× 1

n

= O(n−1),

(61)
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and hence by Jensen’s inequality 1
n

∑n
t=1 ∥EϑXt−Eϑ X̃t∥ = O(n−1/2). The middle term satisfies

1

n

n∑
t=1

∥Eθ̃n
X̃t − Eθ X̃t∥ = ∥Eθ̃n

X̃t − Eθ X̃t∥ = (I − Bθ̃n
)−1Cθ̃n

− (I − Bθ)
−1Cθ = O(n−1/2),

since β 7→ (I − Bθ)
−1Cθ is locally Lipschitz at θ.

For (ii), note that combination of the preceding displays yields that

1

n

n∑
t=1

∥Eθ̃n
Xt − EθXt∥2 = O(n−1),

which, in conjunction with the Cauchy-Schwarz inequality and Lemma A.2 yields (ii).
For (iii) let Uϑ,t := Xt − EϑXt and Ũϑ,t := X̃t − Eϑ X̃t. We note that for all ϑ ∈ {θ̃n : n ∈

N} ∪ {θ}, some ρ⋆ < 1 and some finite, positive M

1

n

n∑
t=1

Eϑ

(
Uϑ,tU

′
ϑ,t

)
− Eϑ

(
Ũϑ,tŨ

′
ϑ,t

)
=

1

n

n∑
t=1

∞∑
j=t

Bj
ϑDϑD

′
ϑ(B

j
ϑ)

′

≤M
1

n

n∑
t=1

∞∑
j=t

ρ2j⋆

=
M

1− ρ2⋆

1

n

n∑
t=1

ρ2t⋆

=
M
(
1− ρ

2(n+1)
⋆

)
(1− ρ2⋆)

2

1

n

= O(n−1).

Additionally, we can write vec(Eϑ Ũϑ,tŨ
′
ϑ,t) = (I − Bϑ ⊗ Bϑ)

−1 vec(DϑD
′
ϑ), which is locally

Lipschitz in β at θ under our assumptions. This implies that

1

n

n∑
t=1

Eθ̃n
Ũθ̃n,t

Ũ ′
θ̃n,t

− Eθ Ũθ,tŨ
′
θ,t = O(n−1/2).

By using a similar decomposition as in (i), the previous two displays suffice for (iii).

Lemma A.12: If assumption 3.1 holds, then ∥ϱ̂k,n − ϱk,n∥2 = oPn
θ̃n
(νn,p) = oPn

θ̃n
(ν

1/2
n ), where θ̃n

is as in Lemma A.10 and ϱ ∈ {τ, ς}.

Proof. Under Pn
θ̃n
, An,k•Vn,t ≂ ϵk,t ∼ ηk, for Vn,t := Yt − cn − BnXt. Let w ∈ {(0,−2)′, (1, 0)′}

By the fact that the map M 7→M−1 is Lipschitz at a positive definite matrix M0 we have that
for a positive constant C then for large enough n, with probability approaching one

∥ϱ̂k,n − ϱk,n∥2 = ∥(M̂−1
k,n −M−1

k )w∥2 ≤ 2∥M̂−1
k,n −M−1

k ∥2 ≤ 2C∥M̂k,n −Mk∥2. (62)

By Theorem 2.5.11 in Durrett (2019)

1

n

n∑
t=1

[(An,k•Vn,t)
3 − E(An,k•Vn,t)

3] = oPn
θ̃n

(
n

1−p
p

)
1

n

n∑
t=1

[(An,k•Vn,t)
4 − E(An,k•Vn,t)

4] = oPn
θ̃n

(
n

1−p
p

)
.
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These together imply that

∥M̂k,n −Mk∥2 ≤ ∥M̂k,n −Mk∥F = oPn
θ̃n

(
n

1−p
p

)
= oPn

θ̃n
(νn,p).

Combining these convergence rates with equation (62) yields the result.

Lemma A.13: Suppose assumptions 3.1 and 3.2 hold and θ̃n = (αn, βn, η) where
√
n(βn − β) =

O(1) is a deterministic sequence. Then for each r ∈ {α, σ, b} and l

1

n

n∑
t=1

(
ℓ̂θ̃n,rl(Yt, Xt)− ℓ̃θ̃n,rl(Yt, Xt)

)2
= oPn

θ̃n
(νn).

Proof. We start by considering elements in 1
n

∑n
t=1

(
ℓ̂θ̃n,αl

(Yt, Xt)− ℓ̃θ̃n,αl
(Yt, Xt)

)2
. We define

τ̃k,n,q := τ̂k,n,q − τk,q and Vn,t = Yt − cn −BnXt. Since each |ζαn,l,k,j | <∞ and the sums over k, j
are finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with k ̸= j and s ̸= m,

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

] [
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]
An,j•Vt,nAn,m•Vn,t = oPn

θ̃n
(νn),

(63)

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]
An,j•Vn,t [τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] = oPn

θ̃n
(νn),

(64)

1

n

n∑
t=1

[τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] [τ̃k,n,1An,k•Vn,t + τ̃k,n,2κ(An,k•Vn,t)] = oPn
θ̃n
(νn). (65)

For (65), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of
which has the following form for some q, w ∈ {1, 2}

1

n

n∑
t=1

τ̃s,n,q τ̃k,n,wξq(An,s•Vn,t)ξw(An,k•Vn,t) = τ̃s,n,q τ̃k,n,w
1

n

n∑
t=1

ξq(An,s•Vn,t)ξw(An,k•Vn,t) = oPn
θ̃n
(νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPn
θ̃n
(νn) by lemma A.12.49 For (64) we can argue similarly.

Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts, each of which
has the following form for some q ∈ {1, 2}

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]
An,j•Vn,tτ̃s,n,qξq(An,s•Vn,t)

≤ τ̃s,n,q

(
1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2(
1

n

n∑
t=1

ξq(An,s•Vn,t)
2

)1/2

= oPn
θ̃n
(νn).

by Lemma A.1 applied with Wn,t = An,j•Vn,t and τ̃s,n,q = oPn
θ̃n
(ν

1/2
n ).50 For (63) use Cauchy-

49The fact that 1
n

∑n
t=1 ξq(An,s•Vn,t)ξw(An,k•Vn,t) = OPn

θ̃n
(1) can be seem to hold using the moment and i.i.d.

assumptions from assumption 3.1 and Markov’s inequality, noting once more that An,k•Vn,t ≃ ϵk,t under Pn
θ̃n
.

50See footnote 49.
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Schwarz with Lemma A.1

1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

] [
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]
An,j•Vn,tAn,m•Vn,t

≤

(
1

n

n∑
t=1

[
ϕ̂k,n(An,k•Vn,t)− ϕk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2

×

(
1

n

n∑
t=1

[
ϕ̂s,n(An,s•Vn,t)− ϕs(An,s•Vn,t)

]2
(An,m•Vn,t)

2

)1/2

= oPn
θ̃n
(νn).

This completes the proof for the components corresponding to αl. We note that the components
corresponding to σl follow identically.

Finally, we consider the elements in 1
n

∑n
t=1

(
ℓ̂θn,bl(Yt, Xt)− ℓ̃θn,bl(Yt, Xt)

)2
, where we note

that with ς̃k,n := ς̂k,n − ςk,

1

n

n∑
t=1

(
ℓ̂θn,bl(Yt, Xt)− ℓ̃θn,bl(Yt, Xt)

)2
≲

K∑
k=1

1

n

n∑
t=1

[
[an,k,l(Xt − EXt)]

2
[
ϕ̂k(An,k•Vn,t)− ϕk(An,k•Vn,t)

]2]

+
K∑
k=1

1

n

n∑
t=1

[
[an,k,l(EXt − X̄n)]

2 (ϕk(An,k•Vn,t) + ς̂k,n,1An,k•Vn,t + ς̂k,n,2κ(An,k•Vn,t))
2
]

+

K∑
k=1

1

n

n∑
t=1

[
[an,k,l EXt]

2 (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))
2
]

That the first right hand side term is oPn
θ̃n
(νn) follows by Lemma A.1.51 and the Cauchy-Schwarz

inequality. The third follows from Lemma A.12 since [an,k,l EXt]
2 is uniformly (in t) bounded

(cf. Lemma A.2).
For the second, let X̃t denote a random vector which has the stationary distribution of Xt

and note that by equation (61) we have

1

n

n∑
t=1

∥Eθ̃n
Xt − Eθ̃n

X̃t∥2 = O(n−1).

Now let

Un,t := (ϕk(An,k•Vn,t) + ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t))
2

Ũn,t := (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))
2 .

By Theorem 1 in Arnold (1985) and Markov’s inequality, we have that max1≤t≤n Un,t =
OPn

θ̃n
(n1/p). Then

1

n

n∑
t=1

∥Eθ̃n
Xt − Eθ̃n

X̃t∥2Un,t ≤ max
1≤t≤n

Un,t
1

n

n∑
t=1

∥Eθ̃n
Xt − Eθ̃n

X̃t∥2 = OPn
θ̃n
(n−1+1/p) = oPn

θ̃n
(νn).

51Cf. footnote 47.
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Additionally, by equation (61), Jensen’s inequality, Lemma A.2 and Theorem 2 of Kanaya (2017)

∥Eθ̃n
X̃t−X̄n∥2 ≤ 2

∥∥∥∥∥ 1n
n∑

t=1

(Xt − Eθ̃n
Xt)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

t=1

(Eθ̃n
Xt − Eθ̃n

X̃t)

∥∥∥∥∥
2
 = OPn

θ̃n
(n−1)+O(n−1),

hence

1

n

n∑
t=1

∥Eθ̃n
X̃t − X̄n∥2Un,t = ∥Eθ̃n

X̃t − X̄n∥2
1

n

n∑
t=1

Un,t = OPn
θ̃n
(n−1) = oPn

θ̃n
(νn).

To complete the proof, it suffices to combine the above results with the observation that by
Lemma A.12 and Theorem 1 of Arnold (1985)

1

n

n∑
t=1

∥Eθ̃n
Xt − X̄n∥2Ũn,t

≲ τ̃2k,n,1
1

n

n∑
t=1

∥Eθ̃n
X̃t − X̄n∥2(An,k•Vn,t)

2 + τ̃2k,n,1 max
1≤t≤n

(An,k•Vn,t)
2 1

n

n∑
t=1

∥Eθ̃n
X̃t − Eθ̃n

Xt∥2

+ τ̃2k,n,2
1

n

n∑
t=1

∥Eθ̃n
X̃t − X̄n∥2κ(An,k•Vn,t)

2 + τ̃2k,n,2 max
1≤t≤n

κ(An,k•Vn,t)
2 1

n

n∑
t=1

∥Eθ̃n
X̃t − Eθ̃n

Xt∥2

= oPn
θ̃n
(νn).

A.4 Miscellaneous results

The results in this subsection are general results, which are useful in establishing the main
results of the paper, but are not specific to the model under study.

Proposition A.2 (Cf. Proposition 2.29 in van der Vaart, 1998): Suppose that on a measureable

space (S,S), (µn)n∈N is a sequence of finite measures such that µn
TV−−→ µ (with µ a finite measure

on (S,S). If (fn)n∈N and f are (real-valued) measurable functions such that fn → f in µ-
measure and lim supn→∞

∫
|fn|p dµn ≤

∫
|f |p dµ <∞ for some p ≥ 1, then

∫
|fn−f |p dµn → 0.

Proof. (a+ b)p ≤ 2p(ap + bp) for any a, b ≥ 0 and hence, under our hypotheses,

0 ≤ 2p|fn|p + 2p|f |p − |fn − f |p → 2p+1|f |p in µ - measure.

By Corollary 2.3 of Feinberg et al. (2016) and the hypothesis that lim supn→∞
∫
|fn|p dµn ≤∫

|f |p dµ <∞, ∫
2p+1|f |p dµ ≤ lim inf

n→∞

∫
2p|fn|p + 2p|f |p − |fn − f |p dµn

≤ 2p+1

∫
|f |p dµ− lim sup

n→∞

∫
|fn − f |p dµn.

Proposition A.3: Let {Zn,k,Fn,k : k ≤ n, n ∈ N} be a martingale difference array of L−dimensional

random vectors, such that Σn,k := E
[
Zn,kZ

′
n,k

]
exists. Suppose that

1

n

n∑
k=1

Σn,k → Σ⋆, (66)
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with Σ⋆ positive semi-definite (and finite) and that for each ε > 0

1

n

n∑
k=1

E
[
∥Zn,k∥21{∥Zn,k∥ ≥ ε

√
n}
]
→ 0. (67)

Then
1√
n

n∑
k=1

Zn,k ⇝ N (0,Σ⋆).

Proof. Put ξn,k := Zn,k/
√
n for k ≤ n and ξn,k := 0 otherwise. Fix a ∈ RL. The adapted se-

quence (a′ξn,k,Fn,k)k∈N is clearly a martingale difference sequence under our hypotheses. More-
over, the sums

∑∞
k=1 a

′ξn,k =
∑n

k=1 a
′ξn,k and

∑∞
k=1 E[(a′ξn,k)2] =

∑n
k=1 E[(a′ξn,k)2] trivially

converge with probability 1 for each n ∈ N. By linearity and continuity we have that

∞∑
k=1

E[(a′ξn,k)2] =
n∑

k=1

E[(a′ξn,k)2] = a′

[
1

n

n∑
k=1

Σn,k

]
a→ a′Σ⋆a ≥ 0.

Next, suppose that a ̸= 0 and let ε > 0. We have that {|a′Zn,k| ≥ ε
√
n} ⊂ {∥Zn,k∥ ≥ ε

√
n/∥a∥}

and therefore

∞∑
k=1

E
[
(a′ξn,k)

21{|a′ξn,k| ≥ ε}
]
≤ ∥a∥2 1

n

n∑
k=1

E
[
∥Zn,k∥21{∥Zn,k∥ ≥ ε

√
n/∥a∥}

]
→ 0,

by assumption.52 This establishes that the conditions of Theorem 18.1 of Billingsley (1999) are
satisfied and hence

1√
n

n∑
k=1

a′Zn,k =
∞∑
k=1

a′ξn,k ⇝ N (0, a′Σ⋆a).

The claimed result then follows by an application of the Cramér-Wold theorem.

Remark A.1: Proposition A.3 is completely standard. It is recorded here because we have been
unable to find a reference for a multivariate CLT for martingale difference arrays which permits
a positive semi-definite limiting variance matrix.

Theorem A.1 (Extended uniformly equicontinuous mapping): Let (X, dX) and (Y, dY ) be sep-
arable metric spaces and let (fn)n∈N be a sequence of functions from X → Y and (gn)n∈N a uni-
formly equicontinuous sequence of functions from X → Y . Suppose that x 7→ dY (fn(x), gn(x))
converges compactly to 0. If (Pn)n∈N and (Qn)n∈N are sequences of laws on X such that (i)
(Pn)n∈N is uniformly tight and (ii) dBL(Pn, Qn) → 0, then dBL(P̃n, Q̃n) → 0 for P̃n := Pn ◦ f−1

n

and Q̃n := Qn ◦ g−1
n .

Proof. By Theorem 11.7.1 in Dudley (2002), there exist on some probability space X-valued
random variables Xn and Yn such that Xn ∼ Pn and Yn ∼ Qn and dX(Xn, Yn) → 0 in proba-
bility. By the triangle inequality

dY (fn(Xn), gn(Yn)) ≤ dY (fn(Xn), gn(Xn)) + dY (gn(Xn), gn(Yn)).

By uniform equicontinuity of (gn)n∈N, dY (gn(Xn), gn(Yn)) → 0 in probability. Let δ, ε > 0 be
given and choose a compact K such that (each) PnK > 1−ε. The compact convergence ensures
that for all sufficiently large n, supx∈K dY (fn(x), gn(x)) < δ. Hence, for all such n,

P (dY (fn(Xn), gn(Xn)) > δ) ≤ P (Xn /∈ K) = PnK
∁ ≤ ϵ.

52In the case that a = 0 this limit trivially holds.

66



It follows that dY (fn(Xn), gn(Yn)) → 0 in probability and the conclusion follows by applying
Theorem 11.7.1 in Dudley (2002) once more.

Theorem A.2 (Uniform Delta-method): Let U and V be normed linear spaces and ϕ : Uϕ → V
(with Uϕ ⊂ U). Let (rn)n∈N be a sequence of constants with rn → ∞, (Xn)n∈N a sequence
of Uϕ-valued random variables, (θn)n∈N ⊂ Uϕ and (Pn)n∈N, (Qn)n∈N sequences of laws on U
with (each) PnU0 = 1 for a separable U0 ⊂ U . Suppose that (i) ϕ is Hadamard differentiable
tangentially to U0, uniformly along (θn)n∈N, with derivative ϕ′θ, (ii) Tn := rn(Xn − θn) ∼
Pn where (Pn)n∈N is uniformly tight, (iii) dBL(Pn, Qn) → 0 and (iv) (ϕ′θn)n∈N is uniformly
equicontinuous. Then,

dBL

(
L (rn (ϕ(Xn)− ϕ(θn))) , Qn ◦ [ϕ′θn ]

−1
)
→ 0. (68)

Proof. Define fn(h) := rn
(
ϕ(θn + r−1

n h)− ϕ(θn)
)
and gn(h) := ϕ′θn(h). By our uniform differ-

entiability assumption, for any compact K ⊂ U0 we have

sup
h∈K

∥∥rn (ϕ(θn + r−1
n h)− ϕ(θn)

)
− ϕ′θn(h)

∥∥→ 0,

and so h 7→ ∥fn(g) − gn(h)∥ converges compactly to 0 on U0.
53 This fact and (ii) - (iv) allows

the application of Theorem A.1 to conclude (68).54

Remark A.2: Since Hadamard derivatives are bounded linear maps by definition, a sufficient
condition for the uniform equicontinuity of (ϕ′θn)n∈N is that supn∈N ∥ϕ′θn∥ < ∞, i.e. their
operator norms are uniformly bounded. This ensures that each ϕ′θn is Lipschitz with Lipschitz
constant supn∈N ∥ϕ′θn∥ and hence the collection is uniformly equicontinuous.

53Cf. e.g. pp. 453 – 455 in Bickel et al. (1998)
54The image of a separable space under a continuous function is separable, cf. Theorem 16.4(a) in Willard (1970).
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