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Abstract

This paper studies the desirability of programmable payments where transfers are auto-

matically executed conditional upon preset objective criteria. We do so by studying optimal

payment arrangements in a framework that captures a wide range of economic relationships

between two parties. Our framework stacks the cards in favor of programmable payments by

considering an environment without legal recourse. The results show that the optimal payment

arrangements for long-term economic relationships consist predominantly of simple direct pay-

ments. Direct payments increase the surplus by avoiding the liquidity cost of locking-up funds

from the moment where the payer commits the funds in a programmable payment until the

moment where the conditions are satisfied to release those funds to the payee. Programmable

payments will be desirable, and may in fact be the only viable payment arrangement, in sit-

uations where economic relationships are of a short duration. Our results identifies a limit to

the growth in the demand for payments as their cost decreases: While the number of feasible

trading relationships will increase, existing trading relationships will optimally rely on fewer

payments.
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1 Introduction

“Programmability” has become a popular catchword in payments. Programmable payments are

transfers of funds that are automatically executed conditional upon preset objective criteria.1 For

some, programmability is one of the features driving the enthusiasm for private digital currencies.

Programmability has also been raised as a potentially desirable feature for central bank digital

currencies.2 Programmable payments can provide assurance to both the payee and the payer by

requiring the payer to commit funds while delaying the release of funds to the payee until services

or goods are delivered. They essentially automate the process of committing funds for a given

period of time and then releasing those funds to the payee at once or in small steps conditional

upon the delivery of services or goods. The recent launch of the payment solution called “Yuan

Steward” for China’s digital yuan seeks to add such functionality to consumer wallets by employing

smart contracts (Zhou, 2022). Often-raised use cases of programmable payments are enabling

micropayments for pay-per-use concepts, “atomic” settlement and clearing for securities, currencies

and derivatives, and automated escrow services. Although many have documented the wide range

of technical possibilities, much less is known on the potential demand for programmable payments.

Could programmable payments become the new default mode of making payments?

The purpose of this paper is to study, in a formal economic framework, the desirability of

programmable payments for a set of situations requiring a payment arrangement between two

counterparties. A seller provides a service for a period of time to a buyer in a continuous-time

framework. The framework stacks the cards in favor of programmable payments by considering

an environment where counterparties do not have any legal recourse in the event where either the

1There is no single accepted definition of programmable payments. Our description captures the main elements
of the definitions of Bullock (2018, p. 4), Deutsche Bundesbank (2020a, p. 4), Arner et al. (2020, footnote 5) and
Bechtel et al. (2020). Programmable payments may be enabled by programmable money, but they do not necessarily
require programmable money (Deutsche Bundesbank, 2020a; Bechtel et al., 2020). Programmable money may also be
used for other purposes such as limiting the purposes on which funds can be spent (e.g., food stamps) or implementing
an expiry date on money (Kahn et al., 2021). The present paper focuses on demand for programmable payments,
and the alternative purposes of programmable money are outside the scope.

2Reports that have looked at programmability include those of the Deutsche Bundesbank (2020b); Bank of
England (2020); European Central Bank (2020); Wong and Maniff (2020); Usher et al. (2021).
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buyer or the seller does not deliver upon their promises. This environment favours the potential

value-added of the assurance that programmable payments can provide to both the payer and

payee. Moreover, we study the extreme case where the degree of automation has evolved to the

point where the cost of a programmable payment has fallen to a level comparable to that of a simple

direct payment.3 We use this framework to study the optimal payment arrangement and assess the

conditions under which the optimal payment arrangement requires programmability.

We start by analyzing an environment where a buyer can make a single payment with the

purpose of purchasing a service from a seller. Without legal enforcement, programmable payments

will be the only viable payment arrangement. A direct payment cannot result in a viable trading

relationship: Once the seller has received the funds, she has no incentives to continue providing

the service. Similarly, the buyer has no incentives to pay using a direct payment knowing that the

seller will stop providing the service as soon as she receives the funds. A programmable payment

allows for a viable payment arrangement by temporarily locking-up the funds between the moment

that funds are committed by the buyer and the moment they are received by the seller, while

conditioning the release upon delivery of the service (akin to a traditional escrow account). Such

an arrangement is feasible as long as the transaction cost is sufficiently low (Theorem 1).

Although a programmable payment enables a viable relationship, the maximum length of the

arrangement between a payer and payee that can be supported by a single programmable payment

is limited (Theorem 2). One might conjecture that one could always increase the amount of funds

that will be released to the seller at the end of the arrangement in exchange for receiving services

for a longer period of time. Even though this may be viable technically, economically it is not.

The issue is that, at some point, the additional liquidity cost of locking up both more funds and

for a longer period starts to exceed the additional surplus generated from extending the length of

the arrangement. At this point, it is no longer economically beneficial to extend the length of the

3A simple direct payment is always implementable as a programmable payment where the funds committed by
the payer are immediately and unconditionally released to the payee. Hence, it is reasonable to assume that a simple
direct payment can always be implemented at the same cost as a programmable payment or less.
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relationship. A single programmable payment can be an optimal arrangement when a buyer needs

to purchase a service for a limited period of time.

Given the limited duration of relationships that can be supported by a single programmable

payment, we continue by analyzing the optimal payment arrangement between a buyer and a seller

when allowing for a chain of payments. The analysis of optimal chain-of-payments arrangements

shows that, even though our framework treats programmable payments relatively favourably, there

are many economic situations where the optimal payment arrangement consists predominantly of

simple direct payments. The value of continuing a long-term economic relationship can be sufficient

to establish incentives for both counterparties to deliver on their promises even without assurance

of the payment and delivery by means of a programmable payment. The inefficiency of using

programmable payments in such a context is the liquidity cost of locking up the funds, reducing

the total surplus from the economic relationship between the two counterparties. With long-term

relationships, it is therefore better to use direct payments.

The economics of finite chain-of-payments arrangements are well-illustrated by considering a

two-payment arrangement. The last payment within a two-payment arrangement must be a pro-

grammable payment as before: Locking-up the funds of the last payment prevents the arrangement

from unraveling as a finitely-repeated sequential-move game in a similar way as a single-payment

arrangement with a direct payment would unravel. Things are different for the first of the two

payments. The risk of losing the surplus of continuing the relationship after the release of the first

payment helps to better align incentives. There are two possible cases for the optimal two-payment

arrangement. In the first case, the first payment is also a programmable payment, but the surplus

generated after the first payment allows delaying the moment the buyer is required to submit the

first payment. This reduces the time the funds are locked-up and, hence, reduces the liquidity cost

of the first payment (Theorem 4). The second case is that where the amount of surplus generated

after the release of the first payment is large enough that the buyer can delay making the first
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payment up till the point where the money will be released to the seller. In this situation, the first

payment would be released immediately so the it would simply be a direct payment (Theorem 5).

The tendency towards direct payments for earlier payments generalizes to all finite chain-of-

payments arrangements. Sufficiently long optimal chain-of-payments arrangements always start

with direct payments because of the lower liquidity costs (Theorem 7). Only towards the end of a

relationship do the parties revert to the use of programmable payments. Moreover, the optimum

for infinitely long payment arrangements is achieved by a chain of payments that consists of direct

payments only (Theorem 8). These results suggest that programmable payments are unlikely to

become the new “standard” for all payment arrangements due to the liquidity-savings offered by

direct payments.

Our model also provides some important insights in the demand for payments more generally.

Some have expressed the expectation that a strong reduction in transactions costs enabled by

technological developments in the payment space could lead to an explosion in the number of

payments, e.g., through so-called micro-payments in decentralized finance that could be used to

approximate “streaming money”.4 The study of optimal payment arrangements suggests that the

relationship between the transaction cost and the number of payments is more complex than that.

In particular, we find different relationships for the extensive and the intensive margins. Lower

transaction costs increase the number of payments for the extensive margin in the sense that the

set of potential buyer-seller pairs where transaction costs are no longer prohibitively expensive

increases as transaction costs drop (Corollary 1). For the intensive margin, that is, within buyer-

seller pairs, we find the opposite effect: lower transaction costs are associated with fewer payments.

Lower transaction costs increase in the surplus in any existing trading relationship between buyers

and sellers. The higher surplus provides the buyer stronger incentives to pay when the time comes.

These stronger incentives allow the seller to require the buyer to settle the bill by paying larger

amounts at a lower frequency (Corollary 2). Whether lower transaction costs will lead to an increase

4Platforms that aim to provide the experience of nearly continuous payment streams in decentralized fi-
nance include Sablier (https://sablier.finance/), Superfluid (https://www.superfluid.finance/) and LlamaPay (https:
//llamapay.io/).
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or decrease in the number of payments depends on the balance of the effects for new and existing

relationships.

2 Related Literature

Our paper relates to several strands of literature. First, our paper contributes to the new

literature on the economics of smart contracts. An important feature of smart contracts analyzed is

the ability to commit funds that may be released based on preset conditions. Several papers study

the importance of the ability to commit funds in a context of a non-repeat transaction.5 Gans

(2019) suggests a smart contract can implement a truth-revealing mechanism where the buyer

correctly confirms the quality of the goods before the funds are released to a seller. Bakos and

Ha laburda (2019) show how this feature allows contracting parties to commit not to hold-up. They

demonstrate how algorithmic execution of programmable payments in combination with digital

inputs from “Internet of Things” (IoT) sensors can enable an efficient trading arrangement that

neither of the two technologies can achieve individually. Cong and He (2019) study how non-repeat

transactions can be facilitated by smart contracts that execute payments based on consensus by

third parties on whether goods are delivered. Lee et al. (2021) study the welfare impact of assuring

settlement with a smart contract in the setting of a non-repeat transaction in securities trading.

Different from those studies, we explore the benefits of programmable payments in a continuous-

time environment that generalizes to lasting relationships with repeated and endogenously timed

payments.

Second, our work relates to the growing literature on the economics of central bank digital

currency (CBDC) (Andolfatto, 2021; Brunnermeier and Niepelt, 2019; Fernández-Villaverde et al.,

2021; Schilling et al., 2020; Williamson, forthcoming). The survey by Kiff et al. (2020) highlights

5Chiu and Koeppl (2019) study non-repeat transactions in an environment where smart contracts achieve delivery-
versus-payments in assets markets where the ownership of both the asset and the means of payment are recorded on
the ledger.
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important considerations and design choices. Many of these aspects have been studied using the

lens of formal economic models, including policies around interest rates (Barrdear and Kumhof,

2022; Chiu et al., forthcoming; Jiang and Zhu, 2021; Garratt and Zhu, 2021; Keister and Sanches,

forthcoming; Whited et al., 2022); privacy (Garratt and Van Oordt, 2021; Lee and Garratt, 2021;

Tinn and Dubach, 2021; Ahnert et al., 2022); security and loss prevention (Kahn et al., 2020, 2021);

holding limits (Assenmacher et al., 2021); and whether CBDC would take a form that would be

more cash-like or more deposit-like (Agur et al., 2022; Li, 2021). Programmability is also raised as

an important design choice in the literature review by Kiff et al. (2020). However, to the best of

our knowledge, no formal theoretical analysis exists that incorporates the—according to our results

crucial—aspect of repeat interactions on this design aspect. This paper aims to fill that gap.

Third, our paper relates to the growing literature on the economics of cryptocurrencies. The

discussion around programmable payments has been ignited by the technology introduced in the

realm of cryptocurrencies (Athey et al., 2016; Biais et al., forthcoming; Bolt and Van Oordt, 2020;

Chiu and Koeppl, forthcoming; Garratt and Wallace, 2018; Ha laburda et al., 2022; Schilling and

Uhlig, 2019). Popular cryptocurrencies have been subject to transaction fees and confirmation

times that render them impractical to stand on their own as a retail payment system (Divakaruni

and Zimmerman, 2020; Huberman et al., 2021; Hinzen et al., 2022). A fascinating development the

payment protocol that operates on top of the Bitcoin blockchain known as the “lightning network”

(Poon and Dryja, 2016). This protocol effectively allows participants to use a single operation

on the Bitcoin blockchain to reserve funds for multiple future payments in a so-called bilateral

payment channel. A payment channel allows for low cost and almost instant payments by simply

changing the allocation of funds in the channel among two counterparties. Either counterparty

may claim their share in the funds by initiating a second operation on the blockchain to close the

channel. Guasoni et al. (2021) study how to optimally allocate funds to payment channels for

exogenous payment patterns to save on transaction costs. Our analysis has implications for the

relationship between the transaction cost and the number and size of payments. This suggests that
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a potentially interesting future avenue of research would be the study of optimal payment channels

when payments are endogenous.

3 Model

Time is continuous. There are two risk-neutral agents, a “buyer” (he) and a “seller” (she)

both with discount rate ρ > 0. The seller can provide a continuous flow of non-storable service to

the buyer at a flow cost c > 0 per unit time. The buyer’s flow utility from receiving the service is

b(t) ≥ 0. There is no asymmetric information and there are no legal enforcement powers. We assume

that a counterparty will stop dealing with an agent if the agent does not stick to an arrangement.

Buyer and seller have available to themselves a sophisticated payment system which imposes a fixed

cost K > 0 on the buyer each time he submits funds to the seller. This fixed cost captures both

transaction fees as well as potential administrative costs.

We are interested in finding optimal payment arrangements. Payments in the system work

as follows. The buyer submits payment i by sending funds Di at time Ti. The initiation of the

payment is observable to the seller, although the seller may not have immediate access to the funds.

Instead, the system allows for the possibility that the release of funds to the seller be programmed

to occur at Si ≥ Ti, and can be conditional upon whether the seller has provided the service over the

period [Ti, Si). This arrangement covers a broad range of real-world mechanisms, including smart

contracts, where the release of funds is preprogrammed to occur based on information recorded on a

distributed ledger by IoT sensors (Bakos and Ha laburda, 2019), a truth-revealing mechanism (Gans,

2019) or a consensus mechanism (Cong and He, 2019). The arrangement also covers more traditional

escrow arrangements, where the release of funds occurs after a third-party verified whether the

conditions have been satisfied. If the payment is structured such that Si = Ti, then we speak of a

direct payment. We stack the cards in favor of programmable payments in that we assume that the

transaction cost of a programmable payment is not higher than that of a direct payment.
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4 Optimal Single-Payment Arrangement

We start by considering a single-payment arrangement in a non-stationary environment, where

b(t) takes the following form

b(t) =

 b, if t < TM

0, otherwise

for b > c and some known TM > 0. That is, the buyer obtains a constant benefit from the service

up to some horizon date TM .

An arrangement with a simple direct payment is ineffective in this environment. Once the

payment is made, there is no incentive for the seller to honor a promise to produce, and if payment

is delayed until after production, there is no incentive for the buyer to honor a promise to pay.

Backward induction implies that neither the buyer nor the seller can commit to pay or to produce

after the other player has completed their end of the deal.

Now consider the role of a programmable payment in this situation. The buyer and seller agree

that the seller will start providing the service from t = 0. In return, the buyer will commit an

amount D1 at time T1 using a programmable payment that releases the funds to the seller at time

S1 if she has provided the service continuously in the interim, where T1 ≤ S1 ≤ TM . The utility of

the buyer from such an arrangement would be

U(D1, T1, S1) = b

∫ S1

0

e−ρt dt− (D1 +K)e−ρT1 . (1)
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The arrangement is subject to the following constraints:

b

∫ S1

T1

e−ρt dt ≥ (D1 +K)e−ρT1 , (2)

D1e
−ρS1 ≥ c

∫ S1

0

e−ρt dt, (3)

0 ≤ T1 ≤ S1 ≤ TM , (4)

D1 ≥ 0. (5)

The first constraint requires that, at the time he needs to pay, the prospective benefits to the buyer

exceed the monetary cost of the arrangement. The second constraint requires that the discounted

monetary benefit of the arrangement to the seller exceed her cost of providing the service. The third

constraint says that the funds cannot be released to the seller before they have been committed by

the buyer. The last constraint requires that the payment to be non-negative.

We call a single-payment arrangement (D1, T1, S1) self-enforcing if conditions (2)-(5) hold true.

Trading is feasible if there exists a self-enforcing single-payment arrangement. From these con-

straints, the following results arises.

Theorem 1. Assume TM is large.6 Trading is feasible if and only if

√
ρK +

√
c ≤
√
b. (6)

Proof : Combining equations (2) and (3) to eliminate D1 shows that we can find values (D1, T1, S1)

satisfying (2) and (3) if and only if there exists (T1, S1) such that ceρS1 + be−ρS1 < be−ρT1 + c−ρK.

This condition is weakest if the right-hand-side of the inequality is maximized, that is, if T1 = 0,

and if the left-hand-side is minimized. The left-hand-side of the inequality is convex in S1, while

the partial derivative with respect to S1 is negative at S1 = 0 since c < b and positive for large

6Lemma A1 in the appendix provides necessary and sufficient conditions for general TM .
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values of S1. Its minimum is S∗
1 = log(b/c)/(2ρ). Plugging (T1, S1) = (0, S∗

1 ) into the inequality

gives 2
√
bc < b+ c− ρK or equivalently

√
ρK +

√
c ≤
√
b. �

Intuitively, a self-enforcing single-payment arrangement does not exist unless the benefit of the

service to the buyer exceeds the cost to the seller of providing the service, that is, unless b > c.

Theorem 1 shows that this is not sufficient, however. The difference between the benefit and the

cost should be sufficiently large to exceed the cost of payment. The cost of payment has both a

transaction cost component, K, and a liquidity cost component, ρ. We will refer to Eq. (6) as the

“feasibility-condition”; this condition will recur in different circumstances. Note that

Corollary 1. Lowering the transaction cost K relaxes the feasibility-condition.

Even if there is no technical limitation to the amount committed in a programmable payment,

the maximum economically-feasible length of a single-payment arrangement is limited. Define

x =:
1

2
(b+ c− ρK).

The following theorem provides the maximum length of a self-enforcing single-payment arrange-

ment.

Theorem 2. Assume TM is large. The length of a self-enforcing single-payment arrangement is

limited to

Smax
1 =

1

ρ
log

(
x

c
+

√(x
c

)2
− b

c

)
. (7)

Proof : The value of Smax
1 is the maximum of the two solutions to the pair of conditions (2) and

(3) holding with equality. This solution is a function of T1 that is maximized within the range of

possible values specified in condition (4) when setting T1 = 0. �

The maximum length of a self-enforcing single-payment arrangement is limited because the

longer the agreement the greater the dissipation of the value of the payment due to the liquidity
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cost of holding the funds locked up in a programmable payment. Extending the length of the

arrangement increases the liquidity cost both in the length of time the funds will be locked up

as well as the amount that will be locked up. If funds are held for the maximum feasible time

Smax
1 , then the present value of the future release of the amount transferred with the programmable

payment must just equal the present value of the accumulated costs borne by the seller over the

interval [0, Smax
1 ] while the immediate value of the funds committed equals the present value of

benefits received by the buyer, less transaction costs. At Smax
1 , the surplus from the match is eaten

up entirely by the opportunity cost of the sequestering of the funds for the length of time.

Choosing the longest possible arrangement is in general not optimal, and for two reasons. First,

on the margin, reducing the length of the agreement slightly increases the benefits by freeing the

funds locked-up in the programmable payment more quickly. Second, the surplus generated by

the match incentivizes the buyer to pay, which enables the buyer to credibly delay committing the

funds. This reduces the liquidity cost as well as the present value of the transaction cost of making

the payment.7

We next consider the optimal single-payment arrangement which maximizes the buyers utility

U(D1, T1, S1) in (1) subject to the constraints for a self-enforcing single-payment arrangement in

equations (2)-(5).

Theorem 3. Suppose the length of time horizon satisfies

TM <
1

ρ
log
(x
c

)
.

Then the optimal single-payment arrangement is constrained by the time horizon and equals

(D1, T1, S1) =

(
ceρTM − c

ρ
, TM −

1

ρ
log

(
b

b− ρ(D1 +K)

)
, TM

)
. (8)

7This second manner in which costs can be reduced depends on the ability that the seller can identify the buyer.
Our framework can be adjusted to consider environments where identification is impossible by, for example, forcing
the buyer to commit funds into the programmable payments at the start of the relationship.
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Otherwise, the optimal single-payment arrangement is

(D1, T1, S1) =

(
x− c
ρ

, S1 −
1

ρ
log

(
b

x

)
,

1

ρ
log
(x
c

))
. (9)

Proof : See Appendix A.1. �

The qualitative characteristics of the optimal single-payment arrangement are graphically illus-

trated in Figure 1. The figure considers comparative statics of the solution as a function of the

duration of the interval [0, TM ] over which the buyer values obtaining the service. For short horizons,

the net benefit of setting up a relationship is inadequate to cover the transaction cost. At a critical

level, the surplus generated in the interval less the costs of the payment is just enough to justify

transferring the amount D1, leaving no surplus for the buyer. As the duration of the relationship

increases beyond this minimum length, the present value of the benefit exceeds the amount that

must be deposited, and so the arrangement generates a surplus for the buyer; however, the fact that

the relationship does generate a surplus enables the buyer to delay committing the funds to the

point T1 where the remaining benefit of the match just equals the necessary payment. The longer

the relationship is anticipated to continue, the longer the payment can be delayed. This occurs until

the critical point where the optimal arrangement switches from the “horizon-constrained solution”

in Eq. (8) to the “horizon-unconstrained solution” in Eq. (9). At this point, the surplus no longer

increases, because any further delay in releasing the funds locked up in the programmable payment

does not justify the additional benefit for the buyer. No further extension of the relationship is

desirable and the arrangement and its duration remains fixed as TM increases.
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Figure 1: Optimal Single-Payment Arrangement

TM

Pay-in (T1)

Pay-out (S1)

TM
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Note: The figure shows the optimal single-payment arrangement (D1, T1, S1) as a function of the point
in time until which the buyer derives utility from the service, TM . The upper panel reports the time the
buyer commits the funds, T1, and the time of the release of the funds to the seller, S1. The lower panel
reports the amount paid, D1, and the total surplus from the arrangement.

5 Optimal Two-Payment Arrangement

We have seen that there is a maximum length of time Smax
1 that service can be supported by a

single programmable payment. Beyond that limit, the immediate transactions cost plus the liquidity

cost of tying up the funds exceeds the surplus generated by the match. Once we have found the

apparent maximum possible duration for the use of the sequestered funds, we might expect that the

relationship could be extended by repeated programmable payments at intervals of Smax
1 ; thus the

relationship could be supported over an interval of length 2Smax
1 by two programmable payments,
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etc. Indeed this is feasible, but it is suboptimal. In general, a better solution would be to set

up repeated arrangements with each programmable payment following the solution in Theorem 3.

However, there are further improvements that can be made, reducing the wastage of the liquidity

costs of locking up funds in programmable payments. To explore this, we consider the general

problem of supporting the relationship by an arrangement existing of a chain of payments.

The optimal arrangement with a chain of two payments provides important insights that gen-

eralize to chains with multiple payments. With a two-payment arrangement, the last of the two

payments needs to be a programmable payment that delays the release of the funds until the re-

lationship ends. Otherwise, the seller would have incentives to stop providing the service before

the agreed-upon point in time. However, in some cases, the earlier of the two payments may be a

simple payment—that is, it can be the case that S1 = T1 in the optimal arrangement.

The buyer needs to solve the following program

max
D1,D2,T1,T2,S1,S2

b

∫ S2

0

e−ρt dt− (D1 +K)e−ρT1 − (D2 +K)e−ρT2 ,

subject to

c

∫ S2

0

e−ρt dt ≤ D1 e
−ρS1 +D2 e

−ρS2 ,

c

∫ S2

S1

e−ρt dt ≤ D2 e
−ρS2 ,

D1 +K + (D2 +K)e−ρ(T2−T1) ≤ b
∫ S2

T1

e−ρ(t−T1) dt,

D2 +K ≤ b
∫ S2

T2

e−ρ(t−T2) dt,

Di ≥ 0, Ti ≤ Si ≤ TM , i = 1, 2,

0 ≤ T1 ≤ T2.
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Note the similarity of the constraints to those in the single-payment arrangement. The first

and second constraints ensure that at every point in time, the present value of cost to the seller of

continuing to provide the services is less than or equal to the present value of the future releases of

funds. The third and fourth constraints ensure it is rational for the buyer to pay the funds at the

specified times under the arrangement. The remaining constraints ensure, among other things, that

the release of funds from a programmable payment does not occur before the funds are committed.

The following theorems characterize the optimal two-payment arrangement. We focus on the

case with unconstrained horizon, that is, where the time horizon TM is distant enough for the

agents to take full benefit of the relationship. This is the case which is of interest for generalization

to multiple payments.8 The following condition is sufficient for an unconstrained horizon in the

two-payment problem (see Corollary A2 in the appendix):

TM ≥
2

ρ
log

√
2x

c
. (10)

There are two possibilities, depending on the value of the parameter Ψ, where

Ψ =
x3

b2c
.

The optimum involves either two programmable payments or a direct transfer and a subsequent

programmable payment. In characterizing the optimum we make use of the parameter T where

T =
2

ρ
log

x

c
.

Theorem 4. (Case I: Two programmable payments) Suppose the horizon is unconstrained. If

Ψ < 1, then the optimal two-payment arrangement is the following: The seller provides the service

to the buyer from time 0 until time T . She receives compensation in two equal amounts, one halfway

8See Appendix A.2 for the solution of the horizon-constrained case.
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through (S1 = T/2) and one at the end of the arrangement (S2 = T ). The amounts are

D1 = D2 =
x− c
ρ

.

The buyer commits the funds using programmable payments at time T1 = T − 2L and T2 = T − L,

where

L =
1

ρ
log

b

x
.

Proof : See Appendix A.2. �

The amount of funds transferred in each payment is equal to the amount transferred in the

optimal horizon-unconstrained single-payment arrangement. Figure 2, panel (a) shows the timing

when both payments in the optimal two-payment arrangement are programmable payments. There

is a subtle difference in the timing of the payments compared to that in the horizon-unconstrained

single-payment solution. Like in the single-payment arrangement, the two-payment arrangement

starts with the seller supplying the service for a limited period before the buyer commits the funds

for the first programmable payment. However, the buyer is able to delay committing the funds for

the first payment for a longer period of time than in the single-payment arrangement. Hence, the

funds for the first payment are locked-up for a shorter period of time. The reason is that the buyer is

better incentivized to pay the first payment since he risks foregoing a longer beneficial relationship

if he fails to commit funds for the first payment. There are no such additional incentives for the

second payment, because the arrangement stops anyway after the second payment. The timing

of the second payment is therefore comparable to that of the optimal payment in the horizon-

unconstrained single-payment arrangement: The delay in committing the funds for the second

payment in the optimal two-payment arrangements is equal that in the horizon-unconstrained

single-payment arrangement, and the funds also remain locked-up for the same amount of time.
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Figure 2: Timeline of the Optimal Two-Payment Arrangement

Panel (a). Case I: Two programmable payments

Delayed release at T/2 Delayed release at T

Commit D1 = D2 Commit D2

0 T1 S1 T2 S2

Time

L L

Panel (b). Case II: One direct and one programmable payment

Immediate release Delayed release at > T

Commit D1 > D2 Commit D2

0 T1 = S1 T2 S2

Time

L

T/2T/2

Funds locked-up Service supplied

Note: The figure illustrates the timeline for the optimal two-payment arrangement. Panel (a) describes
the optimal timeline for parameter values where both payments are programmable payments (Theorem
4). Panel (b) describes the optimal timeline for parameter values where the surplus generated by the last
programmable payment is sufficiently large so that the first payment can be a direct payment (Theorem 5).

The interval L between payins is a decreasing function of b because, the higher the benefits

enjoyed by the consumer, the stronger the incentives to pay, and the shorter the second payment

needs to remain locked-up. Note that, as panel (a) of Figure 2 illustrates, in the optimal arrangement

with two programmable payments, L is also the interval between the second payin and the end of

the agreement.
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When considering smaller and smaller values of L, one could imagine that, eventually, the

moment to commit the first payment would coincide with the moment of its release, i.e., b becomes

large enough that 2L = T/2 or, equivalently, Ψ = 1. At this point, the trust of the seller in the

willingness of the buyer to make the first payment will be strong enough that there is no need to lock

up the first payment, and the first payment in the optimal arrangement would be a direct payment.

The optimal solution when the first payment is a direct payment is summarized in Theorem 5.

Theorem 5. (Case II: One direct payment, one programmable payment) Suppose the horizon is

unconstrained. If Ψ > 1, then the optimal arrangement is the following: The second transfer D2

has the same formula as in the previous theorem, the formula for the length of time the funds are

locked up in the programmable payment is also unchanged. The first transfer is a direct payment

and is greater than the second payment. The seller waits longer for the direct payment than for the

subsequent payout of the programmable payment.

Proof : See Appendix A.2.

The timeline of the arrangement when the first payment is a direct payment is illustrated in

panel (b) of Figure 2. The benefit of the first payment being a direct payment is that there is no

liquidity cost of locking up funds. The absence of the liquidity cost from locking up funds allows

the first payment to cover the bill for obtaining the service for a longer period of time by paying a

larger sum (i.e., T1 ≥ T/2 and D1 ≥ D2).

6 Multiple Payments

The core insight of the example of the optimal two-payment arrangement is that, if the contin-

uation value of the relationship to the buyer is sufficiently high, then the seller can trust that the

buyer will make the first payment without requiring him to temporarily locking up the funds in a

programmable payment. This is beneficial due to the reduction in liquidity costs. The insight—
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that earlier payments can be direct payments when the continuation value of the relationship to

the buyer is sufficiently high—generalizes to any feasible chain of non-overlapping payments that

covers a sufficiently long horizon.

One can think about the value to the buyer of continuing the relationship as generating trust.

Let W denote the continuation value of the relationship to the buyer the moment after a payment

is released to the seller. The level of W acts as a substitute for the requirement to guarantee

the payment by locking-up funds in a programmable payment. The higher the level of W , the

shorter the period funds need to be locked up in the next programmable payment.9 Whenever

W is sufficiently high, then the trust-effect is so strong that programmable payments—with their

liquidity costs from locking up funds—become inferior to direct payments.

Theorem 6. Assume the feasibility-condition holds. In an optimal chain of payments, suppose

W ≥ (b − x)/ρ immediately after some payment is released to the seller. Then that payment and

any earlier payments are direct payments. Any payment that comes after the last payment for which

this holds true is a programmable payment.

Proof : See Appendix A.4.

The previous theorem documents the minimum continuation value of the relationship to the

buyer that is necessary in order for all earlier payments in the optimal payment chain to be direct

payments. The theorem does not report under which parameter values it would be possible to

achieve this value. Clearly the feasibility-condition for the single-payment arrangement needs to

hold true: For a multiple payments arrangement not to unravel, there must be a net benefit for

the buyer and seller to continue the relationship once they arrive at the point where there is only

one payment left. It turns out that the feasibility-condition for the single-payment arrangement is

also a sufficient condition provided that the trading relationship covers a sufficiently long period.

9The environment we consider stacks the cards in favour of programmable payments. The value of W in our
model comes exclusively from the continuation value of the relationship with the same counterparty. One could
think of legal enforcement and reputation formation as aspects that could further contribute to the value of W . Such
aspects would make direct payments more attractive compared to programmable payments.
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As the next theorem states, given the feasibility condition for the single-payment arrangement, it

is always possible to achieve the necessary level of surplus for direct payments as long as enough

time is available.

Theorem 7. Assume the feasibility-condition holds true. If the horizon TM is sufficiently remote,

every optimal chain of payments will start with direct payments.

Proof : See Appendix A.4.

Theorem 7 shows that sustainable trading arrangements—that is, trading arrangements that

last sufficiently long in the future—create sufficient trust in order to avoid programmable payments.

However, such relationships require the use of programmable payments when they get closer to the

terminal date.

In a stationary environment, where b(t) = b for all t, programmable payments are not required

at all for the optimal payment arrangement. The following theorem establishes how the optimum

can be reached in a stationary environment with a payment arrangement that consists of direct

payments only.

Theorem 8. If the feasibility-condition holds true and b(t) = b for all t, then the optimum is reached

by a payment arrangement consisting of direct payments only. The amount of each payment equals

D =
x− c
ρ

+

√(
x− c
ρ

)2

− cK

ρ

and payments occur at a regular interval

∆T =
1

ρ
log

ρD + c

c
.

Proof : See Appendix A.4.
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Corollary 2. Within a stationary environment, the size of each payment increases and the fre-

quency of payments decreases as the transaction cost decreases.

Proof : Recall that x = (b+ c− ρK)/2. We have ∂D/∂K < 0, and, hence, ∂∆T/∂K > 0. �

Some have expressed the expectation that a strong reduction in transactions costs enabled

by technological developments in the payment space and the use of information technology to

settle payments could lead to an explosion in the number of payments. In an extreme case, new

payment technologies could lead to the use of so-called micro-payments in decentralized finance

that essentially approximates “streaming money” through a constant flow of small payments. This

expectation is not affirmed by Theorem 8, which reveals a more complex relationship between level

of the transaction cost and the number of payments in an economy.

The impact of the transaction cost on the demand for payments in an economy differs for

the extensive and the intensive margins. The impact along the extensive margin refers to the

question as to whether a reduction in the transaction costs increases the number of buyer-seller

relationships. This effect along the extensive margin is dominated by the feasibility-condition as

expressed in Corollary 1 which can be used to assess whether the transaction cost is prohibitively

expensive. The lower the transaction cost K, the larger the set of feasible buyer-seller relationships

within an economy. Low-cost payments enables economic relationships with smaller margins, which

contributes positively to the total number of payments in the economy. The impact along the

intensive margin refers to how a reduction in the transaction cost impacts the total number of

payments within an existing trading relationship. Corollary 2 shows that the payment frequency

decreases as the transaction cost decreases. In other words, the optimal payment pattern within

an existing trading relationship does not approximate “streaming money” as the transaction cost

decreases. Instead, payments become less frequent (i.e., ∆T increases) with each payment increasing

in size (i.e., D increases). The reason is that the reduction in the transaction cost increases the

surplus from the buyer-seller relationship. A higher surplus increases the trust of the seller that the
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Figure 3: Illustration of the Demand for Payments
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Note: The figure provides for illustrative purposes the optimal number of payments in an economy based
on Theorem 8. The figure is based on the following parameterization: c = 1; ρ = 0.2; heterogeneous
consumers derive a flow benefit bi that is drawn from a normal distribution with parameters µ = 1.15 and
σ = 0.025. The transaction cost K on the horizontal axis ranges from (0, 0.05). Panel (a) reports the
fraction of consumers for which trading is feasible. Panel (b) reports the optimal number of payments for
clients with various levels of bi in the range of values of the transaction cost where trading is feasible. Panel
(c) reports the total number of payments per capita.

buyer pays when the time comes. As a consequence, the buyer pays the seller less frequently when

the transaction costs are lower, which contributes to a reduction in the total number of payments

in the economy.

The total impact of a decrease in the transaction cost on the demand for payments depends on

the balance between the increase along the extensive margin and the decrease along the intensive

margin. Figure 3 provides an illustration of the impact of the transaction cost on the number of

payments along both the extensive and the intensive margins. The figure considers the number of

payments in an economy with a continuum of heterogeneous buyers. The buyers derive a benefit

bi from consuming a service that a seller provide at a cost c = 1, where bi is drawn from a normal

distribution with µ = 1.15 and σ = 0.025. The discount rate is set at ρ = 0.2. Panel (a) shows

the relationship between the transaction cost K and market penetration, defined as the fraction of
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all consumers for which trading with the seller is feasible. Trading is feasible for fewer consumers

when the transaction cost is higher (the extensive margin). Panel (b) shows the optimal number

of payments per period within a trading relationship for clients with various levels of bi. Clients

must pay more often as the transaction cost increases (the intensive margin), at least, that is,

until trading becomes infeasible. Panel (c) shows the full relationship by reporting the number of

payments per capita as a function of the transaction cost. For this particular parameterization, the

relationship is non-monotone. The effect along the intensive margin dominates for low transaction

costs resulting in a positive relationship with the total number of payments. The effect along the

extensive margin dominates for high transaction costs resulting in a negative relationship with the

total number of payments. This parameterization is just one illustration of the potentially complex

relationship between transaction costs and the total number of payments. Other paramaterizations

can result in relationships that are exclusively positive or exclusively negative.10

7 Other Applications

When new payment methods are developed, it becomes important to understand the circum-

stances under which they are attractive. Our results can be thought of as illustrating when pro-

grammable payments will be desirable and when payments arrangements without programmable

features will be successful. While our focus has been on programmable payments, our analysis has

implications for mainstream payments arrangements as well.

10For a simple example where the effect along the intensive margin dominates, set bi = 1.2 for all consumers
while keeping all other parameters unchanged. This parameterization switches off the effect along the extensive
margin and, hence, the number of payments per capita in such an environment will be a increasing function of the
transaction cost (that is, until the transaction cost increases so much that trading becomes infeasible, after which
the number of payments per capita drops to zero). For an example where the effect along the extensive margin
dominates, let bi ∼ U [1.0, 1.2] while keeping all other parameters unchanged. This parameterization results in an
exclusively negative relationship.
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7.1 Bill Payments

Bill payment refers to the process by which a purchaser extinguishes a debt established with a

vendor. Bill payments are distinct from the more-commonly studied “DVP transactions” (delivery

vs payment transactions)—transactions in which a spot exchange is made of a good or service for

a monetary asset. While DVP transactions have been at the center of much of micro-founded

monetary theory,11 examinations of bill payments are much rarer (for some exceptions, see the

references in Kahn and Roberds, 2009). Nonetheless, bill payments are a significant portion of

the total value of consumer payments.12 Relationships between suppliers and producers are also

dominated by bill payments.

The fundamental economic distinction between the two types of payments is the existence or

non-existence of a credit relationship. In a DVP transaction, no credit relationship need exist;

indeed the individuals can be anonymous to one another with no prospect of any subsequent rela-

tionship. Bill payment on the other hand requires that the creditor have some prospect of a future

meeting with the debtor, at least to present the bill, and some prospect that the presented bill

will be honored. Moreover, there are important institutional differences between the two types of

transactions. Different payments media are better suited to one or the other type of transaction:

for example, physical cash is relatively inconvenient for bill payments, while online or electronic

fund transfers tend to be relatively inconvenient for point-of-sale transactions.

Our model can be thought of as a microfoundation for the act of paying bills. On the face of it,

the question “why do people pay their bills?” has an obvious answer: if buyer and seller know each

other’s identity then there is a legal threat when goods are not paid for. However, the legal remedy

11A natural and important framework for studying such transactions is the “day-night” models of Lagos and
Wright (2005) and subsequent papers.

12Based on diaries of consumer payment choice in the United States, Greene and Stavins (2020) find that, when
distinguishing between purchases (typically DVP) and bill payments, bill payments account for 20 percent of all
payments by number and 63 percent of all payments by value. Other empirical research into consumer payment
behavior distinguishes between point-of-sale transactions (typically DVP) and remote transactions (typically bill
payments).
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when bills remain unpaid may be expensive and therefore ineffective.13 Important cases where this

may arise are small-value transactions on one extreme and international trade on the other. As

in our model, when repeat interactions are anticipated, the real threat enforcing bill payments is

likely to be the loss of future value: Bills are paid in order to continue enjoying the benefits of

the relationship. Theorem 6 describes the circumstances where the future benefits are sufficient to

support direct payments of bills.

7.2 Middlemen

When the sticks of legal sanction and the carrots of continued cooperation prove inadequate to

enforce payment, the parties can turn to a variety of third-party options, which we can summarize by

the term “escrow.” Essentially, when simultaneous payment and delivery is infeasible, the payment

is made before the good or service is provided and a trusted custodian holds on to the payment

until the buyer receives delivery. Traditional examples include real estate transactions and letters of

credit where a creditworthy third-party assures payment for goods upon the seller providing proof of

shipment.14 From this point of view, programmable payments can be considered as an automated

version of escrow. Theorem 1 describes the circumstances where reductions in transactions costs

make trading through an escrow arrangement feasible.

Our model emphasizes the importance of repeated interaction in enforcing payment. An appli-

cation of our results is in the context of arrangements that redirect payment flows. Credit cards

provide an interesting example: a consumer repeatedly interacts with the card issuer even though

the consumer does not interact repeatedly with a particular retailer. The consolidation of interac-

tions means that it will be possible to sustain a direct payment arrangement (Theorem 7) instead

13Standard advice to creditors whose accounts have been sent to a collection agency is to negotiate for a partial
payment to settle the debt rather then to repay the debt in full (Equifax, 2020). A report by the Federal Trade
Commission found that going-concern debt buyers not specialized in bankruptcy debt purchased in the period 2006-09
paid on average only 4 cents for each dollar of debt (Leibowitz et al., 2013).

14Besides the traditional examples, a host of real-world institutions can be understood in this light, from, at the
wholesale payment extreme, the CLS bank (Kahn and Roberds, 2001), down to guarantees offered by some payment
cards when customers make purchases using the card.
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of the more costly escrow or programmable payment arrangements that would be required in the

absence of repeated interactions (Theorem 3). Moreover, the consolidation of payments makes trad-

ing feasible in situations where the transaction costs for individual payments would be prohibitively

high. When interacting with n > 1 identical counterparties but making payments to a single card

issuer, the feasibility-condition generalizes to the weaker condition

√
ρK +

√
nc ≤

√
nb.

This gives an argument for the network benefits of a payment system, not just from the possibility

to receive payments from more individuals, but from the trust that it generates. There is an

interesting analogy of this network benefit with the results of Koeppl et al. (2012) in the context

of clearing houses.

8 Conclusion

The objective of this paper was to study the demand for programmable payments where transfers

are automatically executed conditional upon preset objective criteria. We did so in a framework

that allows for a wide range of economic situations. Our results show that programmable payments

may be the only viable payment arrangement in situations where economic relationships are of

a short duration. However, payment arrangements with direct payments dominate in long-term

relationships. These results call into question whether sufficiently cheap programmable payments

would replace most direct payments.

Our results also call into question the prediction that payments will be made more frequently

as the transaction cost drops. The model shows that there is an important distinction between the

impact of the transaction cost along the extensive and the intensive margins. Although the number

of payments increases when the transaction cost drops for situations where the transaction cost
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would otherwise have stopped the buyer from making a purchase (the extensive margin), the optimal

frequency to make payments in existing long-term relationships decreases when the transaction cost

decreases (the intensive margin). This effect comes from the fact that cheaper payments increase

the value of the relationship to the buyer, so that the seller can be more confident that the buyer

will continue to make payments. The total effect of cheaper payments on the demand for payments

will therefore depend on the difference between the effects along the extensive and the intensive

margins.
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A Appendix: Proofs

In the appendix, we will use the following shorthand in order to simplify presentation of calcu-

lations:

B =
b

ρ
, C =

c

ρ

τi = e−ρTi , νi = e−ρSi

Recall we assume B, C and K to be positive. We assume B ≥ C +K, otherwise autarky would

be optimal. We also define

X =
1

2
(B + C −K)

so that

X − C ≥ 0
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We let W denote the value received by the buyer upon a satisfactory end to the relationship.

We assume B > W ≥ 0. (Otherwise the buyer places more value on the post relationship phase

than on the relationship itself.) The earlier sections of the paper consider W = 0. In the latter

sections W will represent the continuation value from a new arrangement anticipated at the end of

the first arrangement.

Terminology A simple payment is one where τi = νi, that is, the payin and payout are made

simultaneously. A programmable payment is one which requires an escrow facility: τi > νi. In

all arrangements νi ≥ τM , that is, payouts must be made before the terminal date. When this

constraint binds for the final payout, we will refer to the contract as horizon-constrained. An

arrangement is individually rational if the payoff to the buyer is greater than 0. It meets the seller’s

participation constraint at νi, where νi = e−ρSi , if the arrangement going forward from Si (and

ignoring payout received at Si) has non negative NPV.

A.1 Solution for Nonstationary Environment with One Payment

The single-payment problem is

max
D1,τ1,ν1

B(1− ν1) +Wν1 − (D1 +K)τ1

subject to

C(1− ν1) ≤ D1ν1, (11)

(D1 +K)τ1 ≤ B(τ1 − ν1) +Wν1, (12)

τM ≤ ν1 ≤ τ1 ≤ 1, (13)

0 ≤ D1. (14)

34



When W = 0 the program reduces to the maximization of U(D1, T1, S1) in (1) and conditions

(2)-(5) in the main text.

Lemma A1. The following are necessary and sufficient conditions for the existence of a solution

to the single-payment problem:

X2 ≥ (B −W )C (15)

and

τM ≤
1

B −W
(X +

√
X2 − (B −W )C). (16)

Proof. By condition (12), a triple (D1, τ1, ν1) is infeasible unless D1 < B−K (since B > W ). From

(12) and τ1 ≤ 1, a feasible triple (D1, τ1, ν1) exists if and only if the triple (D1, 1, ν1) is feasible,

that is, if and only if

1 ≥ ν1 ≥ τM

and

B −K −D1

B −W
≥ ν1 ≥

C

C +D1
.

See Figure A.1. The feasible set of pairs (D1, ν1) is non-empty if and only if 1) the curve C/(C+D1)

intersects the line (B − K − D)/(B − W ), 2) the lower intersection lies below the line ν1 = 1

(equivalently, that the lower intersection lies to the right of the vertical axis) and 3) the upper

intersection lies above the line ν1 = τM . These requirements are equivalent to the two conditions of

the lemma. (To see this, solve

B −K −D1

B −W
=

C

C +D1

for D1:

D1 = X − C ±
√
X2 − C(B −W ).

The intersection occurs if and only if the discriminant is non-negative; this is condition (15). Since

the larger root is positive, the second requirement is automatically satisfied. The third requirement
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Figure A.1: Feasible Set of (D1, ν1) for the Single-Payment Arrangement

Note: The green area indicates the feasible set of values of (D1, ν1) for the single-payment arrangement.

is precisely condition (16).) With the feasible set non-empty, existence follows by continuity and

compactness. �

In particular, note that if τM ≤ X/(B−W ), (15) implies (16) so that (15) by itself is necessary

and sufficient. When W = 0, condition (15) can be restated as

√
B ≥

√
C +

√
K.

Thus this lemma generalizes Theorem 1.

The objective in the single-payment problem is decreasing in all arguments; reducing D1 demon-

strates that either (11) binds or D1 = 0. In the latter case, (11) implies ν1 = 1, so (11) binds anyway.

Hence, we must have

ν1 =
C

C +D1
. (17)

Reducing τ1 demonstrates that either τ1 = ν1 (so that the payment is a simple direct payment) or

(12) binds. Thus
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Corollary A1. If W < K then a solution to the single-payment problem must be programmable.

Proof. If τ1 = ν1 then (12) is violated when W < K. �

On the other hand, when W − K ≥ 0 a feasible solution always exists (cf. Figure A.1); in

particular the direct payment (D1, τ1, ν1) = (0, 1, 1) is feasible and provides non-negative payoff to

the buyer.

Next we characterize the solution when it is programmable, and provide a necessary condition

for a solution to be programmable.

Lemma A2. If the optimal single-payment arrangement is programmable, then

D1 = min
{
C(τ−1

M − 1), X − C
}
, (18)

ν1 = max

{
τM ,

C

X

}
, (19)

τ1 =
(B −W )ν1
B −D1 −K

. (20)

Furthermore,

D1 > W −K. (21)

Proof. If τ1 > ν1 then (12) binds. Together these imply conditions (20)-(21). Using (17) and (20)

to define ν1 and τ1, the problem can be rewritten as follows:

max
D1

B

(
1− (B −W )C

(C +D1)(B −D1 −K)

)
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subject to

D1 ≤ Cτ−1
M − C (22)

W −K ≤ D1 (23)

(B −W )C ≤ (B −D1 −K)(D1 + C) (24)

0 ≤ D1. (25)

The unrestricted maximum occurs at

D1 =
1

2
(B −K − C) = X − C.

Restriction (25) does not bind, nor, assuming (21), does (23). Restriction (24) is satisfied iff the

objective is non-negative; therefore it affects whether or not the problem is feasible, but it does not

affect the choice of D1 given that the problem is feasible.

The remaining restriction (22) may bind; since the objective is quasiconcave, (18) says that the

optimal D1 is either the unrestricted optimizer or the binding value from (22). Finally, (19) is

obtained from plugging the solution for D1 into (17). �

An optimum must be a programmable payment if a simple direct payment is infeasible—for

example, if W = 0. This fact and the above characterization prove Theorem 3.

Now we characterize the optimal simple direct payment contract, by substituting (11) and

τ1 = ν1 into the single-payment problem, which becomes:

max
D1

B − C(B −W +D1 +K)

D1 + C
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subject to

D1 ≤W −K, (26)

τM ≤
C

D1 + C
, (27)

0 ≤ D1. (28)

From this we deduce the following

Lemma A3. Suppose W −K ≥ 0.

1) If W −K < B − C then the optimum among direct payment contracts is

D1 = min{W −K,C(τ−1
M − 1)}

τ1 = ν1 = max

{
C

C +W −K
, τM

}
.

The payoff is

(1− τM )(B − C) + τM (W −K)

if τ1 = τM and

B(W −K)

C +W −K
(29)

otherwise.

2) If W−K > B−C, then the optimum among direct payment contracts is (D1, τ1, ν1) = (0, 1, 1)

and the payoff is W −K.

In the borderline case, the buyer is indifferent between the two direct payment contracts de-

scribed in the lemma (as well as among all intermediate contracts).
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When W −K < 0 a simple direct payment contract is infeasible, and the optimal contract, if it

exists, must be programmable. If W−K ≥ 0 a simple direct payment contract is always feasible. In

this case, it remains to determine whether there exists a programmable contract which dominates

simple payment contracts. For our purposes it suffices to focus on the situation where the problem

is not horizon-constrained, that is τM ≤ ν1 does not bind. A sufficient condition for this is

τM ≤ min

{
C

X
,

C

C +W −K

}
.

Lemma A4. Suppose W − K ≥ 0 and the horizon-constraint does not bind. Then the optimal

contract is a programmable payment if and only if

W −K < X − C (30)

Otherwise the optimal contract is a direct payment.

Proof. Lemma A2 implies that in any optimal programmable payment arrangement

X − C ≥ D1 > W −K.

Conversely, given (30), a direct calculation shows that the contract in Lemma A2 when the solution

is not horizon-constrained is feasible and that the payoff from the optimal programmable payment

is

B

(
1− (B −W )C

X2

)
. (31)

Condition (30) implies W −K < B −C so that the payoff in the optimal simple payment contract

is (29). But then the difference between the two payoffs is

B

(
1− (B −W )C

X2

)
− B(W −K)

C +W −K
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= B

(
C

C +W −K
− (B −W )C

X2

)

=
BC

X2(C +W −K)
(X2 − (B −W )(C +W −K))

=
BC

X2(C +W −K)
(X2 − (B −W )(2X −B +W ))

=
BC

X2(C +W −K)
(B −X −W )2

=
BC

X2(C +W −K)
((X − C)− (W −K))2 > 0

In other words under (30) a programmable payment dominates. �

In short, the following is a complete characterization of the single-payment problem when the

situation is not horizon-constrained: If X2 < (B−W )C the problem is infeasible. If X2 ≥ (B−W )C

and W −K < X − C the solution is a programmable payment. If B − C > W −K ≥ X − C then

the solution is a simple direct payment of a positive amount. If W −K ≥ B−C then the solution is

a simple direct payment of 0 (immediate move to the post-contract relationship). When a solution

with non-zero payment exists, then

(D1, ν1, τ1) =

(
max{X − C,W −K}, C

C +D1
,

(B −W )ν1
B −D1 −K

)
.

A.2 Solution for Non-Stationary Environment with Two Payments

Assuming

ν1 ≥ ν2 (32)

The two-payment problem is

max
D1,D2,τ1,τ2,ν1,ν2

B(1− ν2) +Wν2 − (D1 +K)τ1 − (D2 +K)τ2
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subject to

C(1− ν2) ≤ D1ν1 +D2ν2 (33)

C(ν1 − ν2) ≤ D2ν2 (34)

(D1 +K)τ1 + (D2 +K)τ2 ≤ B(τ1 − ν2) +Wν2 (35)

(D2 +K)τ2 ≤ B(τ2 − ν2) +Wν2 (36)

Di ≥ 0, i = 1, 2 (37)

νi ≤ τi, i = 1, 2 (38)

τM ≤ ν2 (39)

τ2 ≤ τ1 ≤ 1 (40)

(We will add (32) to the set of requirements. After solving we can verify (32) does not bind.)

The following lemma relates the feasibility of the single-payment problem and the feasibility of

the two-payment problem:

Lemma A5. If there exists a (individually-rational) solution to the two-payment problem either

with τ2 ≤ ν1 or with conditions (34) and (36) binding, then there exists a (individually-rational)

solution to the single-payment problem.

Proof. Suppose (D∗
1 , D

∗
2 , τ

∗
1 , τ

∗
2 , ν

∗
1 , ν

∗
2 ) satisfies the two-payment problem restrictions (32-40). If

τ∗2 ≤ ν∗1 then the triple

D1 = D∗
2 , τ1 =

τ∗2
ν∗1
, ν1 =

ν∗2
ν∗1

satisfies the single-payment problem restrictions (11-14). (Verification: (11) follows from (34), (12)

follows from (36),

ν1 =
ν∗2
ν∗1
≥ ν∗2 ≥ τM
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and the rest of the conditions are immediate.) Furthermore, non-negativity of the single-payment

objective follows from (36), which implies (12), and τ∗2 ≤ ν∗1 , which implies τ1 ≤ 1.

Otherwise, if (34) and (36) bind, then (D∗
1 , τ

∗
1 , ν

∗
1 ) directly satisfies the single-payment problem

restrictions. (Subtracting (36) from (35), we have

(D1 +K)τ1 ≤ B(τ1 − τ2)

which in turn is less than the right hand side of (12). Similarly, (11) follows from (34) and (33). The

other conditions are immediate.) Furthermore, when (36) binds, the objective in the two-payment

problem can be rewritten as

B(1− τ2)− (D1 +K)τ1.

As long as τ2 > ν1, then the payoff in the single-payment problem is non-negative whenever the

payoff in the two-payment problem is non-negative. �

In this subsection we will find the optimum for the two-payment problem for the case where

W = 0. In the following subsection we will solve the problem for W > 0 and τM sufficiently small.

Restriction (36) demonstrates that feasibility requires τ2 > ν2. Considering the effect of reducing

τ2 demonstrates that either τ2 = ν2 or (36) binds. We conclude that (36) must bind. Restriction

(36) (or individual rationality) also guarantees that D2 < B −K.

Considering the effect of reducing D1 demonstrates that either D1 = 0 or (33) binds. We will

allow a single-payment arrangement as an alternative, in which case a two-payment arrangement

with either D1 = 0 or D2 = 0 is dominated by a single-payment arrangement. Thus we can drop

restrictions (64), and conclude that (33) binds in a two-payment optimal arrangement.
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Considering the effect of reducing τ1 demonstrates that either (35) binds or τ1 = ν1 or τ1 = τ2.

However substituting (36) as equality into (35) yields the following condition:

(D1 +K)τ1 ≤ B(τ1 − τ2)

from which we conclude τ1 > τ2 so that only the two remaining alternatives are possible: (35)

binds or τ1 = ν1 (we also conclude D1 < B −K). Furthermore 1 ≥ τ1 will not bind (although the

condition does have to be checked for feasibility in any proposed solution).

For future reference we also record the following lemma:

Lemma A6. In an optimum with τ1 = ν1 and D2 strictly positive, (34) binds.

Constraint (34) is the seller’s participation constraint at ν1.

Proof. Suppose (34) does not bind. Decrease D2 by a small amount ∆ while increasing D1 by

∆ν2/ν1. Constraint (33) is unaffected. Constraint (36) is relaxed. The quantity D1τ1 + D2τ2

changes by the amount

∆
ν2
ν1
τ1 −∆τ2 < 0

relaxing (35) and improving the objective. Contradiction. �

Of the various conditions in (32), (38)-(40), the following remain as potentially binding:

τ1 ≥ ν1 ≥ ν2 ≥ τM .

Using the binding constraints (33) and (36) to define ν1 and τ2 we simplify the problem:
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max
D1,D2,τ1,ν2

B − (D1 +K)τ1 −
B2ν2

B −D2 −K

subject to

C2 ≤ (C +D2)(C +D1)ν2 (41)

B2ν2 ≤ (B −D1 −K)(B −D2 −K)τ1 (42)

C ≤ D1 τ1 + (C +D2)ν2 (43)

(C +D1 +D2)ν2 ≤ C (44)

τM ≤ ν2 (45)

The objective is decreasing in all four variables. Thus (44) does not bind and can be omitted

until the check for feasibility at the end. Reducing τ1 demonstrates (42) or (43) binds.

Suppose (43) binds; use it to substitute for τ1 :

max
D1,D2,ν2

B − (D1 +K)
C − (C +D2)ν2

D1
− B2ν2
B −D2 −K

subject to

C2 ≤ (C +D2)(C +D1)ν2 (46)

B2ν2 ≤ (B −D1 −K)(B −D2 −K)
C − (C +D2)ν2

D1
(47)

τM ≤ ν2 (48)

Now the objective increases with D1, demonstrating that (47) (equivalently, (42)) binds. Therefore

return to the previous version of the problem and use (42) as an equality. Substituting it into the

objective function we see that the objective equals B(1 − τ1) so that maximizing the objective is
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the same as minimizing τ1 (and the result is individually rational for the buyer iff τ1 ≤ 1.) Using

(42) to eliminate τ1 from the problem we have

min
D1,D2,ν2

B2ν2
(B −D1 −K)(B −D2 −K)

(49)

subject to

C2 ≤ (C +D2)(C +D1)ν2 (50)

C − (C +D2)ν2 ≤ D1
B2ν2

(B −D1 −K)(B −D2 −K)
(51)

τM ≤ ν2 (52)

where either (50) or (51) binds.

Constraint (50) is a disguised version of the supplier’s participation constraint at ν1. Constraint

(51) says a payout cannot precede the payin. If it binds, the first payment is a direct payment.

However, if the first payment is a direct payment, then by the preceding lemma, the supplier’s

participation constraints bind. We conclude

Lemma A7. In an optimal two payment arrangement, the supplier’s participation constraints bind.

We use the binding constraint to eliminate ν2. The problem becomes

min
D1,D2

B2C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)
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subject to

C − C2

C +D1
≤ D1B

2C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)
(53)

τM ≤
C2

(C +D1)(C +D2)
(54)

Constraint (54) is the horizon-constraint. The problem can be restated more simply as

max
D1,D2

(2X − C −D1)(2X − C −D2)(C +D1)(C +D2)

subject to

(2X − C −D1)(2X − C −D2)(C +D2) ≤ B2C (55)

(C +D1)(C +D2) ≤ C2τ−1
M (56)

Depending on the values of the three key parameters X, C2τ−1
M , and B2C, there are four

possibilities, illustrated in Figure A.2. If neither constraint binds, the optimum is achieved by

D1 = D2 = X − C (top-left). If only the horizon-constraint (56) binds (bottom-left), then D1 =

D2 = Cτ
−1/2
M − C < X − C. If only the prepayment-constraint (55) binds (top-right), then

D1 > D2 = X − C. If constraints (55) and (56) both bind, then D2 < X − C as shown in

the bottom-right panel of Figure A.2. (If the optimal values of D1 or D2 are not positive, that

indicates that a single-payment arrangement or autarky automatically dominates all two-payment

arrangements).

More specifically, the results so far in effect have demonstrated that in the original problem, the

constraints (33)-(36) are all binding.
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Constraints (33)-(36) can be solved simultaneously to find formulas for τ1, τ2, ν1, ν2 as functions

of D1, D2:

ν1 =
C

D1 + C
,

ν2 =
C2

(D1 + C)(D2 + C)
,

τ2 =
BC2

(B −D2 −K)(D1 + C)(D2 + C)
,

τ1 =
B2C2

(B −D1 −K)(B −D2 −K)(D1 + C)(D2 + C)
.

It remains to specify when each of the four possibilities in Figure A.2 arises, and when the

two-payment solutions are feasible and dominate the single-payment solution.

1) The unconstrained optimum has

D1 = D2 = X − C.

The top-left solution applies if both constraints (55) and (56) are satisfied when these values of

D1, D2 are substituted. These conditions reduce to

X3 ≤ B2C,

X2 ≤ C2τ−1
M .

2) Ignoring the prepayment-constraint, the optimum occurs when

D1 = D2 = min{C(τ
−1/2
M − 1), X − C}
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Figure A.2: Possible Cases for the Two-Payment Solution

Note: The top-left panel illustrate the values of (D1, D2) where neither the prepayment-constraint in (55) nor the
horizon-constraint in (56) bind (Theorem 4). The top-right panel illustrates the situation where only the prepayment-
constraint binds so that the first payment is a direct payment (Theorem 5). The remaining panels illustrate the
horizon-constrained solutions where the prepayment-constraint does not bind (bottom-left) or where it binds (bottom-
right).
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or equivalently, when D1 = D2 = C(ν
−1/2
2 − 1) and

ν2 = max

{
C2

X2
, τM

}
.

The prepayment-condition is satisfied when

B(1− ν1/42 ) < C(ν
−1/2
2 − 1) +K

Therefore, necessary and sufficient conditions for the solution to be in the bottom-left corner are

X2 > C2τ−1
M ,

2X ≤ Bτ1/4M + Cτ
−1/2
M .

These first two cases arise when both payments are programmable. The remaining two cases

arise when the first payment is direct and the second is programmable.

3) Ignoring the horizon-constraint, the optimum occurs when D2 = X − C and

D1 = max{X − C, 2X − C − B2C

X2
}. (57)

Plugging this into the horizon-constraint, the top right solution applies if the top left conditions

are violated and

max{X2, 2X2 − B2C

X
} ≤ C2τ−1

M .

Therefore necessary and sufficient conditions for the solution to be in the top right corner are

X3 > B2C

2X2 − B2C

X
≤ C2τ−1

M .
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Note therefore, that in this case, the payments are not equal. The second payment is the optimal

payment in the single-payment problem, and the first payment is greater :

D1 > D2

⇔ B −K − B2C

X2
>

1

2
(B − C −K),

⇔ −B
2C

X2
> −X

⇔ B2C < X3

which is the binding prepayment-constraint.

4) Finally, if none of these possibilities hold, then the bottom right solution applies. Necessary

and sufficient conditions are therefore

2X > Bτ
1/4
M + Cτ

−1/2
M

2X2 − B2C

X
> C2τ−1

M

Table 1 provides the formulas for the optimal choice variables in each of these four cases and, for

comparison, in the single-payment case. Note that the payoff is B(1− τ1).

Corollary A2. The solution for the optimal two-payment arrangement is horizon unconstrained

iff

C2τ−1
M ≥ max{X2, 2X2 − B2C

X
}.

Proof. The horizon-constraint does not bind iff the solution belongs to Case 1 or Case 3 above. �

The condition (10) in the main text reduces to C2τ−1
M ≥ 2X2 implying the condition in Corollary

A2 holds true. The formulas in Table 1 in the “unconstrained” columns for Cases 1 (“none direct”)

and 3 (“once direct”) prove Theorems 4 and 5, respectively.
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Table 1: Solutions of the One-Payment and Two-Payment Problem for W = 0

One payment One payment Two payments Two payments Two payments Two payments

Choice (constrained) (unconstrained) (constrained) (unconstrained) (constrained) (unconstrained)

variable None direct None direct Once direct Once direct

ν1 τM
C
X τ

1/2
M

C
X

C
D1+C

CX2

2X3−B2C

τ1
τMB

B−D1−K
BC
X2 τM

(
B

B−D2−K

)2
B2C2

X4
C

D1+C
CX2

2X3−B2C

D1 C(τ−1
M − 1) X − C C(τ

−1/2
M − 1) X − C C2

τM (D2+C) − C 2X − C − B2C
X2

ν2 τM
C2

X2 τM
XC2

2X3−B2C

τ2 τM
B

B−D2−K
BC2

X3 τM
B

B−D2−K
BC2

2X3−B2C

D2 C(τ
−1/2
M − 1) X − C X − C −M X − C

Note: “Constrained” refers to the horizon-constrained case. “None direct” means two programmable
payments, “once direct” means that only the last payment is programmable. The M in the so-
lution to the horizon-constrained two-payment solution with one direct payment is defined as M =:(√

16X4 + C4τ−2
M − 8B2CX − 8C2X2τ−1

M − C2τ−1
M

)
/(4X).

A.3 Two Payments with W Positive and τM Small

In this subsection, we suppose that an optimal solution exists and that it has two payments (so

that D1, D2 are positive) and that ν2 > τM .

Since the objective is decreasing in τ2, either (36) binds, or τ2 = ν2. It follows that

Corollary A3. The second payment is a programmable payment iff D2 > W −K (it is a simple

direct payment iff D2 ≤W −K).

Proof. If τ2 = ν2 then from (36) B−W ≤ B−D2−K. If τ2 > ν2 then (36) binds and (B−W )ν2 =

(B −D2 −K)τ2, so that B −W > B −D2 −K. �
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Figure A.3: Feasible Set of (D1, D2) for the Two-Payment Arrangement

Note: The unshaded area indicates the feasible set of values of (D1, D2) for the two-payment arrangement in a
scenario where the continuation value can be positive (W ≥ 0) and the horizon-constraint does not bind (τM small).

Lemma A8. Constraint (33) binds. If there is no optimum in which constraint (34) binds then in

any optimum, constraint (36) binds;

Proof. The objective is decreasing in D1 and D2. Figure A.3 shows the restrictions that affect the

choice of D1 and D2. The horizontal lines reflect, respectively, constraints (34) and (36) binding.

The diagonal line reflects constraint (33) binding and has slope −ν1/ν2. (The remaining constraint

involving D1 and D2 is (35). But as this constraint lies on an isoprofit line, it affects feasibility but

not the choice of D1, D2.) The slope of the isoprofit lines when rewriting in terms of the value of

D2 as a function of D1 is −τ1/τ2. If τ1/τ2 ≤ ν1/ν2 then Point 2 is an optimum, and constraints

(33) and (34) bind]. If τ1/τ2 > ν1/ν2 then Point 1 is the only optimum, and constraints (33) and

(36) bind. �

Lemma A9. τ1 > τ2.
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Proof. Suppose instead τ1 = τ2. Then (36) cannot bind, otherwise (35) is violated. But if (36) does

not bind, then τ2 = ν2 as mentioned before. Since τ1 ≥ ν1 ≥ ν2, they all must be equal. But a

single payment is better than two simultaneous direct payments. �

Since the objective is decreasing in τ1, either (35) binds, or τ1 = ν1 (the previous lemma rules

out τ1 = τ2). If (35) binds the objective can be rewritten as B(1− τ1) so that maximizing it is the

same as minimizing τ1.

Next we demonstrate that in fact

Lemma A10. Constraint (34) always binds.

Proof. If there is an optimum where (35) does not bind, then τ1 = ν1 and by an argument identical

to that in the proof of Lemma A6, constraint (34) binds. The remainder will be proven by contra-

diction. Suppose there is an optimum where constraint (35) binds but constraint (34) does not; in

this optimum constraints (33) and (36) would be binding (Lemma A8). We can use (33),(35),(36)

as definitions of ν1, τ1, τ2. We would have

τ1 =
B

B −D1 −K
τ2

τ2 =
B −W

B −D2 −K
ν2

ν1 =
C − (C +D2)ν2

D1

and dropping the constraints assumed to be non-binding, the only ones remaining would be ν2 ≤ τ2,

ν2 ≤ ν1, and τ1 ≤ 1. Substituting the above definitions, the problem would become

max
D1,D2,ν2

B

(
1− B(B −W )ν2

(B −D1 −K)(B −D2 −K)

)
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subject to

D2 ≥W −K

1 ≥ B(B −W )ν2
(B −D1 −K)(B −D2 −K)

ν2 ≤
C

C +D1 +D2

The objective would be declining in ν2 with ν2 unconstrained from below unless (34) binds. �

In summary, we have established

ν1 =
C

C +D1
, (58)

ν2 = ν1
C

C +D2
, (59)

τ2 = max

{
ν2,

(B −W )ν2
B −D2 −K

}
, (60)

τ1 = max

{
ν1,

(D2 +K)τ2 + (B −W )ν2
B −D1 −K

}
. (61)

Furthermore, the conditions of Lemma A5 are satisfied (if τ2 = ν2, (59) implies ν1 ≥ τ2;

otherwise (36) binds, as well as (34)). Thus a solution to the single-payment problem is feasible

whenever a solution to the two-payment problem is feasible, as long as τM is small.

Corollary A4. If X2 < (B −W )C a solution to the two-payment problem is infeasible.

Proof. When τM is small, the result follows directly from the necessary condition in Lemma A1.

But as τM increases, the feasible set shrinks, so the result holds, a fortiori. �
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A.3.1 Both Payments Programmable

If τ1 > ν1 and τ2 > ν2 we use (58-61) to define τi, νi and, recalling that when (35) binds the

objective is equivalent to minimizing τ1, the problem can be reformulated as

min
D1,D2

B(B −W )C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)

The unconstrained minimum occurs at

D1 = D2 = X − C.

Payouts occur at

ν1 =
C

X
, ν2 =

C2

X2
.

Payins occur at

τ1 =
B(B −W )C2

X4
, τ2 =

(B −W )C2

X3
.

Assuming that τM is small and given the hypothesis τi > νi, i = 1, 2, these formulas satisfy all

the conditions (32-40). As noted before, the second payment is a programmable payment (that is,

τ2 > ν2) iff D2 > W −K which, in this case translates to W < B −X. Given this condition, the

first payment is programmable iff

W < B −X X2

BC
.

The buyer’s payoff from this solution is

B(1− τ1) = B − B2C2

X4
(B −W ).
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A.3.2 First Payment Direct, Second Programmable

Assume τ1 = ν1 while τ2 > ν2. In this situation, condition (36) will be binding and the objective

can be rewritten as

max
D1,D2,τ1,τ2,ν1,ν2

B

(
1− B −W

B −D2 −K
C

C +D2

C

C +D1

)
− C(D1 +K)

C +D1

subject to (32-40). The optimal value for D2 is

D2 = X − C.

independent of D1.

Substituting D2 = X−C into the objective function yields an expression that is increasing in D1

provided that CB(B−W )/X2+K ≥ C (if this condition does not hold true, it would be optimal to

set D1 = 0 and a two-payment solution where the first payment is direct and the second payment

is programmable would be suboptimal). Plugging the solutions for the other choice variables into

constraint (35) and increasing D1 until (35) binds gives

D1 = 2X − C − (B −W )
BC

X2
.

Substituting into the constraints gives

τ1 = ν1 =
CX2

2X3 − (B −W )BC

and

ν2 = ν1
C

X
and τ2 = ν1

C(B −W )

X2
.

Substituting the solutions for ν2 and τ2 into (61) gives us the following condition for when the first

payment must be a direct payment (i.e., τ1 = ν1): BC(B −W ) ≤ X3, which is the converse of
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the condition obtained in the previous subsection, assuming the second payment is programmable.

Altogether, with the conditions for a nonzero D1 and τ2 > ν2, the condition on W that results in

a direct first payment is

B −X X2

BC
≤W < B −max

{
X, (C −K)

X2

BC

}
.

We have X > (C−K)X2/(BC)⇔ B(C+K) > (C−K)2, so the condition on W can be summarized

as

B −X X2

BC
≤W < B −X.

Combining this with the results from the previous subsection we have

Corollary A5. The second payment is a programmable payment iff W < B − X. If the second

payment is programmable, D2 = X − C.

A.3.3 Second Payment a Direct Payment

Now assume τ2 = ν2. Using conditions (58-61), the two-payment problem can be rewritten as

max
D1,D2,τ1

B − C2(B −W +D2 +K)

(C +D1)(C +D2)
− (D1 +K)τ1
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subject to

C2(B −W +D2 +K)

(C +D1)(C +D2)
≤ (B −D1 −K)τ1 (62)

D2 ≤W −K (63)

Di ≥ 0, i = 1, 2 (64)

C

C +D1
≤ τ1, (65)

τ1 ≤ 1, (66)

where (62) and (65) are derived from conditions (60) and (61), respectively, and (63) from condition

(36). Holding the other variables constant for the moment, notice that when we move D2 so as

to improve the objective, we also relax constraint (62). The objective is monotonic for D2 in the

permitted range [0,W −K]; if it is monotonically increasing then the optimal D2 = W −K. (If it

is monotonically decreasing, then D2 = 0, in which case the second payment is suboptimal). We

conclude that a necessary condition for a solution of the form where D2 = W −K is

B − C ≥W −K ≥ 0 (67)

in which case

τ1 = max

{
C

C +D1
,

BC2

(W + C −K)(B −D1 −K)(C +D1)

}
. (68)

Suppose τ1 > ν1. Then condition (62) would bind, and the objective would be equivalent to

minimizing τ1, which would equal the second term in the above expression. The minimum occurs

at D1 = X − C, which would give

τ1 =
BC2

X2(W + C −K)
; ν1 =

C

X
.

However, it turns out that for the parameter values that are relevant for us, this outcome is not

possible:
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Lemma A11. If X2 > (B−W )C, then a two-payment arrangement where a programmable payment

is followed by a direct payment is not optimal.

Proof. Consider the case X2 ≥ BC. Suppose a programmable payment is followed by a direct

payment is optimal.

τ1 = ν1
BC

X(W + C −K)
≤ ν1

BC

X(B −X + C −K)
= ν1

BC

X2
≤ ν1

contradicting τ1 > ν1 (the first inequality holds by Corollary A5).

Consider the case (B −W )C < X2 < BC. In this case, the payoff of the two-payment arrange-

ment where a programmable payment followed by a direct payment is strictly dominated by a direct

single-payment arrangement. The arrangement with the smallest value for τ1 has the highest payoff.

So, a direct single-payment arrangement strictly dominates a programmable payments followed by

a direct payment iff

C

W + C −K
<

BC2

X2(W + C −K)
⇔ X2 < BC.

Combining the two cases proves that a two-payment arrangement where a programmable pay-

ments is followed by a direct payment is not optimal if (B −W )C < X2. �

On the other hand, if τ1 = ν1, the objective reduces to

max
D1

B − BC2

(C +D1)(C +W −K)
− C(D1 +K)

C +D1

or

max
D1

B − C

C +D1

(
BC

C +W −K
+K +D1

)
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subject to

BC

C +W −K
+K +D1 ≤ B

D1 ≥ 0.

The objective is increasing in D1 provided

BC

C +W −K
≥ C −K

which follows from (67) (since BC/(C + W −K) ≥ BC/(C + B − C) = C ≥ C −K). Thus the

solution is

D1 = B −K − BC

C +W −K

provided (67) holds. (The value of D1 is positive provided that X2 ≥ BC:

BC

C +W −K
≤ BC

C +B −X −K
=
BC

X

≤ X =
1

2
(B −K + C)

≤ B −K

where the first inequality follows from Corollary A5).

A.4 Multiple Payments

To analyze the general case of multiple payments, we use the following insight: Suppose that

TM is so large as to pose no restriction on the calculations–that is, the problem is not horizon-

constrained. Look for the optimal arrangement that uses N payments, and suppose the first

payment in the arrangement occurs at T and withdrawal from escrow occurs at S. Then the

arrangement starting at S is an optimal arrangement with N − 1 payments. Therefore, summarize
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the N − 1 payment optimum by the payoff it yields to the buyer. We treat this payoff as the value

the buyer would receive at the end of a single-payment arrangement, thereby deriving the optimal

terms for the first payment in an N -payment arrangement.

For this intuition to apply, it must be the case that there is no “overlap” between individual

payments (hence, a chain of payments): each payout occurs before the next payin. We begin by

verifying there is no overlap in the two-payment case and that the second payment indeed mimics

the optimal single-payment solution.

Lemma A12. Suppose X2 ≥ BC. In an optimal two-payment arrangement without horizon-

constraint, τ2 ≤ ν1.

Proof. From the preceding subsection, there are two cases to consider:

1. If the first payment is programmable then the second payment is as well and

τ2 =
(B −W )C2

X3
≤ C

X
= ν1

2. If the first payment is direct then ν1 = τ1 > τ2.

�

The reason we are restricting attention to the case X2 ≥ BC is that this condition is necessary

for a single-payment arrangement to be feasible in the final round as the continuation value W

reaches zero in the final round.

Lemma A13. Suppose X2 ≥ BC. Then in an optimal horizon-unconstrained two-payment arrange-

ment, the second payment constitutes an optimal horizon-unconstrained single-payment arrangement

starting from time S1
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Proof. From the preceding subsection, we have that in an optimal two-payment arrangement D2 =

X − C iff W < B −X and D2 = W −K otherwise. (Since B −X = X − C +K, this can also be

written as D2 = max{X−C,W −K}.) This is identical to the optimal value for D1 in the horizon-

unconstrained single-payment arrangement in all cases where an optimal two-payment arrangement

exists (i.e., for W − K < B − C; when W − K > B − C a two-payment arrangement is inferior

to paying 0 immediately to move to the post-arrangement payoff). Since there is no overlap in all

cases, dividing τ2 and ν2 by ν1 in the solution for the optimal two-payment arrangement yields the

optimal values for τ1 and ν1 for the horizon-unconstrained optimal single-payment arrangement. �

Now we can put these single-payment arrangements together. A chain of payments is a non-

overlapping sequence of triples (Dn, νn, τn), n = 1, . . . , N, where the subscript n now represents the

nth payment from the end. Let WN be the maximum buyer payoff in an N -payment chain, with

W0 = 0. Define

δn = νn/νn+1 (< 1)

εn = τn/νn (≥ 1)

With W0 = 0, the last payment must be programmable. The preceding lemma implies that

(Dn, δn, δnεn) is the optimal single-payment arrangement with terminal payoff Wn−1. Thus, by

Lemma A2, as long as we are in the programmable payment case (and given that the problem is

assumed horizon-unconstrained), we have

Dn = X − C

δn =
C

X

εn =
B −Wn−1

X
.
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The formula for the buyer’s payoff (31) for the optimal horizon-unconstrained single-payment ar-

rangement implies

Wn = B

(
1− (B −Wn−1)C

X2

)
where the last equation can also usefully be written as

B −Wn = (B −Wn−1)
BC

X2
= (B −W0)

(
BC

X2

)n
. (69)

So long as we are in the programmable payment region, Dn is constant. Moreover, δn is constant as

well, meaning that the interval Sn − Sn−1 between payouts to the seller is constant. In this region,

εn+1

εn
=

B −Wn

B −Wn−1
=
BC

X2
,

which has the interpretation that payins by the buyer are also made at constant frequency (although

a different frequency from the payouts). Iterating this condition yields

εn =
B

X

(
BC

X2

)n−1

.

The feasibility condition in the single-payment case is necessary for ε1 ≥ 1; otherwise this sequence

could not get started. But if payment n = 1 (the final payment) is feasible, then this arrangement

can be repeated backwards in time until the prepayment-constraint is violated. The process for Wn

in (69) is monotonic; therefore extending the relationship with additional rounds of payments is

always welfare-improving. Since the difference equation for Wn starts at 0 for n = 1 and asymptotes

to B as n increases, the necessary condition for programmable payments in Lemma A4 will be

violated in finite time. Suppose the condition is violated for n+ 1 but not for smaller (i.e. later) n,

so that n+ 1 is the last direct payment. Then

εn =
B

X

(
BC

X2

)n−1

> 1
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but

B

X

(
BC

X2

)n
≤ 1.

Thus this critical value of n satisfies

(
BC

X2

)n
≤ X

B
<

(
BC

X2

)n−1

.

In the region with simple direct payments,

Dn = Wn−1 −K

δn =
C

C +Wn−1 −K

εn = 1.

In this region, the dynamics are determined by the non-linear difference equation derived from (29):

Wn = B

(
Wn−1 −K

C +Wn−1 −K
.

)

The full difference equation is illustrated in Figure A.4. The feasibility constraint guarantees

that the difference equation lies above the forty-five degree line at at the boundary between the

two regions B −X. The series starts at W0 = 0. Monotonicity of the function proves Theorem 6

where the expression for the threshold value of W for a direct payment comes from the condition

in Lemma A4. The fact, already established, that the series crosses the boundary in finite time,

proves Theorem 7. The series monotonically increases towards W, the larger root of the steady

state equation:

W =
1

2

(
B +K − C +

√
(B +K − C)2 − 4BK

)
(70)
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Figure A.4: The Difference Equation for Chains of Multiple Payments

so that the payoff from the steady state arrangement is greater than the payoff of any finite payment

arrangement. In the steady state

D = W −K

δ =
C

C +W −K

proving Theorem 8.
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