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Dynamic Partial Correlation Models
Enzo D’Innocenzoa,∗ and Andre Lucasa,b

a Vrije Universiteit Amsterdam
b Tinbergen Institute

September 27, 2022

Abstract

We introduce a new, easily scalable model for dynamic conditional correlation matrices based on

a recursion of dynamic bivariate partial correlation models. By exploiting the model’s recursive

structure and the theory of perturbed stochastic recurrence equations, we establish stationarity,

ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices

of the data only. From this, we establish consistency and asymptotic normality of the maximum

likelihood estimator for the model’s static parameters. The new model outperforms benchmarks

like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-

of-sample asset pricing application to 1980–2021 US stock returns across twelve industries.

1 Introduction

Modeling multivariate covariance and correlation structures is a well-established research topic in the
econometric literature given its importance for decision making under uncertainty and the typical
stylized facts of many observed economic time series; see for instance the overviews of Bauwens et al.
(2012) and Francq and Zakoian (2019). Since Engle (2002) and Tse and Tsui (2002), most researchers
agree that empirically the most useful way to decompose the time-variation in conditional covariance
matrices is via a variance and a correlation related component. A key example is the DCC model of
Engle (2002), which is the standard benchmark when new models are introduced. It first accounts
for time-variation in the variances of the marginal series, and then investigates whether there is any
time-variation left in the correlations that cannot be attributed to time-varying variances. The second
step of this approach requires one to model the dynamics of conditional correlation matrices.

∗Corresponding author. Department of Econometrics and Data Science, Vrije Universiteit Amsterdam, De Boelelaan
1105, 1081 HV Amsterdam, Netherlands, e-mail: e.dinnocenzo@vu.nl
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Modeling the dynamics of conditional correlation matrices is challenging given the joint restrictions
that should hold for such matrices: they (i) need to be positive (semi)-definite and (ii) have ones on the
diagonal. The DCC of Engle (2002) ensures this by an algorithmically simple, but theoretically hard,
nonlinear matrix-transformation. The drawback of this is that it becomes hard to formulate conditions
required for stationarity, ergodicity, and filter invertibility. Establishing such stochastic properties is
crucial for dynamic models, since it opens the door to a rigorous econometric analysis of theoretical
asymptotic properties of such models. For example, due to the complexity of the nonlinear matrix
transformation in the DCC, the asymptotic properties of the quasi maximum likelihood estimator for
the DCC are as yet still unknown; see also the related (heuristic) discussion in Aielli (2013).

Alternative parameterizations of correlation matrices have been proposed in the literature, like the
hypersphere parameterization of the choleski decomposition of a correlation matrix as in Rapisarda
et al. (2007), Creal et al. (2011), and Buccheri et al. (2021), or the log correlation matrix trans-
formation of Archakov and Hansen (2021) as also used by Hafner and Wang (2021). For all these
parameterizations, however, formulating conditions for filter invertibility remains hard. In addition,
all these models are cast in matrix format, which means that contraction conditions like that of
Bougerol (1993) can become increasingly strict in higher dimensions due to the use of matrix norms.1

In this paper, we contribute to the literature by introducing a novel class of nonlinear, heavy-
tailed time-series models for dynamic conditional correlation matrices that avoid most of the above
drawbacks. In particular, instead of considering a full multivariate model for the entire dynamic
conditional correlation matrix at once, we define univariate nonlinear filters for conditional partial
correlation coefficients based on bivariate slices of the data only. This also allows us to easily impose
zero restrictions on particular partial correlations in case this is theoretically or empirically desir-
able. By stacking the different bivariate models and relying on Anderson (1958) and Joe (2006), we
can easily reconstruct the full multivariate correlation matrix. The matrix constructed in this way
automatically has ones on the diagonal and satisfies the restrictions of positive-definiteness.

We endow the models for the bivariate data slices with score-driven dynamics for the univariate
partial correlation parameter, using a conditional Student’s t distribution for the innovations. In this
way we obtain a robust filter for the entire correlation matrix; see Creal et al. (2013) and Harvey (2013)
for an introduction to score-driven dynamics. Given the sequence of bivariate models for the data, each
model can use its own pair-specific parameters that govern the dynamics of the conditional partial
correlation for that pair. This flexibility provides substantial value-added and is also empirically
relevant as shown in our empirical application to US stock returns. As mentioned, all of the model’s
pairwise flexibility for the partial correlations does not jeopardize the positive definiteness of the

1For instance, for the Frobenius norm of a matrix A we have ∥A∥ =
∑

i,j A
2
i,j . If this norm has to be bounded in a

Bougerol (1993) type condition, this becomes increasingly restrictive if the dimension of A grows.
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implied multivariate conditional Pearson correlation matrix for the entire system in any way.
Splitting the modeling approach from a multivariate problem into a recursion of conditional mod-

els for bivariate slices of the data not only provides benefits from computational or model design
perspective. We show that the approach also leads to advantages for a rigorous theoretical analysis of
the model’s asymptotic properties; compare Blasques et al. (2022). We consider an asymptotic setting
where the sample size T goes to infinity for a fixed dimension N of the time series, and leave a setting
with both N and T going to infinity to a future paper. By using the theory on perturbed stochastic
recurrence equations of Straumann and Mikosch (2006), we are able to provide clear conditions for
stationarity, ergodicity, and filter invertibility, as well as conditions for consistency and asymptotic
normality of the maximum likelihood estimator. All these conditions only make use of univariate con-
traction requirements based on bivariate data slices, even if the dimension of the entire data vector is
substantially larger than two. An important advantage of this approach is that the restrictions can
be more relaxed than dealing with the entire multivariate system at once. In essence, we prove that
the conditions for bivariate models like Blasques et al. (2018) continue to hold in slightly modified
form for the fully multivariate setting. Similar rigorous results for these non-linear correlation models
were not available before. We also mention that due to the use of a robust filtering method, we
only require a limited (2 + δ for some small δ > 0) number of moments for the observations in order
for the model and filter to behave well. This stands in sharp contrast with the asymptotic theory
developed for MGARCH models, like in the BEKK-GARCH models where at least 6-order moments
of the observations may be required; see Comte and Lieberman (2003), Hafner and Preminger (2009),
and Pedersen and Rahbek (2014).

The new model performs well in a controled simulation setting, where it outperforms typical strong
benchmarks like the cDCC of Engle (2002) and Aielli (2013) based on the Student’s t distribution, and
the t-GAS model with hypersphere parameterization of Creal et al. (2011) and Buccheri et al. (2021).
We also apply the model both in-sample and out-of-sample to study its asset pricing implications
for time-series of US stock returns over the period 1980–2021 across 12 US industry portfolios as in
Engle (2016), Boudt et al. (2017) and Darolles et al. (2018). The empirical application considers time-
varying betas in a risk attribution model with a market (MKT - RF), size (SMB), and value (HML)
risk factor and assesses performance in terms of tracking errors rather than statistical measures of fit
only. The results reveal that the new model continues to outperform its benchmarks. The dynamic
partial correlation model is the only model that is contained in the model confidence set (MCS)
of Hansen et al. (2011) across all 12 industries, whereas the t-cDCC and t-GAS are only in there
once. Also in terms of in-sample fit or out-of-sample Mincer-Zarnowitz regressions, the new model
outperforms the benchmarks.
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The rest of this paper is organized as follows. Section 2 introduces the model. The asymptotic
properties of the model are derived in Section 3. Section 4 provides the empirical application. Section 5
concludes. All proofs and additional required technical materials are provided in the online Appendix.

2 The model

2.1 Approaches to modeling correlation matrices

Consider a real-valued N -dimensional time series {yt}t∈Z and a sequence of corresponding informa-
tion sets Ft−1 = {yt−1,yt−2, . . .}. We focus on modeling the dynamics of the conditional Pearson
correlation matrix Rt of yt given Ft−1. More specifically, we consider the case

yt|Ft−1 ∼ t
(
0N ,

(
1− 2ν−1

)
·Rt, ν

)
, ν > 2, (1)

where t(µ,Ω, ν) denotes an N -dimensional Student’s t distribution with location µ, scale matrix Ω,
and ν > 2 degrees of freedom.2 We assume Rt is a measurable function of Ft−1, such that the model
is observation-driven. The model can easily be extended to allow for a non-zero location and for non-
unit variances as well as for other distributions. In addition, with a slight extension, our model can
be extended into a dynamic Student’s t copula framework. For expositional purposes, however, we
focus on the current more constrained set-up in (1) to better highlight what is new in our approach.

As mentioned in the introduction, one of the challenges in models such as (1) is the parameter-
ization of a dynamic conditional correlation matrix Rt. The matrix Rt not only has to be positive
definite, but also needs to have unit entries on the diagonal. So far, three main approaches to tackle
this issue have been put forward in the literature. The first approach is that of Engle (2002). It models
the covariance matrix directly and standardizes is by pre- and post-multiplying by the square root
inverse of its diagonal to ensure the correlation matrix structure with unit entries on the diagonal.
A second approach casts the correlation matrix entries into hypersphere coordinates and models the
dynamic behavior of these spherical coordinates rather than of the original correlations themselves;
see Rapisarda et al. (2007), Creal et al. (2011), and Buccheri et al. (2021). Finally, Archakov and
Hansen (2021) introduce the possibility of modeling the strictly lower-half of the log-correlation ma-
trix. Separate models can be used for each of these unconstrained entries. Putting the individual
entries back into a matrix and taking the matrix exponential of this, one automatically recovers a
proper correlation matrix. This approach is extended to a dynamic setting by Hafner and Wang

2Alternatively, we could use Rt as a scaling matrix and relax subsequent moment conditions even further. The
current parameterization with ν > 2, however, allows us to interpret Rt directly as a real Pearson correlation matrix.
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(2021) using score-driven dynamics.
The non-linear re-parameterizations used to obtain a proper correlation matrix by design com-

plicates a rigorous analysis of the asymptotic properties of the model. In addition, all of the above
approaches treat the dynamics of Rt in its matrix form. This is typically accompanied by a restrictive
parameterization of the matrix dynamics. A much more flexible approach would be to model each of
the pairwise correlations separately. That, however, is problematic as it need not produce a positive
definite correlation matrix. In this paper, we solve this by looking at pairwise patterns of partial
correlations using the work of Anderson (1958) and Joe (2006). As a result, we need not worry about
positive definiteness of the implied full correlation matrix: pairwise partial correlation coefficients can
be modeled independently with the only restriction that they lie in the interval (−1, 1). As long as
all the pairwise partial correlations (as defined further below) lie in this interval, the implied Pearson
correlation matrix will always be a proper correlation matrix. As we see later, this has important
advantages, both in terms of the flexibility of the model construction, the model’s computational and
stability aspects, its theoretical statistical properties, and its empirical performance.

2.2 From partial correlations to correlation matrices

A conditional partial correlation ρi,j|Lij ; t for a set of indices Lij with i, j ̸∈ Lij is defined as the
correlation between yi,t and yj,t, conditional on Ft−1 and on yLij ,t

, where yLij ,t
is a vector containing

the values of yk,t for k ∈ Lij. If Lij = ∅ the conditional partial correlation collapses to the standard
conditional correlation coefficient (conditional on Ft−1). Joe (2006) notes that every N×N correlation
matrix can be parameterized in terms ofN(N−1)/2 correlation parameters. The firstN−1 parameters
are standard pairwise Pearson conditional correlations ρi,i+1;t for i = 1, . . . , N − 1 and Lij = ∅.
The remaining (N − 2)(N − 1)/2 parameters are the conditional partial correlations ρi,j|Lij ; t for
Lij = {i + 1, . . . , j − 1} for i = 1, . . . , N − 1 and j = i + 1, . . . , N , i.e., the conditional partial
correlations between yi,t and yj,t conditioning on all intermediate coordinates between i and j.3

Define V i,j ; t = ρi,j ; t −Ri,Lij ;tR
−1
Lij ,Lij ;t

RLij ,j;t. Then the link between pairwise and partial corre-
lations is obtained from Anderson (1958) and Joe (2006) via the recursive formula

ρi,j|Lij ; t =
ρi,j ; t −Ri,Lij ;tR

−1
Lij ,Lij ;t

RLij ,j;t√(
1−Ri,Lij ;tR

−1
Lij ,Lij ;t

RLij ,i;t

)
·
(
1−Rj,Lij ;tR

−1
Lij ,Lij ;t

RLij ,j;t

) =
V i,j|Lij ; t√

V i,i|Lij ; t · V j,j|Lij ; t

,

(2)

3There are of course many different ways to construct the full correlation matrix from a sequence of pairs. In the
main text, we adhere to the original proposal of Joe (2006). In the empirical section we consider how different sequences
of pairs pairs result affect the model’s fit.
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for i = 1, . . . , N − 1, j = i+ 1, . . . , N , and Lij = {i+ 1, . . . , j − 1}, where

corr(yi:j ; t) =


1 Ri,Lij ;t ρi,j ; t

RLij ,i;t RLij ,Lij ;t RLij ,j;t

ρi,j ; t Rj,Lij ;t 1

 , (3)

and yi:j ; t = (yi,t, . . . ,yj,t)
⊤. Inverting (2), we easily obtain the Pearson correlation as a function of

the partial correlations and Pearson correlations:

ρi,j ; t = Ri,Lij ;tR
−1
Lij ,Lij ;t

RLij ,j;t + ρi,j|Lij ; t

√
V i,i|Lij ; t · V j,j|Lij ; t. (4)

Interestingly, as Joe (2006) points out, the N − 1 pairwise correlations and the (N − 2)(N − 1)/2

partial correlations can vary independently in the interval (−1, 1). The implied Pearson correlation
matrix will always be positive definite by construction. Thus, by modeling the dynamics of the partial
correlations, we can use (4) to obtain a dynamic positive definite conditional correlation matrix Rt

for all t.
A major advantage of parameterizing a correlation matrix in terms of its partial correlations is

that we only have to consider bivariate relationships. The full multivariate nature of the problem can
be deferred until we have to evaluate the full likelihood function. In addition, parameter restrictions
on the dynamic partial correlations take a much simpler for than when dealing with the entire matrix
Rt in one step. Finally, estimating a sequence of bivariate models can lead to computational gains
compared to a fully-fledged likelihood optimization of the multivariate model, if only to obtain good
starting values for the latter.

2.3 Dynamic specification of the partial correlations

To describe the dynamics of the correlation matrix Rt via its partial correlations, we use score-driven
dynamics as introduced by Creal et al. (2013) and Harvey (2013). For a hypersphere and a log
correlation matrix parameterization this was done Creal et al. (2011) and Hafner and Wang (2021),
respectively. In our setting, however, we do not require the matrix-valued full Rt, but only work with
bivariate partial correlations instead.

The key step in making our approach feasible and scalable is obtained by observing that for
j > i the conditional distribution of (yi,t,yj,t)

⊤ in (1) conditional on Ft−1 and yLij ,t
= {yk,t}k∈Lij

is
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Student’s tyi,t

yj,t

 | Ft−1,yLij ,t
∼ t

(
µi,j|Lij ; t

, D
1/2
i,j|Lij ; t

Ri,j|Lij ; t D
1/2
i,j|Lij ; t

, νi,j|Lij

)
, (5)

where Ri,j|Lij ; t is the conditional partial (bivariate) correlation matrix

Ri,j|Lij ; t =

 1 ρi,j|Lij ; t

ρi,j|Lij ; t 1

 ,
νi,j|Lij

= ν +#Lij = ν + j − i− 1 is the degrees of freedom parameter,

µi,j|Lij ; t
=

Ri,Lij ;t

Rj,Lij ;t

R−1
Lij ,Lij ;t

yLij ,t
, (6)

is the location parameter, and

Di,j|Lij ; t =
(ν − 2)(ν + y⊤

Lij ,t
R−1

Lij ,Lij ;t
yLij ,t

)

ν · νi,j|Lij

V i,i|Lij ; t 0

0 V j,j|Lij ; t

 (7)

a diagonal matrix holding the coordinate wise scale parameters; see Roth (2013) or Ding (2016).
Note that for j = i+1, #Lij = 0 and Lij is the empty set, such that the location µi,j|Lij ; t

parameter
collapses to zero, whileD1/2

i,j|Lij ; t
Ri,j|Lij ; t D

1/2
i,j|Lij ; t

collapses to the pairwise Pearson correlation matrix
for (yi,t,yj,t)

⊤.
We can use (5) to recursively build the dynamic correlation matrix via univariate transition equa-

tions for the partial correlations ρi,j|Lij ; t using the bivariate data slice for pair (i, j). To see this,
consider a trivariate example. In a first step, we use (5) to model (y1,t,y2,t)

⊤. Using the score dy-
namics of Creal et al. (2011, 2013) this gives a transition equation for the dynamics of ρ1,2,t. By
choosing a proper re-parameterization such as ρ1,2,t = tanh(f1,2,t), we can ensure the (partial) corre-
lation lies in the interval (−1, 1) for any f1,2,t ∈ R. Next, we repeat this procedure for (y2,t,y3,t)

⊤,
obtaining a model for the dynamics of ρ2,3,t. Finally, we consider (5) for (y1,t,y3,t)

⊤ conditional on
y2,t, obtaining the dynamics for (a possibly re-parameterized version of) ρ1,3|2 ; t. To recover the Pear-
son correlation ρ1,3,t and thus the entire correlation matrix, we use ρ1,3|2 ; t and the correlations ρ1,2,t
and ρ2,3,t obtained in the previous steps together with the inverse mapping from ρ1,3|2 ; t to ρ1,3,t in
equation (4).

Because we only have to work with the bivariate conditional distributions in (5), all transition
equations for the ρi,j|Lij ; t-s take a similar format. In particular, we have the following result.
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Proposition 1 (score recursions). Consider a differentiable bijective parameterization ρi,j|Lij ; t =

g(fi,j|Lij ; t) for fi,j|Lij ; t ∈ R. Define yi,j ; t = (yi,t,yj,t)
⊤ for j > i and let p(yi,j ; t | yLij ,t

,Ft−1) be the
Student’s t pdf corresponding to (5). Then we have the score expression

si,j|Lij ; t =
∂ log p(yi,j ; t | yLij ,t

,Ft−1)

∂fi,j|Lij ; t

=
1

2
G⊤

i,j|Lij ; t

(
R−1

i,j|Lij ; t
⊗R−1

i,j|Lij ; t

)
×

vec

(
wi,j|Lij ; t ·D

−1/2
i,j|Lij ; t

(
yi,j ; t − µi,j|Lij ; t

)(
yi,j ; t − µi,j|Lij ; t

)⊤
D

−1/2
i,j|Lij ; t

−Ri,j|Lij ; t

)
,

(8)

for i = 1, . . . , N − 1, j = i+ 1, . . . , N , and Lij = {i+ 1, . . . , j − 1}, with

wi,j|Lij ; t =
νi,j|Lij

+ 2

νi,j|Lij
+ (yi,j ; t − µi,j|Lij ; t

)⊤D
−1/2
i,j|Lij ; t

R−1
i,j|Lij ; t

D
−1/2
i,j|Lij ; t

(yi,j ; t − µi,j|Lij ; t
)
,

Gi,j|Lij ; t = ∂ vec(Ri,j|Lij ; t)/∂fi,j|Lij ; t = ġ
(
fi,j|Lij ; t

)
·
(
0 1 1 0

)⊤
.

This leads to the score transition equation

fi,j|Lij ; t+1 = ωi,j|Lij
+ βi,j|Lij

fi,j|Lij ; t + αi,j|Lij
si,j|Lij ; t, (9)

where we use unit score scaling in the sense of Creal et al. (2013).4

The result in Proposition 1 has a number of key differences with earlier score-driven dynamic
correlation models. We mention five of them. First, unlike the matrix equations in for instance Creal
et al. (2011), Opschoor et al. (2018, 2021), and Hafner and Wang (2021), the recursions in (9) are all
univariate for i = 1, . . . , N − 1, j = i + 1, . . . , N , and Lij = {i + 1, . . . , j − 1}. Second, as a result
of this, the parameters in (9) can be estimated recursively for a given value of ν, starting with the
pairs (i, i+ 1) for i = 1, . . . , N − 1, followed by the pairs (i, i+ 2) for i = 1, . . . , N − 2, and so on, up
to the last pair (1, N). Third, the dynamic parameters µi,j|Lij ; t

, Di,j|Lij ; t, and Ri,j|Lij ; t all depend
on the data and on values of other dynamic parameters estimated in a previous step. However, the
system of equations is recursive rather than simultaneous, which has the potential to substantially
simplify the estimation. Fourth, because of its bivariate nature, the current set-up of designing a
dynamic correlation matrix is perfectly scalable to higher dimensions: there is no worry about the
final correlation matrix Rt not being positive definite, as we have modeled the partial correlations

4We have also experimented with alternative forms of scaling, such as scaling the score by an additional factor
(1− ρ2i,j|Lij

) to mitigate score step sizes near the edges of the domain. This results in somewhat smoother paths of the
empirical correlations in Section 4 and modest changes in the stationarity and invertibility conditions.
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directly rather than their Pearson counterparts. The scalability also allows for gains in the likelihood
optimization by partially splitting it into subproblems that can potentially at least partially be run in
parallel. Fifth, the approach based on partial correlations allows us to easily impose zero restrictions
on some of the partial correlations if this is desirable from for instance a theoretical perspective.
Imposing such restrictions in a dynamic Pearson correlation matrix parameterization, by contrast, is
much harder.

2.4 Maximum Likelihood estimation

As our model is observation driven, the likelihood is known in closed form as

L̂T (θ) =
T∑
t=1

ℓ̂t(θ), (10)

ℓ̂t(θ) =

{
log Γ

(
ν +N

2

)
− log Γ

(
ν

2

)
− N

2
log
(
(ν − 2)π

)
− 1

2
log |R̂t(θ)|+

ν +N

2
log

(
1 +

y⊤
t R̂t(θ)

−1yt

ν − 2

)}
,

where θ contains ν, ωi,j|Lij
, αi,j|Lij

, βi,j|Lij
, for i = 1, . . . , N − 1 and j = i+ 1, . . . , N , and {R̂t(θ)}Tt=1

contains the filtered correlation matrices using the score driven recursions from Proposition 1, initial-
ized at some R̂1. In our empirical application, we set R̂1 to the correlation matrix of the first 100
observations.

The likelihood in (10) can be optimized numerically using standard software to yield the maximum
likelihood estimator (MLE)

θ̂T = argmax
θ∈Θ

L̂T (θ). (11)

Note that the optimization could make use of the recursive structure to obtain good starting values of
θ. For instance, one could recursively estimate νi,j|Lij

, ωi,j|Lij
, αi,j|Lij

, and βi,j|Lij
in an unconstrained

way using the bivariate log-likelihood only based on (5). To obtain a single starting value for ν,
one could map the different νi,j|Lij

estimates into a single value via a moments estimator and the
theoretical relation νi,j = ν + j − i − 1. This initial estimate of ν combined with the estimates of
ωi,j|Lij

, αi,j|Lij
, and βi,j|Lij

, can then be used to start the multivariate likelihood maximization problem
in (10)–(11).
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3 Asymptotic properties

In this section, we study the asymptotic properties of the model. We first study the stationarity
properties of the model as a data generating process (DGP) in Section 3.1, followed by filter invert-
ibility in Section 3.2. Finally, we study the consistency and asymptotic normality of the maximum
likelihood estimator for the static parameters of the model in Section 3.3. The recursive structure of
the partial correlation model will prove extremely useful here: the exponentially fast almost sure con-
vergence of the filtered time-varying parameters ρi,j|Lij ; t allows us to use them as a plug-in estimators
in subsequent recursions without loosing filter invertibility. As a result, we can obtain consistency
and asymptotic normality of the static parameters θ.

3.1 Stationarity and ergodicity of the model

To establish stationarity and ergodicity of yt, we first consider the model as a DGP. Using (1),
we can rewrite (9) in the stochastic recurrence equation (SRE) representation defined by Bougerol
(1993) and Straumann and Mikosch (2006). In this subsection and the next, we are somewhat more
meticulous regarding notation. We write R̂t as the true sequence of bivariate correlation matrices,
initialized at a fixed R̂1. We write Rt without a hat to indicate its uninitialized stationary and
ergodic limit sequence, if it exists. Similar notation is used for the partial correlations ρi,j|Lij ; t

and their transformations fi,j|Lij ; t. Based on the SRE representation, we formulate conditions for
the convergence of the random sequences {f̂i,j|Lij ; t}t∈N initialized at fixed values f̂i,j|Lij ; 1 to unique
strictly stationary and ergodic sequences {fi,j|Lij ; t}t∈Z. We make the following three assumptions.

Assumption 1. The partial correlation coefficients are defined using the parametrization ρi,j|Lij ; t =

g(fi,j|Lij ; t) = ϵ · tanh(fi,j|Lij ; t) for i = 1, . . . , N − 1, and j = i+1, . . . , N for some constant 0 < ϵ < 1.

Assumption 2. The degrees of freedom parameter ν of the Student’s t density satisfies 2+δ < ν <∞

for some δ > 0.

Assumption 3. For i = 1, . . . , N − 1 and j = i+ 1, . . . , N , let

E

[
logmax

(∣∣∣βi,j|Lij
− αi,j|Lij

· bt
∣∣∣ , ∣∣∣βi,j|Lij

− αi,j|Lij
· (1− ϵ2) · bt

∣∣∣)] < 0, (12)

for bt = ϵ2 · (1
2
(νi,j|Lij

+ 2)b̃t − 1), and b̃t an i.i.d. sequence of Beta(2, νi,j|Lij
) distributed random

variables.

Assumption 1 is common in the literature on dynamic conditional correlation models. It can
be found in for instance Harvey (2013), or Blasques et al. (2018). In our case, it ensures that the
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partial correlations are never equal to ±1, such that the correlation matrix Rt implied by the partial
correlations is always (strictly) positive definite. Assumption 2 is a standard moment condition that
is needed for second moments (and thus the correlation matrix) to exist. If we choose to model
a scaling matrix instead, this assumption can be further relaxed to the existence of an arbitrarily
small moment. Assumption 3 formulates a sufficient condition for ensuring that the recursions for
f̂i,j|Lij ; t are contracting on average. This in turn allows us to apply Theorem 3.1 of Bougerol (1993)
and conclude stationarity and ergodicity properties of the model as a DGP. The restrictions on the
parameter space imposed by equation (12) can easily be checked numerically for specific values of
αi,j|Lij

, βi,j|Lij
, and νi,j|Lij

.
Using the above assumptions, we can now prove the following proposition.

Proposition 2 (strict stationarity and ergodicity). Let Assumptions 1–3 hold true. Let R̂1

denote a fixed initial correlation matrix with implied partial correlations ρ̂i,j|Lij ; 1 and their trans-
forms f̂i,j|Lij ; 1. Then, the solutions f̂i,j|Lij ; t of model (5)–(9) for t ∈ N, initialized at f̂i,j|Lij ; 1 for
i = 1, . . . , N − 1, j = i+ 1, . . . , N , converge e.a.s. to unique strictly stationary and ergodic solutions
{fi,j|Lij ; t}t∈Z. In addition, the (initialized) partial correlations ρ̂i,j|Lij ; t = g(f̂i,j|Lij ; t) and the Pear-
son correlations ρ̂i,j ; t converge e.a.s. to their unique stationary and ergodic limits {ρi,j|Lij ; t}t∈Z =

{g(fi,j|Lij ; t)}t∈Z and {ρi,j ; t}t∈Z.

3.2 Filter invertibility

Naturally, the true time-varying partial correlation processes {ρi,j|Lij ; t}t∈Z = {g(fi,j|Lij ; t)}t∈Z are
unobserved. However, due to the observation-driven nature of the model, we can easily replace them
by their initialized filtered counterparts {ρ̂i,j|Lij ; t(θ)}Tt=1 = {g(f̂i,j|Lij ; t(θ))}Tt=1, where we add the
argument θ to the notation to indicate that the filter is evaluated at an arbitrary θ ∈ Θ. These
filtered partial correlations map into the filtered Pearson correlation matrices via equation (4).

To study the asymptotic properties of the MLE θ̂T , we need first to study the stochastic limit
properties of the filtered processes {f̂i,j|Lij ; t(θ)}Tt=1, since the likelihood function depends both on
the data and on these filtered processes. The appropriate convergence result for the filter is known
in the literature as filter invertibility; see Straumann and Mikosch (2006), Wintenberger (2013), and
Blasques et al. (2018). A complication in our setting is that all partial correlations are needed to
construct the full correlation matrix. This is important, as unlike Wintenberger (2013) or Blasques
et al. (2018, 2022) which also deal with nonlinear filtering methods for time-varying parameters, we
cannot rely on standard contraction theorems such as the Bougerol’s Theorem 3.1. The novelty in
the result below lies in the fact that we show that the multivariate convergence follows easily from the
individual univariate convergence results for the pairwise partial correlation filters based on bivariate
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data slices. This provides a substantial simplification of the proof. To accomplish this, we lean on
the theory for perturbed stochastic recurrence equations (SREs) of Straumann and Mikosch (2006,
Theorem 2.10) using a sequence of cascading SREs.

To formulate the result, we first introduce some further notation. We define the demeaned and
standardized bivariate observation vectors y⋆

i,j|Lij ; t
(θ) as

y⋆
i,j|Lij ; t

(θ) = Di,j|Lij ; t(θ)
−1/2

(
yi,j ; t − µi,j|Lij ; t

(θ)
)
, (13)

with µi,j|Lij ; t
(θ) and Di,j|Lij ; t(θ) as defined in equations (6) and (7), respectively. These standardized

observations make up the main input of the bivariate conditional Student’s t distributions in (5). Note
that y⋆

i,j|Lij ; t
(θ) not only depends on yi,t and yj,t, but also on the pairwise correlations as gathered

in Ri,Lij ;t and RLij ,Lij ;t, which have been estimated in a previous step of the cascade. We therefore
also introduce the perturbed counterparts ŷ⋆

i,j|Lij ; t
(θ) of y⋆

i,j|Lij ; t
(θ), where we replace the elements

of Ri,Lij ;t and RLij ,Lij ;t in (13) by those of R̂i,Lij ;t and R̂Lij ,Lij ;t, respectively. We also distinguish
three different filtered sequences: (i) the filter sequence f̂i,j|Lij ; t(θ), initialized at f̂i,j|Lij ; 1 an taking
ŷ⋆
i,j|Lij ; t

(θ) as inputs; (ii) the filter sequence ˆ̂fi,j|Lij ; t(θ), initialized at the same f̂i,j|Lij ; 1 but taking
the stationary and ergodic y⋆

i,j|Lij ; t
(θ) as inputs; and (iii) the sequence fi,j|Lij ; t(θ), denoting the

uninitialized stationary and ergodic limiting filter that takes y⋆
i,j|Lij ; t

(θ) as inputs. The first of these
three is the one that is actually computed in empirical applications via the MLE procedure and is
available to the user.

To formulate our proposition, we make the following assumption.5

Assumption 4. The set Θ ⊂ Rd is a compact parameter space satisfying ν ≥ 2 + δ for some δ > 0

and αi,j|Lij
̸= 0 for i = 1, . . . , N − 1 and j = i+ 1, . . . , N , with

E

sup
θ∈Θ

sup
f

log

∣∣∣∣∣∣∣βi,j|Lij
+ αi,j|Lij

·
∂si,j|Lij ; t

(
f,y⋆

i,j|Lij ; t
(θ); θ

)
∂f

∣∣∣∣∣∣∣
 < 0. (14)

Assumption 4 ensures that the initialized filter is contracting on average when taking the unper-
turbed y⋆

i,j|Lij ; t
(θ) as inputs, i.e., ˆ̂fi,j|Lij ; t(θ)

e.a.s.−−−→ fi,j|Lij ; t(θ). An approach based on ˆ̂fi,j|Lij ; t(θ)

is, however, infeasible: the MLE procedure can only use the perturbed ŷ⋆(θ) based on all previ-
ously filtered pairs of (initialized) correlation estimates. Therefore, the empirical procedure pro-
duces f̂i,j|Lij ; t(θ) rather than ˆ̂fi,j|Lij ; t(θ). Only for j − i = 1 we observe y⋆(θ) directly because

5In fact, Assumption 4 may be further relaxed by replacing the supremum over θ in (14) by a supremum over
(ωi,j|Lij

, αi,j|Lij
, βi,j|Lij

, ν) only. In order not to overburden the (already heavy) notation further, we opt for the
current simpler but more restrictive formulation.
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µi,i+1|Lij ; t
(θ) = 0 and Di,i+1|Lij ; t(θ) = (1− 2ν−1)I2. For j − i = k > 1, however, the score recursions

for the filter also use the initialized sequence f̂i,j|Lij ; t(θ) for j − i = 1, . . . , k − 1. The latter are not
stationary and ergodic, which prevents us from applying Bougerol (1993) as it requires stationary and
ergodic inputs.

The way out of this challenge is as follows. If the filters f̂i,j|Lij ; t(θ) for j − i < k converge
exponentially fast and almost surely to their stationary and ergodic limits fi,j|Lij ; t(θ), then we can
use the results on perturbed SREs from Straumann and Mikosch (2006). In particular, under condition
(14) the desired filter invertibility for f̂i,j|Lij ; t(θ) can then still be established for j− i = 1, . . . , N − 1.
The composite procedure boils down to the following. Starting from j − i = 1, we recursively obtain
invertibility for f̂i,j|Lij ; t(θ for all j− i = k = 1, . . . , N − 1. Finally, by standard continuity arguments,
we conclude that filter invertibility holds for the pairwise conditional correlation coefficients ρi,j|Lij ; t(θ)

and the Pearson correlation matrices R̂t(θ). We summarize this in the following proposition.

Proposition 3 (filter invertibility). Let Assumptions 1–4 hold true. Then, the filter processes
{f̂i,j|Lij ; t(θ)}t∈N initialized at fixed values f̂i,j|Lij ; 1 converge exponentially fast almost surely to the
unique stationary and ergodic sequences {fi,j|Lij ; t(θ)}t∈Z uniformly over the parameter space Θ, that
is

sup
θ∈Θ

∣∣∣f̂i,j|Lij ; t(θ)− fi,j|Lij ; t(θ)
∣∣∣ e.a.s.−−−→ 0,

sup
θ∈Θ

∣∣∣ρ̂i,j|Lij ; t(θ)− ρi,j|Lij ; t(θ)
∣∣∣ e.a.s.−−−→ 0,

sup
θ∈Θ

∣∣ρ̂i,j ; t(θ)− ρi,j ; t(θ)
∣∣ e.a.s.−−−→ 0,

as t→ ∞.

As a result of proposition, the impact of starting values for the filters becomes negligible asymp-
totically. In Appendix B we show that this result extends to the derivative processes of f̂i,j|Lij ; t(θ)

with respect to θ. These derivative processes play a crucial role for proving the asymptotic normality
of the MLE. Filter invertibility in the multivariate model thus simplifies for the setting at hand to a
sequence of univariate invertibility conditions, which are much easier to handle.

3.3 Consistency and asymptotic normality of the MLE

Our approach to establish strong consistency and asymptotic normality of the maximum likelihood
estimator (MLE) for our dynamic partial correlation model relies on similar arguments as discussed in
Straumann and Mikosch (2006) and Blasques et al. (2022). The idea consists in first showing that the
nonstationary average log-likelihood function T−1 L̂T (θ) in (10) converges to its stationary counterpart
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T−1 LT (θ), which uses fi,j|Lij ; t(θ) rather than f̂i,j|Lij ; t(θ). We can then apply the uniform strong law of
large numbers for stationary and ergodic processes of Rao (1962) to show that T−1 LT (θ) → E[ℓt(θ)]

almost surely and uniformly over θ ∈ Θ. The strong consistency of θ̂T then follows by checking
standard identifiability arguments. The result is stated in the following theorem.

Theorem 1. Under Assumptions 1–4, θ̂T
a.s.−−→ θ0 for every fixed set of starting values f̂i,j|Lij ; 1 ∈ R

for the filter for i = 1, . . . , N − 1 and j = i+ 1 . . . , N .

To establish the asymptotic normality of the MLE, the following two additional assumptions are
needed, which are rather standard in the literature.

Assumption 5. θ0 ∈ interior(Θ), i.e., the true parameter vector θ0 lies in the interior of the
(compact) parameter space Θ.

Assumption 6. For some δ > 0, it holds that

E

sup
θ∈Θ

sup
f

∣∣∣∣∣∣∣βi,j|Lij
+ αi,j|Lij

·
∂si,j|Lij ; t

(
f,y⋆

i,j|Lij ; t
(θ); θ

)
∂f

∣∣∣∣∣∣∣
2+δ
 < 1. (15)

Assumption 5 excludes situations where the true parameter lies on the boundary of the parameter
space. Assumption 6 in addition requires that the score-driven filters and their derivative processes
have second moments. This allows us to appeal to an appropriate central limiting result. Combining
these assumptions, we obtain the following theorem, which is proved in the appendix.

Theorem 2. Under Assumptions 1–6, and for every fixed set of starting values for the filter, f̂i,j|Lij ; 1 ∈

R for i = 1, . . . , N − 1 and j = i+ 1 . . . , N , we have
√
T (θ̂T − θ0) ⇒ N(0,I−1(θ0)), where I(θ0) is

the Fisher information matrix evaluated at the true parameter vector θ0.

4 Empirical Application

4.1 Data and benchmark models

In this section we apply our model to portfolio returns of US stocks. We consider daily data from
January 3, 1980 to December 31, 2021. The data are obtained from Ken French’s website.6 We
consider three risk factors and 12 portfolio returns. Combining the three risk factors and the industry
portfolio returns, we can test the different correlation models in economic terms from an asset pricing
perspective as in Boudt et al. (2017). The three risk factors are the excess market factor Mkt-RF,

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1: Descriptive statistics of the daily returns of the three main risk factors and the twelve US
industry portfolios over the full data period, 03 January 1980 to 31 December 2021.

Series Mean Max Min Std Skewness Kurtosis
Mkt-RF 0.0349 15.7600 -12.0100 1.1536 0.2017 19.7633
SMB 0.0023 8.1800 -7.2700 0.6542 -0.5691 23.3088
HML 0.0157 9.0400 -6.0200 0.6796 1.0057 20.7701
NoDur 0.0341 13.9700 -9.2500 0.8607 0.2158 25.0626
Durl 0.0583 27.0600 -16.7000 1.7385 0.6772 19.3277
Manuf 0.0434 23.4000 -11.4900 1.4425 0.6376 23.1950
Enrgy 0.0420 17.2900 -9.6100 1.2444 0.4425 15.5661
Chems 0.0493 18.5000 -19.1100 1.2864 0.0229 25.6146
BusEq 0.0528 22.3900 -16.7500 1.6460 0.3410 18.1912
Telcm 0.0369 15.9800 -12.8800 0.9383 0.6995 29.5993
Utils 0.0377 17.9200 -15.2600 1.3417 0.3484 21.1585
Shops 0.0386 17.8600 -11.7900 1.1285 0.2282 21.2056
Health 0.0442 12.6200 -14.4000 1.1300 -0.1520 24.8621
Money 0.0381 19.7100 -17.2300 1.3972 0.3297 26.2926
Other 0.0331 17.5800 -11.1600 1.3642 0.3269 16.9240

the size factor SMB (Small Minus Big), and the value factor HML (High Minus Low). The 12
industry portfolio returns are for non-durables (NoDur), durables (Durbl), manufacturing (Manuf),
energy (Enrgy), chemicals (Chems), business equipment (BusEq), telecom (Telcm), utilities (Utils),
Shops, Health, Money, and Other. The return series are shown in Figure 1, and descriptive statistics
are reported in Table 1. The results clearly reveal the standard stylized facts of high kurtosis and
clear volatility clustering. The fat-tailedness warrants the use of the Student’s t distribution for the
analysis.

In our remaining analysis, we label the new dynamic partial correlation model as PCorr. Next to
it, we consider two proven benchmarks: (i) the multivariate GAS(1, 1) model of Creal et al. (2011)
(labeled t-GAS), where the correlation matrix is modeled using the hypersphere parameterization,
and (ii) the cDCC model of Engle (2002) and Aielli (2013) endowed with a Student’s t distribution
and labeled t-cDCC. For the t-cDCC model, we use the standard targeting approach to estimate the
(matrix-valued) intercept parameter of the correlation transition equation. For the partial correlation
model and the matrix t-GAS model such a targeting is not available, and we estimate the intercept
terms as part of the static parameter vector using standard numerical optimization. We also note
that our partial correlation model has pair-specific parameters αi,j|Lij

and βi,j|Lij
, unlike the standard

versions of the t-cDCC and matrix t-GAS. The latter typically only use a common scalar α and β. To
put the different models on a more equal footing, we introduce the same number of pair-specific αi,j

and βi,j into the t-GAS model. This can be done without further complications due to the hypersphere
parameterization in the t-GAS. For the t-cDCC, we impose a BEKK type specification with diagonal
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Figure 1: Daily returns on the three main risk factors and the twelve industry portfolios
Note: The period is 03 January 1980 to 31 December 2021. The vertical lines indicate the 4th of January 2010, i.e. the
first trading day of 2010 and the start of the out-of-sample period.

A and B matrices holding N parameters αi,i and βi,i, respectively. This ensures positive definiteness
of the correlation matrix at all times.7

To fully concentrate on the differences in modeling correlations, we first de-volatilize all return
series using the score-driven volatility models of Creal et al. (2011, 2013) based on the Student’s t
distribution, also known as the Beta-t-GARCH(1,1) model of Harvey (2013). The de-volatilized series
are then used as inputs for the correlation-based models. All correlation models thus work with the
same input series, such that any differences cannot be attributed to differences in univariate volatility
filters.

4.2 Simulation Results

To investigate the performance of the new model, we first use a controlled simulation setting. We sim-
ulate series {yt}Tt=1 of T = 1, 000 observations from a multivariate conditional Gaussian or Student’s
t distribution. The dimension of the time series equals N = 4 as in the empirical application later
on. To generate time series with empirically relevant correlation dynamics, we use a 100-day rolling
window to estimate time-varying empirical correlation matrices for the the four series (HML, SMB,

7In particular, we use Q⋆
t = Ω + B1/2Q⋆

t−1B
1/2 + A1/2yt−1y

⊤
t−1A

1/2, where A and B are diagonal matrices with
parameters αi,i and βi,i, respectively.
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Table 2: MSE, MAE and Frobenious norm simulation results for three different correlation models

Note: the labels PCorr, t-GAS and t-DCC indicate the new score-driven partial correlation model discussed in Section
2, the Student’s t GAS model of Creal et al. (2011) with hypersphere parameterization, and the t-cDCC model of Engle
(2002) with a multivariate Student’s t log-likelihood, respectively. Results are based on 300 Monte Carlo experiments
with sample size T = 1000 and N = 4. True correlation paths used in the data generating process are given from
100-day rolling window estimates of empirical correlation matrices of the series (HML, SMB, Mkt - RF, BusEq).

MSE MAE Frobenius MSE MAE Frobenius

Gaussian Student t7
PCorr 0.0174 0.1036 0.4285 0.0192 0.1106 0.4543
t-GAS 0.0264 0.1094 0.4324 0.0222 0.1204 0.4898
t-cDCC 0.0268 0.1177 0.4474 0.0273 0.1303 0.5386

Mkt-RF, BusEq), where BusEq (business equipment) denotes the return one of the sector portfolios.
These rolling window estimates produce paths for 4(4− 1)/2 = 6 different pairwise correlations. We
fix these paths and then generate 300 realizations of the returns yt based on these (empirical) corre-
lation matrices and either a Gaussian or a Student’s t (ν = 7) distribution, where the latter is close
to the empirical estimate. For each of the simulated return series, we estimate the new time-varying
partial correlation model as well as the benchmark models.

To compare the performance of the different models, we consider the mean squared error (MSE),
the mean absolute error (MAE) and the Frobenius norm (Frobenius), where

MSE =
1

T

T∑
t=1

N−1∑
i=1

N∑
j=i+1

(
ρ̂i,j ; t − ρi,j ; t

)2
, MAE =

1

T

T∑
t=1

N−1∑
i=1

N∑
j=i+1

∣∣ρ̂i,j ; t − ρi,j ; t
∣∣ ,

and Frobenius = ∥R̂t−Rt∥ =MSE1/2, where ρ̂i,j ; t and R̂t denote the filtered paths of the conditional
(Pearson) correlation coefficients and the (Pearson) correlation matrix. As all three measures consider
the performance of the correlation models in terms of pairwise Pearson correlations rather than partial
correlations, the benchmark models (which all operate on the Pearson correlations directly) are put
at an advantage compared to our new model (which operates on the partial correlations).

The results in Table 2 present a clear outcome: in both the Gaussian and Student’s t case and across
all three performance measures, the new partial correlation model outperforms the two benchmarks,
followed by the t-GAS model and then the t-cDCC. For instance, for the empirically more relevant
Student’s t case, the MAE and Frobenius norm are around 10% lower for the new partial correlation
model than for the t-GAS, and around 20% lower than for the t-cDCC. The improvements appear
realistic: we expect all three models to do reasonably well for typical stock return series. This is
confirmed by the filtered correlation paths in Figure 2. The black pattern gives the true path of the
(six) correlations used in the simulations. We see that most of the time, the different correlation
models follow each other quite closely. However, there are also marked differences such as for ρ2,3,t.
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Figure 2: Comparison of the mean of the Monte Carlo simulation of the filtered conditional correlation
coefficients with Student’s t DGP with ν = 7.

It turns out from Table 2 that on average the partial correlation model appears to do a better job in
such cases where the different models produce different results. In the next subsections we continue
to investigate this for the empirical rather than the simulated data.

4.3 In-sample analysis

For the empirical data, we first compare the different models based on an in-sample analysis. We
estimate each model over the in-sample period 1980–2009. In the next section we then consider an
out-of-sample analysis over the period 2010–2021.

Table 3 holds the differences in log-likelihood values between the different models. The left panel
compares the PCorr model versus the t-GAS, whereas the right panel compares the PCorr and the
t-cDCC. In all cases we take the PCorr model as the benchmark, such that positive values in the log-
likelihood column signal that the new model outperforms the benchmark. The results clearly show
that the PCorr model always outperforms the t-cDCC for each of the 12 industries. In comparison
with the t-GAS, the new model also fits better in 8 out of the 12 industries, performs less well in
only 2 cases, and at par in 2 others. Most gains are in the range of 20–50 likelihood points for PCorr
versus t-GAS. Improvements are even higher at 60–110 likelihood points when comparing the PCorr
versus t-cDCC model. Note that these results hold despite the fact that we made the t-GAS and
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Table 3: In sample performance of the three correlation models

Note: the PCorr, t-GAS, and t-cDCC models are estimated over the sample 03 January 1980 to 31 December 2009.
The log-Lik indicates the differences in log-likelihood value at the optimum. Diebold-Mariano t statistics are reported
based on the MSE and MAE criterion, related to the differences in mean squared and mean absolute pricing errors,
et = ri,t − γ̂Mkt,t(r

Mkt
t − rFt ) − γ̂SMB,tSMBt − γ̂HML,tHMLt, where all return series are volatilty filtered, and

γ̂Mkt/SMB/HML,t is obtained as in (17). The MCS columns indicate whether the model is selected for the 95% model
confidence set based on MSE. For the MAE criterion, the GAS and DCC model are only selected for Utils.

PCorr versus t-GAS PCorr versus t-cDCC MCS

log-Lik DMMSE DMMAE log-Lik DMMSE DMMAE PC
or
r

G
A
S

D
C
C

NoDur 21.8 * -6.88*** -7.69 *** 91.7 *** -6.05*** -7.78 *** ✓
Durl 31.9 ** -9.21*** -10.20*** 84.6 *** -7.85* -8.71 ** ✓
Manuf 21.9 * -9.70*** -11.44*** 64.2 *** -7.85*** -10.26*** ✓
Enrgy -1.0 * -4.47*** -4.84 *** 88.4 *** -4.45*** -4.08 *** ✓
Chems 40.6 * -6.68* -7.01 *** 94.1 *** -6.15*** -7.15 *** ✓
BusEq -46.7*** -3.62*** -5.84 *** 64.1 *** -2.47** -5.91 *** ✓ ✓ ✓
Telcm 32.5 *** -7.28*** -7.94 *** 110.9*** -7.81*** -7.10 *** ✓
Utils 0.1 -1.41 -2.87 *** 87.0 *** -1.08 -2.92 *** ✓ ✓ ✓
Shops 28.8 ** -7.21*** -9.00 *** 83.6 *** -7.03*** -8.37 *** ✓
Health 23.7 * -5.90*** -6.23 ** 91.7 *** -5.31*** -6.68 *** ✓
Money -30.4* -5.66*** -8.51 *** 76.5 *** -5.73*** -9.99 *** ✓
Other 50.3 *** -8.61* -10.01*** 89.6 *** -7.36*** -8.02 *** ✓

t-cDCC models more flexible by endowing them with different αi,j and βi,j parameters for different
return pairs as compared to their standard scalar form from the literature.

Besides evaluating the models in terms of likelihood fit, we also compare the models in terms of
their asset pricing implications as in Hansen et al. (2014), Boudt et al. (2017), and Darolles et al.
(2018). For this, we consider the tracking errors

et = ri,t − γMkt,t(r
Mkt
t − rFt )− γSMB,tSMBt − γHML,tHMLt, (16)

where ri,t denotes the return on one of the i = 1, . . . , 12 industry portfolios, and


γMkt,t

γSMB,t

γHML,t

 =


ρMkt,Mkt,t ρMkt,SMB,t ρMkt,HML,t

ρSMB,Mkt,t ρSMB,SMB,t ρSMB,HML,t

ρHML,Mkt,t ρHML,SMB,t ρHML,HML,t


−1

ρMkt,i,t

ρSMB,i,t

ρHML,i,t

 . (17)

As all models considered are observation driven, the ρi,j ; t and thus also the βi,j ; t are known at time
t− 1. Remember that all returns enter the tracking error equation after being de-volatilized in order
to fully concentrate on the differences due to correlation modeling.

Table 3 also holds the results on the tracking error MSE and MAE by means of the Diebold-
Mariano t-test statistics. Negative values indicate that the PCorr model outperforms the benchmark.
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The results confirm the earlier log-likelihood analysis. We see that also in terms of the asset pricing
implications of the models, the PCorr model outperforms both the t-GAS and t-cDCC. Interestingly,
for a few industries the statistical log-likelihood criterion and the economic performance criteria based
on tracking error MSE and MAE point to a different model ranking. Based on the economic criteria,
the overall picture even seems clearer and more robust: the PCorr model outperforms the benchmarks
in-sample. In terms of MAE, the outperformance is unanimous and strongly statistically significant
across all industries. For MSE, it is significant for 9 (or 11) out of 12 industries at the 1% (or 10%)
significance level. To account for the cross-sectional correlation of the different tests and the possibly
inflated type I error due to multiple pairwise tests, we also compute the model confidence set of
Hansen et al. (2011) based on the MSE criterion. We see that the PCorr model is always in the 95%
model confidence set. The t-GAS and t-cDCC models, by contrast, only enter the model confidence
set for two industries, and even then less often than the PCorr model over different bootstrap runs.
For the model confidence set based on the MAE (not shown) the pattern is similar: whereas the PCorr
model is in the model confidence set for each of the 12 industries, the t-GAS and t-cDCC model enter
only for one industry (Utils).

As we have 3 models with 19 parameters each, estimated across 12 industries, we have estimated
almost 700 parameters in total and their standard errors. Rather than reporting all these results in a
table, we visualize the estimation outcomes in Figure 3, each line indicating a point estimate and its
95% confidence interval. The figure reveals three main findings. First, as shown in Figure 3a, despite
the use of several different starting values and 12 different industries, the estimates of ν are relatively
stable between 6 and 7.5, indicating a realistic, moderate degree of fat-tailedness.

Second, Figure 3b indicates that the (partial) correlations in all models have a high degree of
persistence: all βPCorr

i,j|Lij
, βDCC

i,i , and βGAS
i,j parameters are close to one across all industries and models.

The estimates for the t-cDCC appear slightly lower, but one should measure persistence for the t-
cDCC using a composite of αi,i and βi,i rather than βi,j alone as in the PCorr and t-GAS model.
Adding αi,i and βi,i together, the estimates for persistence are again close across all models.

Finally, when looking at the αPCorr
i,j|Lij

, αDCC
i,i , and αGAS

i,j parameters, we see that virtually all of these
are statistically significant. It is interesting to see that the adjustment speeds for the t-GAS and t-
cDCC appear much more homogeneous than those of the PCorr model. In particular the adjustment
speed of SMB with the market return (MKT) is much higher in the PCorr model. The partial
correlation between the industry returns and SMB given the market return (IND, SMB |MKT ), as
well as that between the industry return and HML given SMB and the market return (IND,HML |

MKT, SMB) are both substantially lower. Such heterogeneity can easily be allowed for in the PCorr
model. This is more complicated in t-GAS model, which scrambles this linkage between αi,j and

20



(a) MLE estimates of ν (b) MLE estimates of βPCorr
i,j|Lij

, βDCC
i , and βGAS

i,j

(c) MLE estimates of αPCorr
i,j|Lij

, αDCC
i , and αGAS

i,j

Figure 3: Parameter estimates of all correlation models across industries
Note: the top-left panel for αi,j has 12 vertical areas, each corresponding to an industry. The red left six lines in
each band provide the parameter estimates (as a point) and their confidence intervals (as a line) for the PCorr model
in the order of our decomposition Lij , i.e., (i, j) = (SMB,HML), (MKT,SMB), (IND,MKT ), (MKT,HML |
SMB), (IND,SMB | MKT ), (IND,HML | MKT,SMB) which indexes along each lower sub-diagonal of Rt, starting
from the first sub-diagonal. The next 4 blue lines indicate the estimates and confidence intervals for the t-cDCC model,
followed by the estimates of of the t-GAS model (in the same order as for the PCorr model). The plots for βi,j and ν
are structured similarly. For ν we only have one estimate per model per industry.

ρi,j via the hypersphere re-parameterization. As a result, the heterogeneity in αi,j is much less for
the t-GAS model. Given the different estimation results between the different correlation models, we
investigate the predictive implications of these differences within an asset pricing context in the next
subsection.

4.4 Out-of-sample analysis

In our out-of-sample analysis, we fully focus on the tracking errors defined in (16), similar to Hansen
et al. (2014), Boudt et al. (2017), and Darolles et al. (2018). We perform a recursive out-of-sample
analysis. First, we estimate all models on the in-sample period 1980–2009. We then fix the static
parameter estimates and run the filter up to 2010 to obtain the one year out-of-sample model-implied
correlation matrices Rt as well as the implied coefficients γMkt,t, γSMB,t, and γHML,t from equations
(16)–(17). These result in predicted returns r̂i,t (conditional on the risk factors) and the corresponding
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tracking errors. After obtaining the tracking errors for 2010, we then add 2010 to the sample, and
re-estimate the model over 1980–2010 to obtain tracking errors for 2011. We repeat this process up
till the last year in the sample, giving us 2978 tracking errors.

To evaluate the forecasts, we run the regressions

ri,t = aMod
0 + aMod

1 r̂Mod
i,t + ui,t, (18)

where Mod ∈ {PCorr, t-GAS, t-cDCC}. We then test the null hypothesis H0 : aMod
0 = 0, aMod

1 = 1

using the suitable heteroskedasticity and autocorrelation consistent (HAC) estimator for the covari-
ance matrix of the regression parameters as suggested by for instance White (1980) and MacKinnon
and White (1985). In addition, we implement the Model Confidence Set (MCS) procedure developed
by Hansen et al. (2011) to select the model with the smallest tracking error MSE. The results are
shown in Table 4.

Also in the out-of-sample analysis, the results clearly point towards the PCorr model. The model
is always contained in the model confidence set for each industry, whereas the t-GAS and t-cDCC
models each only enter the model confidence set once. We also see that the null hypothesis of aMod

0 = 0

and aMod
1 = 1 is most rejected for the t-cDCC model with 10 out of 12 cases, followed by the t-GAS

with 5 cases, and the the PCorr with only 3 out of 12 cases. We attribute this to the flexibility of
the PCorr model to adapt itself to each (partial) correlation separately, with a robust propagation
system due to the use of the Student’s t distribution and score-driven dynamics. The t-GAS shares
the robust score-driven propagation of the PCorr, but lacks the direct link to each (partial) correlation
due to the complex hypersphere transformation. The t-cDCC, on the other hand, retains the direct
link to the pairwise correlations, but lacks the robust propagation mechanism. From our in-sample
and out-of-sample analysis, it appears that both properties of the PCorr model are useful for typical
empirical data.

In Figure 4 we plot the results for the different γj,t parameters for j = MKT, SMB,HML. The
figure shows that though the secular movements of the three models align, there can also be substantial
episodes where the time-varying parameters differ between models. The γs in this industry for the
PCorr model appear somewhat smoother than for the two benchmark models. As argued in Francq
and Zakoian (2019), this may help the usability of the model where γs are typically believed to be
more stable over time and not change heavily from one day to another.
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Table 4: Out-of-sample results

This table contains the estimates of aMod
1 for Mod ∈ {PCorr, t−GAS, t− cDCC} in the regression

model ri,t = aMod
0 + aMod

1 · r̂Mod
i,t + ui,t, where r̂Mod

i,t is obtained (recursively) using one-year-ahead
estimates of Rt and γMKT,t, γSMB,t, and γHML,t as in (17). A ∗, ∗∗, or ∗ ∗ ∗ indicates rejection of
H0 : aMod

0 = 0, aMod
1 = 1, at the 10%, 5%, and 1% significance level, respectively. The MCS column

indicates whether the model lies in the 95% model confidence set of Hansen et al. (2011) based on
tracking error MSE. Results are similar for the 99% MCS.

PCorr t-GAS t-cDCC
âPCorr
1 MCS ât−GAS

1 MCS ât−cDCC
1 MCS

NoDur 1.013 ✓ 0.987 0.966 ***
(0.013) (0.013) (0.013)

Durbl 1.018 ✓ 0.956 ** 0.984
(0.013) (0.013) (0.012)

Manuf 1.012 ✓ 1.001 0.975 ***
(0.007) (0.007) (0.007)

Enrgy 1.053 ** ✓ 1.005 0.967 ***
(0.023) (0.015) (0.013)

Chems 1.002 ✓ 0.981 0.965 ***
(0.011) (0.012) (0.011)

BusEq 0.913 *** ✓ 0.886 *** 0.861 ***
(0.006) (0.007) (0.006)

Telcm 1.000 ✓ 0.975 0.945 ***
(0.014) (0.014) (0.013)

Utils 1.050 ✓ 0.957 0.990 ✓
(0.032) (0.023) (0.020)

Shops 0.987 ✓ 0.983 0.946 ***
(0.009) (0.009) (0.009)

Health 1.009 ✓ 0.996 * 0.958 ***
(0.011) (0.012) (0.010)

Money 0.986 * ✓ 0.982 ** ✓ 0.928 ***
(0.006) (0.006) (0.007)

Other 1.011 ✓ 1.010 * 0.974 ***
(0.006) (0.006) (0.006)
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Figure 4: Recursive one-step-ahead forecasts of the conditional betas of NoDur (model re-estimated
annually)

5 Conclusions

In this paper we introduced a recursive model for correlation matrix dynamics based on partial
correlations and score-driven dynamics. The model’s structure provided flexibility and interpretability,
without loosing computational tractability. In addition, the recursive structure ensured stationarity
and ergodicity as well as filter invertibility for any fixed dimension. The conditions needed remained
of similar complexity as in the univariate time-varying correlation setting on bivariate data slices.
To prove this, we used the approach of perturbed stochastic recurrence equations applied to our
cascade of bivariate (conditional) models. Estimation of the full multivariate model could be carried
out by straightforward maximum likelihood methods. Finally, using the stationarity and invertibility
properties of the model and its filter, we were also able to prove consistency and asymptotic normality
of the maximum likelihood estimator.

Both in simulations and in an in-sample and out-of-sample application to US industry stock
returns, the new model was shown to outperform benchmarks such as the Student’s t based cDCC
and multivariate volatility GAS models.

The model also provides interesting directions for future research. For instance, though in the
current paper we pursued joint estimation of all static model parameters simultaneously, the model
lends itself well to a recursive (bivariate) estimation strategy that could substantially speed up com-
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putations. In addition, this recursive set-up is easily scalable to the high-dimensional setting. This,
however, might impact the asymptotic properties of the model and the filter and the conditions needed
to establish consistency and asymptotic normality. It would be worthwhile to investigate these issues
in a future paper, both from a computational and theoretical perspective.
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Appendix to: Dynamic Partial Correlation Models
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A Proofs

Proof of Proposition 1

Define

ŷ⋆
i,j|Lij ; t

= D̂
−1/2
i,j|Lij ; t

(
yi,j ; t − µ̂i,j|Lij ; t

)
,

D̂i,j|Lij ; t =
(ν − 2)(ν + y⊤

Lij ,t
R̂−1

Lij ,Lij ;t
yLij ,t

)

ν · νi,j|Lij

V̂ i,i|Lij ; t 0

0 V̂ j,j|Lij ; t

 ,

wi,j|Lij ; t =
νi,j|Lij

+ 2

νi,j|Lij
+ ŷ⋆⊤

i,j|Lij ; t
R−1

i,j|Lij ; t
ŷ⋆
i,j|Lij ; t

.

Using standard vector derivative calculus, we have

∂ log p(yi,t,yj,t | Ft−1,yLij ,t
)

∂fi,j|Lij ; t

=

∂

∂fi,j|Lij ; t

−1
2
log |Ri,j|Lij ; t| − 1

2
(νi,j|Lij

+ 2) log

(
1 +

ŷ⋆⊤
i,j ; tR

−1
i,j|Lij ; t

ŷ⋆
i,j ; t

νi,j|Lij

)
= 1

2

∂ vec(Ri,j|Lij ; t)
⊤

∂fi,j|Lij ; t

· vec
(
wi,j|Lij ; t ·R−1

i,j|Lij ; t
ŷ⋆
i,j|Lij ; t

ŷ⋆⊤
i,j|Lij ; t

R−1
i,j|Lij ; t

−R−1
i,j|Lij ; t

)
= 1

2

∂ vec(Ri,j|Lij ; t)
⊤

∂fi,j|Lij ; t

·
(
R−1

i,j|Lij ; t
⊗R−1

i,j|Lij ; t

)
vec
(
wi,j|Lij ; tŷ

⋆
i,j|Lij ; t

ŷ⋆⊤
i,j|Lij ; t

−Ri,j|Lij ; t

)
.
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Proof of Proposition 2

Throughout the proof we take the symmetric matrix root.8 Note that we have

R =

1 ρ

ρ 1

 = 1
2

1 −1

1 1

1 + ρ 0

0 1− ρ

 1 1

−1 1

 ,

R−1/2 = 1
2

1 −1

1 1

(1 + ρ)−1/2 0

0 (1− ρ)−1/2

 1 1

−1 1

 ,

(0 1 1 0) ·
(
R−1/2 ⊗R−1/2

)
=

(−ρ 1 1 − ρ)

1− ρ2
.

Define

wη
i,j|Lij ; t

=
νi,j|Lij

+ 2

νi,j|Lij
+ η⊤

i,j|Lij ; t
ηi,j|Lij ; t

,

and

sηi,j|Lij ; t
= 1

2
ġ(fi,j|Lij ; t) · (0 1 1 0) ·

(
R

−1/2
i,j|Lij ; t

⊗R
−1/2
i,j|Lij ; t

)
· vec

(
wη

i,j|Lij ; t
· ηi,j|Lij ; t

η⊤
i,j|Lij ; t

− I2
)

= 1
2
ϵ · (−ρ 1 1 − ρ) · vec

(
wη

i,j|Lij ; t
· ηi,j|Lij ; t

η⊤
i,j|Lij ; t

− I2
)

= ϵ ·
(
wη

i,j|Lij ; t
η1,tη2,t − 1

2
g(fi,j|Lij ; t) w

η
i,j|Lij ; t

η⊤
t ηt + g(fi,j|Lij ; t)

)
where for the second equality we used Assumption 1 and thus ġ(f) = ϵ · (1− g(f)2) = ϵ · (1− ρ2).

By Assumption 2, using the model as a Data Generating Process (DGP), that is, yi,j|Lij ; t
=

R
1/2
i,j|Lij ; t

ηt, we can rewrite the score-driven transition equation of Proposition 1 under the DGP as

fi,j|Lij ; t+1 = ωi,j|Lij
+ βi,j|Lij

fi,j|Lij ; t + αi,j|Lij
sηi,j|Lij ; t

.

Note that for given fi,j|Lij ; t all moments of wη
i,j|Lij ; t

ηtη
⊤
t and thus of the rewritten score sηi,j|Lij ; t

exist
due to its uniform boundedness in ηt. As a result, for a fixed initialization fi,j|Lij ; 1 we directly obtain
E[log+ |fi,j|Lij ; t+1| ] < ∞. To use Theorem 3.1 of Bougerol (1993), we therefore only need to prove

8Other roots can be taken as well, but typically indicate smaller stationarity regions; compare Blasques et al. (2018).
Note that the Bougerol (1993) condition only provides a sufficient condition, such that we are free to take the matrix
root that results in the widest region.
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that the recursion is contracting on average. To do this, we note

∂fi,j|Lij ; t+1

∂fi,j|Lij ; t

= βi,j|Lij
− αi,j|Lij

· ϵ2 ·
(
1− g(fi,j|Lij ; t)

2
)
·
(

1
2
wη

i,j|Lij ; t
η⊤
t ηt − 1

)
such that we require

E

log sup
f

∣∣∣∣∣∣∣
∂fi,j|Lij ; t+1

∂fi,j|Lij ; t

∣∣∣∣∣
fi,j|Lij ; t=f

∣∣∣∣∣∣∣
 =

E

[
log sup

f

∣∣∣∣βi,j|Lij
− αi,j|Lij

· ϵ2 ·
(
1− g(f)2

)
·
(

1
2
wη

i,j|Lij ; t
η⊤
t ηt − 1

)∣∣∣∣
]
< 0.

Define b̃t = η⊤
t ηt/(νi,j|Lij

+η⊤
t ηt) and bt = ϵ2·(1

2
(νi,j|Lij

+2)b̃t−1), and note that b̃t has a Beta(2, νi,j|Lij
)

distribution. Given the specification of g(f) = ϵ · arctan(f), the supremum over f inside the expec-
tation is reached at either g(f) = 0 or g(f) = ϵ. Inserting all this inside the above expectation, the
required condition simplifies to

E

[
log sup

f

∣∣∣∣βi,j|Lij
− αi,j|Lij

· ϵ2 ·
(
1− g(f)2

)
·
(

1
2
wη

i,j|Lij ; t
η⊤
t ηt − 1

)∣∣∣∣
]
=

E

[
log sup

f

∣∣∣βi,j|Lij
− αi,j|Lij

·
(
1− g(f)2

)
· bt
∣∣∣] =

E

[
logmax

(∣∣∣βi,j|Lij
− αi,j|Lij

bt

∣∣∣ , ∣∣∣βi,j|Lij
− αi,j|Lij

(1− ϵ2)bt

∣∣∣)] < 0.

This is clearly satisfied through Assumption 3. Theorem 3.1 of Bougerol (1993) now implies that each
initialized fi,j|Lij ; t converges (e.a.s.) to a unique stationary and ergodic limit sequence.

As the mappings ρi,j|Lij ; t = g(fi,j|Lij ; t) are all continuously differentiable with supf ġ(f) = ϵ, we
obtain |ρ̂i,j|Lij ; t − ρi,j|Lij ; t| = |g(f̂i,j|Lij ; t) − g(fi,j|Lij ; t)| ≤ ϵ · |f̂i,j|Lij ; t − fi,j|Lij ; t|, such that the e.a.s.
convergence of ρ̂i,j|Lij ; t follows directly from that of f̂i,j|Lij ; t.

The e.a.s. convergence of R̂t follows similarly by combining the e.a.s. convergence of ρ̂i,j|Lij ; t, the
properties of the mapping from ρi,j|Lij ; t into Rt, and the fact that under Assumption 1 the correlation
matrices Rt and their filtered equivalents R̂t are never singular.
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Proof of Proposition 3

Under the maintained assumptions, we can apply Proposition 2 to conclude that {yt}t∈Z is stationary
and ergodic. Using Assumption 1 and thus g(fi,j|Lij ; t) = ϵ · arctan(fi,j|Lij ; t), we have

1
2
Ĝi,j|Lij ; tD⊤

2

(
R̂i,j|Lij ; t(θ)⊗ R̂i,j|Lij ; t(θ)

)−1

=

1
2

ϵ

1− ρ̂i,j|Lij ; t(θ)
2
·
(
−2ρ̂i,j|Lij ; t(θ) , 1 + ρ̂i,j|Lij ; t(θ)

2 , 1 + ρ̂i,j|Lij ; t(θ)
2 , −2ρ̂i,j|Lij ; t(θ)

)
.

We define ŷ⋆
i,j|Lij ; t

(θ) as

ŷ⋆
i,j|Lij ; t

(θ) = D̂i,j|Lij ; t(θ)
−1/2

(
yi,j ; t − µ̂i,j|Lij ; t

(θ)
)
,

D̂i,j|Lij ; t(θ) =
(ν − 2)(ν + y⊤

Lij ,t
R̂−1(θ)Lij ,Lij ;tyLij ,t

)

ν · νi,j|Lij

V̂ i,i|Lij ; t(θ) 0

0 V̂ j,j|Lij ; t(θ)

 ,

as a perturbed bivariate data sequence, with V̂ i,i ; t(θ) = 1− R̂i,Lij ;t(θ) · R̂−1
Lij ,Lij ;t

(θ) · R̂Lij ,i;t(θ). The
perturbation is due to the initialization of the filter sequences. We can write the initialized filter
recursions

f̂i,j|Lij ; t+1(θ) = ϕ
(
f̂i,j|Lij ; t(θ), ŷ

⋆
i,j|Lij ; t

(θ)
)
= ωi,j|Lij

+ βi,j|Lij
· f̂i,j|Lij ; t+1(θ) + αi,j|Lij

· si,j|Lij ; t(θ),

(A.1)

si,j|Lij ; t(θ) = si,j|Lij ; t

(
f̂i,j|Lij ; t(θ), ŷ

⋆
i,j|Lij ; t

(θ); θ
)

(A.2)

=
ϵ

1− ρ̂i,j|Lij ; t(θ)
2
·
(

(
1 + ρ̂i,j|Lij ; t(θ)

2
)(

ŵi,j|Lij ; tŷ
⋆
i,j|Lij ; t

(θ)⊤ŷ⋆
i,j|Lij ; t

(θ)− ρ̂i,j|Lij ; t(θ)
)

− ρ̂i,j|Lij ; t(θ)
(
ŵi,j|Lij ; tŷ

⋆
i,j|Lij ; t

(θ)⊤ŷ⋆
i,j|Lij ; t

(θ)− 2
))

,

ŵi,j|Lij ; t = ŵi,j|Lij ; t

(
f̂i,j|Lij ; t(θ), ŷ

⋆
i,j|Lij ; t

(θ); θ
)

=
νi,j|Lij

+ 2

νi,j|Lij
+ ŷ⋆

i,j|Lij ; t
(θ)⊤R̂−1

i,j|Lij ; t
(θ)ŷ⋆

i,j|Lij ; t
(θ)

.

Also, we note that the contraction condition in equation (14) of Assumption 4 entails the following
derivative

sfi,j|Lij ; t
(θ) =

∂si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂fi,j|Lij ; t(θ)
=

2ϵρi,j|Lij ; t(θ)

1− ρi,j|Lij ; t(θ)
2
·
(

(A.3)(
1 + ρi,j|Lij ; t(θ)

2
)(

wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)− ρ̂i,j|Lij ; t(θ)
)
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− ρi,j|Lij ; t(θ)
(
ŵi,j|Lij ; ty

⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)− 2
))

+ ϵ ·
((

2ρi,j|Lij ; t(θ)
(
1− ρi,j|Lij ; t(θ)

2
))(

wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)− ρi,j|Lij ; t(θ)
)

+
(
1 + ρi,j|Lij ; t(θ)

2
)(

wf
i,j|Lij ; t

y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)−
(
1− ρi,j|Lij ; t(θ)

2
))

−
(
1− ρi,j|Lij ; t(θ)

2
)(

wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)− 2
)

− ρi,j|Lij ; t(θ)
2
(
wf

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)
))

wf
i,j|Lij ; t

=
∂wi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂fi,j|Lij ; t(θ)
(A.4)

=
∂ vec(Ri,j|Lij ; t)

⊤

∂fi,j|Lij ; t

·
νi,j|Lij

+ 2(
νi,j|Lij

+ y⋆
i,j|Lij ; t

(θ)⊤R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)
)2

(
R−1

i,j|Lij ; t
(θ)⊗R−1

i,j|Lij ; t
(θ)
)(

y⋆
i,j|Lij ; t

⊗ y⋆
i,j|Lij ; t

)
,

evaluated at some fixed point fi,j|Lij ; t(θ) = f .
We first assume that supθ∈Θ |ŷ⋆

Lij ,Lij ;t
(θ) − y⋆

Lij ,Lij ;t
(θ)| e.a.s.−−−→ 0, i.e., that ŷ⋆

Lij ,Lij ;t
(θ) converges

uniformly e.a.s. to a unique stationary and ergodic limit y⋆
Lij ,Lij ;t

(θ), and then prove the e.a.s. con-
vergence of f̂i,j|Lij ; t(θ) to fi,j|Lij ; t(θ) and the existence of a log moment. The complete result then
follows by induction after starting the recursion at i− j = 1 and noting that

ŷ⋆
i,i+1|Lij ; t

(θ) = y⋆
i,i+1|Lij ; t

(θ) = D̂i,i+1|Lij ; t(θ)
−1/2yi,i+1 ; t =

√
(ν − 2)

ν
· yi,i+1 ; t,

D̂i,i+1|Lij ; t(θ) = Di,i+1|Lij ; t(θ) =
(ν − 2)

ν
· I2,

where ŷ⋆
i,i+1 ; t(θ) is obviously stationary and ergodic due to the stationarity of yi,i+1 ; t.

For the remainder of the proof, we thus assume supθ∈Θ |ŷ⋆
Lij ,Lij ;t

(θ) − y⋆
Lij ,Lij ;t

(θ)| e.a.s.−→ 0. If we
consider the filter recursion in (A.1) using the uninitialized stationary and ergodic y⋆

i,j|Lij ; t
(θ) rather

than the perturbed ŷ⋆
i,j|Lij ; t

(θ), we can easily see that a log moment exists for a fixed f̂i,j|Lij ; 1:

E

[
sup
θ∈Θ

log+
∣∣∣∣ϕ(f̂i,j|Lij ; 1,y

⋆
i,j|Lij ; t

(θ)
)
− f̂i,j|Lij ; 1

∣∣∣∣
]
≤

sup
θ∈Θ

log+
( ∣∣∣ωi,j|Lij

∣∣∣+ ∣∣∣βi,j|Lij
− 1
∣∣∣ · ∣∣∣f̂i,j|Lij ; 1

∣∣∣+ ∣∣∣αi,j|Lij

∣∣∣ · K1ϵ

1− ϵ2
,

)
≤ K2 <∞,

where the Ki denote finite positive constants, and where we have used the uniform boundedness of the
filtered |ρ̂i,j|Lij ; t(θ)| ≤ ϵ via Assumption 1, as well as the uniform boundedness of the score expression
si,j|Lij ; t(f̂i,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ) in y⋆
i,j|Lij ; t

(θ) due to the analytical form of the filtered weights
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ŵi,j|Lij ; t(f̂i,j|Lij ; t(θ),y
⋆
i,j|Lij ; t

(θ); θ).
Additionally, by similar arguments, we have that

E

sup
θ∈Θ

sup
f

log+

∣∣∣∣∣∣∣
∂si,j|Lij ; t

(
f,y⋆

i,j|Lij ; t
(θ); θ

)
∂f

∣∣∣∣∣∣∣
 ≤ sup

θ∈Θ
log+

(
K12ϵ

2

1− ϵ2
+K2ϵ

)
≤ K3 <∞.

The e.a.s. convergence of the filter that takes y⋆
i,j|Lij ; t

(θ) as input to a unique stationary and ergodic
limit then follows by Theorem 3.1 of Bougerol (1993) if we can prove that the filtering equation is
contracting on average. This, however, follows immediately from Assumption 4.

The last part of the proof consists in showing that the perturbed filter recursions converge to the
same limits as their unperturbed counterparts. Following Theorem 2.10 of Straumann and Mikosch
(2006), this follows by showing

sup
θ∈Θ

∣∣∣∣si,j|Lij ; t

(
f̂i,j|Lij ; 1 , ŷ

⋆
i,j|Lij ; t

(θ) ; θ
)

− si,j|Lij ; t

(
f̂i,j|Lij ; 1 , y

⋆
i,j|Lij ; t

(θ) ; θ
)∣∣∣∣ e.a.s.−−−→ 0, (A.5)

sup
θ∈Θ

sup
f

∣∣∣∣∣∣∣
∂si,j|Lij ; t

(
f , ŷ⋆

i,j|Lij ; t
(θ) ; θ

)
∂f

−
∂si,j|Lij ; t

(
f , y⋆

i,j|Lij ; t
(θ) ; θ

)
∂f

∣∣∣∣∣∣∣ e.a.s.−−−→ 0, (A.6)

as t→ ∞.
To prove (A.5), note that

sup
θ∈Θ

∣∣∣f̂i,j|Lij ; t(θ)− ˆ̂fi,j|Lij ; t(θ)
∣∣∣ ≤ K × sup

θ∈Θ

∣∣∣ŷ⋆
i,j|Lij ; t

(θ)− y⋆
i,j|Lij ; t

(θ)
∣∣∣ ,

where K < ∞ according to technical Lemma 3. Since K < ∞ and thus E[log+K] < ∞, the desired
convergence on the left hand side in (A.5) follows as an application of Lemma 2.1 of Straumann and
Mikosch (2006) and the assumed e.a.s. convergence of supθ∈Θ |ŷ⋆

i,j|Lij ; t
(θ)− y⋆

i,j|Lij ; t
(θ)|.

To prove (A.6), we note that

sup
θ∈Θ

∣∣∣∣∣∣∣
∂si,j|Lij ; t

(
f , ŷ⋆

i,j|Lij ; t
(θ) ; θ

)
∂f

−
∂si,j|Lij ; t

(
f , y⋆

i,j|Lij ; t
(θ) ; θ

)
∂f

∣∣∣∣∣∣∣ ≤
K × sup

θ∈Θ

∣∣∣ŷ⋆
i,j|Lij ; t

(θ)− y⋆
i,j|Lij ; t

(θ)
∣∣∣ ,

where K < ∞ according to technical Lemma 3. Similar as for (A.5), the result then follows as an
application of Lemma 2.1 of Straumann and Mikosch (2006).

We can now conclude that supθ∈Θ |f̂i,j|Lij ; t(θ) − fi,j|Lij ; t(θ)|
e.a.s.−−−→ 0 for all i = 2, . . . , N and
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j = 1, . . . , i− 1.
To conclude the e.a.s. convergence of ρ̂i,j|Lij ; t(θ) to its limiting process, note that

sup
θ∈Θ

∣∣∣ρ̂i,j|Lij ; t(θ)− ρi,j|Lij ; t(θ)
∣∣∣ = ϵ · sup

θ∈Θ

∣∣∣tanh(f̂i,j|Lij ; t(θ))− tanh(fi,j|Lij ; t(θ))
∣∣∣

≤ sup
θ∈Θ

∣∣∣f̂i,j|Lij ; t(θ)− fi,j|Lij ; t(θ)
∣∣∣ ,

where the inequality follows by taking a first order Taylor series expansion.
To conclude the e.a.s. convergence of ρ̂i,j ; t(θ) to its limiting process, note that for i = j + 1 we

have ρ̂i,j ; t(θ) = ρ̂i,j|Lij ; t(θ), such that the result follows directly from the e.a.s. convergence of the
partial correlation. For i > j + 1, the result then follows by induction. Note that from (4) we have

ρ̂i,j ; t = R̂i,Lij ;tR̂
−1
Lij ,Lij ;t

R̂Lij ,j;t + ρ̂i,j|Lij ; t

√
V̂ i,i|Lij ; t · V̂ j,j|Lij ; t, (A.7)

where R̂Lij ,Lij ;t is never singular due to Assumption 1 and ϵ < 1. This mapping is a series of products
and sums of elements of RLij ,Lij ;t and Ri,Lij ;t, each term of which converges e.a.s. to its limiting
process by a direct application of Lemma 2.1 of Straumann and Mikosch (2006) and Lemma TA.16
of Blasques et al. (2022). for i > j + 1.

Proof of Theorem 1

By the triangle inequality, we have

sup
θ∈Θ

∣∣∣∣∣ 1T L̂T (θ)− E[ℓt(θ)]

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ 1T L̂T (θ)−
1

T
LT (θ)

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ 1T LT (θ)− E[ℓt(θ)]

∣∣∣∣∣. (A.8)

To show that the first term converges almost surely to zero, we write

sup
θ∈Θ

∣∣∣∣ 1T L̂T (θ)−
1

T
LT (θ)

∣∣∣∣∣ ≤ 1

T

T∑
t=1

sup
θ∈Θ

∣∣∣∣ℓ̂t(θ)− ℓt(θ)

∣∣∣∣∣, (A.9)

and then note that by the Cesàro mean, the first term on the right hand side of inequality (A.8)
converges to zero almost surely if supθ∈Θ |ℓ̂t(θ)− ℓt(θ)|

a.s.−−→ 0.
We have

2 · (ℓ̂t(θ)− ℓt(θ))

= log |R̂t(θ)| − log |Rt(θ)|+ (ν +N)

[
log

(
1 +

y⊤
t R̂

−1
t (θ)yt

ν − 2

)
− log

(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)]
35



≤ tr
(
R̂t(θ)−Rt(θ)

)
+
ν +N

ν − 2
y⊤
t R̂

−1
t (θ)

(
Rt(θ)− R̂t(θ)

)
R−1

t (θ)yt,

where the inequality follows from Theorem 11.27 in Magnus and Neudecker (2019), Lemma A.1 of
Bollerslev and Wooldridge (1992) and the standard log-inequality log(1 + x) ≤ x ∀x > −1. Due to
Assumption 1 with ϵ < 1 and the mapping between partial and Pearson correlations, we automatically
have

sup
θ∈Θ

∥∥∥∥R−1
t (θ)

∥∥∥∥ = sup
θ∈Θ

λ−1
1 (Rt(θ)) < K, (A.10)

for some 0 < K <∞

For any N × N matrix A it holds that trA ≤ N · ∥A∥. We also have ν > 2 by Assumption 2,
while from Proposition 3, we obtain

sup
θ∈Θ

∣∣∣∣ 1T L̂T (θ)−
1

T
LT (θ)

∣∣∣∣∣ ≤N 1

T

T∑
t=1

sup
θ∈Θ

∥∥∥∥R̂t(θ)−Rt(θ)

∥∥∥∥+K1
1

T

T∑
t=1

sup
θ∈Θ

∥∥∥∥R̂t(θ)−Rt(θ)

∥∥∥∥∥yt∥2

≤N 1

T

T∑
t=1

(N−1∑
i=1

N∑
j=i+1

γ−t
i,j

)
+K1

1

T

T∑
t=1

(N−1∑
i=1

N∑
j=i+1

γ−t
i,j

)
∥yt∥2,

for some K, c > 0 by following similar arguments as in Hafner and Preminger (2009). Since γi,j > 1

and E[∥yt∥2] <∞, we obtain the desired almost sure convergence

sup
θ∈Θ

∣∣∣∣ 1T L̂T (θ)−
1

T
LT (θ)

∣∣∣∣∣ a.s.−−→ 0,

as T → ∞, by a straightforward application of the Markov’s inequality and the Borel-Cantelli Lemma.
To prove the almost sure convergence of the second term on the right hand side of inequality

(A.8), we only need to show that E[supθ∈Θ |ℓt(θ)|] < ∞ such that we can apply the uniform law
of large numbers for stationary and ergodic processes of Rao (1962). Using the expression for the
log-likelihood function from equation (10), we have

E
[
sup
θ∈Θ

∣∣∣∣ℓt(θ)∣∣∣∣] ≤ sup
θ∈Θ

∣∣∣∣ log Γ(ν +N

2

)∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ log ν2
∣∣∣∣+ N

2
sup
θ∈Θ

∣∣∣∣ log((ν − 2)π)

∣∣∣∣
+

1

2
E
[
sup
θ∈Θ

log |Rt(θ)|
]
+ E

[
sup
θ∈Θ

∣∣∣∣ν +N

2
log

(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣] <∞, (A.11)

where the last inequality follows as a consequence of Assumptions 2 - 4, the uniform boundedness of
Rt(θ) (being a correlation matrix), the uniform lower bound from equation A.10, and the existence
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of second moments of yt. As a result, we obtain

sup
θ∈Θ

∣∣∣∣ 1T LT (θ)− E[ℓt(θ)]

∣∣∣∣∣ a.s.−−→ 0,

as T → ∞.
To conclude the proof, we establish identifiability: E[ℓt(θ0)] > E[ℓt(θ)] ∀θ0 ̸= θ. The proof is by

contradiction. Assume there is a θ ̸= θ0 with E[ℓt(θ)] = E[ℓt(θ0)], where E[ℓt(θ0)] < ∞ by equation
(A.11). By Gibb’s inequality, this implies that ν = ν0 and Rt(θ) = Rt(θ0) almost surely for this
specific θ ̸= θ0. This, however, leads to a contradiction. We note that there is a one-to-one relationship
between the components of the lower (or upper) triangular part of the conditional correlation matrix
Rt(θ), and the partial conditional correlations coefficients ρi,j|Lij ; t(θ) for i = 2, . . . , N , j = 1, . . . , i−1.
Therefore Rt(θ) = Rt(θ0) (a.s.) implies ρi,j|Lij ; t(θ) = ρi,j|Lij ; t(θ0) (a.s.). This, however, cannot hold
for θ ̸= θ0, because the equality Rt(θ) = Rt(θ0) entails that

0 = fi,j|Lij ; t+1(θ0)− fi,j|Lij ; t+1(θ) =ω0,i,j|Lij
− ωi,j|Lij

+ (α0,i,j|Lij
− αi,j|Lij

)sηi,j|Lij ; t

+ (β0,i,j|Lij
− βi,j|Lij

)fi,j|Lij ; t(θ0),

almost surely. We thus have

(α0,i,j|Lij
− αi,j|Lij

)sηi,j|Lij ; t
= υi,j|Lij ; t

where υi,j|Lij ; t is an Ft-measurable random variable. It follows that since the conditional distribution
of υi,j|Lij ; t|Ft is not degenerate, it must be that α0,i,j|Lij

= αi,j|Lij
, which yields

0 = ω0,i,j|Lij
− ωi,j|Lij

+ (β0,i,j|Lij
− βi,j|Lij

)fi,j|Lij ; t(θ0).

This in turn implies ω0,i,j|Lij
= ωi,j|Lij

and β0,i,j|Lij
= βi,j|Lij

by the fact that fi,j|Lij ; t(θ0) has a non-
degenerate distribution given the non-degenerate distribution of sηi,j|Lij ; t

and Assumptions 3 and 4.
This contradicts the initial premise θ ̸= θ0 and thus proves the theorem.

The strong consistency of the the MLE θ̂T is then guaranteed by the compactness of the parameter
space Θ and noting that all the conditions of Theorem 3.4 in White (1994) are satisfied.
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Proof of Theorem 2

By the strong consistency established in Theorem 1 combined with Assumption 5, we have that the
MLE θ̂T lies inside an arbitrarily small neighbourhood of θ0 for sufficiently large T . Using the first
order condition for the MLE from (11) and Lemma 7, we obtain

0 =
1√
T

T∑
t=1

∇θ ℓ̂t(θ̂T ) =
1√
T

T∑
t=1

∇θℓt(θ̂T ) + op(1),

where we note the difference between the log-likelihood functions ℓ̂t(θ̂T ) and ℓt(θ̂T ), the former using
the initialized filter, and the latter using its stationary and ergodic limit.

Taking a Taylor expansion, we get

op(1) =
1√
T

T∑
t=1

∇θℓt(θ̂T ) =
1√
T

T∑
t=1

∇θℓt(θ0) +
1

T

T∑
t=1

∇θθℓt(θ
⋆
T )
√
T (θ̂T − θ0),

where θ⋆
T lies between θ̂T and the true θ0. For sufficiently large T we then obtain that

1√
T

T∑
t=1

∇θℓt(θ0) + op(1) = − 1

T

T∑
t=1

∇θθℓt(θ
⋆
T )
√
T (θ̂T − θ0). (A.12)

In Lemma 6, we prove that T−1/2
∑T

t=1 ∇θℓt(θ0) obeys the central limit theorem for martingales of
Billingsley (1961) and satisfies the Fisher’s information matrix equality. Moreover, Lemma 8 ensures
that the average −T−1

∑T
t=1 ∇θθℓt(θ

⋆
T ) converges to the positive definite Fisher’s information matrix

I(θ0), almost surely. Hence, as T → ∞, by solving equation (A.12), we obtain by the Slutsky’s
Theorem (see Vaart (1998)) that

√
T (θ̂T − θ0) ⇒ N (0,I−1(θ0)).
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B Technical Lemmas

Define the operators ∇θ = ∂
∂θ

and ∇θθ = ∂2

∂θ∂θ⊤ , where θ contains ν, ωi,j|Lij
, αi,j|Lij

, βi,j|Lij
, for

i = 1, . . . , N − 1 and j = i + 1, . . . , N . To avoid ambiguous notations, we also define ∇ν = ∂
∂ν
,

∇νν = ∂2

∂ν2
. We use ψ(x) = ∂

∂x
log Γ(x) to denote the usual digamma function.

Lemma 3. Consider the score expression and its derivative with respect to fi,j|Lij ; t(θ)

si,j|Lij ; t (θ) = si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y⋆

i,j|Lij ; t
(θ) ; θ

)
,

sfi,j|Lij ; t
(θ) =

∂si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y⋆

i,j|Lij ; t
(θ) ; θ

)
; θ)

∂fi,j|Lij ; t(θ)
,

as defined in equations (A.2) and (A.3), respectively.
Under Assumption 1, we have that

sup
θ∈Θ

∣∣∣∣∣∣∣
∂si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y⋆

i,j|Lij ; t
(θ) ; θ

)
∂y⋆

i,j|Lij ; t
(θ)

∣∣∣∣∣∣∣ <∞, (B.13)

sup
θ∈Θ

∣∣∣∣∣∣∣
∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y⋆

i,j|Lij ; t
(θ) ; θ

)
∂fi,j|Lij ; t(θ)∂y

⋆
i,j|Lij ; t

(θ)

∣∣∣∣∣∣∣ <∞. (B.14)

Proof. By straightforward algebra we get that

∂si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)

∂y⋆
i,j|Lij ; t

(θ)
=

ϵ

1− ρi,j|Lij ; t(θ)
2
·
(

(
1− ρi,j|Lij ; t(θ)

(
1− ρi,j|Lij ; t(θ)

))(
wy⋆

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ) + 2wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)
))

wy⋆

i,j|Lij ; t
=
∂wi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂y⋆
i,j|Lij ; t

(θ)

=
−2
(
νi,j|Lij

+ 2
)

(
νi,j|Lij

+ y⋆
i,j|Lij ; t

(θ)⊤R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)
)2 ·R−1

i,j|Lij ; t
(θ)y⋆

i,j|Lij ; t
(θ),

and

∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)

∂fi,j|Lij ; t(θ)∂y
⋆
i,j|Lij ; t

(θ)
=

2ϵρi,j|Lij ; t(θ)

1− ρi,j|Lij ; t(θ)
2
·
(
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(
1− ρi,j|Lij ; t(θ)

(
1− ρi,j|Lij ; t(θ)

))(
wy⋆

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ) + 2wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)
))

+ ϵ ·
(((

2ρi,j|Lij ; t(θ)− 1
)(

1− ρi,j|Lij ; t(θ)
))

(
wy⋆

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ) + 2wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)
)

+
(
wfy

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ) + 2wi,j|Lij ; ty
⋆
i,j|Lij ; t

(θ)
))

wfy⋆

i,j|Lij ; t
=
∂2wi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂f∂y⋆
i,j|Lij ; t

(θ)

=
∂ vec(Ri,j|Lij ; t(θ))

⊤

∂fi,j|Lij ; t

·
−4(νi,j|Lij

+ 2)(
νi,j|Lij

+ y⋆
i,j|Lij ; t

(θ)⊤R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)
)2

R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)
(
R−1

i,j|Lij ; t
(θ)⊗R−1

i,j|Lij ; t
(θ)
)(

y⋆
i,j|Lij ; t

⊗ y⋆
i,j|Lij ; t

)
+

νi,j|Lij
+ 2(

νi,j|Lij
+ y⋆

i,j|Lij ; t
(θ)⊤R−1

i,j|Lij ; t
(θ)y⋆

i,j|Lij ; t
(θ)
)2

(
R−1

i,j|Lij ; t
(θ)⊗R−1

i,j|Lij ; t
(θ)
)((

I2 ⊗ y⋆
i,j|Lij ; t

(θ)
)
+
(
y⋆
i,j|Lij ; t

(θ)⊗ I2
))

.

By exploiting the analytical forms of the weights wi,j|Lij ; t, w
y⋆

i,j|Lij ; t
and wfy⋆

i,j|Lij ; t
, and the parameter-

ization given in Assumption 1, we can show that the uniform bounds in equations (B.13) and (B.14)
are easily satisfied.

In fact, one only needs to note that there exists general positive constants K1 and K2, such that

sup
θ∈Θ

∣∣∣∣∣∣∣
∂si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)

∂y⋆
i,j|Lij ; t

(θ)

∣∣∣∣∣∣∣ ≤
1

1− ϵ2

((
1− ϵ (1− ϵ)

)
(K1 + 2K2)

)
<∞,

and also that

sup
θ∈Θ

∣∣∣∣∣∣∣
∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)

∂fi,j|Lij ; t(θ)∂y
⋆
i,j|Lij ; t

(θ)

∣∣∣∣∣∣∣ ≤
2ϵ2

1− ϵ2

((
1− ϵ (1− ϵ)

)
(K1 + 2K2)

)
+ ϵ ·

((
1 +

(
(2ϵ− 1) (1− ϵ)

))
(K1 + 2K2)

)
<∞,

Lemma 4. Under the Assumptions 1-4:

sup
θ∈Θ

∥∥∥∇θf̂i,j|Lij ; t(θ)−∇θfi,j|Lij ; t(θ)
∥∥∥ e.a.s.−−−→ 0, (B.15)
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as t→ ∞.
Furthermore, under the additional Assumption 6, we have

E

[
sup
θ∈θ

∥∥∥∇θfi,j|Lij ; t(θ)
∥∥∥m] <∞, (B.16)

for any integer m ≥ 2.

Proof. As in the proof of Proposition 3, to prove the uniform exponentially fast convergence in (B.15),
we can show that the conditions S.1-S.3 of Theorem 2.10 in Straumann and Mikosch (2006) hold true
for the first derivative processes

∇θfi,j|Lij ; t+1(θ) =


∇ωfi,j|Lij ; t+1(θ)

∇αfi,j|Lij ; t+1(θ)

∇βfi,j|Lij ; t+1(θ)

∇νfi,j|Lij ; t+1(θ)

 = wi,j|Lij ; t(θ) +Xi,j|Lij ; t(θ)∇θfi,j|Lij ; t(θ), (B.17)

where

Xi,j|Lij ; t(θ) = βi,j|Lij
+ αi,j|Lij

· sfi,j|Lij ; t
(θ) = βi,j|Lij

+ αi,j|Lij
·
∂si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂fi,j|Lij ; t(θ)
,

(B.18)

wi,j|Lij ; t(θ) =



∂fi,j|Lij ; t+1(θ)

∂ωi,j|Lij
∂fi,j|Lij ; t+1(θ)

∂αi,j|Lij
∂fi,j|Lij ; t+1(θ)

∂βi,j|Lij
∂fi,j|Lij ; t+1(θ)

∂ν


,

such that

∂fi,j|Lij ; t+1(θ)

∂ωi,j|Lij

= 1,
∂fi,j|Lij ; t+1(θ)

∂αi,j|Lij

= si,j|Lij ; t(θ),

∂fi,j|Lij ; t+1(θ)

∂βi,j|Lij

= fi,j|Lij ; t(θ),
∂fi,j|Lij ; t+1(θ)

∂νi,j|Lij

= αi,j|Lij
sνi,j|Lij ; t

(θ),
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where the term sνi,j|Lij ; t
(θ) = sνi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)
is given by

sνi,j|Lij ; t
(θ) =

∂si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂ν
(B.19)

=
ϵ

1− ρ̂i,j|Lij ; t(θ)
2
·
(

(
1− ρi,j|Lij ; t(θ)

(
1− ρi,j|Lij ; t(θ)

))(
wν

i,j|Lij ; t
y⋆
i,j|Lij ; t

(θ)⊤y⋆
i,j|Lij ; t

(θ)
))

.

wν
i,j|Lij ; t

=
∂wi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂ν
(B.20)

=
y⋆
i,j|Lij ; t

(θ)⊤R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)− 2(
νi,j|Lij

+ y⋆
i,j|Lij ; t

(θ)⊤R−1
i,j|Lij ; t

(θ)y⋆
i,j|Lij ; t

(θ)− 2
)2 .

We start by verify conditions S.1 and S.2 in Theorem 2.10 of Straumann and Mikosch (2006), which
are directly implied if the following uniform bounds

E
[
sup
θ∈Θ

∣∣∣∣Xi,j|Lij ; t(θ)

∣∣∣∣] <∞, E

[
sup
θ∈Θ

∥∥∥wi,j|Lij ; t(θ)
∥∥∥] <∞.

However, we first note that, by Proposition 3, it holds that E
[
supθ∈Θ

∣∣∣Xi,j|Lij ; t(θ)
∣∣∣] < K3 <∞, and

furthermore

E
[
sup
θ∈Θ

∥∥∥wi,j|Lij ; t(θ)
∥∥∥ ] ≤1 + E

[
sup
θ∈Θ

∣∣∣∣si,j|Lij ; t (θ)

∣∣∣∣]+ E
[
sup
θ∈Θ

∣∣∣∣fi,j|Lij ; t(θ)

∣∣∣∣]
+ sup

θ∈Θ

∣∣∣∣αi,j|Lij

∣∣∣∣E[ sup
θ∈Θ

∣∣∣sνi,j|Lij ; t
(θ)
∣∣∣ ] <∞,

which is again implied by Proposition 3, the compactness of the parameter space, and the fact that

sup
θ∈Θ

∣∣∣sνi,j|Lij ; t
(θ)
∣∣∣ = sup

θ∈Θ

∣∣∣∣sνi,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)∣∣∣∣ ≤ (1− ϵ (1− ϵ)

) K1ϵ

1− ϵ2
≤ K2 <∞.

Then, conditions S.1 and S.2 in Theorem 2.10 of Straumann and Mikosch (2006) are directly satisfied.
Now, in the present case, proving that condition S.3 in Theorem 2.10 of Straumann and Mikosch

(2006) is equivalent of proving that

sup
θ∈Θ

∥∥∥ŵi,j|Lij ; t(θ)−wi,j|Lij ; t(θ)
∥∥∥ e.a.s.−−−→ 0, sup

θ∈Θ

∥∥∥∥X̂i,j|Lij ; t(θ)−Xi,j|Lij ; t(θ)

∥∥∥∥ e.a.s.−−−→ 0.

By Proposition 3, Lemma 3 and invoking again the mean value theorem, it is immediate to infer that,
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for a sufficiently large t, we obtain that

sup
θ∈Θ

∥∥∥ŵi,j|Lij ; t(θ)−wi,j|Lij ; t(θ)
∥∥∥ ≤ K × sup

θ∈Θ

∣∣∣ŷ⋆
i,j|Lij ; t

(θ)− y⋆
i,j|Lij ; t

(θ)
∣∣∣ , e.a.s.−−−→ 0,

where K <∞, by an application with Lemma 2.1 of Straumann and Mikosch (2006). Analogously

sup
θ∈Θ

∥∥∥∥X̂i,j|Lij ; t(θ)−Xi,j|Lij ; t(θ)

∥∥∥∥ ≤ K × sup
θ∈Θ

∣∣∣ŷ⋆
i,j|Lij ; t

(θ)− y⋆
i,j|Lij ; t

(θ)
∣∣∣ , e.a.s.−−−→ 0,

We then conclude that S.3 is satisfied and (B.15) holds true.
Finally, we prove the existence of the integer m ≥ 1 in (B.16), i.e., the arbitrary large number of

bounded moments of the derivative processes. We remark again that we give details for the derivatives
in (i). The fact that {∇θfi,j|Lij ; t(θ)}t∈Z and are stationary and ergodic implies that they admit the
following almost sure representations

∇θfi,j|Lij ; t+1(θ) = wi,j|Lij ; t(θ) +
∞∑
p=1

( p∏
q=1

Xi,j|Lij ; t−q

)
wi,j|Lij ; t−p(θ),

Now, by Assumption 4, the compactness of the parameter space Θ, and the uniformly boundedness
of the score function (and its derivative), it holds that

sup
θ∈θ

∥∥∥∥∇θfi,j|Lij ; t+1(θ)

∥∥∥∥ ≤ Kw +
∞∑
p=1

γ−p
i,j|Lij

sup
θ∈θ

∥∥∥∥wi,j|Lij ; t−p(θ)

∥∥∥∥,
where Kw ≥ supθ∈Θ ∥wi,j ; t(θ)∥.

Thus, the result in (B.16) can be established by repeated applications of the Minkowski and Hölder
inequalities. This result follows because E[supθ∈θ |fi,j|Lij ; t(θ)|m] < ∞ with m ≥ 1 as implied by
Proposition 3, together with Proposition TA.3 of Blasques et al. (2022) to the unperturbed derivative
processes {∇θfi,j|Lij ; t(θ)}t∈Z. In fact, we only need to note that their conditions (iii) and (iv) are
directly implied by the uniform bound of the score equations together with Assumption 4.

Lemma 5. Under the Assumptions 1-6:

sup
θ∈Θ

∥∥∥∇θθf̂i,j|Lij ; t(θ)−∇θθfi,j|Lij ; t(θ)
∥∥∥ e.a.s.−−−→ 0, (B.21)

as t→ ∞.
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Furthermore, we also have

E

[
sup
θθ∈θ

∥∥∥∇θθfi,j|Lij ; t(θ)
∥∥∥m] <∞, (B.22)

for any integer m ≥ 1.

Proof. To prove this Lemma, we can show again that the conditions S.1-S.3 in Theorem 2.10 of
Straumann and Mikosch (2006) for the second derivative processes hold true for the second derivative
processes

∇θθfi,j|Lij ; t+1(θ) =


∇ωωfi,j|Lij ; t+1(θ) ∇ωαfi,j|Lij ; t+1(θ) ∇ωβfi,j|Lij ; t+1(θ) ∇ωνfi,j|Lij ; t+1(θ)

⋆ ∇ααfi,j|Lij ; t+1(θ) ∇αβfi,j|Lij ; t+1(θ) ∇ανfi,j|Lij ; t+1(θ)

⋆ ⋆ ∇ββfi,j|Lij ; t+1(θ) ∇βνfi,j|Lij ; t+1(θ)

⋆ ⋆ ⋆ ∇ννfi,j|Lij ; t+1(θ)


=W i,j|Lij ; t(θ) +Xi,j|Lij ; t(θ)∇θθfi,j|Lij ; t(θ),

with Xi,j|Lij ; t(θ) as defined in equation (B.18) and

W i,j|Lij ; t(θ) =



∂2fi,j|Lij ; t(θ)

∂ω2
i,j|Lij

∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂αi,j|Lij

∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂βi,j|Lij

∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂νi,j|Lij

⋆
∂2fi,j|Lij ; t(θ)

∂α2
i,j|Lij

∂2fi,j|Lij ; t(θ)

∂αi,j|Lij
∂βi,j|Lij

∂2fi,j|Lij ; t(θ)

∂αi,j|Lij
∂νi,j|Lij

⋆ ⋆
∂2fi,j|Lij ; t(θ)

∂β2
i,j|Lij

∂2fi,j|Lij ; t(θ)

∂βi,j|Lij
∂νi,j|Lij

⋆ ⋆ ⋆
∂2fi,j|Lij ; t+1(θ)

∂ν2


,

such that

∂2fi,j|Lij ; t(θ)

∂ω2
i,j|Lij

=
∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂αi,j|Lij

=
∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂βi,j|Lij

=
∂2fi,j|Lij ; t(θ)

∂ωi,j|Lij
∂νi,j|Lij

= 0,

∂2fi,j|Lij ; t(θ)

∂α2
i,j|Lij

=sfi,j|Lij ; t
(θ)∇αfi,j|Lij ; t(θ) + αi,j|Lij

sffi,j|Lij ; t
(θ)∇αfi,j|Lij ; t(θ)

2

∂2fi,j|Lij ; t(θ)

∂β2
i,j|Lij

=2∇βfi,j|Lij ; t(θ) + αi,j|Lij
sffi,j|Lij ; t

(θ)∇βfi,j|Lij ; t(θ)
2

∂2fi,j|Lij ; t(θ)

∂ν2i,j|Lij

=αi,j|Lij

(
sννi,j|Lij ; t

(θ) + sffi,j|Lij ; t
(θ)∇νfi,j|Lij ; t(θ)

2
)
,
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and moreover, we have

∂2fi,j|Lij ; t(θ)

∂αi,j|Lij
∂βi,j|Lij

=
(
1 + αi,j|Lij

sffi,j|Lij ; t
(θ)∇βfi,j|Lij ; t(θ)

)
∇αfi,j|Lij ; t(θ)

∂2fi,j|Lij ; t(θ)

∂αi,j|Lij
∂νi,j|Lij

=sνi,j|Lij ; t
(θ) + αi,j|Lij

sfνi,j|Lij ; t
(θ)∇νfi,j|Lij ; t(θ)∇αfi,j|Lij ; t(θ)

∂2fi,j|Lij ; t(θ)

∂βi,j|Lij
∂νi,j|Lij

=∇νfi,j|Lij ; t(θ) + αi,js
fν
i,j|Lij ; t

(θ)∇νfi,j|Lij ; t(θ)∇βfi,j|Lij ; t(θ),

where

sffi,j|Lij ; t
(θ) =

∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂fi,j|Lij ; t(θ)
2

,

sννi,j|Lij ; t
(θ) =

∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂ν2i,j|Lij ; t

,

sfνi,j|Lij ; t
(θ) =

∂2si,j|Lij ; t

(
fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ
)

∂fi,j|Lij ; t(θ)∂ν
.

From this formulas and Proposition 3.4 of Blasques et al. (2022) it is obvious that the same arguments
discussed in Lemma 4 apply sequentially, yielding the desired results in (B.21) and (B.22).

Lemma 6. Under Assumption 1-6, the process {∇θℓt(θ0)}t∈Z is a square integrable martingle differ-
ence, that is, E[∇θℓt(θ0)|Ft−1] = 0 and E[(∇θℓt(θ0))(∇θℓt(θ0))

⊤] <∞.
Moreover, we have that

1√
T

T∑
t=1

∇θℓt(θ0) ⇒ N
(
0,E[(∇θℓt(θ0))(∇θℓt(θ0))

⊤]
)
.

Proof. To show the zero mean property of the score vector, we take term-wise derivatives of the log-
likelihood function ℓt(θ) in (10) for each couple of indices (i, j), in order to obtain the following score
vector:

∇θℓt(θ) =

 ∇νℓt(θ)∑N−1
i=1

∑N
j=i+1 ∇θfi,j|Lij ; t(θ)si,j|Lij ; t (θ)

 ,

where

∇νℓt(θ) =
1

2

[
ψ

(
ν +N

2

)
− ψ

(
ν

2

)
− N

ν − 2
− y⊤

t R
−1
t (θ)yt

(ν − 2)2
wt − log

(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)]
,
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wt =wt

(
Rt(θ) , yt ; θ

)
=

ν +N

ν − 2 + y⊤
t R

−1
t (θ)yt

,

and with si,j|Lij ; t (θ) = si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)
as defined in equation (A.2), respec-

tively.
Now, by a straightforward application of the conditional expectation we obtain

E
[
∇θℓt(θ0)|Ft−1

]
= E


 ∇νℓt(θ0)∑N−1

i=1

∑N
j=i+1 ∇θfi,j|Lij ; t(θ)si,j|Lij ; t (θ0)

 ∣∣∣∣∣∣ Ft−1

 =

0

0

 ,

where the last equality follow because the derivatives ∇θfi,j|Lij ; t(θ0) are Ft−1-measurable, whereas
the conditional expectations of ∇νℓt(θ0), and si,j|Lij ; t(fi,j|Lij ; t(θ0) , y

⋆
i,j|Lij ; t

(θ0) ; θ0) are obviously
zero almost surely, since, by Assumption 2, they are the terms of the conditional score vector of the
multivariate Student t density function evaluated at the true parameter vector θ0. On the other hand,
to show that ∇θℓt(θ0) is square integrable, it suffices to prove that the derivatives of the log-likelihood
have a uniformly bounded second moment, that is

E

[
sup
θ∈θ

∥∥∥∇θℓt(θ)
∥∥∥2] <∞. (B.23)

An application of the Cauchy-Schwartz inequality, we can show that

E

[
sup
θ∈θ

∥∥∥∇θℓt(θ)
∥∥∥2] ≤ E


sup

θ∈θ

∣∣∇νℓt(θ)
∣∣+ N−1∑

i=1

N∑
j=i+1

sup
θ∈θ

∥∥∥∇θfi,j|Lij ; t(θ)si,j|Lij ; t (θ)
∥∥∥
2


≤E

[
sup
θ∈θ

∣∣∇νℓt(θ)
∣∣2]+ 2

(
E

[
sup
θ∈θ

∣∣∇νℓt(θ)
∣∣2] · N−1∑

i=1

N∑
j=i+1

E

[
sup
θ∈θ

∥∥∥∇θfi,j|Lij ; t(θ)
∥∥∥2 · ( K1ϵ

1− ϵ2

)2
])1/2

+
N−1∑
i=1

N∑
j=i+1

E

[
sup
θ∈θ

∥∥∥∇θfi,j|Lij ; t(θ)
∥∥∥2 · ( K1ϵ

1− ϵ2

)2
]
,

where the last inequality follows by the arguments discussed in Proposition 3 since the uniform
boundedness of the score si,j|Lij ; t(θ) = si,j|Lij ; t(fi,j|Lij ; t(θ),y

⋆
i,j|Lij ; t

(θ); θ) implies the existence of an
arbitrary large number of bounded moments. Hence

E

[
sup
θ∈θ

∥∥∥si,j|Lij ; t (θ)
∥∥∥2] = E

[
sup
θ∈θ

∥∥∥∥si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)∥∥∥∥2
]
≤
(

K1ϵ

1− ϵ2

)2

<∞.
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Moreover, from Lemma 4 it also holds that

E

[
sup
θ∈θ

∥∥∥∇θfi,j|Lij ; t(θ)
∥∥∥2] <∞.

Now, by the compactness of the parameter space Θ, we can also show that

E

[
sup
θ∈θ

∣∣∇νℓt(θ)
∣∣2]

≤1

4
E


sup

θ∈θ

∣∣∣∣∣ψ
(
ν +N

2

)
− ψ

(
ν

2

)
− N

ν − 2
− y⊤

t R
−1
t (θ)yt

(ν − 2)2
wt

∣∣∣∣∣+ sup
θ∈θ

∣∣∣∣∣log
(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣∣
2


≤1

4
E
[
|Kν −K1|2

]
+

1

2

|Kν −K1| · E

sup
θ∈θ

∣∣∣∣∣log
(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣∣



+
1

4
E

sup
θ∈θ

∣∣∣∣∣log
(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣∣
2
 ,

where the second inequality holds because from the compactness of the parameter space Θ with
2 < ν < ∞, ∃Kν ≥ ψ

(
ν+N
2

)
+ ψ

(
ν
2

)
+ N

ν−2
, together with the the analytical form of the weights wt,

which implies that ∃K1 > 0 such that

E

sup
θ∈θ

∣∣∣∣∣y⊤
t R

−1
t (θ)yt

(ν − 2)2
wt

∣∣∣∣∣
2
 ≤ K1 <∞.

Moreover, it is obvious that from the second moment bound E[∥yt∥2] < ∞ and the lower bound in
(A.10) we also have that ∃K2 > 0 such that

E

sup
θ∈θ

∣∣∣∣∣log
(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣∣
2
 ≤ K2 <∞,

by virtue of the inequality log(1 + x) ≤ x ∀x ≥ −1. By collecting all the results obtained above, we
conclude that (B.23) holds true.

Finally, we simply note that the Fisher’s information equality E[(∇θℓt(θ0))(∇θℓt(θ0))
⊤] = I(θ0)

follows by standard arguments since by Assumption 2 the ℓt(θ0) is the true conditional log-density of
the Student’s t distribution. This concludes the proof.
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Lemma 7. Under Assumptions 1-4,

sup
θ∈Θ

∥∥∥∥ 1T∇θL̂T (θ)−
1

T
∇θLT (θ)

∥∥∥∥ a.s.−−→ 0, (B.24)

as T → ∞.

Proof. An application of the triangle inequality yields

sup
θ∈Θ

∥∥∥∥ 1T∇θL̂T (θ)−
1

T
∇θLT (θ)

∥∥∥∥ ≤ 1

T

T∑
t=1

sup
θ∈Θ

∥∥∥∥∇θ ℓ̂t(θ)−∇θℓt(θ)

∥∥∥∥ ≤ 1

T

T∑
t=1

(
I + II

)
,

with

I :=
N−1∑
i=1

N∑
j=i+1

sup
θ∈Θ

∥∥∥∥∇θf̂i,j|Lij ; t(θ)si,j|Lij ; t

(
f̂i,j|Lij ; t(θ) , ŷ

⋆
i,j|Lij ; t

(θ) ; θ
)

− ∇θfi,j|Lij ; t(θ)si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)∥∥∥∥,

and

II := sup
θ∈Θ

∥∥∥∥∇ν ℓ̂t(θ)−∇νℓt(θ)

∥∥∥∥.
As a first step, we focus on I. We recognize that each term of

∇θf̂i,j|Lij ; t(θ)si,j|Lij ; t

(
f̂i,j|Lij ; t(θ) , ŷ

⋆
i,j|Lij ; t

(θ) ; θ
)

is a continuous function of f̂i,j|Lij ; t(θ) and its derivatives. In contrast, the terms in

∇θfi,j|Lij ; t(θ)si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
)

are continuous functions of the stationary counterparts, i.e. fi,j|Lij ; t(θ) and its derivatives. Therefore,
by means of elementary decomposition, we can write

I ≤
N−1∑
i=1

N∑
j=i+1

(
sup
θ∈Θ

∥∥∥∥∇θf̂i,j|Lij ; t(θ) − ∇θfi,j|Lij ; t(θ)

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∇θfi,j|Lij ; t(θ)

∥∥∥∥
)

(B.25)

× sup
θ∈Θ

∣∣∣∣si,j|Lij ; t

(
f̂i,j|Lij ; t(θ) , ŷ

⋆
i,j|Lij ; t

(θ) ; θ
)
− si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
) ∣∣∣∣

+
N−1∑
i=1

N∑
j=i+1

sup
θ∈Θ

∥∥∥∥∇θf̂i,j|Lij ; t(θ) − ∇θfi,j|Lij ; t(θ)

∥∥∥∥ sup
θ∈Θ

∣∣∣∣si,j|Lij ; t

(
fi,j|Lij ; t(θ) , y

⋆
i,j|Lij ; t

(θ) ; θ
) ∣∣∣∣.
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Now, we note that in view of Proposition 3 and Lemma 4, we can easily show that both the first and
the second addends of the inequality (B.25) vanish e.a.s. as t → ∞, as implied by Lemma 2.1 in
Straumann and Mikosch (2006).

Therefore, there exists some finite constant KI > 0 such that

I ≤KI

N−1∑
i=1

N∑
j=i+1

γ−t
i,j

and since for γ−t
i,j < 1 ∀t ∈ N, we obtain that I e.a.s.−−−→ 0, as t→ ∞.

As concerns II, we have that

∇ν ℓ̂t(θ)−∇νℓt(θ) =
1

2

[
y⊤
t R̂

−1
t (θ)yt

(ν − 2)2
wt −

y⊤
t R

−1
t (θ)yt

(ν − 2)2
ŵt

+ log

(
1 +

y⊤
t R̂

−1
t (θ)yt

ν − 2

)
− log

(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)]
. (B.26)

We can then combine the facts that: (i) 0 < ν <∞ by Assumption 2, (ii) the lower bound obtained in
(A.10) and (iii) the uniform bound supθ∈θ |wt| ≤ 1, in order to see that for the first added in squared
brackets of the right hand side of equation (B.26), it holds that

sup
θ∈Θ

∣∣∣∣y⊤
t R̂

−1
t (θ)yt

(ν − 2)2
ŵt−

y⊤
t R

−1
t (θ)yt

(ν − 2)2
wt

∣∣∣∣ ≤ cν sup
θ∈Θ

∣∣∣∣tr(yty
⊤
t (R

−1
t (θ)− R̂−1

t (θ))
)∣∣∣∣

= cν sup
θ∈Θ

∣∣∣∣tr(yty
⊤
t R̂

−1
t (θ)(R̂t(θ)−Rt(θ))R

−1
t (θ)

)∣∣∣∣
≤ cν sup

θ∈Θ

∥∥∥∥R̂−1
t (θ)

∥∥∥∥∥∥∥∥R̂t(θ)−Rt(θ)

∥∥∥∥∥∥∥∥R−1
t (θ)

∥∥∥∥∥yty
⊤
t ∥

≤ cνK sup
θ∈Θ

∥∥∥∥R̂t(θ)−Rt(θ)

∥∥∥∥∥yt∥2.

Moreover, since log x ≤ x− 1 ∀x ≥ 1, the same result holds for the second added in squared brackets
of the right hand side of equation (B.26), in fact

sup
θ∈Θ

∣∣∣∣ log(1 + y⊤
t R̂

−1
t (θ)yt

ν − 2

)
− log

(
1 +

y⊤
t R

−1
t (θ)yt

ν − 2

)∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣y⊤
t R̂

−1
t (θ)yt

ν − 2
− y⊤

t R
−1
t (θ)yt

ν − 2

∣∣∣∣
≤cνK sup

θ∈Θ

∥∥∥∥R̂t(θ)−Rt(θ)

∥∥∥∥∥yt∥2,

for some K, cν > 0. We can now recall that the conditional correlation matrix R̂t(θ) is a contin-
uous function of each f̂i,j|Lij ; t(θ), whereas Rt(θ) is a continuous function of each of the stationary
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counterpart fi,j|Lij ; t(θ). Therefore, by Proposition 3 it holds that

II ≤ 2cνK∥yt∥2
N−1∑
i=1

N∑
j=i+1

γ−t
i,j ,

and since γ−t
i,j < 1, ∀t ∈ N and E[∥yt∥2] <∞ we obtain that II e.a.s.−−−→ 0, as t→ ∞.

In conclusion, the uniform convergence in (B.24) holds true.

Lemma 8. Under Assumptions 1-6,

− 1

T

T∑
t=1

∇θθℓt(θ̂T )
a.s.−−→ −E[∇θθℓt(θ0)] = I(θ0), (B.27)

where I(θ0) is positive definite.

Proof. First, we establish the almost sure convergence in (B.27), by proving that the second derivatives
of the log-likelihood function has a uniformly bounded moment, that is

E

[
sup
θ∈Θ

∥∥∥∇θθℓt(θ)
∥∥∥] <∞. (B.28)

Then, analogously to the Proof of Thorem 1, we apply again the uniform law of large numbers for
stationary and ergodic processes of Rao (1962).

Taking term-wise second derivatives of the log-likelihood function ℓt(θ) in (10) for each couple of
indices (i, j), we obtain the following Hessian matrix:

∇θθℓt(θ)

=

∇ννℓt(θ)
∑N−1

i=1

∑N
j=i+1 s

ν
i,j|Lij ; t

(θ)∇θfi,j|Lij ; t(θ)

⋆
∑N−1

i=1

∑N
j=i+1

(
sfi,j|Lij ; t

(θ)∇θfi,j|Lij ; t(θ)∇θf⊤
i,j|Lij ; t

(θ) + si,j|Lij ; t(θ)∇θθfi,j|Lij ; t(θ)
)
 ,

where

∇ννℓt(θ) =
1

4

[
ψ′
(
ν +N

2

)
− ψ′

(
ν

2

)
+

2N

(ν − 2)2
+

4y⊤
t R

−1
t (θ)yt

(ν − 2)3
wt

+
2Ny⊤

t R
−1
t (θ)yt

(ν − 2)3(ν +N)2
w3

t −
2(ν +N)y⊤

t R
−1
t (θ)yt

ν − 2
wt

]
,

with wt as defined in Lemma 6, sνi,j|Lij ; t
(θ), sfi,j|Lij ; t

(θ) and sνi,j|Lij ; t
(θ), are as defined in equations
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(A.2), (A.3) and (B.19), respectively. Now, by elementary calculations, we note that

E

[
sup
θ∈Θ

∥∥∥∇θθℓt(θ)
∥∥∥] ≤ E

[
sup
θ∈Θ

∥∥∇ννℓt(θ)
∥∥]+ 2

N−1∑
i=1

N∑
j=i+1

E

[
sup
θ∈Θ

∥∥∥sνi,j|Lij ; t
(θ)∇θfi,j|Lij ; t(θ)

∥∥∥]

+
N−1∑
i=1

N∑
j=i+1

E

[
sup
θ∈Θ

∥∥∥sfi,j|Lij ; t
(θ)∇θfi,j|Lij ; t(θ)∇θf⊤

i,j|Lij ; t
(θ) + si,j|Lij ; t(θ)∇θθfi,j|Lij ; t(θ)

∥∥∥] .
In view of the the uniform boundedness properties of the score expression and the results obtained
in Proposition 3, and Lemmas 4 and 5 it is clear that all the elements of the Hessian matrix are still
polynomials of uniformly bounded random variables, with an arbitrary large number of finite moments.
Thus, repeated applications of the Cauchy-Schwartz inequality and the Minkowsky inequality, and
some straightforward calculations, allow us to conclude that also the Hessian matrix is uniformly
bounded, and hence (B.28) holds true. Therefore, a straightforward application of the uniform law
of large number for stationary and ergodic sequences of Rao (1962) give us the desired almost sure
convergence in (B.27).

Second, we show that I(θ0) is positive definite. To do so, we note that the strong consistency of
the MLE θ̂T established in Theorem 1, implies that as T → ∞, θ̂T

a.s.−−→ θ0 and hence θ̂T ∈ V (θ0)

almost surely, where V (θ0) denotes a neighbourhood of θ0.
We thus have that

∥∥∥∥ 1T
T∑
t=1

∇θθℓt(θ̂T )− E[∇θθℓt(θ0)]

∥∥∥∥ ≤
∥∥∥∥ 1T

T∑
t=1

∇θθℓt(θ0)− E[∇θθℓt(θ0)]

∥∥∥∥
+ sup

θ∈V (θ0)

∥∥∥∥ 1T
T∑
t=1

∇θθℓt(θ)−
1

T

T∑
t=1

∇θθℓt(θ0)

∥∥∥∥.
However, since {∇θθℓt(θ)}t∈Z is stationary and ergodic, it follows that

1

T

T∑
t=1

∇θθℓt(θ0)
a.s.−−→ E[∇θθℓt(θ0)] = I(θ0),

and therefore, by the uniform law of large numbers of Rao (1962), ∃δ > 0 such that

lim
T→∞

∥∥∥∥ 1T
T∑
t=1

∇θθℓt(θ̂T )− E[∇θθℓt(θ0)]

∥∥∥∥ ≤ δ.

As the constant δ > 0 can be chosen as small as we want, we conclude that the almost sure convergence
in (B.27) holds true. In conclusion, it remains to be shown that I(θ0) is invertible. As argued by
Darolles et al. (2018) in their proof of Theorem 4.3, if I(θ0) were not invertible, than there would
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exists some vector λ ∈ Rd, where d denotes the dimension of the compact parameter space θ, such
that λ⊤I(θ0)λ = 0 with λ ̸= 0. However, from the lower bound derived in (A.10), it is clear that
also the matrix R−1

t (θ0)⊗R−1
t (θ0) is almost surely positive definite.

Thus, if ∃λ ̸= 0 such that λ⊤I(θ0)λ = 0, then it must also be that

λ⊤∇θfi,j|Lij ; t(θ0) = 0. λ⊤∇θθfi,j|Lij ; t(θ0)λ = 0,

almost surely.
By drawing attention to the expression of the first and second derivative processes given in Lemmas

4 and 5, it is straightforward to see that each of these processes are linearly independent, because they
can be rewritten in terms of IID random vectors by following the same arguments already discussed
in the Proof of Theorem 2. Therefore, we conclude that I(θ0) is positive definite, thus completing
the proof.
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