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Artificial Collusion: Examining Supracompetitive

Pricing by Q-learning Algorithms

Arnoud V. den Boer, Janusz M. Meylahn, Maarten Pieter Schinkel∗

December 12, 2022

Abstract

We examine recent claims that a particular Q-learning algorithm used by competi-

tors ‘autonomously’ and systematically learns to collude, resulting in supracom-

petitive prices and extra profits for the firms sustained by collusive equilibria. A

detailed analysis of the inner workings of this algorithm reveals that there is no im-

mediate reason for alarm. We set out what is needed to demonstrate the existence

of a colluding price algorithm that does form a threat to competition.

JEL-codes: C63, L13, L44, K21. Keywords: collusion, Q-learning, algorithm, pricing

1 Introduction

There is widespread concern amongst competition specialists and authorities around the

globe that the increasing use by businesses of data-driven algorithms to determine opera-

tional decisions such as pricing may present increased risks of collusion amongst competi-

tors. The worry is concretely that these algorithms may learn to collude without needing

explicit coordination and communication (Ezrachi and Stucke, 2016; Mehra, 2016; OECD,

2017; Ezrachi and Stucke, 2020; Mehra, 2021). That such a ‘meeting of the artificially in-

telligent minds’ would escape the existing cartel prohibition and enforcement has become

inspiration for various proposals to change competition laws and antitrust enforcement

priorities (Harrington, 2018; Gal, 2019; Beneke and Mackenrodt, 2020; Bernhardt and

∗den Boer: University of Amsterdam (Korteweg de Vries Institute and Amsterdam Business
School), boer@uva.nl. Meylahn: University of Twente (Department of Applied Mathematics),
j.m.meylahn@utwente.nl. Schinkel: University of Amsterdam (Department of Economics) and Tinbergen
Institute, m.p.schinkel@uva.nl. We thank Ali Aouad, John Asker, Vincenzo Denicolò, Justin Johnson,
Steve Tadelis, and Ulrich Schwalbe for comments that helped us to improve an earlier version of this
paper, Ibrahim Abada and Xavier Lambin for providing useful references, and Joe Harrington, Timo
Klein, and Rein Wesseling for helpful discussions on the subject.
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Dewenter, 2020; Coglianese and Lai, 2022; Gal, 2022; Mazundar, 2022). Algorithmic col-

lusion has become a call to arms for antitrust authorities (Calvano et al., 2020b; Assad

et al., 2021), that does not go unheeded (CMA, 2021). Cases of raised prices are be-

ing reported in online platforms where algorithmic sellers bid against each other, such

as Bol.com (Wieting and Sapi, 2021) and Amazon (Brown and MacKay, 2021). The

business community is being warned for liability risks of possible rogue collusion by pric-

ing algorithms (Bertini and Koenigsberg, 2021). Others, however, assert that collusion

between pricing algorithms would be hard to sustain, even ‘science fiction’, and the en-

forcement attention for it is a waste of resources (Schwalbe, 2019; Veljanovski, 2022;

Kühn and Tadelis, 2018). Understanding what threat algorithmic collusion may pose to

competition clearly is an urgent and important matter.

A rapidly expanding literature considers the challenge of finding a pricing algorithm

that learns to collude without coordination. An influential contribution is Calvano et al.

(2020a), in which a Q-learning algorithm is said to ‘autonomously’ learn to collude when

both firms in a duopoly use this algorithm. Collusive properties of similar pricing al-

gorithms have also been reported in various other settings, including sequential-move

games (Klein, 2021), sellers on a platform (Sánchez-Cartas and Katsamakas, 2022), set-

tings with more advanced reinforcement learning methods (Hettich, 2021; Kastius and

Schlosser, 2021; Wang, 2022), play against simple pricing rules (Wang, Huang and Singh,

2022), dealer markets with multiple market makers (Han, 2022; Xiong and Cont, 2021),

and continuous-time models (Cartea et al., 2022).

In this paper we critically examine autonomous algorithmic collusion on the basis of

claims made by Calvano et al. (2020a) that their Q-learning algorithm systematically

learns to play collusive strategies, resulting in sizable extra-profits and supracompetitive

prices sustained by collusive strategies. The algorithm is claimed to truly collude rather

than sustain higher prices ‘by mistake’, because the learned equilibrium strategies are

said to involve a reward-punishment scheme that incentivizes firms ‘to consistently price

above the competitive level’ (p. 3269). The authors write that their conclusions are

tentative but their findings nevertheless ‘do suggest that algorithmic collusion is more

than a remote theoretical possibility’ (p. 3268) and should ‘ring an alarm bell’ (p. 3295)

with competition authorities.

To examine these concerns, we provide a detailed explanation of the inner workings of

the Q-learning algorithm studied by Calvano et al. (2020a) in a tractable setting with

two feasible prices. This allows us to characterize the existence and nature of collusive

equilibria, defined as strategy pairs that can be interpreted as having a reward-punishment

scheme. We identify why convergence to these equilibria is exceedingly slow and often

unsuccessful. Moreover, we show by numerical simulations that in this setting the firms
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do not systematically learn to play collusive strategies, that a substantial amount of

supracompetitive limit prices is not generated by collusive equilibria, and that changing

the hyperparameters of the algorithm does not resolve the problem.

We also identify a problem with the argument used to infer that their algorithms converge

to collusive equilibria. The authors observe a particular price pattern after a forced price

cut, interpret this as a ‘reward-punishment scheme’, and conclude that supra-competitive

prices are sustained by collusive equilibria. We show, however, that the same price

pattern can be generated by non-collusive strategies. Examination of the performance

measure used by Calvano et al. (2020a) to quantify the benefits or magnitude of collusion

furthermore reveals how increases in the firms’ objective are caused by factors unrelated

to collusion. We also argue that the concept of collusive strategy equilibria is not an

appropriate equilibrium concept, but that algorithms should rather be evaluated in terms

of the firms’ actual objective. By numerically comparing the performance of Q-learning

against a reasonable alternative, we show that Q-learning may perform very poorly and

is far out of equilibrium.

Our examination of the evidence leads us to conclude that this Q-learning algorithm gives

no reason for alarm. We do not believe that, on the basis of the presented simulations,

it can be concluded that Q-learning autonomously and systematically learns to collude,

nor that the algorithm generates supracompetitive prices sustained by collusive equilib-

ria, nor that this generates extra profits for the firms. Our findings also apply to other

papers referred to above where they rely on similar Q-learning algorithms. The challenge

to identify a pricing algorithm that learns to collude without coordination has not been

met by Q-learning. Constructing well-performing pricing algorithms that learn to col-

lude should certainly be possible, given the many algorithmic techniques that in the last

decade have been developed in the dynamic-pricing-and-learning literature within Oper-

ations Research. It is therefore commendable and realistic that competition authorities

devote resources in order to understand potentially colluding pricing algorithms. Yet con-

structing a well-performing colluding pricing algorithm is a complex matter, and requires

a sophisticated algorithm with properties and performance guarantees that a simple Q-

learning algorithm does not have. We therefore propose a concrete set of requirements

that future claims of algorithmic collusion should satisfy at the minimum.

Other papers also voice criticism about aspects of algorithmic collusion. Kühn and Tadelis

(2018) stress the difficulty of achieving price coordination, which they argue algorithms

cannot overcome. Schwalbe (2019) criticizes the simplicity of the algorithm as the source

of seeming collusion. Abada and Lambin (2020) are critical about the one-period price

cuts used by Calvano et al. (2020a) to infer reward-and-punishment schemes and suggest

insufficient exploration as one of the drivers of what the authors call ‘seemingly collusive

3



outcomes’. Abada, Lambin and Tchakarov (2022) report that algorithmic sophistication

induces defection to competitive prices rather than more robust price elevation. Epivent

and Lambin (2022) find pricing patterns in similar algorithmic settings that suggest fail-

ure to compete rather than collusion. Eschenbaum, Mellgren and Zahn (2022) criticize

offline training and find that collusion breaks down when collusive reinforcement learning

policies are extrapolated from a training environment to the market. Asker, Fershtman

and Pakes (2021, 2022a,b) highlight how obtaining supracompetitive limit prices strongly

depends on the learning protocol of the algorithms. In particular does the faster syn-

chronous learning protocol, in which the algorithms account for counterfactual earnings of

alternative actions, lead to competitive instead of supracompetitive prices. These findings

show how sensitive supra-competitive outcomes are to just a little more intelligence.

The rest of this paper is organized as follows. In the next section we summarize the model

and the main findings in Calvano et al. (2020a). In Section 3 we characterize collusive

strategy-equilibria in Q-learning with two feasible prices, we explain why convergence to

such collusive equilibria is slow and often fails, and we show that a substantial amount

of supracompetitive limit prices are not generated by collusive equilibria. We also show

that ad-hoc changes to the algorithm do not resolve this problem, and we explain why

the argument used to infer convergence to collusive equilibria is not correct. In Section

4 we explain problems with the performance measure used to quantify collusion, and we

show that factors unrelated to collusion can increase the firms’ objective. In Section 5 we

discuss appropriate and inappropriate equilibrium concepts, and we show that Q-learning

can be outperformed by a reasonable and simple alternative. Section 6 summarizes our

critique and explains what is needed to demonstrate algorithmic collusion that does form

a threat in practice.

2 Model and algorithm

Consider a market environment with two competing firms, labelled 1 and −1, selling

substitute products, each firm one. Time is discrete and indexed by t ∈ N. At the

beginning of each time period t ∈ N, each firm i = ±1 selects an action (its selling

price) pi(t) ∈ Ai from a discrete, non-empty, and finite set of feasible prices Ai ⊂ [0,∞).

Subsequently, each firm observes their own demand di(pi(t), p−i(t)), where di : [0,∞)2 →
[0,∞) is a function unknown to the firms, and earns instantaneous reward πi(pi(t), p−i(t)),

where πi(pi, p−i) := (pi − ci) · di(pi, p−i) and ci ≥ 0 denotes marginal costs. There are

no demand shocks. The demand functions di(·, ·) are according to a multinomial logit

model. That is, there are parameters (a−1, a1, µ) ∈ R2 × (0,∞), unknown to the firms,
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such that for both i = ±1,

di(pi, p−i) =
e

ai−pi
µ

1 + e
a1−p1

µ + e
a−1−p−1

µ

, (1)

for all nonnegative price pairs.1

Each firm’s objective is to maximize its cumulative expected discounted payoff stream,

E

[
∞∑
t=1

δtπi(p1(t), p2(t))

]
, (2)

where δ ∈ (0, 1) is a common discount factor.

2.1 Description of the algorithm

Both firms use a Q-learning algorithm to determine the prices of their products from the

action space. Essentially, Q-learning keeps track of a state variable si(t) which consists

of the prices charged in the previous time period: si(t) = (pi(t − 1), p−i(t − 1)), for all

t ∈ N≥2.
2 The corresponding (finite) state space is equal to Si := Ai ×A−i, for i = ±1.

At the end of each time period t ∈ N (i.e., after rewards have been observed), the Q-

learning algorithm of firm i computes a so-called Q-matrix Q(i)(t) = {Q(i)
s,p(t)}s∈Si,p∈Ai

via the recursion

Q(i)
s,p(t) = Q(i)

s,p(t− 1) for all (s, p) ∈ Si ×Ai with (s, pi) ̸= (si(t), pi(t)),

and

Q
(i)
si(t),pi(t)

(t) = (1− α)Q
(i)
si(t),pi(t)

(t− 1)

+ α
[
πi(pi(t), p−i(t)) + δmax

p∈Ai

{Q(i)
si(t+1),p(t− 1)}

]
.

Here α ∈ [0, 1] is a parameter called the learning rate and

Q(i)(0) = {Q(i)
s,p(0)}s∈Si,p∈Ai

is an initial Q-matrix. Both α and Q(i)(0) are input to the algorithm. The numbers

Q
(i)
s,p(t) are called Q-values corresponding to state s and price p. The Q-matrices are used

to determine the prices. It is assumed that both firms apply a so-called ϵt-greedy type

1Calvano et al. (2020a) replace the 1 in the denominator of (1) by ea0/µ. But since the demand
function does not change if a constant is added to (a−1, a0, a1), we can assume without loss of generality
that a0 = 0.

2Calvano et al. (2020a) first formulate a model with states consisting of the k most recent prices, but
then focus in the rest of the paper on the case k = 1.
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of Q-learning algorithm with ϵt := exp(−βt) for all t ∈ N and some β ≥ 0. This means

that, for each t ∈ N and i = ±1, price pi(t) is selected uniformly at random from Ai

with probability ϵt; with probability 1 − ϵt, price pi(t) is selected in order to maximize

the Q-value for the current state:

pi(t) ∈ argmax
p∈Ai

Q
(i)
si(t),p

(t− 1),

with ties broken uniformly at random. The parameter β is called the experimentation

parameter.

2.2 Market environment

Numerical experiments are conducted based on a ‘baseline parametrization’ where marginal

costs are ci = 1 for both firms, and where the demand parameters are set to (a−1, a1, µ) =

(2, 2, 1/4). The common discount factor is δ = 0.95.

The feasible price sets are constructed as follows. First, the (unconstrained) Bertrand–

Nash equilibrium prices (pN1 , p
N
−1) of the one-shot pricing game, and the (unconstrained)

prices (pM1 , pM−1) that maximize joint profit, are computed. These prices are given by

(pN1 , p
N
−1) :=

(
µ

1− V (e(a1−c1)/µ−1Q̃0)
+ c1,

µ

1− V (e(a−1−c−1)/µ−1Q̃0)
+ c−1

)
,

(pM1 , pM−1) :=

(
µ(1 +W (A0)) + c1, µ(1 +W (A0)) + c1

)
,

where: V (x) is the unique solution v in (0, 1) of v · exp(v/(1− v)) = x, Q̃0 is the unique

solution Q0 to Q0 + V (Q0e
(a1−c1)/µ) + V (Q0e

(a−1−c−1)/µ) = 1, W (x) is the Lambert W

function which solves W (x) · eW (x) = x, and A0 := exp((a1 − c1)/µ − 1) + exp((a−1 −
c−1)/µ− 1).3

The baseline parametrization is fully symmetric: c1 = c−1 and a1 = a−1, resulting in

Nash prices pN := pN1 = pN−1 = 1.4729 with corresponding payoff πN := πi(p
N
i , p

N
−i) =

0.2229, and monopoly prices pM := pM1 = pM−1 = 1.9250, with corresponding payoff

πM := πi(p
M
i , pM−i) = 0.3375. Hence, in perfect collusion, in which both firms charge the

monopoly price, the cartel increases profit with 51 percent. Note that there is positive

profit in competition due the assumption of a logit demand function.

For some integer m ≥ 2 and some ξ ∈ [0,maxi=±1
pNi

pMi −pNi
], the feasible price sets are

3For a derivation of these expressions we refer to Li and Huh (2011, Theorem 4 and Theorem 2).
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defined by

Ai :=
{
pNi − ξ(pMi − pNi ) + k · (1 + 2ξ)

(pMi − pNi )

m− 1
: k = 0, . . . ,m− 1

}
,

for both players i = ±1. For m = 2 and ξ = 0 this results, for example, in the feasible

price set Ai = {pNi , pMi }. For higher values of ξ, the firms get more pricing options below

the competitive and above the monopoly price. Calvano et al. (2020a)’s m = 15 and

ξ = 0.1, for both players, result in the feasible price set

Ai := {1.4277, 1.4277 + 0.0387, 1.4277 + 2× 0.0387, . . . , 1.9702},

so that the lowest is slightly (3 percent) below the Nash price and the highest feasible

price is slightly (2 percent) above the monopoly price.

The initial Q-matrix for both firms i = ±1 is set to

Q(i)
s,p(0) =

1

(1− δ)

1

|A−i|
∑

p−i∈A−i

πi(pi, p−i).

Numerical experiments are conducted for all possible pairs

(α, β) ∈ Ψ := {αmin +
i · (αmax − αmin)

99
: i = 0, 1, . . . , 99}

×{βmin +
j · (βmax − βmin)

99
: j = 0, 1, . . . , 99},

with αmin = 0.025, αmax = 0.25, βmin = 0, and βmax = 2× 10−5.

2.3 Performance metric

For each (α, β) ∈ Ψ, 1000 simulations are conducted in which the two Q-learning algo-

rithms play against each other. In Calvano et al. (2020a), a simulation is said to converge

if there is a t0 ∈ N with t0 ≤ 109 − 105 and actions {ai(s) ∈ Ai : i = ±1, s ∈ Si} such

that ai(s) = argmaxp∈Ai
Q

(i)
s,p(t) for all t = t0 + 1, . . . , t0 + 105 and all i = ±1, s ∈ Si.

That is, there is ‘convergence’ if the optimal actions corresponding to all firms and states

are unique and remain constant during 100,000 consecutive time periods, within the first

billion time periods.

If a simulation converges, Calvano et al. (2020a) measure the ‘extra-profit compared to

the static Nash equilibrium’, abbreviated as ‘average profit gain’ (p. 3277), corresponding

to the simulation by

∆ :=
π̄ − πN

πM − πN
,
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where π̄ is the ‘average per-firm profit upon convergence’.4 Note that this performance

metric assumes a symmetric demand function. Note also that the Nash and monopoly

prices pNi and pMi are not necessarily included in the feasible price sets, so that ∆ ∈
{0, 1} is not necessarily attainable by any policy. The metric ∆ is not defined in case a

simulation does not converge, but this rarely occurs in our numerical experiments. Where

appropriate, we have reported the fraction of simulations that did not converge.

2.4 Main findings by Calvano et. al. (2020)

Calvano et al. (2020a) report convergence for ‘nearly all’ (p. 3276) simulations, with

a simulation average of the performance metric ∆ that ‘ranges from 70 percent to 90

percent’ (p. 3277). The authors interpret this as a ‘profit gain’ and a ‘sizable extra-

profit compared to the static Nash equilibrium’, that is an attractive feature for the firms

using the algorithms. Frequencies of different modes of convergence and corresponding

averages of ∆ are reported in their Table 1. It is concluded that there is often (near-

)convergence to strategy equilibria, which they refer to as Nash equilibria (p. 3278),

and that ‘the algorithms consistently learn to charge supracompetitive prices, without

communicating with one another’ (p. 3267). The authors are careful, however, not to

interpret the supracompetitive limit prices as per se proof of collusion. They write:

‘[C]ollusion is not simply a synonym of high prices but crucially involves “a reward-

punishment scheme designed to provide the incentive for firms to consistently price above

the competitive level” (Harrington 2018, p.336). The reward-punishment scheme ensures

that the supracompetitive outcomes may be obtained in equilibrium and do not result

from a failure to optimize’ (p. 3269, emphasis in original).

In Section IV.B, Calvano et al. (2020a) investigate whether the limit strategies display

reward-punishment-like behavior. Upon convergence, one firm is forced to ‘defect’ in

one time period from the limit strategy by applying a ‘price cut’. The non-deviating

firm responds by lowering its price, and after a number of time periods (typically five to

seven, p. 3283), prices return to initial prices. Based on numerical results reported in

their Figure 4 and Table 2 and 3, it is claimed that: ‘[c]learly, the deviation is punished’

(p. 3282) and ‘[o]ur algorithms [...] consistently learn to restart cooperation after a

deviation.’ (p. 3283). Because of the effect of this response on the profit of the deviating

firm, this pattern is interpreted as a punishment mechanism. The authors conclude that

‘[c]ollusion [...] is enforced by punishment in case of deviation’ (p. 3295) and ‘do not

result from a failure to optimize’ (p. 3269) - contrasting their work with Waltman and

Kaymak (2015) which ‘may not be collusion but a failure to learn’ (p. 3269), and Cooper,

Homem-de Mello and Kleywegt (2015) which is referred to as ‘collusion by mistake’ (p.

4From the description in Calvano et al. (2020a) (p. 3277) we interpret π̄ to be the observed average
profit over the time periods t0 + 1, . . . , t0 + 100, 000.
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3269).

These various ex post verifications lead the authors to assert that supracompetitive prices

generated by their Q-learning algorithm ‘are sustained by collusive strategies’ (p. 3267)

and to conclude that Q-learning pricing algorithms ’systematically learn to collude’ (p.

3295). This should ‘ring an alarm bell’ (p. 3295) with competition authorities, as software

programs are ‘increasingly being adopted by firms to price their goods and services’ (p.

3267), yet ‘leave no trace whatever of concerted action: they do not communicate with

one another, nor have they been designed or instructed to collude’ (p. 3295). While

nowhere in the paper do the authors explicitly say that firms may be interested to adopt

Q-learning for its collusive limit properties, it is suggested that firms using them would

benefit: for example, training them off-line could set them up to ‘start to collude the

moment they engage in real action’ (p. 3293).

In several places, Calvano et al. (2020a) acknowledge that the algorithms take a very long

time to converge and that this is potentially problematic for all practical purposes. It is

stated that ‘the number of repetitions required for completing the learning is typically

high, on the order of hundreds of thousands’ (p. 3269). More specifically, convergence

takes between about 400,000 and several millions of time periods (p. 3276). The authors

attribute the slow learning to the algorithms updating ‘only one cell of the Q-matrix at

a time, and approximating the true matrix generally requires that each cell be visited

many times’ (p. 3272). In Section VI, they write that it is crucial to address the time

scale of collusion in future research (p. 3295), but suggest that alternative measures

of collusion, off-line training, applications with very short time periods, or alternative

algorithms can speed up convergence. Calvano et al. (2020a) assert that, despite the

slow convergence, the firms obtain ‘a sizable extra-profit compared to the static Nash

equilibrium’ (p. 3277) and conclude that ‘[a]ny conclusions are necessarily tentative at

this stage, but our findings do suggest that algorithmic collusion is more than a remote

theoretical possibility’ (p. 3268). For practical competition policy purposes, the authors

warn: ‘[A]lgorithmic collusion might not be that improbable’ (p. 3295).

3 Dynamics and limits of Q-learning

In this section, we analyze the dynamics of Q-learning in more detail, in order to shed

light on why independent Q-learning algorithms sometimes converge to ‘collusive’ out-

comes and why this takes a long time. Section 3.1 shows in a simplified setting (for a

constant exploration rate ϵt and just two prices) how collusive strategy-equilibria exist

by construction of the algorithm, and are only a subset of all possible limiting strategy-

equilibria. Section 3.2 explains why potential convergence to collusive strategy pairs is

intrinsically slow and cannot be sped up by obvious changes to the algorithm. Section
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3.3 reviews the claim that the limiting strategies are collusive.

3.1 Pre-programmed collusive strategy-equilibria

To develop understanding of the dynamics of ϵt-greedy Q-learning, we consider the system

where both players use Q-learning with fixed exploration probability ϵ ∈ [0, 1]. Let any

mapping from Ai × A−i to Ai be called a strategy of player i, and let Σi denote the

collection of all such mappings. A strategy σ(i) = {σ(i)(s) : s ∈ Ai × A−i} of player i is

called (δ, ϵ)-best-response to strategy σ(−i) = {σ(−i)(s) : s ∈ A−i ×Ai} of player −i if, for

all states s = (si, s−i) ∈ Ai ×A−i,

σ(i)(s) ∈ argmax
p∈Ai

ϵ

|A−i|
∑

p−i∈A−i

{πi(p, p−i) + δV
(i)

σ(−i)(p, p−i)}

+ (1− ϵ){πi(p, σ
(−i)(s−i, si)) + δV

(i)

σ(−i)(p, σ
(−i)(s−i, si))}, (3)

where, for all states s = (si, s−i) ∈ Ai ×A−i,

V
(i)

σ(−i)(s) := max
p∈Ai

ϵ

|A−i|
∑

p−i∈A−i

{πi(p, p−i) + δV
(i)

σ(−i)(p, p−i)}

+ (1− ϵ){πi(p, σ
(−i)(s−i, si)) + δV

(i)

σ(−i)(p, σ
(−i)(s−i, si))}. (4)

Equation (4) defines the value function or optimal-value-to-go function V
(i)

σ−i(·) for player i
when playing against strategy σ(−i), or, more precisely, when the opponent plays according

to σ(−i) with probability 1− ϵ and selects an action uniformly at random with probability

ϵ. Equation (3) defines the corresponding optimal actions. Note that these value functions

incorporate the random exploration of the competing firm, but not the firm’s own random

explorations. This reflects the fact that Q-values are updated after determining the

price and not before.5 A strategy pair (σ(i), σ(−i)) ∈ Σi × Σ−i is called a (δ, ϵ)-strategy-

equilibrium if they are mutually (δ, ϵ)-best-response to each other.

To get insight in the potential existence and structure of (δ, ϵ)-equilibria that can be

called ‘collusive’ and how and when they may be learned, we focus further on the setting

with m = 2 feasible prices for each firm: the Nash price pN and the monopoly price pM .

Since m = 2 corresponds to only 256 possible strategy pairs, this allows us to compute all

(δ, ϵ)-strategy-equilibria by brute force enumeration, for any given feasible values of δ and

ϵ.6 In usual notation for the prisoner’s dilemma, write C := pM = 1.9250 for the action

5More precisely, Q-learning is an off-policy reinforcement learning algorithm, i.e., it calculates an
optimal policy assuming no own exploration, but behaves according to, in this case, an ϵt-greedy policy
based on the optimal policy. The optimal ϵt-greedy policy may, however, differ from the ϵt-greedy policy
derived from the optimal policy (see Van Seijen et al., 2009).

6For general m there are m2m2

strategy pairs, which for m = 3 already equals 387,420,489, and for
m = 15, which Calvano et al. (2020a) analyze, is a number with 530 digits.
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‘comply’, D := pN = 1.4729 for the action ‘defect’, and write R := 0.3375, S := 0.1180,

T := 0.3679, P := 0.2229 for the corresponding payoffs in the baseline parametrization.

The single-period pricing game is now equivalent in structure to a prisoner’s dilemma,

with payoffs given in Table 1.

C D
C (R,R) (S, T )
D (T, S) (P, P )

Table 1: Instantaneous payoff (πi(pi, p−i), π−i(pi, p−i)) for player i (row) and −i (column).

There are four possible states, two feasible actions, and therefore 24 = 16 possible strate-

gies {CCCC,CCCD,CCDC,CCDD, . . . , DDDD}, where the four consecutive letters

of a strategy refer to the actions taken in state (C,C), (C,D), (D,C), and (D,D), re-

spectively, in that order. Thus, for example, DCDD is the strategy that plays D in state

(C,C), C in state (C,D), D in state (D,C), and D in state (D,D). For each strategy

σ(−i) ∈ Σ−i and for each δ ∈ (0, 1) and ϵ ∈ [0, 1], we have computed all possible (δ, ϵ)-

strategy-equilibria by self-consistently solving the Bellman equations (3) and (4).7 These

are reported in Table 2 and visualized in Figure 1.

These computations reveal that there are one to three strategy-equilibria, depending on

the values of δ and ϵ, which all turn out to be symmetric: both players using ‘All Defect’

(AD, which always plays D), ‘Grim Trigger’ (GT, which plays C in state (C,C), and D

otherwise), or ‘Win-Stay-Lose-Shift’ (WSLS, which plays C in states (C,C) and (D,D),

and D otherwise). The strategy AD consists of always playing the Nash price. The AD

equilibrium always exists, but is clearly not collusive. The other two strategies, WSLS and

GT, can be interpreted as having a ‘reward-punishment scheme’, as they play C in state

(C,C) (‘rewarding’ the competitor playing C) and play D in state (C,D) (‘punishing’ the

competitor who deviates from C). GT equilibria exist for the largest set of (δ, ϵ)-values

in Figure 1. Note that supracompetitive prices generated by GT are unstable: a single

D, caused, e.g., by random exploration, will cause both players to shift to playing D

forever. Whether GT can be called collusive thus depends on one’s definition: if collusion

only means having a reward-punishment scheme then GT clearly qualifies, but if one also

requires that collusion does not break down forever after a single defect, then WSLS is

the only candidate.

Convergence to collusive equilibria is thus possible because there exist collusive (δ, ϵ)-

strategy-equilibria that solves the Bellman equations (3) and (4); letting ϵt slowly de-

crease from one to zero allows the system to converge, on some sample paths, to such an

equilibrium. For the case of m = 2 there are three such collusive equilibria. WSLS exists

7For details of these computations see Barfuss and Meylahn (2022) and Meylahn and Janssen (2022).
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Strategy of both players Conditions for equilibrium
DDDD (‘All Defect’) No additional conditions

CDDD (‘Grim Trigger’) ϵ(S+T−R−P )+2(R−T )
(ϵ2−3ϵ+2)(P−T )

< δ < ϵ(S+T−R−P )+2(P−S)
(1−ϵ)(ϵ(T−P )+2(P−S))

CDDC (‘Win-Stay-Lose-Shift’) δ > ϵ(P+R−S−T )+2(T−R)
(1−ϵ)(ϵ(P+S−T−R)+2(R−P ))

Table 2: Conditions on δ ∈ (0, 1) and ϵ ∈ (0, 1) such that the strategies in the left column
form (δ, ϵ)-strategy-equilibria if used by both players. For ϵ = 1 and any δ ∈ (0, 1), All
Defect is the only equilibrium.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ǫ

δ

Figure 1: Phase diagram of (δ, ϵ)-strategy-equilibria. AD is always an equilibrium, GT is
an equilibrium if (δ, ϵ) lies above the large dashed curve and below the tiny dashed curve
in the upper left corner (light and dark gray areas), and WSLS is an equilibrium if (δ, ϵ)
lies above the solid curve (dark gray area).

for high enough δ and low enough ϵ, i.e., such that the WSLS condition in Table 2 is sat-

isfied. This condition corresponds to the points (ϵ, δ) lying above the solid line in Figure

1. Similarly, GT exists when the GT condition in Table 2 is satisfied, corresponding to

the points (ϵ, δ) lying between the two dashed curves (the upper dashed curve is barely

visible in the top left corner) in Figure 1. And, finally, AD exists everywhere in Figure 1.

Figure 1 also reveals that WSLS or GT can only be collusive equilibria if ϵ is sufficiently

small.

For Calvano et al. (2020a)’s case with m = 15, there are similar types of collusive equi-

librium strategies, yet explicitly computing and characterizing them, as we can do for

m = 2 in Table 2, is not tractable by brute-force computation. It is not clear how many

equilibria there are, and how to characterize or categorize them into collusive or non-

collusive. What is the same for m = 2, m = 15, or any number of prices, is that the

existence of and possible convergence to collusive strategy-equilibria is pre-programmed,

as it were, in the dynamical system, as a consequence of the choice of the state space,

the action space, and the decreasing exploration rates — in addition, obviously, to the

assumption that both players use this same algorithm to begin with.
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3.2 The Q-learning algorithm is intrinsically slow

The speed with which the algorithms converge depends on the decreasing exploration

rate in two ways: (1) there is an initial period in which the collusive strategies do not

exist yet, and (2) after they exist a specific sequence of events has to occur in order

to transition to a collusive strategy. To see that collusive equilibria can only be learned

after a sufficiently long exploration period because only then do they come into existence,

consider first the extreme case of a fixed value ϵ = 1, for which we know there are no

collusive equilibria — compare Figure 1. In that case, all immediate payoffs in (4) are

state-independent, from which it follows that the value function is state-independent:

V
(i)

σ(−i)(s) = (1 − δ)−1maxp∈Ai
|A−i|−1

∑
p−i∈A−i

πi(p, p−i) for all states s. In the baseline

parametrization, there is a unique price p∗ = 1.58271 at which the optimum in this

maximization problem is attained, and the strategy σ∗ defined by σ∗(s) = p∗, for all states

s, constitutes a (δ, 1)-strategy-equilibrium (σ∗, σ∗). Because this strategy always sets the

optimal price assuming that the opponent plays uniformly at random, and therefore

does not contain any structure that can be interpreted as ‘reward’ or ‘punishment’, this

strategy can be considered ‘competitive’, i.e., non-collusive, and the equilibrium (σ∗, σ∗)

can be considered a non-collusive equilibrium of strategies.8 By continuity properties of

V
(i)

σ(−i)(s), considered as a function of ϵ, it follows that this equilibrium is the only one

possible if ϵ is not too small. This is formalized in the following theorem, which we prove

in Appendix C.

Theorem 1 For all δ ∈ (0, 1) there is an ϵ(δ) ∈ [0, 1) such that, for all ϵ ∈ (ϵ(δ), 1], the

only (δ, ϵ)-strategy-equilibrium is the non-collusive equilibrium (σ∗, σ∗).

Q-learning with time-dependent exploration probability ϵt = exp(−βt) does not admit

stationary equilibria in the sense as defined above for a fixed ϵ. With ϵ decreasing to

zero, the strategy an algorithm tries to learn, which at each point in time depends on

ϵt, is a moving target. The underlying dynamical system can nevertheless be considered

as a system for which the equilibria present at time t are precisely the (δ, ϵt)-strategy-

equilibria. So considered, Theorem 1 implies that, as long as ϵt > ϵ(δ), there is no collusive

equilibrium in the system. Hence, convergence to a collusive strategy-equilibrium is not

possible before the critical time period Tϵ(δ),β := ⌊− log(ϵ(δ))/β⌋ that guarantees that

ϵt is below the smallest possible ϵ(δ) in Theorem 1. If β is very small, as in Calvano

et al. (2020a), this critical time period will be large, which explains, in part, why the

authors find very slow convergence: convergence to a collusive strategy-equilibrium can

only start to happen after a very long time, when ϵ has declined enough for collusive

strategy-equilibria to exist.

8This does not mean that ∆ will be small; but as explained in Section 4.2, this is simply a consequence
of how the feasible price set is constructed.
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To validate this reasoning and see whether our characterization of (δ, ϵ)-strategy-equilibria

in Section 3.1 for Q-learning with fixed exploration rates ϵ is relevant also in the setting

with time-dependent exploration rates ϵt = exp(−βt), we simulate two independent Q-

learning algorithms with δ = 0.95 and α = 0.15, that is, conform the representative

experiment in Calvano et al. (2020a, p. 3280).9 We choose β = 10−4, which is lower than

the representative value 4×10−6, because with two prices less exploration is needed than

with fifteen prices.10 We use the logit demand model with parameters ai = 2, ci = 1 and

µ = 1/4, actions determined as in Calvano et al. (2020a) with ξ = 0.0, and initial Q-

values are chosen as in Calvano et al. (2020a), i.e., set at the value of an action given that

the opponent prices randomly. It follows from Table 2 that GT is an equilibrium strategy

for all ϵ < 0.515126, and WSLS is an equilibrium strategy for all ϵ < 0.292042. In terms

of time periods, this means that for all t < 6633 only AD is an equilibrium strategy, for

6633 < t < 12308 both AD and GT are equilibrium strategies, and for t > 12308 all

three of AD, GT, and WSLS are equilibrium strategies. Based on these computations,

we expect that if both players use ϵt-greedy Q-learning with ϵt = exp(−βt), strategies

will not converge to GT before t = 6633 and will not converge to WSLS before t = 12308.

These expectations are confirmed by the outcomes of our numerical experiments. The left

panel of Figure 2 shows, based on 1000 simulations, how many trajectories are playing

the strategy pair AD, GT, WSLS, or something else, as a function of time. Before time

t = 6633 (the first vertical dashed line) the fraction of trajectories in the AD strategy pair

is steadily increasing (after an initial drop caused by the initialization). At time t = 6633

the fraction of GT strategy pairs slowly starts increasing, and only at time t = 12308

(the second vertical dashed line) WSLS starts to attract strategy pairs – before that, the

fraction of sample paths in which both firms play WSLS is negligible. Thus, we see that

the structure of (δ, ϵ) strategy-equilibria as defined by the Bellman equations (3) and (4),

combined with the fact that ϵt decreases from one to zero, gives rise to a phase transition.

We further note that from t = 12308 to t ≈ 40000, in the left panel of Figure 2, 41

percent of the trajectories start converging to WSLS. The other equilibria eventually

attract 3.6 percent (AD) and 2.4 percent (GT) of the samples. Hence, about 53 percent

of the simulations converge to limiting strategies pairs that may have supracompetitive

prices but are not strategy equilibria. The right panel of Figure 2 shows the fraction of

trajectories that a single player spends on AD, GT, WSLS, and other strategies, as a

function of time. In this case, the fractions converge to 4.8 percent for AD, 4.1 percent

for GT, 43 percent for WSLS, and 48.1 percent for other, non-equilibrium strategies. We

thus observe that the majority of limit equilibria and limit strategies are not collusive.11

9Table 5 in Appendix A shows that this choice of α has the right order of magnitude.
10Table 3 shows that alternative choices lead to qualitatively similar findings.
11It is worth emphasizing that these findings are conceptually different from the observation reported

in Table 1 in Calvano et al. (2020a) that only about one half of their simulations converged to ‘Nash
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Figure 2: Left: Fraction of trajectories (based on 1000 simulations) in the AD strat-
egy pair (black), GT strategy pair (Light Gray), WSLS strategy pair (Gray) and other
strategy pairs (Dark Gray). We also plot the fraction of periods spent in the (C,C) state
(Gray dashed) in the 1000 most recent time periods. The horizontal dashed line indicates
the time at which the GT strategy pair becomes stable, and the horizontal dash-dotted
line indicates the point at which the WSLS strategy pair becomes stable. Right: A sim-
ulation with the same parameters, but plotting the strategy fractions for player one only.

The convergence is remarkably slow for a number of reasons, all related to the inner

dynamics of ϵt-greedy Q-learning. To understand these, consider the strategy-equilibrium

WSLS. In order to reach this strategy-equilibrium, it is necessary that action C becomes

the optimal action in state (C,C) for both players, i.e., that Q
(i)
(C,C),C(t) > Q

(i)
(C,C),D(t)

for both i = ±1. Before t = 12308, the majority of optimal strategies according to

the Bellman equation (3) are AD, so that, in these cases, ∆Q
(i)
(C,C)(t) := Q

(i)
(C,C),C(t) −

Q
(i)
(C,C),D(t) < 0 and state (C,C) can only be reached if both players simultaneously

explore and select action C – this happens with probability ϵ2t/4, which ranges from

0.02132 at time 12308 to just 0.00008387 at time 40000. Being in state (C,C), ∆Q
(i)
(C,C)(t)

can increase if both players play C (so that Q
(i)
(C,C),C(t) is increased after updating) – this

initially only can happen by random exploration, i.e., with probability ϵ2t/4 – or if both

players play D (and Q
(i)
(C,C),D(t) is decreased after updating). However, in state (C,C), it

might also happen that ∆Q
(i)
(C,C)(t) decreases : namely if player i plays C (e.g., by random

exploration) and player −i plays D (so that player i receives the S payoff and Q
(i)
(C,C),C(t)

is decreased after updating), or, conversely, if player −i plays C and player i plays D (so

that player i receives the T payoff and Q
(i)
(C,C),D(t) is increased after updating). Thus, it

might take several attempts of reaching state (C,C) by simultaneous random exploration

before ∆Q
(i)
(C,C)(t) becomes positive.

An additional challenge is that the moments that this happens for both players should

not be too far apart: if ∆Q
(i)
(C,C)(t) > 0 but ∆Q

(−i)
(C,C)(t) < 0, then, if both players do

equilibria’. Their Table 1 is about (near-)convergence to strategy-equilibria, but does not report how
often these limiting strategy-equilibria were collusive – that is, contained a reward-punishment scheme.
In contrast, our Figure 2 reveals that in our case more than half of the limiting states are not even
collusive equilibria.
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not explore (which gets increasingly more likely as time increases), player i will receive

the payoff S which will decrease Q
(i)
(C,C)(t) and might make ∆Q

(i)
(C,C)(t) negative again. In

fact, even if ∆Q
(i)
(C,C)(t) > 0 for both players i = ±1, a series of random explorations in

which the players do not play the same action in state (C,C) can again reverse the sign

of ∆Q
(i)
(C,C)(t) for one of the players. This explains why it may take a considerable time to

converge to the WSLS strategy pair, and why, when ϵt has gotten too small, it becomes

increasingly unlikely that strategy pairs different from WSLS will converge to WSLS.

Hence, we identify two causes why convergence to collusive strategy pairs takes a large

number of periods. First, collusive strategy-equilibria only exist, and thus convergence

to them is only possible, if ϵt is sufficiently small and δ sufficiently large. Because β

is very small, it takes a very large number of time periods before the required phase

transition occurs. Second, if collusive strategy-equilibria exist — i.e., ϵt and δ satisfy the

required conditions — it requires a certain number of random events to happen within

a particular time frame to establish convergence, which can take a considerable amount

of time to materialize. We have made these causes explicit for the case of m = 2, but

they carry over to any number of prices. In Calvano et al. (2020a)’s case of m = 15,

β is also very small (smaller than 2 × 10−5), and the dynamics of ϵt-greedy Q-learning

still requires a number of random events to occur within the right time frame to establish

convergence to collusive strategy-equilibria once they exist. Because of these two reasons,

slow convergence to collusive strategy equilibria appears to be an intrinsic property of

how this algorithm works. It is caused by how the algorithm utilizes the statistical

information contained in reward observations – and so not by, e.g., limited computing

power or inefficient implementation.

Several ad-hoc changes to the algorithm that present themselves to speed up convergence

do not sufficiently do so while also maintaining the same amount of collusion. We consider

three natural variations in the setting with m = 2 prices and δ = 0.95. In variant (i), we

set ϵt = ϵ0 exp(−βt) with ϵ0 := 0.292042 so that convergence to WSLS is immediately

possible instead of only at t = 12308; the results are presented in Figure 3. In variation

(ii), presented in Figure 4, we increased β such that the time ⌈− log(ϵ0)/β⌉ until ϵ0 is

reached is much shorter. In variant (iii), presented in Figure 5, the exploration rate

was changed to a fixed value of ϵ below the critical value ϵ0. Each of these alternative

approaches has drawbacks. Figure 3 shows that variant (i), despite conveniently scaling

ϵt, still suffers from slow convergence to WSLS, while the fraction of samples converging

to WSLS (around 36 percent) is actually smaller than the 41 percent in the baseline. It is

moreover not obvious how to choose ϵ0 in practice, as it depends on the unknown payoff

matrix. This problem can potentially be solved by computing a conservative lower bound

ϵ̂0 ≤ ϵ0 and using ϵt = ϵ̂0 · exp(−βt), but that in turn creates the risk of inducing too

little exploration. Figure 4 and Table 3 indicate that in variant (ii) increasing β reduces
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the amount of collusion, and decreasing β substantially increases the time of the phase

transition. Finally, Figure 5 shows that variant (iii), setting a fixed exploration rate, can

lead to substantially lower levels of collusion.

We conclude that it is an intrinsic property of this ϵt-greedy Q-learning algorithm that

convergence to collusive strategy-equilibria, when both players use the algorithm, takes

a large number of periods — if it happens at all. This is caused by the structure of the

algorithm that creates a critical time before which collusive strategy equilibria do not

exist, and that requires a number of random events to happen in a particular time frame

to obtain convergence to collusive strategy equilibria. There is no obvious ‘quick fix’ to

ensure that these algorithms converge to collusive strategy-equilibria faster and obvious

changes to the hyper-parameters attempting to increase the time of the phase transition

decrease the amount of collusion. Our results suggest that algorithmic collusion via these

Q-learning algorithms is, literally, a very remote possibility.
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Figure 3: Fraction (1000 samples) of trajectories in the AD strategy pair (black), GT
strategy pair (Light Gray), WSLS strategy pair (Gray) and other strategy pairs (Dark
Gray). The dashed line indicates the point at which the GT strategy becomes stable,
and the dash-dotted line indicates the point at which the WSLS strategy pair becomes
stable. We have used ϵ(t) = ϵ0e

−βt with β = 0.0001 and ϵ0 = 0.292042.

β 10−6 10−5 10−4 10−3 10−2

WSLS+GT 0.55± 0.03 0.54± 0.03 0.46± 0.03 0.16± 0.02 0.01± 0.01
Tϵ0,β 1230860 123086 12309 1231 123

Table 3: The first row gives the sample average and Wilson score interval for the fraction
of trajectories converging to the GT or WSLS strategy pairs, based on 1000 trajectories,
for different values of β, in the same setting as Figure 4. All trajectories converged. The
second row gives the time at which the WSLS strategy becomes stable.
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Figure 4: Fraction (1000 samples) of trajectories in the AD strategy pair (black), GT
strategy pair (Light Gray), WSLS strategy pair (Gray) and other strategy pairs (Dark
Gray). The dashed line indicates the point at which the GT strategy becomes stable,
and the dash-dotted line indicates the point at which the WSLS strategy pair becomes
stable. We have used ϵ(t) = e−βt with β = 10−2 (top left), β = 10−3 (top right), β = 10−4

(bottom left), and β = 10−5 (bottom right).
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Figure 5: Fraction (1000 samples) of trajectories in the AD strategy pair (black), GT
strategy pair (Light Gray), WSLS strategy pair (Gray) and other strategy pairs (Dark
Gray). We have used a constant ϵ(t) = 0.1.

3.3 What looks like collusion need not be collusion

In our setting with m = 2, we can explicitly identify the nature of the equilibria: there

are three equilibrium-types, both firms playing AD, GT, or WSLS, only two of which,

GT and WSLS, can be interpreted as having a reward-punishment scheme - where the

reward is playing C in state (C,C), and the punishment playing D in state (C,D).

Because Calvano et al. (2020a) do not consider a strategy collusive if it does not include
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a reward-punishment scheme, it follows that, according to their definition of collusion,

the strategy pairs GT, GT and WSLS, WSLS are the only collusive strategy-equilibria.12

As shown in the left panel of Figure 2, about 57 percent of the simulations do not converge

to a collusive strategy equilibrium (3.6 percent AD, 53 percent other). If we look at the

strategies played by a single firm, then the right panel of Figure 2 shows that about

53 percent of the simulations do not converge to collusive strategies (4.8 percent AD,

48.1 percent other). This means that learning is incomplete in the sense that there is

no convergence with probability one to a strategy equilibrium. More importantly, it

shows for m = 2 prices that Q-learning algorithms clearly do not ‘systematically learn

to play collusive strategies’ (p. 3268), if ‘systematically’ has the common interpretation

of convergence with probability one.13 In addition, the left panel of Figure 2 shows that

the fraction of time that both players charge supracompetitive prices converges to about

75 percent. Since random exploration has almost vanished at this point, this implies

that a substantial fraction of supracompetitive limit prices are not generated by collusive

equilibria.

Calvano et al. (2020a) do not explicitly characterize (or formally define) collusive equilib-

ria in the case withm = 15 prices. Instead, they aim to show the presence of patterns that

could be interpreted as reward-punishment schemes in the limiting strategy outcomes of

the learning processes, and take those schemes as an indication of collusive equilibria:

‘[t]he reward-punishment scheme ensures that the supracompetitive outcomes may be

obtained in equilibrium and do not result from a failure to optimize’ (p. 3269, emphasis

original). Starting from any limiting strategy pair that the algorithms has converged to,

Calvano et al. (2020a) force one firm to cut its price during a single time period, and then

count how often this leads to the following pattern: the forced price cut by one firm is

followed by a price decrease by the other firm, after a number of time periods the prices

return to their original level, and the total discounted profit of the deviating player is

lower than if there would have been no deviation at all. The numerical results from such

shocks are reported in their Figure 4 and 5 and Table 2 and 3 in support of the claim

that deviations are punished. We argue, however, that these results do not warrant the

claim, for several reasons.

To begin with, Figure 4 reports average prices over all simulations. This fact is ac-

12If one also requires collusion to be robust to single-period defections, then the WSLS pair is the only
collusive strategy-equilibrium.

13To add another layer of complexity, Rothschild (1974) and the two-player generalization Aoyagi
(1998) suggest that learning the optimal strategy with probability one is not necessarily a property of
optimal policies when future payoffs are discounted – the ‘efforts’ required on the short-term to ensure
this may not outweigh the resulting benefits of higher discounted payoffs on the long-term. Thus, not
only is there no convergence with probability one to collusive strategy-equilibria, but ‘systematically
learn[ing] to play collusive strategies’ might in fact not even be desirable.
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knowledged by Calvano et al. (2020a), but the authors nevertheless conclude ‘[c]learly,

the deviation gets punished’ (p. 3282). But based on this figure one cannot conclude

that, for example, the majority of sample paths display a pattern like the average. It is

in theory possible that in a substantial fraction of the simulations the prices followed a

completely different pattern, which can not reasonably be interpreted as ‘punishment’.

The same holds for their Figure 5 which displays box-plots of the observed price changes.

We don’t believe it can be concluded from this figure that a significant portion of the

simulations displayed the sought-after price pattern: in theory, all kinds of zigzag price

patterns are compatible with these box-plots.

Similarly, their Table 2 reports the average price change by both players, for different

values of the pre-shock price and forced deviation price, and their Table 3 reports the

average profit gains and counts the relative frequency of deviations being unprofitable.

These are all simulation averages: the possibility that, in a substantial number of the

underlying simulations, the price cut of the deviating player was not followed by a price

decrease of the non-deviating player is not excluded. It would be helpful to formally define

the concept ‘reward-punishment scheme’ and subsequently count how many simulations

satisfied the definition. In the absence of such a definition, it is difficult to assess if their

interpretation ‘deviation gets punished’ is appropriate or that other interpretations such

as ‘Nash-reversion’, ‘price war’ or ‘stick-and-carrot’ equally make sense. In addition, for a

solid statement on the presence of reward-punishment schemes we believe that one should

not only study the effects of one-period price cuts, but also of permanent price increases

and decreases.

Let us for now assume that the behavior depicted in Figure 4 of Calvano et al. (2020a) is

representative for the large majority of samples. Does observing this pattern imply that

the underlying limit strategies are collusive strategy equilibria? The answer is no. To

see this, consider again the simple setting with m = 2 prices. Suppose that firm 1 plays

the strategy CCDC and firm -1 plays CDCC. Both these strategies are neither GT nor

WSLS, so this pair of strategies is not a collusive strategy equilibrium. Suppose that the

pre-shock price at time τ = 0 is C for both players, but firm 1 is forced to defect at time

τ = 1. The state of player 1 at time τ = 2 is then (D,C) and therefore player 1 defects in

period τ = 2. Similarly, the state of player -1 at time τ = 2 is (C,D) and therefore player

-1 defects as well in period τ = 2. Because both firms play C in state (D,D), prices return

to their pre-shock price C in time period τ = 3. The total discounted profit obtained by

the deviating player during these three time periods is δ0R + δT + δ2P + δ3R. This is

strictly smaller than the total discounted profit without deviation, R · (δ0 + δ1 + δ2 + δ3),

as long as δ > 0.2653.

We thus have constructed a very simple example in which the price cut of one firm is
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followed by a price decrease of the other firm, after a number of time periods the prices

return to their original supracompetitive level, and the total discounted profit of the

deviating player is lower than if there would have been no deviation at all (provided

δ > 0.2653). Yet this pattern is generated by strategies that are not a collusive and do

not form a strategy equilibrium. One therefore cannot infer from observing these types of

price patterns, not on average but also not in individual runs, that the supracompetitive

prices converged to and subsequently departed from are supported by collusive equilibria.

Price patterns that, with some imagination, can be interpreted as reward-punishment

schemes, simply do not imply that they are generated by a collusive equilibrium.14 Finally,

we note that the claim ‘[o]ur algorithms [...] consistently learn to restart cooperation after

a deviation’ (p. 3283) clearly does not hold in the m = 2 setting: for example, for all

simulations that converge to the GT strategy pair, there will be no cooperation after a

defect. Thus, even if this claim would be true for m = 15, it is not true in general.

4 Performance of the algorithm

Calvano et al. (2020a) make the common assumption that the firms aim to maximize their

cumulative expected discounted profit. It is therefore natural to evaluate the performance

of the firms’ pricing algorithms in terms of cumulative expected discounted profit. In

particular, in the context of (algorithmic) collusion, it would be natural to compare the

cumulative expected discounted earnings obtained under the pricing algorithms with what

would have been earned under the Nash prices and monopoly prices, and measure the

(firms’ benefits of) collusion for example by

∆̃ :=
E [
∑∞

t=1 δ
tπi(pi(t), p−i(t))]−

∑∞
t=1 δ

tπN∑∞
t=1 δ

tπM −
∑∞

t=1 δ
tπN

=
(1− δ)E [

∑∞
t=1 δ

t−1πi(pi(t), p−i(t))]− πN

πM − πN

However, for evaluating the profit gain from using the pricing algorithms, Calvano et al.

(2020a) use a different criterion, ∆ defined in Section 2.3 above, which is a normalization

of the ‘average per-firm profit’ compared to the static Nash equilibrium upon convergence.

It is based on this performance measure that the authors suggest the attractiveness of

Q-learning for a good ‘profit gain’. In light of our finding that convergence on collusive

equilibrium strategies can only take place after many periods, the qualification ‘upon

convergence’ is important for the interpretation and conclusions which one can draw

from the experimental outcomes.

14It is worth emphasizing that small “Q-loss” (Calvano et al., 2020a, p. 3278) at most implies near-
convergence to strategy-equilibria. It is not relevant to infer convergence to collusive equilibria.
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We first note that ∆ is not a measure of collusion. ∆ attains its highest value of one

if both sellers always charge the monopoly price.15 This strategy, of always charging

the monopoly price, however, has no ‘reward-punishment scheme’ in it. Indeed, it will

potentially suffer substantial losses when the competitor defects from the monopoly price

to the best response. Because, according to Calvano et al. (2020a), collusion should

include a reward-punishment scheme, the strategy of always charging the monopoly price

does not count as collusion. This means that one cannot infer the existence of collusive

behavior from high values of ∆.16 Instead, if one would define collusion by these Q-

learning algorithms as convergence to an equilibrium of collusive strategies as in Section

3 then collusion is appropriately measured by the fraction of sample paths converging to

such equilibria of strategies (as depicted, e.g., in our Figure 2).

We also note that ∆ is not a measure of extra-profit. High values of ∆ are by no means

an indication that the firms benefit from using the algorithms in terms of their actual

objective function, which is the total present discounted value of the expected future

payoff stream over the whole time horizon. Because it takes a long time before any

supracompetitive prices from collusion might arise (cf. the high amount of AD strategies

in Figure 2 during the first 12,000 time periods), the actual contribution of this profit-

gain-compared-to-Nash upon convergence to the firm’s objective of cumulative discounted

profit may be negligible. In the rest of this section, we consider the present discounted

value of any future collusive payoff stream in more detail.

4.1 Collusive gains are negligible

To make more precise that the amount of rounds that the algorithm requires for collusion

is ‘long’ also by Calvano et al. (2020a)’s own time standard, we define an effective time

horizon Tδ which is such that all payoffs obtained at time t > Tδ contribute less than 0.1

percent to the overall profit, and thus are almost irrelevant from the firm’s point of view.

Let

πmin := min
i=±1

min
pi∈Ai,p−i∈A−i

πi(pi, p−i),

πmax := max
i=±1

max
pi∈Ai,p−i∈A−i

πi(pi, p−i),

15To be more precise, ∆ will be close to one if both sellers charge the price in the feasible price set that
is closest to the monopoly price, where ‘close’ depends on the granularity of the price set. See footnote
21 in Calvano et al. (2020a).

16In several places in the article, Calvano et al. (2020a) seem to interpret ∆ as a measure of the
‘degree of collusion’, e.g., on p. 3293, without distinguishing whether the underlying strategies involve
reward-punishment schemes or not.
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so that all single-period undiscounted payoffs lie in the interval [πmin, πmax], and define

Tδ :=

⌈
log( πmin

1000πmax
)

log(δ)

⌉
. (5)

This definition ensures that

∑
t>Tδ

δtπi(pi(t), p−i(t)) ≤ 0.001×
∞∑
t=1

δtπi(pi(t), p−i(t)),

for all feasible price sequences {(p1(t), p−1(t) ∈ A1 ×A−1 : t ∈ N}.

In the base parametrization we have πmin = 0.0911 and πmax = 0.4270, so that, for

δ = 0.95, we find Tδ = 165.

Thus, from the firm’s point of view, all profits obtained in the baseline parametrization

after the first 165 time periods are practically irrelevant. Hence, the future in which phase

changes start to happen, and certainly once there is convergence, after several hundreds

of thousands time periods or more – i.e., between about 400,000 and several millions

of time periods – is too far away to matter in present discounted value. Calvano et al.

(2020a) nevertheless assert ‘a sizable extra-profit compared to the static Nash equilibrium’

(p. 3277, emphasis added). The adjective ‘sizable’ could potentially lead to confusion,

since it suggests a significant increase in the firm’s objective. In reality, the reported

extra-profits are only obtained under a discount factor δt, that with t ≫ Tδ is so heavy

that it makes their contribution to the firms’ objective negligible.

One possible way of narrowing the gap between the effective time horizon and the time

it takes to converge to collusive equilibrium strategies, so that some extra-profits may

become real, is to choose δ very close to one, so that Tδ becomes larger. Obviously, since

Tδ diverges to infinity as δ goes to one, the effective time horizon can be made as long

as needed to catch up with the time margins start to appear. Tδ is just over 400,000

for δ = 0.999975, for example. Moreover, Figure 3 in Calvano et al. (2020a) appears to

suggest that choosing δ close to one can only be beneficial for the amount of collusion,

as measured by ∆. However, this turns out not to be a clear-cut solution, as Calvano

et al. (2020a) briefly note in their footnote 28. The left panel of Figure 6 reports how

Calvano et al. (2020a)’s measure ∆ depends on δ in their baseline parametrization with

m = 15. The figure reveals that ∆ is decreasing in δ if δ is close to one. That the value

of ∆ remains relatively high, between 70 and 90 percent, is caused by the choice of the

feasible price set. In Calvano et al. (2020a), the firms choose their prices mostly between

the Nash price and the monopoly price, with just a few extreme values below and above.

For the right-hand panel in Figure 6, we designed the price space instead to consist of
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fifteen prices symmetrically spread around the Nash price.17 The figure shows an even

more substantial reduction in ∆ as δ approaches one.

0.9975 0.9980 0.9985 0.9990 0.9995 1.0000
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(δ
)
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δ
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Figure 6: Left: Simulation of 1000 samples for each value of δ. Here we have used
the baseline model parameterization with m = 15, α = 0.15 and β = 4 × 10−6. We
calculate ∆ over the last 105 time periods and simulate the learners until convergence.
All trajectories converged except 2.4% for δ = 0.999999. Right: The same simulation,
but with the price interval taken Symmetrically around the Nash price as defined in
Appendix B with ξ = 0.0. All trajectories converged except 0.3% for δ = 0.9999.

The two left panels of Figure 7 show how the fraction of strategy equilibria depends on δ,

in our tractable m = 2 setting. The figure reveals that the fraction of collusive equilibria

converges to zero as δ approaches one. In the right panel of Figure 7 we show how the

average time to convergence depends on δ.

A possible explanation for this decrease in collusive equilibrium strategies is that the

equilibrium Q-values diverge to infinity as δ approaches one. The Q-values then need to

increase significantly during the simulation from their initial values in order to reach their

equilibrium values, which appears not to be attainable given the decreasing exploration

rate.18 To remedy this shortage of exploration and give the algorithms more time to

converge, a lower value of β could be chosen. The bottom panels of Figure 7 show the

result from repeating the simulation, but now with β = 0.00001. The figure makes clear

that decreasing β does not prevent the fraction of collusive equilibria from disappearing

when δ approaches one. As expected, on the other hand, it does further increase the time

to convergence, as the exploration rate decreases more slowly.

When tuning δ and β, they are in a sense leapfrogging. Increasing δ increases the effective

time horizon so that the company may benefit from collusion, but decreases the amount

of collusion once δ is sufficiently close to one. Decreasing β counterbalances this by

increasing the amount of exploration. While there may be combinations of δ and β for

which the company benefits from collusion in time, fine-tuning the parameters to this

end makes the claim that the algorithms learn to collude autonomously untenable. Note

furthermore that the decrease to zero in collusive equilibrium strategies as δ approaches

17See Appendix B for the details of this construction.
18Simulations indicate that, for example, rescaling the rewards by (1− δ) does not solve the issue.
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Figure 7: Top Left: Fraction of trajectories (1000 samples per δ) in AD (Black), GT
(Light Gray), WSLS (Gray) as a function of δ for the m = 2 setting with α = 0.15 and
β = 0.0001. Top Right: The average time to convergence for the same simulation as a
function of δ. Bottom: Same as top with β = 0.00001. All trajectories converged.

one does not necessarily translate into a decrease to zero in ∆. The limit strategies may

still play the collusive price pair frequently, without being collusive strategies. This again

demonstrates the inadequacy of ∆ as a measure of collusion with reward-punishment

schemes.

4.2 Short-run gains are assumed

The Q-learning algorithms in Calvano et al. (2020a) are able to generate positive extra

profits within the firms’ effective time horizon. However, whether there are short-run

gains or losses turns out to depend crucially on the support of the price set. The reason

for this is that, for small enough values of δ including δ = 0.95, the Q-learning algorithm

is similar to pricing uniformly at random within the effective time horizon. To see this,

note that the probability that the Q-learning algorithm does not experiment but prices

according to the Q-matrices is, within the effective time horizon, bounded from above by

1− exp(−βmaxTδ) = 1− exp(−2× 10−5 × 165) ≈ 0.003295. The corresponding expected

number of times that the Q-learning does not experiment is bounded from above by

0.55. Thus, within the effective time horizon of Tδ = 165 time periods, the Q-learning

algorithm prices uniformly at random in, on average, more than 164 time periods. The

algorithm’s actions and payoffs are, in other words, statistically indistinguishable from
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pricing uniformly at random.19

Any supracompetitive gains to the firms’ objective in the short run are therefore at-

tributable to the choice of the feasible price range. In the base parametrization, the

average price when both players price uniformly at random is 1.6990, which is substan-

tially larger than the Nash price 1.4729. This translates into average per-period profits

of 0.2799, which is substantially larger than the per-period Nash profit of 0.2229. In this

sense, any profit gains with a positive present discounted value are caused by the choice

of the feasible price sets, which is skewed to be higher than the Nash-price on average.

A different feasible price set could just as well result in a worse performance compared

to pricing-at-Nash.

An alternative choice, that a priori might seem more natural, is to bound the price set

from below by the marginal cost and is symmetric around the Nash equilibrium:

Âi =
{
ci +

k

m+ 1
· 2(pNi − ci) : k = 1, . . . ,m

}
. (6)

For this support, the average price under pricing-uniformly-at-random is indeed exactly

equal to the Nash price, and the average per-period profit when both players price uni-

formly at random will be 0.17228 or 22 percent smaller than the Nash profits.20 Moreover,

for price supports with lower means, the expected profits from adopting the Q-learning

algorithm are lower than the competitive profits. This goes to show how the choice of

the price set determines the average return.21 Given that without prior knowledge of

the demand parameters or without intent to price supracompetitively there is no obvious

reason why both firms would choose to learn on price supports that are shifted upwards

from the competitive price level, we conclude that the short-run gains are essentially

assumed by the choice of the feasible price sets.

19This of course changes if δ approaches one (more time periods becoming relevant) or β grows large
(less random exploration).

20The average price does not determine the average per-period profit when pricing uniformly at random
as the average per-period profit depends on the entire payoff matrix. Lower prices generate larger sales.
In fact, it is possible to choose an action space with an average price above the Nash price and still have
an average per-period profit below the Nash profit when pricing uniformly at random.

21Incidentally, changing the parameter ξ, which controls the step between consecutive feasible prices,
similarly affects the average price and profit during the effective time horizon. For example, increasing ξ
from 0.1 to 1.0 reduces the per-period profit to 0.1916, or 14 percent below the Nash per-period profits
in case both firms price uniformly at random around the Nash-price.
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5 Q-learning is outperformed by reasonable alterna-

tives

A further critique to the claim that Q-learning algorithms pose a threat of spontaneous

collusion is that such algorithmic collusion is not stable against the use of different al-

gorithms. In this section we argue that the equilibrium of strategies which according to

Calvano et al. (2020a) is ‘learned’ by an ϵt-greedy Q-learning algorithms-with-memory-

one is not the appropriate equilibrium concept for algorithmic collusion: the reason is

that there are alternative algorithms that easily outperform the Q-learning pricing algo-

rithm. To illustrate this, we consider a simple adaptation of the well-known Exp3 policy

(Lattimore and Szepesvári, 2020, Section 11.3), which is easy to implement and comes

with a theoretical performance bound. It turns out that Q-learning may face substantial

performance losses when playing against Exp3 instead of Q-learning, which implies that

Exp3 forms a credible threat to the implementation of Q-learning.

In the basic prisoners’ dilemma, the mere existence of mutually advantageous actions

does not imply that it is reasonable for rational agents to play these actions, for the

obvious reason that there is the threat of the opponent playing defect. Similarly, if it

would be the case that mutual use of Q-learning algorithms generate supracompetitive

profits, then this does not imply that it is reasonable for the firms to actually use these

algorithms. Now, the multi-period pricing game is equivalent to a single-shot game

where actions correspond to policies or algorithms that specify, for each possible data set

of previously observed prices and (own) payoffs, how the next (possibly random) price

should be chosen.22 Let Πi denote the policy used by player i = ±1, let ri(Πi,Π−i) denote

the corresponding expected discounted total profit (expression (2) with prices generated

by the policies), and let P denote the space of all feasible policies.23 For the sake of

the argument, suppose that there exists a Nash equilibrium policy pair (ΠN ,ΠN) ∈ P2.

Then the mere existence of a policy pair (ΠC ,ΠC) ∈ P2 with ri(Π
C ,ΠC) > ri(Π

N ,ΠN)

– and possibly with other characteristics, for example that average prices, measured in

some appropriate way, are larger than when generated by the Nash policy pair – in itself

is not a reason to expect these policies will actually be played by rational agents, for the

simple reason that there might be a policy ΠD ∈ P that (perhaps significantly) diminishes

the payoff when used by the competitor, ri(Π
C ,ΠD) < ri(Π

C ,ΠC), and simultaneously

increases the payoff of the competitor, r−i(Π
D,ΠC) > ri(Π

C ,ΠC).

22A policy of player i can formally be defined as a collection of probability mass function Π = {Π(·|h) :
h ∈ Hi}, for all possible histories in the set of all possible histories Hi := ∪t∈N(Ai × A−i × R)t−1,
such that player i selects price p ∈ Ai at stage t ∈ N, t ≥ 2 of the game with probability
Π(p|(pi(s), p−i(s), πi(pi(s), p−i(s))1≤s<t), and Π(·|∅) denotes the probability mass function of the ac-
tion at t = 1. This definition can be extended to settings with random observations of payoff or demand.

23Because in the baseline parametrization both players have the same feasible price set, their corre-
sponding space of feasible policies is also the same.
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Now, in this game where actions correspond to policies, it might be intractable to com-

pute equilibrium strategies ΠN ; in particular if one takes into account that the demand

parameters (a−1, a1) are unknown and, instead of (2), one aims to maximize e.g., the

worst-case of (2) over all possible demand parameters from a feasible range. Neverthe-

less, if there is a policy ΠD ∈ P that is conceptually simple – meaning that it is not

unreasonable to expect that players will consider this policy, for example because its un-

derlying ideas are well-documented in the literature –, not necessarily a Nash policy, but

such that ri(Π
C ,ΠD) < ri(Π

C ,ΠC) and r−i(Π
D,ΠC) > ri(Π

C ,ΠC), then, just as in the

prisoner’s dilemma, asserting that rational agents might play ΠC requires an explanation

why these rational agents do not consider the threat that the competitor plays ΠD. In

other words, if there exists a simple price policy that beats Q-learning, then there is

work to be done if one wants to argue that there is a real risk that two rational agents

independently decide to use Q-learning.

There are many such policies ΠD. One can, for example, design a policy that exploits

weaknesses in Q-learning by alternating between AD and WSLS, when WSLS has been

learned, in such a proportion that the opponent will not deviate from WSLS. In this

section we focus on a simple policy for which one can derive theoretical performance

guarantees regardless of the competitor’s policy: the well-known Exp3 policy, which we

adapt to the setting with discounted rewards. From the perspective of player i = ±1,

this version of Exp3 selects price p ∈ Ai in time period t ∈ N with probability

P
(i)
t,p :=

exp(η
∑t−1

s=1 δ
sX̂

(i)
s,p)∑

p′∈Ai
exp(η

∑t−1
s=1 δ

sX̂
(i)
s,p′)

,

for all p ∈ Ai and all t ∈ N, where

X̂
(i)
t,p := 1− Ŷ

(i)
t,p ,

Ŷ
(i)
t,p :=

Y
(i)
t · 1{pi(t) = p}

P
(i)
t,p

,

Y
(i)
t := 1− πi(pi(t), p−i(t)),

for all t ∈ N, p ∈ Ai and i = ±1, and η > 0 is a hyper-parameter of the algorithm.24 It

is common to measure the performance or regret of a policy by comparing it to the best

fixed action in hindsight (see, e.g. Lattimore and Szepesvári, 2020, Chapter 11). The

24The policy Exp3 can also handle stochastic demand. For example, in the common Bernoulli-logit
demand framework in which the random demands Di,t of player i at time t take values in {0, 1}, we
would then define Y

(i)
t = 1− (pi(t)−ci) ·Di,t. Because demand is assumed to be non-random, we replace

pi(t) ·Di,t by its expectation.
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regret of player i is thus defined as

Regreti := max
p∈Ai

∞∑
t=1

δtE[πi(p, p−i(t))]−
∞∑
t=1

δtE[πi(pi(t), p−i(t))].

Suppose that all expected payoffs πi(pi, p−i) are bounded by one – if the unknown pa-

rameters (a−1, a1, µ) are assumed to lie in a bounded set, this can easily be guaranteed by

dividing all payoffs by the maximum payoff πmax over all feasible unknown parameters.

We then have the following theoretical performance bound on Exp3, of which the formal

proof is contained in Appendix D.

Theorem 2 If player i uses Exp3 with hyper-parameter η =
√

log(|Ai|)(1−δ)2

δ2|Ai| then, regard-

less the policy of player −i, the regret of player i satisfies

Regreti ≤ 2

√
δ2

1− δ2
log(|Ai|).

Table 4 reports what happens when the policies Exp3 and Q-learning play against each

other, in the baseline parametrization with (α, β) set to a representative value of (0.15, 4×
10−6) as in Calvano et al. (2020a, p. 3280), and η set to the optimal choice in Theorem

2. We test different discount factors δ ∈ {0.95, 0.99, 0.999, 0.9999} – note that a discount

factor of 0.9999 is not exceedingly high but can be appropriate in practice if, for example,

annual interest rate equals 3.7 percent and prices can be updated on a daily basis. Table

4 reports the total expected discounted payoff during the effective time horizon (given by

T0.95 = 165, T0.99 = 842, T0.999 = 8449, T0.9999 = 84516), scaled according to the definition

of ∆̃ to facilitate comparison between different discount factors. Values reported are an

average over 1000 samples; we also give 95% confidence intervals.

The results show that, when a firm uses Q-learning, the competitor has incentive to

use Exp3 instead. This simultaneously leads to an increased payoff, and a decreased

payoff for the Q-learning player. Especially for larger discount values, the loss can be

substantial. For lower discount values, the performance of the policies are all roughly

the same, indicating that the effective time horizon is too small to facilitate learning.25

Thus, the policy Exp3 has deep roots in the literature, is easy to implement, comes

with a theoretical performance guarantee, and does better than Q-learning against Q-

learning. There appears to be no reason to assume that implementation of this policy by

a competitor is less likely than implementation of Q-learning.

25It is worth mentioning that the positive values of ∆̃ in Table 4 are a consequence of the feasible price
set and do not indicate a form of ‘collusion’; to see this, Table 7 in the Appendix repeats the experiment
of Table 4 for a different price set that is symmetric around the Nash price defined in Appendix B. The
results show that Q-learning is then still vulnerable to Exp3, but the absolute payoffs are substantially
lower than under the Nash price.
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δ = 0.95 δ = 0.99
Exp3 Q-learning Exp3 Q-learning

Exp3 .49± .002 .50± .006 .47± .004 .52± .003
Q-learning .48± .003 .50± .007 .46± .004 .50± .003

δ = 0.999 δ = 0.9999
Exp3 Q-learning Exp3 Q-learning

Exp3 .44± .005 .56± .002 .37± .004 .62± .001
Q-learning .38± .005 .50± .001 .26± .004 .49± .0003

Table 4: Empirically observed ∆̃ of the row player in the baseline parametrization, for
all combinations of Exp3 and Q-learning and different values of δ.

As discussed in Section 3.3, Calvano et al. (2020a) state that the presence of a reward-

punishment scheme is required for an equilibrium strategy to be collusive – merely ob-

serving supra-competitive prices is not enough. But what type of equilibrium is relevant?

As explained in Section 3 in the context of a 2-action 1-memory prisoner’s dilemma, the

Bellman equation (4) induces equilibria of strategies, where a strategy is a mapping from

states (prices charged in the previous period) to actions (prices charged in the current

period). These equilibria of strategies can potentially be ‘learned’ if both players use a

particular variant of Q-learning with the same underlying state space. However, on the

level of algorithms or policies, Q-learning is not in equilibrium. This is clear from our

numerical results above, which show that, if both players use Q-learning and δ is not too

small, each player has an incentive (sometimes substantial) to play Exp3 instead.

The concept of a ‘strategy’, i.e., a mapping from a state space to an action space, can be

thought of as a human interpretation of the dynamics generated by a particular algorithm.

But algorithms differ in their corresponding spaces of feasible strategies, their underlying

state spaces, and in whether ‘strategies’ are actually an appropriate interpretation at all.

For example, Q-learning with memory one may be said to be ‘trying to learn’ a mapping

from all feasible price pairs to all feasible prices, but for Exp3 and other algorithms

without memory this does not apply. In its most general form, an algorithm or policy

is a mapping from all available data to (probability distributions on) the action space.

The only true state is ‘all available data’, and the only true state space is all possible

collections of data available at a particular time point. Whether or not the dynamics of

algorithms can (approximately) be described, as t grows large, by a mapping that only

uses a subset of the available data (as in Q-learning) is an algorithm-specific question

that does not hold in generality, and that may not even be a desirable property in terms

of performance and resilience against rational opponents.

We conclude that ‘equilibrium of strategies’ is an algorithm-specific concept that is often
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incommensurable between different algorithms, and therefore is not the appropriate equi-

librium concept when comparing potentially colluding algorithms. Instead, we believe

that it is more natural to compare algorithms in terms of what they contribute to the

players’ actual objective – in this case the total expected infinite-horizon discounted pay-

offs. Table 4 shows that Q-learning is not an algorithm in (or nearly in) equilibrium: there

is often a clear incentive to play Exp3 instead of Q-learning – an easy-to-implement alter-

native with theoretical performance bounds and roots in the scientific literature. Exp3,

moreover, is just one instance of a potentially much larger set of algorithms against which

Q-learning performs poorly – including, for example, policies that exploit weaknesses in

Q-learning. This is difficult to reconcile with the idea that Q-learning would be imple-

mented in practice by rational agents.

Let us emphasize that we do not mean that algorithmic collusion is only convincing

if the corresponding algorithms are in equilibrium on the level of algorithms – for one

thing, characterizing such equilibria in repeated games with unknown pay-off matrices is

often an intractable problem. However, we do believe that any claim that a particular

algorithm is ‘collusive’ should be accompanied by an analysis that (a) either shows that

the algorithm would perform well against ‘reasonable’ competitive alternatives, or (b)

argues why in the particular market circumstances it is credible that a player will use the

algorithm despite its potentially poor performance against competitive opponents.

6 Concluding remarks

We critically examine claims that firms learn to charge supracompetitive prices that are

supported by collusive equilibria, if they use the same ϵt-greedy Q-learning algorithm. We

focus on Calvano et al. (2020a) but our conclusions hold more generally for these types

of simple Q-learning algorithms. Section 6.1 summarizes our main findings and Section

6.2 sets out what is needed to demonstrate the existence of a colluding price algorithm

that does form a threat to competition.

6.1 Conclusions on the alleged algorithmic collusion

Calvano et al. (2020a) claim that their ‘results indicate that, indeed, relatively simple pric-

ing algorithms systematically learn to play collusive strategies’ (p. 3268). Their concept

of collusion (p. 3269) involves that such strategies should include a reward-punishment

scheme. We note, however, that their claim of learning to play collusive strategies is

based in part on observing high values of the measure ∆. Yet a high value of ∆ is not

an indication that such schemes are present – a strategy of always pricing supracompet-

itively, for example, scores very high on ∆ but does not count as collusion according to

Calvano et al. (2020a). In addition, if one would measure collusion by the fraction of
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times that the algorithms converge to a strategy-equilibrium that includes some sort of

reward-punishment scheme, our analysis for the tractable case of m = 2 prices reveals

that a substantial number of simulations (more than half) do not converge to collusive

equilibria or even collusive strategies. Calvano et al. (2020a) do not offer evidence or

reasons to believe that the m = 15 case would be structurally different.

Calvano et al. (2020a) claim that the supracompetitive prices generated by their algo-

rithms are ‘sustained by collusive strategies’ (p. 3267), ‘do not result from a failure to

optimize’ (p. 3269), and that a ‘reward-punishment scheme ensures that the supracom-

petitive outcomes may be obtained in equilibrium’ (p. 3269). To support these claims,

the authors observe in limiting strategies a particular price pattern – a forced unilateral

price decrease is followed by price cuts of the non-deviating player, and after a number

of time periods prices gradually return to their original level – which they then interpret

as a ‘reward-and-punishment scheme’. First note that a solid statement on the presence

of reward-punishment schemes should preferably not only be based on one-period price

cuts but also on permanent price increases and decreases. Moreover, the price patterns

that Calvano et al. (2020a) analyze may allow other interpretations. In particular, we

show in a simple example that the existence of such price patterns can also be gener-

ated by non-collusive non-equilibrium strategies. Hence, the main argument to infer that

the supracompetitive prices generated by their Q-learning algorithms are ‘sustained by

collusive strategies’ appears to be incorrect.

In response one might say that being in equilibrium is irrelevant, and that what matters

only is the presence of rewards and punishments. However, if firms do not play equilibrium

strategies, then the algorithms have not converged to best-response strategies that a

rational agent would play. The supra-competitive outcomes would then truly be ‘collusion

by mistake’. Indeed, our simulations for the tractable version with m = 2 prices show

that a substantial fraction of supracompetitive prices in the limit are not explained by

collusive strategies or equilibria. Note that we do not claim that almost all limiting

strategies in the m = 15 setting are not collusive strategy pairs, but rather that the

argument used to infer collusive equilibria is incorrect. It therefore remains possible that

a substantial fraction of the supracompetitive outcomes that Calvano et al. (2020a) find

is not sustained by collusive equilibria.

Moreover, we have explained that the notion of equilibrium underlying Calvano et al.

(2020a) is not the right concept. If both firms use the same ϵt-greedy Q-learning algo-

rithms with memory one, then this creates a type of strategy-equilibria of which some

can be called collusive. However, there is no good reason why a competing firm would

use exactly this algorithm. The equilibrium-of-strategies is a concept that hinges on both

players using the same restrictive type of algorithm with the same restricted state space.
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Thus, this is an algorithm-dependent equilibrium, which is not the appropriate equilib-

rium concept for the meta-game in which firms choose algorithms in order to enhance

their profit. In particular, a user of a Q-learning algorithm will not only be interested in

the performance against another, identical Q-learner, but also in the performance against

reasonable alternative price policies. We show that when the Q-learning algorithm plays

against a simple alternative, Exp3, performance can deteriorate substantially, which im-

plies that, on the relevant level of algorithms, Q-learning is far out of equilibrium.

Calvano et al. (2020a) claim that their algorithms generate ‘sizable extra-profit compared

to the static Nash equilibrium’ (p. 3277). We believe that this claim is potentially confus-

ing. The measure ∆ that is used to quantify this extra profit is namely not based on the

actual objective of the firms – the total discounted payoffs over an infinite time horizon

– but on profit ‘upon convergence’ (p. 3277). High values of ∆ do not imply a sizable

increase in the firms’ actual objective. In addition, using the notion of an effective time

horizon, it follows that all potential extra-profits ‘upon convergence’ are in fact negligible

for the firms’ objective. All extra profits that do contribute to the firms’ objective are

caused by the expected earnings in case both players price uniformly-at-random. While

pricing uniformly-at-random happens to generate supracompetitive prices and payoffs on

average for the demand parameters and feasible price set used by Calvano et al. (2020a),

alternative demand parameters and feasible price sets can easily generate sub-competitive

payoffs. In other words, all observed extra-profits in the firms’ actual objective can be

attributed to factors not related to collusion.

We have also demonstrated that convergence to collusive equilibria in the algorithm stud-

ied by Calvano et al. (2020a) is intrinsically slow: it requires a phase transition to take

place that takes considerable time to realize and before which collusive strategy-equilibria

do not exist. In addition, convergence after the phase transition requires certain random

events to happen within a particular time frame to establish convergence, which can take

a long time and can easily fail. By simulating various ad-hoc changes to the parameters

ϵt and δ we have shown that obtaining a ‘sizable extra-profit’ within the effective time

horizon, i.e., fast enough such that it actually contributes to the firms’ objectives, is not

possible with this algorithm in the base-line parametrization. Because withm = 15 prices

it presumably takes considerably longer to learn collusive equilibria, there is reason to

believe that the problem of prohibitively slow convergence will not be diminished but

rather amplified if there are fifteen instead of two feasible prices. More sophisticated al-

gorithms can perhaps generate supra-competitive gains within the effective time horizon,

even for m = 15 prices, but that then first needs to be demonstrated. Reducing the time

to convergence from more than 400,000 to 165 periods is a more than 2400-fold reduction

that might be impossible even for the most sophisticated algorithms.
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Our overall conclusion is that the simulations presented by Calvano et al. (2020a) do

not give sufficient evidence for the claim that these types of Q-learning algorithms sys-

tematically learn collusive strategies: that claim is incorrect for m = 2 prices and we

don’t believe that a convincing reason is offered why this would be different for m = 15

prices. The same is true for the claim that the supracompetitive prices generated by the

algorithms are often supported by collusive equilibria. That the algorithms would gen-

erate sizable extra-profit is true for some price-sets and false for other price-sets, and is

determined by factors unrelated to collusion. Based on these findings, we conclude that

warnings that algorithmic collusion via these types of Q-learning algorithms is ‘more

than a remote possibility’ (p. 3268) or ‘not that improbable’ (p. 3295) and should ‘ring

an alarm bell’ (p. 3295) with competition authorities, are premature.

In this paper we have focused on the criticisms summarized above. However, there are at

least two other aspects of Q-learning that one could scrutinize. First, acknowledging that

convergence of their algorithms takes a very long time, Calvano et al. (2020a) suggest

that offline training can be used to speed up convergence. However, a main challenge in

algorithmic pricing is that the unknown market demand parameters have to be learned.

These parameters can only be learned by interactions with actual demand. It is far from

clear how a firm can learn about its consumers’ preferences in offline isolation – unless it is

some kind of market research, but this does not seem to be meant. Contrary to AlphaGo

or other board games, pricing games crucially involve unknown market parameters.

Calvano et al. (2020a) acknowledge that ‘the training environment may not exactly reflect

the reality of the markets in which the algorithms will be deployed. This implies that

what an algorithm has learned offline may be of little help in colluding in real life’ (p.

3293). Yet the authors nevertheless infer from a small numerical experiment that ‘offline

learning may not be completely useless after all’ (p. 3294). This conclusion is open to

various criticisms. It is based on ∆ in their Figure 11, which does not measure collusion

or profit gain according to the firms’ actual objective, as explained.26 Moreover, even if it

would, the time scale of their Figure 11 is still outside the effective time horizon. Without

giving details on an offline-learning plan and how it relates to the market reality in which

the firms are subsequently supposed to collude, and without studies that show positive

effects on the amount of collusion (properly measured) and the time-to-convergence,

the assertion ‘offline learning may not be completely useless after all’ (p. 3294) is not

sufficiently substantiated.

A second issue is that the (identical) pricing algorithms in Calvano et al. (2020a) are

assumed to start at exactly the same moment and use exactly the same parameters, such

26The parenthetical remark ‘The original levels of collusion can be reproduced’ on p. 3294 is another
example where Calvano et al. (2020a) incorrectly associate ∆ with collusion.
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as the learning parameters α and β, the feasible price ranges Ai and the initial Q-matrices

Q(i)(0). Moreover, the latter two quantities depend on the payoff functions πi(·, ·), which
are assumed to be unknown to the firms – computing the initial Q-matrix (equation (8)

on p. 3275) requires knowledge of the complete payoff matrix of a firm. The algorithm is

thus using information that is not available to the firms employing them. At a minimum,

this contradicts the authors’ claim that their algorithm has ‘no prior knowledge of the

environment in which they operate’ (p. 3268). It might be possible to fix some of these

issues without drastically changing the observed qualitative behavior – although relaxing

the assumption of synchronized starting times might not be trivial. We also expect the

outcomes to be robust to both firms independently choosing α and β within natural

bounds. Nevertheless, the structure and synchronization assumed raises questions about

the autonomous nature of collusion that is emphasized as alarming. The current setup of

Calvano et al. (2020a) at least gives the impression that coordination on starting times,

fine-tuned hyper-parameters, and a conveniently elevated feasible price set is required.

6.2 Conditions for algorithmic collusion

Algorithmic collusion clearly is an important topic, that rightly moves antitrust priorities

and large amounts of enforcement budgets. Yet there are many open questions still. How

will the increased use of data-driven pricing algorithms affect competition in the decades

to come? Will it enhance price competition amongst suppliers, or rather allow them to

coordinate on extra profit margins? Are the existing laws and regulations capable of

protecting competition again any new threats that pricing algorithms may pose to it?

How to detect when algorithms are harming welfare and are outside the boundary of

law? Finding answers to these questions and a balanced attitude towards algorithmic

pricing in the business practice are of the utmost social relevance and deserve the careful

attention of competition policy professionals. At the core of concerns about such algo-

rithms lies the question whether autonomous algorithmic collusion is possible at all. Can

algorithms really learn to price supracompetitively, without engaging in illicit communi-

cation that would already be punishable as cartel law violation, and at the same time

learn to price competitively against firms with different algorithms? Maybe algorithmic

collusion is nothing more than science fiction. If on the other hand algorithmic collusion

is implementable in reality, then competition authorities are right to jump on the subject

and should address challenging questions such as how to detect and mitigate the threat.

Although we find that Q-learning has not been shown to collude, we certainly do believe

that well-performing pricing algorithms can be constructed that do learn to collude. Yet

claims of existence of practically relevant colluding pricing algorithms need to satisfy a

few more criteria. Let us name the following five. First, because demand in practice is

random, this should be modelled as a non-degenerate random variable in the way that is
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common in the dynamic pricing literature since at least the work of Mills (1959). Second,

the demand function – the expected demand as function of the selling prices – should

be assumed unknown to the firms, for example in a Bayesian or frequentist, parametric

or non-parametric manner. Algorithms cannot use information that is unknown to the

user of that algorithm to construct, for example, a set of feasible prices. Third, to

assess firms’ choices, the profit-gain from collusion should be measured according to their

actual objectives – typically expected discounted profit over an infinite time horizon or

undiscounted expected total profit over a finite time horizon. Fourth, the firms should not

be assumed to start their algorithms under exactly timed and synchronized conditions,

since this inevitably would require some coordination. Fifth, to qualify as collusive,

algorithms should not only generate supracompetitive prices and profits when playing

against the same (or a similar) algorithm, but should also perform well against a class of

reasonable ‘competitive’ alternative pricing algorithms.

This last point is crucial. The challenge is not to construct an algorithm that generates

supracompetitive outcomes when playing against its own type. In a full information

framework this is easy: always price at the monopolist’ price – or at any other price with

supracompetitive profits. In an incomplete information setting, one should augment this

with demand learning, but it remains true: an algorithm that prices supra-competitively

when playing against itself is not difficult to construct and its existence is not surprising.27

What is needed is that the algorithm responds well if its supracompetitive prices are

undercut by the competitor. Now, recent papers take a small step in this direction: if the

competitor uses the exact same simple Q-learning algorithm, then a properly functioning

reward-punishment scheme could deter the competitor from playing the Nash price –

that is, if, for the sake of the argument, the limiting strategies indeed contain reward-

punishment schemes. But if a competitor uses just a slightly different algorithm, there

are no guarantees that Q-learning will respond well. In fact, it might respond very poorly,

for example against Exp3.

We fail to see why a rational agent would use an algorithm, knowing that it responds

very poorly to a simple and intuitive alternative algorithm that the competitor could use

and benefit from. It might, if the firm already knows that the competitor is using the

same algorithm and will continue to do so. But the challenge is showing that algorithmic

collusion can be realized by a rational agent without coordination with competitors. That

means that algorithmic collusion should be obtained without knowing which algorithm the

competitor will use. Thus, in the absence of coordination, an algorithm that learns to price

supra-competitively when playing against itself would only be used by a rational agent if

the algorithm also guaranteed a good performance against other reasonable algorithms

27In fact, the work by Kirman (1975), recently revisited by Cooper, Homem-de Mello and Kleywegt
(2015), already points in this direction.
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that the competitor might use. Without offering such guarantees one misses the essence

of the challenge to establish coordination-free algorithmic collusion.

This reasoning suggests that an algorithm that can learn to collude and simultaneously

has good performance against reasonable alternatives, should include three modules: a

collusive one, a competitive one, and a switch-mechanism to determine which module to

use. To see this, consider the repeated prisoner’s dilemma with known payoff matrix. If

one player uses the simplistic algorithm of always playing C then the other player should

always play D; if one always plays the best response then the other should always play

D; and if one has a sophisticated collusive algorithm then both players may discover that

they both benefit from playing C and know that they both do not use simplistic technol-

ogy. To learn to collude, they both thus need to discover whether the supracompetitive

action C by their opponent is generated by a simplistic algorithm or a sophisticated col-

lusive algorithm; in the first case they should respond with D, in the second case with

C. An algorithm that can learn to collude and simultaneously has good performance

against reasonable alternatives likely needs to have these three components. The collu-

sive module aims to learn the collusive price, the competitive module aims to respond

optimally against the opponent, and the switch-mechanism aims to discover whether

pricing supracompetitively outperforms pricing competitively against this opponent.

From this perspective, it also becomes clear why existing well-performing algorithms are

not likely to collude and at the same time respond well against competitive players. Most

existing well-performing algorithms learn to respond optimally to the environment that

they are in, and will not easily converge to an action that can be improved upon. Thus, if

its competitor(s) price(s) supra-competitively, the algorithm tries to learn a best response.

Some sophistication is needed to learn to collude in the sense described above. It would,

for example, require figuring out whether a competitor’s supra-competitive price should

be ‘punished’ by a best response, or whether it should be interpreted as an invitation to

tacit collusion. To learn this, the algorithm should discover how the competitor responds

to its actions, and it should take into account that its own actions may also be interpreted

by the other to discover whether tacit collusion is possible. In addition, it should do all

of this in a setting where the price-demand relation is unknown upfront and where the

firms cannot coordinate on synchronization. That such algorithms can be constructed

has recently been demonstrated by Meylahn and den Boer (2020) and Loots and den

Boer (2022). But simple existing algorithms usually do not satisfy these requirements.

Competition authorities that want to identify pricing algorithms with potential to be

used in practice and collude best develop expertise to find these kinds of structures in

their codes.

Finally, a note on the idea of intentionality of collusion. In some contributions to the
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debate on algorithmic collusion, a distinction is made between ‘autonomous’ or ‘spon-

taneous’ algorithmic collusion versus ‘pre-programmed’ or ‘intended’ collusion. Based

on our analyses, we believe this distinction requires some nuancing. The intentions of

software developers may be relevant from the perspective of the legality of using their

software, but from a programming perspective one cannot really talk about autonomous

collusion by an algorithm. By careful studying the Bellman equations, one could have

known in advance that collusive strategy-equilibria are implicitly present in Q-learning

algorithms. This may have been programmed unintentionally by a perfectly benign pro-

grammer, but a malign software developer could have come up with exactly this algorithm

to generate collusive outcomes - although he or she would have done a pretty bad job,

as we show in this paper. Algorithms do not learn or act autonomously: they are simply

doing what they are programmed to do – hence all (if any) algorithmic collusion is pre-

programmed. The outcomes may be unexpected, unwanted, or illegal even, but they are

not ‘unintended’ by the software. In other words, ‘autonomous’ or ‘spontaneous’ is not

a property of an algorithm, but of the human perception of its workings. These qualifi-

cations of particular algorithms that learn to collude are confusing and should better be

avoided.
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Appendix

A Additional numerical results: Effect of learning

rate on fraction of WSLS and GT

In this section, we show how the fraction of limiting collusive strategies WSLS and GT

depend on α. Table 5 summarizes how the fraction of strategies converging to WSLS and

the fraction of strategies converging to GT depend on α.

α 0.05 0.1 0.15 0.2 0.25

WSLS 0.28± 0.03 0.50± 0.03 0.43± 0.03 0.39± 0.03 0.34± 0.03
GT 0.002± 0.002 0.03± 0.01 0.03± 0.01 0.02± 0.01 0.02± 0.01

Table 5: The first and second row give the Wilson score interval for trajectories converging
to the WSLS and GT strategy pairs respectively of 1000 trajectories for different values
of α when using the baseline parameterization. Q-values are initialized as in Calvano
et al. (2020a) and all trajectories converged. All trajectories converged.

B Additional numerical results: alternative feasible

price sets

In this section, we consider two alternative feasible price sets which are symmetric around

the Nash price, defined as

Ãi =
{
pNi − (ξ + 1)ζi +

k

m− 1
· 2(1 + ξ)ζi : k = 0, . . . ,m− 1

}
Âi =

{
ci +

k

m+ 1
· 2(pNi − ci) : k = 1, . . . ,m

}
,

where ζi = pMi − pNi .

In Table 6 we show how using Ãi instead of Ai leads to negative ∆̃ values and negative

average profit when the competing player prices uniformly at random. This shows that

any surplus derived within the effective time horizon (during which Q-learning is sta-

tistically indistinguishable from pricing uniformly-at-random) is a property of the price

set.

In Table 7 we repeat the numerical experiments reported in Table 4 but now with feasible

price set Ãi instead of Ai. The results show that Q-learning is still vulnerable when

playing against Exp3, in particular if δ is close to one, but the surplus as measured by

∆̃ is negative. This illustrates that the positive values of ∆̃ in Table 4 should not be
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interpreted as that Exp3 is a collusive strategy, but that they are simply a consequence

of how the feasible price set is selected.

Price set Average price Average profit Expected ∆̃
Ai 1.69895 (+15%) 0.279906 (+27%) 0.497357

Ãi 1.47293 (+0%) 0.164479 (-26%) -0.510177

Âi 1.47293 (+0%) 0.172288 (-22%) -0.442015

Table 6: Average price and profit when both firms set their price uniformly at random,
for three feasible price sets. The first, Ai, is the original price set when using ξ = 0.1,
the second, Ãi, is symmetric around the Nash price with ξ = 0 and the last, Âi starts
just above the cost price and is centred around the Nash price. The numbers in between
parentheses report the relative difference compared to the Nash price 1.47 and profit 0.22

δ = 0.95 δ = 0.99
Exp3 Q-learning Exp3 Q-learning

Exp3 −0.48± .005 −0.49± .008 −0.43± .005 −0.46± .005
Q-learning −0.50± .007 −0.51± .009 −0.48± .005 −0.51± .004

δ = 0.999 δ = 0.9999
Exp3 Q-learning Exp3 Q-learning

Exp3 −0.26± .007 −0.37± .003 −0.05± .006 −0.22± .002
Q-learning −0.42± .005 −0.51± .001 −0.35± .004 −0.49± .0004

Table 7: Empirically observed ∆̃ in the baseline parametrization using Ãi with ξ = 0
for all combinations of Exp3 and Q-learning and different values of δ. For Q-learning,
we take α = 0.15 and β = 4 × 10−6. For Exp3, we fix η at the optimal value given in
Theorem 2. The values are an average over 1000 samples. In all cases, we give a 95%
confidence interval. Each entry gives the value of payoff to the row player, normalized
according to ∆̃ to facilitate comparison between different discount factors. Values are
computed based on the effective time horizon, which in each case is given by T0.95 = 207,
T0.99 = 1054, T0.999 = 10587, T0.9999 = 105921.

C Proof of Theorem 1.

In this proof, we treat ϵ ∈ [0, 1] as a variable. For i = ±1, (pi, p−i) ∈ Ai × A−i and

ϵ ∈ [0, 1] define

πi(pi, p−i; ϵ) := (1− ϵ)πi(pi, p−i) +
ϵ

|A−i|
∑

p∈A−i

πi(pi, p).

For i = ±1, (σ(i), σ(−i)) ∈ Σi × Σ−i and ϵ ∈ [0, 1], define

V
(i)

σ(i),σ(−i)(si, s−i; ϵ) :=
∞∑
t=1

δt−1E[πi(pi(t), p−i(t); ϵ)|s(1) = (si, s−i)],
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δ = 0.95 δ = 0.99
Exp3 Q-learning Exp3 Q-learning

Exp3 −0.42± .004 −0.43± .007 −0.38± .005 −0.41± .004
Q-learning −0.44± .006 −0.45± .009 −0.42± .004 −0.44± .004

δ = 0.999 δ = 0.9999
Exp3 Q-learning Exp3 Q-learning

Exp3 −0.24± .007 −0.33± .003 −0.06± .006 −0.21± .002
Q-learning −0.36± .005 −0.44± .001 −0.30± .004 −0.42± .0004

Table 8: Empirically observed ∆̃ in the baseline parametrization using Âi for all com-
binations of Exp3 and Q-learning and different values of δ. For Q-learning, we take
α = 0.15 and β = 4 × 10−6. For Exp3, we fix η at the optimal value given in Theorem
2. The values are an average over 1000 samples. In all cases, we give a 95% confidence
interval. Each entry gives the value of payoff to the row player, normalized according to
∆̃ to facilitate comparison between different discount factors. Values are computed based
on the effective time horizon, which in each case is given by T0.95 = 186, T0.99 = 947,
T0.999 = 9514, T0.9999 = 95181.

where (pi(t), p−i(t)) = (σ(i)(si(t), s−i(t)), σ
(−i)(s−i(t), si(t)) and (si(t + 1), s−i(t + 1)) =

(pi(t), p−i(t)) for all t ∈ N. By the ‘principle of optimality’,

V
(i)

σ(i),σ(−i)(si, s−i; ϵ) = πi(σ
(i)(si, s−i), σ

(−i)(s−i, si); ϵ)

+ δV
(i)

σ(i),σ(−i)(σ
(i)(si, s−i), σ

(−i)(s−i, si); ϵ).

Let

Aσ(i),σ(−i)

(si,s−i),(pi,p−i)
:= 1{σ(i)(si, s−i) = pi and σ(−i)(s−i, si) = p−i},

and let Aσ(i),σ(−i)
be the m2 × m2 matrix with rows and columns both arranged lexico-

graphically in the order of prices from low to high; i.e., if p
(1)
i < . . . < p

(m)
i are the feasible

prices of player i ordered from low to high, then Aσ(i),σ(−i)

(p
(ki)
i ,p

(k−i)

−i ),(p
ℓi
i ),p

(ℓ−i)

−i )
is the element at

row (ki − 1)m + k−i and column (ℓi − 1)m + ℓ−i of Aσ(i),σ(−i)
. Because Aσ(i),σ(−i)

is a

right-stochastic matrix, all eigenvalues have absolute value at most one. From δ ∈ (0, 1)

it follows that I − δAσ(i),σ(−i)
is invertible, and

V
(i)

σ(i),σ(−i)(p
(1)
i , p

(1)
−i ; ϵ)

V
(i)

σ(i),σ(−i)(p
(1)
i , p

(2)
−i ; ϵ)

...

V
(i)

σ(i),σ(−i)(p
(m)
i , p

(m)
−i ; ϵ)

 = (I − δAσ(i),σ(−i))−1


πi(p

(1)
i , p

(1)
−i ; ϵ)

πi(p
(1)
i , p

(2)
−i ; ϵ)

...

πi(p
(m)
i , p

(m)
−i ; ϵ)

 .
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It follows that, for all ϵ, ϵ′ ∈ [0, 1] and all (si, s−i) ∈ Ai ×A−i,∣∣∣V (i)

σ(i),σ(−i)(si, s−i; ϵ)− V
(i)

σ(i),σ(−i)(si, s−i; ϵ
′)
∣∣∣

≤
∣∣∣∣∣∣V (i)

σ(i),σ(−i)(·, ·; ϵ)− V
(i)

σ(i),σ(−i)(·, ·; ϵ′)
∣∣∣∣∣∣

≤
∣∣∣∣(I − δAσ(i),σ(−i))−1

∣∣∣∣ · ||πi(·, ·; ϵ)− πi(·, ·; ϵ′)||

≤ 1

1− δ
·m · sup

(pi,p−i)∈Ai×A−i

∣∣∣∣∣∣(ϵ′ − ϵ)πi(pi, p−i) +
ϵ− ϵ′

|A−i|
∑

p∈A−i

πi(pi, p)

∣∣∣∣∣∣
≤πmax ·m

1− δ
|ϵ− ϵ′|.

Let V
(i)

σ(−i)(si, s−i; ϵ) := maxσ(i)∈Σi
V

(i)

σ(i),σ(−i)(si, s−i; ϵ). We have

V
(i)

σ(−i)(si, s−i; 1) = (1− δ)−1 1

|A−i|
∑

p−i∈A−i

π(p∗, p−i),

for all states (si, s−i) ∈ Ai × A−i and all opponent’s strategies σ(−i) ∈ Σ−i. Therefore,

for all p ∈ Ai, p ̸= p∗,

1

|A−i|
∑

p−i∈A−i

{πi(p
∗, p−i) + δV

(i)

σ(−i)(p
∗, p−i; 1)}

− 1

|A−i|
∑

p−i∈A−i

{πi(p, p−i) + δV
(i)

σ(−i)(p, p−i; 1)}

=
1

|A−i|
∑

p−i∈A−i

{πi(p
∗, p−i)− πi(p, p−i)} ≥ κ,

for all opponent’s strategies σ(−i) ∈ Σ−i, where κ := minp∈Ai,p ̸=p∗
1

|A−i|
∑

p−i∈A−i
{πi(p

∗, p−i)−
πi(p, p−i)}. In addition, for any state (si, s−i) ∈ Ai ×A−i, we have

(1− δ)−1π
(i)
min(ϵ) ≤ V

(i)

σ(−i)(si, s−i; ϵ) ≤ (1− δ)−1π(i)
max(ϵ),

where π
(i)
min(ϵ) := minpi∈Ai,p−i∈A−i

πi(pi, p−i; ϵ) and π
(i)
max(ϵ) := maxpi∈Ai,p−i∈A−i

πi(pi, p−i; ϵ).

Combining the above, we obtain that, for all p ∈ Ai, p ̸= p∗, and all states (si, s−i) ∈
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Ai ×A−i

ϵ

|A−i|
∑

p−i∈A−i

{πi(p
∗, p−i) + δV

(i)

σ(−i)(p
∗, p−i; ϵ)}

+(1− ϵ){πi(p
∗, σ(−i)(s−i, si)) + δV

(i)

σ(−i)(p
∗, σ(−i)(s−i, si); ϵ)}

− ϵ

|A−i|
∑

p−i∈A−i

{πi(p, p−i) + δV
(i)

σ(−i)(p, p−i; ϵ)}

−(1− ϵ){πi(p, σ
(−i)(s−i, si)) + δV

(i)

σ(−i)(p, σ
(−i)(s−i, si); ϵ)}

≥ ϵ

|A−i|
∑

p−i∈A−i

{πi(p
∗, p−i) + δV

(i)

σ(−i)(p
∗, p−i; 1)}

− ϵ

|A−i|
∑

p−i∈A−i

{πi(p, p−i) + δV
(i)

σ(−i)(p, p−i; 1)}

+(1− ϵ){πi(p
∗, σ(−i)(s−i, si))− πi(p, σ

(−i)(s−i, si))}

+(1− ϵ)δ{V (i)

σ(−i)(p
∗, σ(−i)(s−i, si); ϵ)− V

(i)

σ(−i)(p, σ
(−i)(s−i, si); ϵ)}

−ϵδ
1

|A−i|
∑

p−i∈A−i

{V (i)

σ(−i)(p
∗, p−i; 1)− V

(i)

σ(−i)(p
∗, p−i; ϵ)}

−ϵδ
1

|A−i|
∑

p−i∈A−i

{V (i)

σ(−i)(p, p−i; ϵ)− V
(i)

σ(−i)(p, p−i; 1)}

≥ϵκ+ (1− ϵ) min
p∈Ai,p̃∈A−i

{πi(p
∗, p̃)− πi(p, p̃)}

−(1− ϵ)δ(1− δ)−1(π(i)
max(ϵ)− π

(i)
min(ϵ))− 2ϵδ

πmax ·m
1− δ

(1− ϵ),

which is strictly greater than zero if ϵ is sufficiently close to one. As a result, p∗ is the

optimal action in all states. This completes the proof of the theorem.

D Proof of Theorem 2.

To prove the theorem, we adapt Section 11.4 of Lattimore and Szepesvári (2020) to the

setting with infinite-horizon discounted rewards. For all t ∈ N ∪ {0} and p ∈ Ai let

Ŝ
(i)
t,p :=

t∑
s=1

δsX̂(i)
s,p, Ŝ

(i)
t :=

t∑
s=1

δs
∑
p∈Ai

P (i)
s,pX̂

(i)
s,p,

and

Wt :=
∑
p∈Ai

exp(ηŜ
(i)
t,p),
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where an empty sum is defined as zero and hence Ŝ
(i)
0,p = 0 and W0 = |Ai|. For all t ∈ N,

Wt

Wt−1

=
∑
p∈Ai

exp(ηŜ
(i)
t−1,p)

Wt−1

exp(ηδtX̂
(i)
t,p) =

∑
p∈Ai

P
(i)
t,p exp(ηδ

tX̂
(i)
t,p)

≤
∑
p∈Ai

P
(i)
t,p (1 + ηδtX̂

(i)
t,p + η2δ2t(X̂

(i)
t,p)

2)

≤ exp

(
ηδt
∑
p∈Ai

P
(i)
t,p X̂

(i)
t,p + η2δ2t

∑
p∈Ai

P
(i)
t,p (X̂

(i)
t,p)

2

)
,

where the first inequality uses exp(x) ≤ 1 + x + x2 for all x ≤ 1 – note that X̂
(i)
t,p ≤ 1 –,

and the second inequality uses 1 + x ≤ exp(x) for all x ∈ R. It follows that

exp(ηŜ
(i)
t,p) ≤ Wt = W0

t∏
s=1

Ws

Ws−1

≤ |Ai| · exp

(
t∑

s=1

ηδs
∑
p∈Ai

P (i)
s,pX̂

(i)
s,p +

t∑
s=1

η2δ2s
∑
p∈Ai

P (i)
s,p(X̂

(i)
s,p)

2

)
,

and therefore, by taking logarithms and dividing by η,

Ŝ
(i)
t,p − Ŝ

(i)
t ≤ log(|Ai|)

η
+ η

t∑
s=1

δ2s
∑
p∈Ai

P (i)
s,p(X̂

(i)
s,p)

2. (7)

Now

E

[
t∑

s=1

δ2s
∑
p∈Ai

P (i)
s,p(X̂

(i)
s,p)

2

]
=

t∑
s=1

δ2sE

∑
p∈Ai

P (i)
s,p

(
1− Y

(i)
s · 1{pi(s) = p}

P
(i)
s,p

)2


=
t∑

s=1

δ2sE

[
1− 2

∑
p∈Ai

Y (i)
s 1{pi(s) = p}+

∑
p∈Ai

(Y
(i)
s )2 · 1{pi(s) = p}

P
(i)
s,p

]

=
t∑

s=1

δ2sE

[
1− 2Y (i)

s +
∑
p∈Ai

(Y (i)
s )2

]

≤
t∑

s=1

δ2s|Ai| =
δ2

1− δ2
|Ai|, (8)
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where the inequality follows from Y
(i)
s ∈ [0, 1], and where the third equality uses

∑
p∈Ai

Y
(i)
s 1{pi(s) =

p} = Y
(i)
s and, by conditioning on the action selected in period t,

E

[
(Y

(i)
s )2 · 1{pi(s) = p}

P
(i)
s,p

| {pi(s′), p−i(s
′), Y

(i)
s′ : 1 ≤ s′ < s}

]
=E

[
(Y (i)

s )2 | {pi(s′), p−i(s
′), Y

(i)
s′ : 1 ≤ s′ < s}

]
,

We have

E[X̂(i)
s,p] = 1− E[Ŷ (i)

t,p |pi(t) = p]P
(i)
t,p − E[Ŷ (i)

t,p |pi(t) ̸= p](1− P
(i)
t,p ) = E[πi(p, p−i(s))],

for all p ∈ Ai, and

E[πi(pi(s), p−i(s))] = E[
∑
p∈Ai

P (i)
s,pX̂

(i)
s,p].

By (7) and (8),

Regreti = max
p∈Ai

{
t∑

s=1

δsE[(πi(p, p−i(s))]−
t∑

s=1

δtE[πi(pi(s), p−i(s))]

}
= max

p∈Ai

{
E[Ŝ(i)

t,p − Ŝ
(i)
t ]
}

≤ log(|Ai|)
η

+ η|Ai|
δ2

1− δ2

= 2

√
δ2

1− δ2
|Ai| log(|Ai|),

with η =
√

log(|Ai|)(1−δ)2

δ2|Ai| . This completes the proof.
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