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Implicit score-driven filters
for time-varying parameter models∗

Rutger-Jan Lange†, Bram van Os‡ and Dick van Dijk§
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Abstract
We propose an observation-driven modeling framework that permits time variation in the model
parameters using an implicit score-driven (ISD) update. The ISD update maximizes the logarith-
mic observation density with respect to the parameter vector, while penalizing the weighted ℓ2

norm relative to a one-step-ahead prediction. This yields an implicit stochastic-gradient update;
we show that the popular class of explicit score-driven (ESD) models arises if the observation log
density is linearly approximated around the prediction. By preserving the full density, the ISD
update globalizes favorable local properties of the ESD update. Namely, for log-concave observa-
tion densities (even when misspecified), ISD filters are stable for any learning rate and globally
contractive to a pseudo-truth. We demonstrate the usefulness of ISD filters in simulations and
empirical illustrations in finance and macroeconomics.
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driven models
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1 Introduction

Ample empirical evidence suggests it is often too restrictive to assume that model parameters
remain constant for prolonged periods of time. In economics and finance, parameters are
often found to be regime dependent or subject to structural breaks (e.g., Stock and Watson,
1996). Parameters may also change more gradually and not follow an easily discernible
pattern, making it unclear how to update them after observing new data. In some cases,
ex-post estimators can be constructed. For example, in ARCH-type models (see Teräsvirta,
2009, for an overview), time-varying volatility is updated using the squared shock, which
provides an unbiased ex-post proxy of the true variance. In general, however, such proxies
may be difficult to derive, inefficient, or nonexistent.

We propose a comprehensive framework that allows a model’s parameters to be made
time-varying in an observation-driven setting by means of an implicit score-driven (ISD)
filter. Analogous to the Kalman (1960) filter, the proposed ISD filter alternates between a
prediction step and, crucially, an update step. The ISD update step is the solution to an
optimization problem that maximizes the log-likelihood contribution of the current observa-
tion subject to a weighted ℓ2 penalty centered at the one-step-ahead prediction. The penalty
weights are controlled by a positive-definite matrix, the inverse of which can be viewed as
a learning-rate matrix. Optimizing the logarithmic likelihood allows new information to be
efficiently incorporated, while the penalty term regularizes the extent to which the updated
parameter deviates from its prediction. This ISD setup also enables automatic coordination
of the updates of multiple interacting parameters and incorporation of constraints without
necessitating parameter transformations.

The first-order condition corresponding to the ISD optimization problem can be formu-
lated as an implicit stochastic-gradient update: implicit because the gradient is evaluated
in the updated rather than the predicted parameter, and stochastic because it uses noisy
data. In the optimization literature, such methods are known as proximal-point methods,
and are recognized as inherently more stable than their explicit counterparts, which arise
as first-order approximations. Moreover, implicit gradient approaches are guaranteed to im-
prove the objective function—in our case, the log-likelihood contribution of the most recent
observation. As we discuss in Section 1.1, explicit score-driven (ESD) updates do not share
this desirable property, despite being widely used to track time-varying parameters.

The ISD filter has several attractive theoretical properties, as outlined below and demon-
strated in detail throughout the paper. These properties are typically sought in observation-
driven models, but rarely combined in a single framework. First, the ISD filter is invert-
ible under mild and easily verifiable conditions; for example, concavity of the researcher-
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postulated logarithmic density is, even when misspecified, typically sufficient (Theorem 1).
Hence, any differences stemming from the initialization of the filter disappear almost surely
and exponentially fast—a crucial property in the filtering literature (e.g., Bougerol, 1993,
Straumann and Mikosch, 2006). Second, the ISD update is globally contractive in expecta-
tion to a small region around the pseudo-truth (Theorem 2). This means that, on average,
the update is more accurate than the prediction on which it is based. This contraction is
global in that the predictions may be arbitrarily poor; in fact, the largest improvements
are expected for the worst predictions. Only when the prediction is very close to the
(pseudo-)true parameter may the update be less accurate, as is unavoidable when using
noisy data. The contraction property of the ISD filter is also robust in that it holds for
an arbitrary (positive-definite) learning-rate matrix. This stands in contrast to ESD filters,
which require additional stringent assumptions that limit the magnitude of the update; this
is the price paid for relying on first-order approximations.

We demonstrate the theoretical and practical advantages of the ISD filter in simulation
experiments and empirical illustrations. In simulations, we find that the ESD filter may
diverge, even in relatively simple settings, while the ISD filter remains well-behaved. This
finding appears to be new in the literature on parameter tracking (Section 1.1). In our
empirical illustrations, we consider a linear regression of daily Microsoft equity returns on
the market factor, where the regression coefficient (i.e., the slope) is made time-varying.
Additionally, we consider growth-at-risk estimates captured by the lower quantiles of quar-
terly U.S. GDP growth. In this case, the ISD quantile update yields an implicit version of
Engle and Manganelli’s (2004) adaptive CAViaR model, with the advantage that the ISD
update cannot be more extreme than the observation just received. This enhanced stability,
together with simple parameter restrictions, ensures that jointly modeled quantiles remain
properly ordered, thereby avoiding the common quantile-crossing problem.

In Section 2, we outline the ISD methodology and highlight the differences with conven-
tional ESD models. Section 3 presents the theoretical properties, focusing on filter stability
and optimality, while Section 4 discusses maximum-likelihood estimation of the static param-
eters. Sections 5 and 6 contain simulations and empirical illustrations, respectively. Finally,
Section 7 concludes. All proofs are provided in the appendix.

1.1 Positioning in the literature

This paper intersects with two strands of literature that can be characterized along two axes,
as visualized in Table 1, by (a) the stochastic-gradient method used (i.e., explicit or implicit)
and (b) whether the focus is on “learning” or “tracking” (i.e., the parameter to be estimated
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Explicit gradient method Implicit gradient method
Learning SGD (e.g. Robbins and Monro, 1951; ISGD (e.g. Patrascu and Necoara, 2018;
(static target) Amari, 1993; Bottou, 2012) Asi and Duchi, 2019; Toulis et al., 2021)
Tracking ESD filter (e.g. Creal et al., 2013; ISD filter (this article)
(dynamic target) Harvey, 2013; www.gasmodel.com)

Table 1: Overview of related methods.
Note: (I)SGD = (implicit) stochastic gradient descent. (I/E)SD = (implicit/explicit) score driven.

is static or dynamic). To the best of our knowledge, this paper is unique in the fourth
quadrant, that is, in using an implicit gradient method to track a dynamic parameter.1

Regarding the first axis (implicit v. explicit gradient methods), the ISD filter is related to
implicit gradient methods for static optimization problems, in particular Rockafellar’s (1976)
proximal-point algorithm, which combines a static target function to be optimized with a
quadratic penalty involving some previous iterate. As our log-likelihood function involves
(random) observations drawn from the true density, at every time step the ISD filter can be
viewed as a stochastic proximal-point method (e.g., Bauschke et al., 2003; Ryu and Boyd,
2016; Bianchi, 2016; Patrascu and Necoara, 2018; Asi and Duchi, 2019). As is well known,
the proximal optimization can be reformulated as an implicit stochastic-gradient step (e.g.,
Toulis and Airoldi, 2015; Toulis et al., 2016; Toulis and Airoldi, 2017; Toulis et al., 2021).
Our approach is also related to online-learning methods that sequentially process data (e.g.,
Orabona, 2019; Cesa-Bianchi and Orabona, 2021), notably in machine-learning applications
(e.g., Kulis and Bartlett, 2010). What differentiates our work from implicit gradient methods
in the (stochastic) optimization literature is that we consider a setup in which the parameter
to be estimated is dynamic.

Regarding the second axis (learning v. tracking), the ISD filter is related to the litera-
ture that uses explicit stochastic-gradient methods for tracking time-varying parameters. In
particular, dynamic conditional score (DCS; Harvey, 2013) models and generalized autore-
gressive score (GAS; Creal et al., 2013) models use the (explicit) gradient of the log-likelihood
function, known as the score, to update the time-varying parameters. This framework en-
compasses many established models, such as the GARCH model, and is popular for its ease
of use and strong forecasting performance (e.g., Creal et al., 2014; Harvey and Luati, 2014;
Koopman et al., 2016; Harvey and Lange, 2017; Opschoor et al., 2018; Gorgi, 2020). It
has been used in ∼400 published articles; for a near-exhaustive list, see www.gasmodel.com.
Recent survey articles (Artemova et al., 2022a; Artemova et al., 2022b; Harvey, 2022) have
converged on the terminology of score-driven (SD) models. To align with this nomenclature

1The overview presented in Table 1 is not exhaustive; for example, we have left out all simulation-based
approaches such as particle filters (e.g., Chopin and Papaspiliopoulos, 2020).
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while highlighting the difference with our approach, we will refer to this (existing) model
class as using explicit score-driven (ESD) filters. As this article demonstrates, ESD filters
can be obtained within the ISD framework by replacing, at each time step, the logarithmic
observation density by its local-linear approximation around the prediction—in the time-
series literature, this insight is apparently new. We will show that avoiding the local-linear
approximation has both theoretical and practical advantages.

2 Methodology

2.1 Implicit score-driven filters

We consider an N × 1 variable of interest yt, observed at times t = 1, . . . , T , drawn from
a data-generating process (DGP) characterized by a density p0(·|θ0

t , ψ
0,Ft−1). Hence, yt is

drawn at each time step from a conditional distribution, which is controlled by a K0 × 1
time-varying parameter vector θ0

t taking values in some parameter space Θ0. Further, ψ0

is a vector of static shape parameters, and Ft−1 denotes the information set at time t − 1,
thus permitting dependence on exogenous variables and/or lags of yt. For readability, the
dependence on ψ0 and Ft−1 is suppressed; i.e., we write p0(·|θ0

t ) for p0(·|θ0
t , ψ

0,Ft−1). The
dynamics of the true process {θ0

t } are left, for the most part, unspecified.
The aim of this paper is to devise a modeling framework that attempts to approximate

the true observation density p0(·|θ0
t ). To this end, we consider filters that alternate between

prediction and update steps. Specifically, let p(·|θt) denote the researcher-postulated ob-
servation density, which may or may not be correctly specified, where θt denotes a K × 1
vector of time-varying parameters that can take values in some non-empty convex parameter
space Θ ⊆ RK . As above, additional dependence on static shape parameters ψ and/or other
information available at time t − 1 is permitted, but suppressed for readability. We denote
the predicted and updated parameter vectors by θt|t−1 ∈ Θ and θt|t ∈ Θ, which reflect the
researcher’s estimates of θt using the information available at times t− 1 and t, respectively.

The main difficulty in working with time-varying parameter models lies in specifying
how θt|t should be updated from θt|t−1 after observing yt. We argue that a sound update
scheme should satisfy at least two criteria. First, the update should yield an improved fit
of the observed data yt in terms of the likelihood, i.e., p(yt|θt|t) ≥ p(yt|θt|t−1). As we shall
see, explicit score-driven filters generally fail to meet this requirement. Second, as each
observation yt is inherently noisy, it is desirable to regularize the extent to which the update
θt|t deviates from the prediction θt|t−1. Penalizing the magnitude of θt|t − θt|t−1 prohibits the
filter from becoming excessively volatile.
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To satisfy both criteria, we propose the class of implicit score-driven (ISD) filters. These
filters perform the parameter update at time t by maximizing the researcher-postulated
logarithmic observation density log p(yt|·) subject to a weighted ℓ2 penalty centered at the
prediction θt|t−1. That is, the parameter update is defined as

θt|t := argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt), (1)

where
f(θ|yt, θt|t−1, Pt) := log p(yt|θ) − 1

2
∥∥∥θ − θt|t−1

∥∥∥2

Pt
. (2)

Here, f(θ|yt, θt|t−1, Pt) denotes the “regularized” log-likelihood contribution and ∥x∥2
Pt

=
x′Ptx is the squared ℓ2 norm with respect to a K×K positive-definite penalty matrix Pt. By
formulating the parameter update as the solution to a maximization problem, the proposed
method has several favorable characteristics. First, all information in the conditional density
(as opposed to, e.g., moment information only) is utilized to update the parameter. Second,
elements of the parameter update θt|t are automatically interdependent, because jointly they
represent the solution to the multivariate optimization problem (1). Third, the update θt|t

is automatically contained in the correct space Θ and does not require specification of a
link function. In fact, we could constrain Θ to any non-empty convex subset, allowing for
straightforward incorporation of a great variety of constraints. When θt contains positive-
valued time-varying shape parameters (as in Section 5.3), optimization (1) automatically
keeps them positive.

The ℓ2 penalty yields tractable updates and can be interpreted as a second-order Taylor
expansion around θt|t−1 of a smooth loss function, where Pt acts as the Hessian. Further-
more, the ISD update defined in equations (1)–(2) takes a comparable form to Rockafellar’s
(1976) classic proximal-point algorithm, which similarly considers the optimization of a tar-
get function—in our case, the log-likelihood contribution of the (a priori random) realiza-
tion yt—subject to a quadratic penalty. For a fixed time step, therefore, the approach can
be viewed as a stochastic proximal-point method (e.g., Bauschke et al., 2003; Asi and Duchi,
2019); the difference, as discussed in Section 1.1, is that we consider a moving target.

Update (1) can also be seen as computing the posterior mode in a (possibly misspecified)
Bayesian framework, where the quadratic penalty corresponds to a Gaussian prior. This
perspective highlights a link with Laplace approximation methods in both the Bayesian lit-
erature (e.g., Rue et al., 2009) and the frequentist literature (e.g., Koyama et al., 2010).
Interestingly, (1) reduces to Kalman’s level update if p(·|θ) is a Gaussian density, while its
mean is a linear transformation of θ, and the penalty matrix is taken to be the inverse
of Kalman’s predicted covariance matrix. Although the link between (least-squares) opti-
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mization methods and the Kalman filter has been known at least since Bierman (1977) and
Bertsekas (1996), it recently has attracted renewed interest in signal processing (e.g., Aky-
ildiz et al., 2019), control theory (e.g., Simonetto and Massioni, 2024), and econometrics
(e.g., Lange, 2024a; Lange, 2024b).

These numerous connections motivate the investigation of the proximal method (1) in
a more general context, where the observation density may be non-Gaussian, θ may be
unrelated to the mean, and the quadratic penalty does not necessarily correspond to a
Gaussian prior. Rather, we attempt to remain, as far as possible, agnostic with regard to
the true state dynamics. Specifically, we make no (hidden) assumption about the linearity
or Gaussianity of the true states {θ0

t }. Consistent with this aim, update (1) is postulated as
(part of) a filter or an algorithm—a conceptually distinct approach from imposing conditions
on the DGP. We are interested in investigating the performance of the proposed algorithm,
especially when some (or all) of the classic assumptions fail. Despite its simplicity and close
connection with existing methods, the proposed method is—at this level of generality—new.

Whereas the DGP is unknown, the postulated density p(·|θ) is under the researcher’s
control and thus, typically, it is analytically known. For this reason, the assumptions below
relate only to this postulated density, and, as such, have the advantage of being practically
verifiable. Assumptions 1 and 2 are standard in the optimization literature, ensuring the
existence and uniqueness of the solution to the maximization problem (1). Assumptions 3
and 4 are convenient in allowing us to characterize its solution using a standard first-order
condition. While this simplification is not strictly necessary (e.g., we could work with sub-
gradients), it benefits the clarity of exposition and improves tractability.

Assumption 1 (Existence) The solution set of argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt) is non-empty with
probability one.

Assumption 2 (Strictly concave regularized log likelihood) f(θ|yt, θt|t−1, Pt) is proper
strictly concave in θ, ∀θ ∈ Θ with probability one.

Assumption 3 (Interior solution) θt|t ∈ Int(Θ) with probability one.

Assumption 4 (Differentiability) log p(yt|θ) is at least (a) once or (b) twice continuously
differentiable in θ, ∀θ ∈ Int(Θ) with probability one. When left unspecified, (b) holds.

Assumptions 1 and 2 can typically be satisfied through a sufficiently large penalty Pt.
Even if the postulated logarithmic density is badly behaved (e.g., non-concave or multi-
modal), as long as the penalty term is strong enough, update (1) remains well-behaved.
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Under Assumptions 1 through 4a, the first-order condition for the parameter update θt|t in
the maximization problem (1), i.e., 0 = ∇(yt|θt|t) − Pt(θt|t − θt|t−1), can be rearranged as

θt|t = θt|t−1 + Ht ∇(yt|θt|t), (3)

where the inverse penalty Ht := P−1
t is referred to as the learning-rate matrix at time t and

∇(yt|θt|t) := (∂ log p(yt|θ)/∂θ)|θ=θt|t is the score evaluated in θt|t. Representation (3) demon-
strates that the ISD framework yields a gradient-type parameter update. The learning-rate
matrix Ht controls the step size and allows for different learning rates and interactions be-
tween the different time-varying parameters. Crucially, the score is evaluated at the update
θt|t rather than the prediction θt|t−1. This means that update (3) is an implicit gradient
method; i.e., the parameter update θt|t appears on both sides of the equation and is thus not
immediately computable. Because the update θt|t is also stochastic—it is based on the a-
priori random realization yt—our framework is closely related to implicit stochastic-gradient
methods (Section 1.1). While the first-order condition (3) may not allow a closed-form solu-
tion, Assumptions 2 and 4a guarantee that the global solution to optimization problem (1)
can be found numerically using standard optimization techniques.

In the optimization literature, the learning-rate matrix Ht is often set to decrease over
time (e.g., Ht = O(t−1)), such that the parameter asymptotically converges to some constant
pseudo-true value. We are interested in tracking a time-varying true parameter; hence, our
filtered path must not converge over time, but remain responsive even asymptotically. To
achieve this, we can keep Ht constant over time, i.e., set Ht = H for all t, where H may
contain static parameters to be estimated (Section 4).

To complete our filter setup, the ISD update step (1) is complemented with a prediction
step that generates one-step-ahead forecasts. For simplicity, we consider a linear first-order
specification as follows:

θt+1|t = ω + Φ θt|t, (4)

where ω is a K × 1 vector of constants and Φ is a K ×K autoregressive matrix. Conditions
ensuring stable recursions are discussed in the next section. The requirement θt+1|t ∈ Θ can
typically be fulfilled by appropriate parameter restrictions and/or link functions. Again we
emphasize that the linear prediction step (4) is a property of the filter, not the DGP. Of
course, the prediction step could be generalized to allow for non-linear and/or higher order
dynamics if these were found to be relevant for a particular application. In economics and
statistics, however, mean reversion is often important during the prediction step, when no
additional information is available. In these cases, a more complicated structure may not
yield immediate benefits.
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2.2 Relationship with explicit score-driven filters

The ISD update (3) suggests a close connection with existing (i.e., explicit) score-driven
models. Here we show that linearizing the logarithmic observation density in the ISD opti-
mization problem (1) produces the familiar explicit gradient update. Specifically, suppose we
approximate the logarithmic observation density in equation (2) using a first-order Taylor ex-
pansion around the prediction θt|t−1, i.e., log p(yt|θ) ≈ log p(yt|θt|t−1)+⟨θ−θt|t−1,∇(yt|θt|t−1)⟩,
where ⟨x1, x2⟩ := x′

1x2 denotes the inner product. To avoid boundary solutions, we consider
maximization over the Euclidean space RK . Because the regularized log-likelihood contribu-
tion f(·|·, ·, ·) in optimization problem (1) now becomes a linear target in combination with
a quadratic penalty, the optimization can be performed in closed form. Indeed, the resulting
linearized version of optimization (1) and associated first-order condition now read

θex
t|t := argmax

θ∈RK

{
log p(yt|θt|t−1) + ⟨θ − θt|t−1,∇(yt|θt|t−1)⟩ − 1

2∥θ − θt|t−1∥2
Pt

}
, (5)

θex
t|t = θt|t−1 + Ht ∇(yt|θt|t−1), (6)

where the explicit update is denoted θex
t|t to differentiate it from the ISD update (3).

Combining the first-order condition (6) with the linear prediction step (4) reproduces the
dynamic conditional score (DCS; Harvey, 2013) update or, equivalently, the generalized au-
toregressive score (GAS; Creal et al., 2013) update. These updates have collectively become
known as score driven (Section 1.1); hence, we refer to equation (6) as the explicit score-
driven (ESD) update. Combining the ESD update (6) with the linear prediction step (4),
we obtain the prediction-to-prediction recursion that is standard in the ESD literature:

θex
t+1|t = ω + ASt ∇(yt|θt|t−1) + Φ θt|t−1. (7)

Here, we take a dynamic learning-rate matrix Ht = HSt, consisting of a time-invariant
learning-rate matrix H and a dynamic scaling matrix St known at time t, while A := ΦH is a
combined coefficient matrix of static parameters. The scaling matrix St is often chosen based
on the Fisher information of the postulated density (e.g., Artemova et al., 2022a). While
the relationship between implicit and explicit updates is well-known in the optimization
literature (e.g., Rockafellar, 1976), it is apparently novel in the time-series literature.

The inherent locality of the first-order Taylor expansion suggests that the ESD update
may perform satisfactory only for “minor” updates. Notably, the ESD update does not ensure
that the local fit is improved; that is, it is not guaranteed that p(yt|θex

t|t) ≥ p(yt|θt|t−1). If the
explicit score ∇(yt|θt|t−1) is non-zero, a learning rate large enough—or, equivalently, a penalty
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small enough—generally exists that leads to the undesirable outcome p(yt|θex
t|t) < p(yt|θt|t−1)

due to “overshooting”. In contrast, any non-infinitesimal implicit update strictly improves
the local fit of the model, for any learning rate, by design. This is because the penalty at θt|t

strictly exceeds the zero penalty at θt|t−1. Therefore, the likelihood difference must at least
match this non-zero increase in penalty; otherwise θt|t is not the optimizer of (1).

The update direction suggested by the explicit score need not be the direction that, for a
given step size, achieves the highest likelihood improvement; in fact, it may be detrimental.
Generally speaking, the implicit and explicit gradients may point in opposite directions. A
special case is when the maximization problem (2) is concave, in which case both strategies
suggest adjustments of the time-varying parameter that point roughly in the same direction.
Geometrically, the angle between the difference vector θt|t − θt|t−1 and the explicit score
∇(yt|θt|t−1) cannot exceed 90 degrees.

Proposition 1 (Relationship between ISD and ESD updates) Fix t > 0 and let
Assumptions 1, 2 and 4a hold. Consider a prediction θt|t−1 ∈ Θ and positive-definite penalty
Pt ∈ RK×K. Compute θt|t using the update step (1). Then, with probability one,

⟨θt|t − θt|t−1,∇(yt|θt|t−1)⟩ ≥ 0. (8)

If Assumptions 3 and 4b also hold, we may write:

θt|t = θt|t−1 + (Pt + It|t)−1∇(yt|θt|t−1), (9)

where It|t denotes the negative average K ×K Hessian between θt|t−1 and θt|t,

It|t := −
∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t−1 + (1−u) θt|t

du. (10)

For a scalar time-varying parameter (i.e., K = 1), equation (8) implies that the implicit
and explicit parameter adjustments—θt|t − θt|t−1 and θex

t|t − θt|t−1—have the same sign. Natu-
rally, the implicit and explicit gradients—∇(yt|θt|t) and ∇(yt|θt|t−1)—likewise have the same
sign. For the ISD update, it follows that the derivative of log p(yt|θ) evaluated at the update
has the same sign as the derivative at the prediction. Because the derivative cannot switch
signs, the ISD update increases the value of log p(yt|θ) without overshooting. For the ESD
update, in contrast, the derivative of log p(yt|θ) at the update may have the opposite sign
from the derivative at the prediction. As a result, the explicit update may surpass the peak
of log p(yt|θ). This possibility of overshooting means the log-likelihood value at the ESD
update may be inferior to that at the prediction.
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In a multi-parameter setting (i.e., K > 1), the direction of the updates of some elements
of the parameter vector can differ between the implicit and explicit updates. This is because
the ESD update does not account for interaction effects between the updates of different
elements of the parameter vector on the local likelihood. That is, all interactions stem
entirely from the learning rate matrix Ht; if it is diagonal, the joint ESD update is akin to
updating each individual parameter separately. By preserving the full likelihood function,
the ISD update accounts for the interplay between parameters.

The second result of Proposition 1 shows that the ISD update can be written as a
“curvature-corrected” version of the ESD update. Specifically, It|t is the average negative
K × K Hessian between θt|t−1 and θt|t, measuring the average curvature of the postulated
logarithmic observation density log p(yt|θ) between these points. As a result, the ISD method
is better able to control the magnitude of the update as it accounts for the (second-order)
impact on the local likelihood. If the log likelihood is linear in θ, then It|t = OK , such that
the ISD and ESD updates are identical; this is logical as it means the linear approximation
in the ESD update is exact. If the log likelihood is (multivariate) quadratic in θ—as with
the normal distribution in terms of the mean—then It|t is constant. In that case, the ISD
and ESD updates are equivalent, albeit for different penalty matrices.

To say more about the properties of the ISD update (1), we need more information about
the shape of the log-likelihood function log p(yt|θ). In this paper, we focus on the family of
concave log-likelihood functions, which allows us to derive a set of particularly strong global
optimality and stability properties.

Assumption 5 (Log-concave observation density) log p(yt|θ) + αt/2 ∥θ∥2 is concave
in θ for some αt ≥ 0, ∀θ ∈ Θ, with probability one.

Assumption 5 is a stronger version of Assumption 2, as it imposes concavity on the log-
likelihood contribution itself, rather than on its regularized version (2). The strength of
concavity is measured by αt ≥ 0, where the boundary case αt = 0 implies concavity while
αt > 0 implies αt-strong concavity. Many popular logarithmic densities are concave in their
parameters, as illustrated in our simulations and empirical analysis. While Assumption 5
yields strong theoretical results, the optimization literature suggests that implicit gradient
methods remain effective in practice if the logarithmic density fails to be concave (e.g., Hare
and Sagastizábal, 2009). In such settings, the global nature of the ISD update (1) is likely
to further enhance its advantages relative to explicit methods (e.g., Grimmer et al., 2023),
as confirmed in our simulation studies (Section 5).

Under Assumption 5, and when both methods use the same penalty matrix Pt, the
implicit gradient update is a “shrunken” version of the explicit gradient update.
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Proposition 2 (Step-size shrinkage) Fix t > 0 and let Assumptions 1 to 5 hold. Take
a prediction θt|t−1 ∈ Θ and positive-definite penalty Pt ∈ RK×K as given. Based on the
observation yt, compute θt|t using the implicit update (1) and θex

t|t using the explicit update (5).
Let λmax(Pt) denote the largest eigenvalue of Pt. Then, with probability one,

∥∥∥θt|t − θt|t−1

∥∥∥2

Pt
≤

(
λmax(Pt)

λmax(Pt) + αt

)2

︸ ︷︷ ︸
∈ [0, 1], contraction coefficient

∥∥∥θex
t|t − θt|t−1

∥∥∥2

Pt
. (11)

The contraction coefficient depends on the ratio between the strength of concavity αt and
the penalty Pt, where a larger αt or smaller λmax(Pt) implies more shrinkage. This same
contraction coefficient reappears in both the stability and the optimality results of Section 3.
Intuitively, for a concave log-likelihood, every tangent line lies above the curve, such that
the explicit method (based on a linear approximation) overestimates the likelihood gain that
can be achieved by updating. As such, the larger magnitude of the explicit step size can be
attributed to “overshooting”.

In practice, the shrinkage of the vector θt|t − θt|t−1 evident from equation (11) provides
an additional level of robustness that is particularly useful for dealing with outliers. This
shrinkage property enables ISD filters to use larger learning rates, making them considerably
more (rather than less) responsive.

3 Theory

3.1 Stability

Turning to the stability properties of the proposed framework, we are particularly interested
in providing sufficient conditions for filter invertibility, meaning that filtered paths based on
identical data but with different initializations converge exponentially fast over time. We
remain agnostic with regard to the DGP and use assumptions relating to the filter only.

Our results in this section are presented in three parts: (a) fixing t and examining only
the update step (Lemma 1), (b) fixing t and considering both the update and prediction steps
(Lemma 2), and (c) proving invertibility by considering the composition of all prediction-to-
prediction mappings (Theorem 1).

We begin by fixing the time step t and evaluating the stability of the update step.
Lemma 1 shows that the ISD update (1) is stable under Assumptions 1 through 5, while,
absent further conditions, the same does not hold for the ESD update (6).

11



Lemma 1 (Prediction-to-update stability) Fix t > 0 and let Assumptions 1 to 5 hold.
Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ, which are combined with the observation yt

in the ISD update step (1) to yield corresponding parameter updates, θt|t and θ̃t|t. Then, with
probability one,

∥∥∥θt|t − θ̃t|t

∥∥∥2

Pt
≤

(
λmax(Pt)

λmax(Pt) + αt

)2

︸ ︷︷ ︸
∈ [0, 1], contraction coefficient

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
, (12)

where λmax(Pt) is the largest eigenvalue of Pt. For the ESD update (6), under the additional
assumptions that ∇(yt|θ) is Lt-Lipschitz continuous in θ with probability one and λmin(Pt) ≥
Lt/2, where λmin(Pt) is the smallest eigenvalue of Pt, with probability one,

∥∥∥θex
t|t − θ̃ex

t|t

∥∥∥2

Pt

≤ λmax(Pt) − αt[2 − Lt/λmin(Pt)]
λmax(Pt)︸ ︷︷ ︸

∈ [0, 1], contraction coefficient

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt

. (13)

The first result of Lemma 1 demonstrates that the ISD update step is non-expansive in
the squared norm ∥ · ∥2

Pt
; that is, it does not magnify (and possibly shrinks) the distance

between different paths. For a strongly concave log-likelihood function (i.e., αt > 0), we
obtain a strict contraction in the norm ∥·∥Pt as long as the predictions are not identical (i.e.,
θt|t−1 ̸= θ̃t|t−1). The strength of the contraction is determined by the strength of concavity
αt and the maximum eigenvalue of the penalty matrix Pt.

The second result of Lemma 1 shows that a similar non-expansiveness result can be
obtained for the ESD update (6), but this requires two additional assumptions. Namely,
the score needs to be Lt-Lipschitz continuous in θ (or, equivalently, log p(yt|θ) needs to be
Lt-smooth) and the penalty matrix Pt must exceed Lt/2 in an eigenvalue sense. The latter
condition is equivalent to saying that Ht must be exceeded by 2/Lt in an eigenvalue sense.
That the learning rate Ht must shrink as the Lipschitz constant Lt increases is well known
in the SGD literature (e.g., Karimi et al., 2016), but is, to our knowledge, new in the ESD
literature. This insight is crucial for understanding the potential instability of ESD filters in
the absence of L-smoothness, as illustrated in our simulation studies (Section 5).

We now turn to the prediction-to-prediction mapping from time step t to t+1. To obtain
a strictly contracting prediction-to-prediction mapping for the ISD filter, it is sufficient for
the update and prediction steps be non-expansive in the norm ∥ · ∥Pt , providing at least one
of them is strictly contractive. That is, when αt = 0, the prediction mapping from θt|t to
θt+1|t must be strictly contracting in the norm ∥ · ∥Pt . When αt > 0, on the other hand, it
is sufficient for the prediction step to be non-expansive. For example, the identity mapping
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θt+1|t = θt|t is non-expansive and often useful in practice.
A sufficient condition for non-expansiveness (contractiveness) of the prediction step in the

norm ∥ · ∥Pt is that Pt ⪰ Φ′PtΦ (Pt ≻ Φ′PtΦ). Here, the notation X ⪰ Y (X ≻ Y ) indicates
that X − Y has non-negative (strictly positive) eigenvalues for two symmetric real-valued
matrices X and Y of the same size. This requirement is equivalent to ∥Φ∥Pt ≤ 1 (∥Φ∥Pt < 1),
where ∥X∥Pt is the induced operator norm of a matrix X ∈ RK×K , which is closely related
to the discrete Lyapunov equation (e.g., Anderson and Moore, 2012). Lemma 2 summarizes
the contraction of the prediction-to-prediction mapping in ∥ · ∥Pt .

Lemma 2 (Prediction-to-prediction stability) Fix t > 0 and let Assumptions 1 to 5
hold. Let Pt be given with Pt ⪰ Φ′PtΦ. Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ that
are used in the ISD update step (1) to yield the corresponding parameter updates θt|t and θ̃t|t,
and are subsequently passed to the prediction step (4) to yield predictions θt+1|t and θ̃t+1|t.
With probability one,

∥∥∥θt+1|t − θ̃t+1|t

∥∥∥2

Pt
≤ κt

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
, (14)

where the contraction coefficient κt is

κt = λmax(Pt)[λmax(Pt) − λmin(Pt − Φ′PtΦ)]
(λmax(Pt) + αt)2 . (15)

If either αt > 0 or Pt ≻ Φ′PtΦ, then, with probability one, κt ∈ [0, 1).

The strength of the contraction of the prediction-to-prediction mapping at time t is
measured by κt, which is a function of the strength of concavity αt, the penalty matrix Pt,
and the autoregressive matrix Φ. For a scalar time-varying parameter, the standard condition
|Φ| < 1 is sufficient to yield κt ∈ [0, 1). In the multiple-parameter setting, Φ′Φ ≺ IK implies
Φ′PtΦ ≺ Pt when (a) Φ and Pt are both diagonal or (b) either Φ or Pt is a constant multiple
of the identity. In this case, the standard condition ρ(Φ) < 1, where ρ(·) denotes the
spectral radius, is sufficient to yield κt ∈ [0, 1). To allow for more richly parameterized Φ
and Pt, we could express Pt as the solution to the discrete version of Lyapunov’s equation
Pt −Φ′PtΦ = ∆t ≻ 0, which for a given ρ(Φ) < 1 has a unique solution Pt ≻ 0 parameterized
in terms of ∆t ≻ 0 (see e.g, Bof et al., 2018, Thrm 3.2). The strict inequalities in this
paragraph could be weak inequalities if we additionally impose αt > 0.

Finally, we analyze the composition of all prediction-to-prediction mappings. For the
effects of the initialization of the filter at time t = 0 to disappear exponentially fast, the
composition of all prediction-to-prediction mappings is required to be contractive. A suffi-
cient (but stronger than necessary) condition is that each individual prediction-to-prediction
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mapping is contractive in a single (i.e., shared) norm across all mappings over time. Theo-
rem 1 formulates sufficient conditions for the existence of such a shared norm and contains
an invertibility result that is crucial in enabling maximum-likelihood estimation of the static
parameters (e.g., Straumann and Mikosch, 2006). This desirable invertibility property fur-
ther ensures that numerical errors do not accumulate during implementation in practice—a
concern also expressed for the Kalman filter (Anderson and Moore, 2012).

Theorem 1 (Invertibility) For all t > 0, let Assumptions 1 to 5 hold, with either (a)
Pt ≻ Φ′PtΦ or (b) Pt ⪰ Φ′PtΦ and αt > 0. In addition, let there be some P̄ , A ∈ RK×K with
P̄ ≻ A ≻ OK×K and a sequence {ρt > 0} such that for all t > 0, with probability one,

κtPt + ρtA ⪯ ρt P̄ ⪯ Pt, (16)

where κt is defined in (15). Take two initial values θ0|0 ∈ Θ and θ̃0|0 ∈ Θ, yielding two
sequences {θt|t−1} and {θ̃t|t−1}, respectively. Then the filter composed of (1) and (4) is
invertible, i.e., there exists a constant c > 1 such that with probability one,

lim
t→∞

ct
∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2
→ 0. (17)

Theorem 1 expresses a sufficient condition for a contraction of all prediction-to-prediction
mappings in the common norm ∥ · ∥P̄ , where P̄ is a time-invariant matrix satisfying inequal-
ity (16). For a scalar time-varying parameter, this condition is guaranteed irrespective of the
sequence {Pt} whenever the standard condition |Φ| < 1 holds. For the unit-root case |Φ| = 1,
it is sufficient that {Pt} is upper bounded while {αt} is strictly lower bounded away from
zero, in both cases uniformly over time, thereby preventing κt from approaching unity. In
the multiple-parameter setting, equation (16) essentially limits only the relative dynamics of
{Pt}, preventing the penalization of different elements of the time-varying parameter vector
from varying too drastically over time. Condition (16) is less stringent when the persistence
in the prediction step is reduced (i.e., for Φ closer to OK×K) and/or when the strength of
concavity is increased (i.e., for larger {αt}), as these conditions lead to stronger contractions
(i.e., lower {κt}).

The presence of the scalar ρt > 0 in condition (16) indicates that the relative penalization
between parameters matters, but not the overall magnitude. This is because a contraction
in the norm ∥ · ∥P implies a contraction in the norm ∥ · ∥ρtP and vice versa. For this
reason, condition (16) is automatically satisfied if the sequence {Pt} is a time-varying scalar
multiple of a static matrix: {Pt = ζtP} for some sequence {ζt > 0} and P ≻ OK×K for
which P ≻ Φ′PΦ. Matrix A in condition (16) is included to ensure that the contraction
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coefficient with respect to the norm ∥ · ∥P̄ is bounded above, uniformly across time, at some
value strictly below unity.

Importantly, Theorem 1 relies on the researcher-postulated density p(·|θt), but not the
true observation density p0(·|θ0

t ). Invertibility in the ISD framework can thus be guaranteed
without imposing additional restrictions on the DGP, which is convenient as this is typically
unknown. We may even allow Assumptions 1 to 5 to fail for a particular realization of the
observation, as long as this violation occurs with probability zero. When the assumptions
are guaranteed to hold for all possible yt, the above stability result is entirely unaffected
by model misspecification. Hence, result (17) implies the exponential almost sure (e.a.s.)
convergence of the paths {θt|t−1} and {θ̃t|t−1} based on the same data, such that differences
stemming from either (a) the varying initializations θ0|0 and θ̃0|0 or (b) numerical errors due
to finite computer precision disappear exponentially fast as time progresses.

In contrast, Lemma 1 indicated that the stability of ESD filters is contingent on the
magnitude of the learning rate Ht. By additionally assuming that ∇(yt|θ) is Lt-Lipschitz
continuous and λmax(Ht) ≤ 2/Lt, ∀t, we can use Lemma 1 to construct an invertibility result
for ESD filters analogous to that in Theorem 1 for ISD filters. To the best of our knowledge,
this would be the first general multivariate invertibility result for ESD filters that does not
require knowledge of the DGP. For example, the contraction condition in Blasques et al.
(2022) uses an expectation with respect to the DGP. The additional constraints they impose
on {Ht} suggest that ESD filters require careful tuning to ensure stability. Furthermore, as
our simulation studies show (Section 5), if Lt-smoothness is violated, no positive learning
rate Ht may exist that guarantees non-expansiveness of the ESD update over the entire
parameter space Θ. In this case, we must ensure that unstable regions of the parameter
space are visited with sufficiently low probability. As a result, the maximum permitted
learning rate will typically be tied to the DGP, and infringing on this (unknown) upper
bound may cause filter divergence (e.g., Blasques et al., 2018, p. 1023).

In the optimization literature, Toulis and Airoldi (2017) similarly find that explicit gradi-
ent methods require finetuning to avoid divergence; this holds even when the target is static.
Arguably, the superior stability of implicit methods is even more relevant in our (dynamic)
setting because, unlike in optimization, our filter must remain perpetually responsive with-
out ever converging; hence, stability over time is vital. If there is a positive probability that
the ESD filter diverges, it eventually will. Theorem 1 guarantees that ISD filters with log-
concave postulated densities are stable under easily verifiable conditions that are agnostic
about the DGP.
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3.2 Optimality

In addition to ensuring filter stability, we are interested in whether the updating mecha-
nism improves the quality of parameter estimation. To this end, we must reintroduce some
consideration of the true process. Under misspecification, we can only hope to recover, as
accurately as possible, a pseudo-true parameter denoted as θ⋆

t . Here we demonstrate that,
for any fixed time step, the ISD update globally contracts toward some small region around
this pseudo-true parameter. We require the following additional assumptions.

Assumption 6 (Uniqueness of pseudo-truth) There exists a θ⋆
t such that ∀θ ∈ Θ\{θ⋆

t },
we have E

yt
[log p(yt|θ⋆

t )] > E
yt

[log p(yt|θ)] and E
yt

[∇(yt|θ⋆
t )] = 0.

Assumption 7 (Bounded information) E
yt

[∥∇(yt|θ⋆
t )∥2] < ∞.

Assumption 6 asserts the existence of a unique pseudo-truth θ⋆
t that maximizes the expected

(postulated) log-likelihood function E
y
[log p(y|θ⋆

t )]. Equivalently, θ⋆
t is the unique minimizer

of the Kullback-Leibler divergence of p(·|θt) to the true density p0(·|θ0
t ). If the logarithmic

postulated density is differentiable and strongly concave with probability one—i.e., Assump-
tions 4a and 5 with αt > 0 hold—then the existence of a unique pseudo-truth is automatic
and need not be separately assumed. In the case of correct model specification, the truth
and pseudo-truth coincide (i.e., θ0

t = θ⋆
t ). Assumption 7 posits that the norm of the squared

score computed with the postulated density, and evaluated in the pseudo-truth, is finite in
expectation with respect to the true observation density.

If the prediction θt|t−1 deviates substantially from the pseudo-truth θ⋆
t , leveraging the

information from the observation yt generally yields θt|t an improvement upon θt|t−1. Thus,
when the initial prediction is relatively inaccurate, obtaining a more precise parameter esti-
mate is straightforward. However, as θt|t−1 approaches the pseudo-truth θ⋆

t , further improve-
ment becomes increasingly difficult. For highly accurate predictions, the update θt|t may even
be less accurate than the prediction due to its reliance on the noisy observation yt. Indeed,
no improvement is possible if the prediction is already exact (i.e., in the case θt|t−1 = θ⋆

t ).
This is not a limitation of our approach but an inherent characteristic of stochastic opti-
mization methods. Consequently, the region around the pseudo-truth θ⋆

t is referred to as
the noise-dominated region (NDR; e.g., Ryu and Boyd, 2016, p. 15, Patrascu and Necoara,
2018, p. 3, Lange, 2024a, Fig. 1). Intuitively, when a prediction is perfect, the data provide
no (additional) information.

Since improvements are not always guaranteed, Theorem 2 explicitly characterizes the
tug of war between contractive and expansive forces, which respectively decrease and increase
the mean squared error (MSE). Which of the two forces dominates largely depends on the
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accuracy of the prediction. While most authors establish upper bounds on the MSE after
updating, our equations (18)–(19) below provide exact equalities (rather than inequalities).
This approach enables us to identify the precise conditions under which updates lead to
improvement (see further discussion below).

Theorem 2 (Contraction to the NDR) Fix t > 0 and let Assumptions 1 to 7 hold.
Then, for the ISD update (1), we have

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
︸ ︷︷ ︸

MSE after update

=
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE before update

−E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

2I⋆
t|t+I⋆

t|tP −1
t I⋆

t|t

]
︸ ︷︷ ︸

≥ 0, contractive force

+E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
︸ ︷︷ ︸

≥ 0, expansive force

. (18)

For the ESD update (6), we have

E
yt

[∥∥∥θex
t|t − θ⋆

t

∥∥∥2

Pt

]
︸ ︷︷ ︸

MSE after update

=
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE before update

−E
yt

[∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

2I⋆
t|t−1

]
︸ ︷︷ ︸

≥ 0, contractive force

+E
yt

[∥∥∥∇(yt|θt|t−1)
∥∥∥2

P −1
t

]
︸ ︷︷ ︸

≥ 0, expansive force

. (19)

Here I⋆
t|t, I⋆

t|t−1 ⪰ αtIK ⪰ OK denote the negative average K × K Hessians between θt|t or
θt|t−1 and θ⋆

t , that is,

I⋆
t|t := −

∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t + (1−u) θ⋆

t

du, (20)

I⋆
t|t−1 := −

∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t−1 + (1−u) θ⋆

t

du. (21)

To the best of our knowledge, Theorem 2 is new in the stochastic optimization literature:
we have not found equations (18)–(19) in prominent contributions such as Parikh and Boyd
(2014), Polson et al. (2015), Ryu and Boyd (2016), Bianchi (2016), and Asi and Duchi
(2019). Because Theorem 2 focuses on a single time step, the comparison with the stochastic
optimization literature is relevant (recall the discussion in Section 1.1). If the second term on
the right-hand side of (18) is removed and the equality replaced with an inequality, we obtain
a result similar to that in Theorem 3.2 of Asi and Duchi (2019). Because the expansive force
in (18) is bounded by Assumption 7, Asi and Duchi (2019, p. 2264) conclude that implicit
updates are “nondivergent”, while explicit updates lack this guarantee since the expansive
force in (19) is not uniformly bounded. Our contribution in Theorem 2 is the inclusion of
contractive forces, which play a crucial role in improving updates over predictions. These
terms enable us to express equalities rather than inequalities. Given that updates should
ideally be more accurate than predictions (at least outside the NDR), these contractive forces
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are key. While Assumption 5 (concavity) ensures their positivity, it stronger than necessary;
a weaker condition, I⋆

t|t, I⋆
t|t−1 ⪰ OK , would suffice. In any case, equations (18) and (19)

remain valid, and since our analysis is based on equalities, it cannot be further improved.
Next, we discuss equations (18)–(19) in more detail. On the left-hand side, we have

the mean squared error (MSE) of ISD and ESD updates, measured in the ∥ · ∥Pt norm
as denoted by E

yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
and E

yt

[∥∥∥θex
t|t − θ⋆

t

∥∥∥2

Pt

]
, respectively. The right-hand sides of

both equations contain three components. First, the weighted squared error (SE) before the
update, ∥θt|t−1 − θ⋆

t ∥2
Pt

, reflects the deviation of the prediction θt|t−1 from the pseudo-truth
θ⋆

t . The remaining two terms will therefore determine whether, in expectation, the SE is
reduced after updating.

Second, we have the contractive factor, which differs between the ISD and ESD updates.
For the ISD update, the contractive force in (18) is the MSE after updating using the norm
∥ · ∥2I⋆

t|t+I⋆
t|tP −1

t I⋆
t|t

, while for the ESD update in (19) it is the SE before updating using the
norm ∥ · ∥2I⋆

t|t−1
. In both cases, the magnitude of the contractive force is proportional to the

strength of concavity measured by I⋆
t|t and I⋆

t|t−1, which are the negative average Hessians
between the updated parameter θt|t or the predicted parameter θt|t−1 and the pseudo-truth θ⋆

t .
This suggests that, to obtain a contractive force, we do not necessarily need the postulated
log likelihood log p(yt|θ) to be concave for all θ ∈ Θ. Hence Assumption 5 is essentially too
strong. All that is required is, on average, sufficient curvature in the direction of the pseudo-
truth θ⋆

t . Effectively, these curvature conditions ensure that the gradient is on average
pointing in the correct direction, while its magnitude increases sufficiently rapidly as we
move away from the pseudo-truth. The contractive force is contained within the expectation
operator E

yt
[·], which uses the true density. In principle, concavity could be allowed to fail for

certain realizations yt, as long as these do not occur with high probability. Similar versions
of strong concavity can be found in the optimization literature (e.g., Toulis et al., 2021,
Assumption 3).

Third, we have the expansive force, which reveals important differences between the ISD
and ESD updates. For the ISD update, the expansive force is E

yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
, i.e., the

weighted norm of the postulated gradient evaluated at the pseudo-truth and averaged over yt

using the true density. This term reflects the irreducible noise obtained by updating based on
the noisy observation yt. Importantly, the magnitude of the irreducible noise is independent
of the prediction θt|t−1; hence, the strength of the expansive force remains constant as θt|t−1

moves further from the pseudo-truth θ⋆
t . In contrast, the strength of the contractive force of

the ISD update increases with the distance of θt|t from θ⋆
t . As a result, it will dominate the

irreducible noise when θt|t is far from θ⋆
t . In the region where this contractive force dominates

(i.e., outside the NDR), we expect updates to be beneficial.
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For the ESD update in (19), the expansive force is the expected weighted norm of the ex-
plicit gradient, i.e., E

yt

[∥∥∥∇(yt|θt|t−1)
∥∥∥2

P −1
t

]
, which crucially depends on θt|t−1. For log-concave

distributions, this term will also increase with the distance of θt|t−1 from θ∗
t . Without further

assumptions on the postulated density and/or DGP, it is unclear whether, for bad predic-
tions, the expansive or contractive force dominates. If the expansive force dominates for
predictions far from the pseudo-truth, the filter may diverge. In our simulation studies, we
will see that this happens frequently. Furthermore, both the contractive and expansive forces
of the ISD update are increasing in Ht = P−1

t (provided I⋆
t|t ≻ OK), while for the ESD update

this holds only for the expansive force. This highlights the importance of selecting the correct
learning rate for the ESD method. In particular, unless ∇(yt|θt|t−1) = 0 with probability
one, we can make the MSE after the ESD update arbitrarily bad by the letting the learning
rate tend to infinity. This is because the ESD method can be prone to overshooting. While
we may use Lipschitz-gradient continuity combined with a stringent learning-rate restriction
to demonstrate a contraction to the NDR (see online Supplement B.1 for details), the main
message here is that, without further restrictions, ESD updates are not always beneficial;
this observation goes against a large body of literature as indicated in Table 1.

Because the expectation operator E
yt

[·] uses the unknown true density, it is generally
difficult to pinpoint the magnitude of the contractive and expansive forces. In particular,
the analysis is complicated by the dependence of the curvature strength I⋆

t|t on yt. If the log
likelihood log p(yt|θ) is strongly concave with probability one (i.e., Assumption 5 with αt > 0
holds), we may obtain a particularly strong—indeed, much stronger than necessary—type
of contraction of the ISD update toward the NDR.

Corollary 1 (Geometric contraction to the NDR) Fix t > 0 and let Assumptions 1 to
7 hold, where Assumption 5 holds for some αt > 0. Then the ISD update (1) satisfies

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
≤

(
λmax(Pt)

λmax(Pt) + αt

)2

︸ ︷︷ ︸
∈ [0, 1), contraction coefficient

(∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

Pt
+ E

yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

])
. (22)

Equation (22) displays a global linear contraction toward the pseudo-truth θ⋆
t up to

some level of accuracy determined by the expected squared norm of the score at θ⋆
t . This

contraction is geometric in the sense that, for large prediction errors, the ratio of the MSE
after updating to the SE before updating is equal to a contraction coefficient less than unity.
This contraction coefficient is the same as in Proposition 2 and Lemma 1 and is regulated
by the curvature of the log-likelihood function, measured by αt, relative to the size of the
penalty measured by λmax(Pt). Ceteris paribus, a smaller penalty or stronger concavity
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therefore yields a faster contraction. Note that by leveraging the equality in Theorem 2, we
obtain a contraction that is stronger than comparable results in the literature (e.g., Lange,
2024a, Thrm 1). As the prediction θt|t−1 approaches the pseudo-truth θ⋆

t , in which case
further improvement is impossible, we see that the MSE after updating is controlled by the
penalty matrix Pt and the irreducible noisiness of the observations, which are combined in
the quantity E

yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
. This quantity decreases as the penalty Pt increases, such

that larger learning rates (or, equivalently, smaller penalties) lead to a larger NDR. The
optimal choice of learning rate is therefore determined by a trade-off between contraction
speed when far from the pseudo-truth and the size of the NDR. As we discuss in the next
section, the optimal penalty can be estimated with maximum likelihood using available data.

Finally, similar to Lange (2024a, Prop. 2), we can apply the geometric contraction in
Corollary 1 to provide an upper bound on the long-run MSE of θt|t relative to θ⋆

t . However,
doing so will require placing additional restrictions on the dynamics of the true (or pseudo-
true) parameter, which we leave for future work.

4 Estimation

The parameters of the ISD filter, including the penalty matrices {Pt} in the update (1),
parameters ω and Φ in the prediction step (4), and any additional static shape parameters
ψ ∈ Ψ ⊆ RM in the observation density, are generally unknown and need to be estimated.
In our simulations and empirical illustrations, the penalty matrix is taken to be constant:
Pt = P for all t. (While we could set Pt proportional to a power of the information matrix
as in the ESD literature (e.g., Creal et al., 2013), we do not pursue this here.) The static
parameters can be determined through maximum-likelihood (ML) estimation based on the
standard prediction-error decomposition, which is also the de facto standard for ESD models
(e.g., Creal et al., 2013). That is, we consider

ξ̂ := argmax
ξ ∈ Ξ

T∑
t=1

log p(yt|θt|t−1, ψ), (23)

where ξ := [vech(P )′, ω′, vec(Φ)′, ψ′]′ is a column vector that stacks all static model param-
eters, and vec(·) and vech(·) are the vectorization and half-vectorization matrix operations.
The right-hand side of (23) depends on ξ both directly, via ψ, and indirectly, via the pre-
dicted parameter path {θt|t−1}, which itself depends on all elements of ξ. The optimization
domain Ξ in (23) is the subset of R3/2K(K+1)+M for which the penalty matrix is positive defi-
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nite (P ≻ OK) and the shape parameters are in their respective domains (ψ ∈ Ψ).2 For large
K, it may convenient to use the discrete Lyapunov equation (i.e., P − Φ′PΦ = ∆ ≻ OK) to
reparameterize P as indicated in Section 3.1. This leaves the standard parameter restrictions
∆ ≻ OK and ρ(Φ) < 1, yielding stability via Theorem 1.

Using the results obtained in Blasques et al. (2022) for ESD models, we conjecture that
ξ̂ is a consistent and asymptotic normally distributed estimator of the pseudo-true ξ⋆ un-
der standard regularity conditions, whereby ξ⋆ minimizes the Kullback-Leibler divergence
to the truth. These conditions include the assumptions that ξ is identified, the series {yt}
is stationary ergodic and near-epoch dependent with some finite moments, and the postu-
lated density p(y|θ, ψ) is sufficiently smooth in its arguments and has bounded derivatives.
The latter conditions provide sufficient moments to be used in the appropriate law of large
numbers and central-limit theorem (see Blasques et al., 2022, Theorems 4.6 and 4.15 for
details).

A further crucial ingredient of the proofs in Blasques et al. (2022) is the invertibility con-
cept posited by Bougerol (1993) and Straumann and Mikosch (2006). Verifying the relevant
contraction condition can be challenging for ESD models, as the maximum stable learning
rate may depend on the unknown true distribution. ISD models are, on the other hand,
far more stable due to their non-overshooting properties and robustness against misspecifi-
cation of the learning rate H = P−1, as demonstrated in Section 3. Theorem 1 presents a
particularly strong form of invertibility for ISD models with concave logarithmic observa-
tion densities, requiring neither Lipschitz-gradient continuity of the postulated logarithmic
density nor knowledge of the true distribution. All empirical examples satisfy the conditions
of Theorem 1, while the simulations also contain an example showing ML estimation to be
effective for a non-concave log density (Section 5.2). For log-concave ISD models, we conjec-
ture that even multidimensional cases (K > 1) should pose no problem for ML estimation.
A full asymptotic investigation is left for future research.

5 Simulation studies

In this section, we perform a number of simulation experiments to explore the differences
between the ISD filter as proposed in this article and the standard ESD version. The various
observation densities are chosen to illustrate specific advantages of the ISD filter over its
ESD counterpart. Unless noted otherwise, we simulate 1000 series {yt} of length T , where

2For the initialization of the time-varying parameter at time t = 0 and identification of a sensible starting
point for the shape parameters ψ, we compute [θ̂′

0|0, ψ̂
′]′ := argmax

θ∈Θ, ψ∈Ψ

∑T
t=1 log p(yt|θ, ψ). Alternatively, θ0|0

could be added to ξ in (23).
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Table 2: MSEs of filtered states with dynamic Poisson distribution.

ση = 0.10 0.15 0.20 0.25 0.30
ISD filter In-sample 0.08 0.13 0.20 0.27 0.35

Out-of-sample 0.08 0.14 0.20 0.29 0.36
ESD filter In-sample 0.08 0.13 0.19 0.25 0.35

Out-of-sample 0.09 0.14 0.20 ∞ ∞

the first R observations are used for estimation of the static model parameters. To evaluate
the performance of the ISD and ESD models, we compute the MSEs of the filtered values
{θt|t} and {θex

t|t} relative to the true values {θ0
t }. We distinguish between in-sample and

out-of-sample MSE, based on observations t = 1, . . . , R and t = R + 1, . . . , T , respectively.

5.1 Dynamic Poisson distribution: Non-Lipschitz gradient

For each time t, yt ∈ N is drawn from a Poisson distribution with a time-varying intensity
λ0

t := exp(θ0
t ), i.e., p(yt|θ0

t ) = (λ0
t )yt exp(−λ0

t )/yt!. The score with respect to the log-intensity
parameter θ ∈ R is yt − exp(θ), which is clearly non-Lipschitz. The negative Hessian and
Fisher information are both exp(θ) > 0; hence, the density is log-concave in θ. We specify
the state dynamics as θ0

t = 0.98θ0
t−1 + ηt, where ηt

i.i.d.∼ N(0, σ2
η), and we vary the value of ση.

We consider ISD and ESD filters based on the (correctly specified) Poisson distribution,
with T = 2000 and R = 1000. For the ESD filter, we follow Koopman et al. (2016) by
using θex

t|t = θex
t|t−1 + Ht(yt − exp(θex

t|t−1)), where the time-dependent learning rate Ht > 0
scales with the inverse square root of the predicted Fisher information quantity; hence,
Ht = H exp(−1

2θ
ex
t|t−1) with H > 0. When interpreting the results below, note that the

difference θex
t|t−θex

t|t−1 = Ht(yt−exp(θex
t|t−1)) fails to be Lipschitz in θex

t|t−1, growing exponentially
to positive or negative infinity as θex

t|t−1 → −∞ or θex
t|t−1 → ∞, respectively. Sizable prediction

errors may therefore lead to even larger filtering errors, and vice versa, potentially causing
divergence of the ESD filter. This issue cannot be addressed by using a different (or static)
learning rate. For example, when a static learning rate Ht = H is used, it remains the
case that H(yt − exp(θex

t|t−1)) fails to be Lipschitz continuous in θex
t|t−1. Indeed, the lack of

Lipschitz continuity is attributable not to the learning-rate specification, but rather to the
highly nonlinear (exponential) link function.

Table 2 shows comparable in-sample MSEs; for both filters, the MSE increases in line
with the state variability ση. In contrast, the out-of-sample filtering performance is similar
only for values of ση up to ∼0.20. For larger values of ση, the out-of-sample MSE of the ESD
filter diverges to infinity, while the performance of the ISD filter remains in line with the
in-sample results. Larger innovations in the true process may give rise to larger prediction
errors; for 10 − 20% of replications, the ESD filter diverged. Koopman et al. (2016) used
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Table 3: MSEs of filtered states with dynamic GED.

β = 0.5 1 1.5 2 2.5 3 3.5 4
ISD filter In-sample 0.63 0.64 0.59 0.59 0.58 0.59 0.60 0.60

Out-of-sample 0.70 0.68 0.61 0.60 0.60 0.60 0.61 0.61
ESD filter In-sample 10.86 10.93 0.68 0.60 0.66 0.76 0.94 1.18

Out-of-sample 63.18 175.40 0.70 0.61 0.66 0.78 ∞ ∞

ση = 0.15 such that the potential instability of the ESD filter went unnoticed. For the ISD
filter, Theorem 1 ensures stability.

5.2 Dynamic GED: Non-concave and non-Lipschitz gradient

For each time t, the observation yt ∈ R is drawn from a generalized error distribution (GED)
with a time-varying mean parameter θ0

t , i.e., p0(yt|θ0
t ) = υ exp(−|(yt − θ0

t )/σ|υ)/(2σΓ(υ−1)),
where Γ(·) denotes the Gamma function, and σ, υ > 0 are static shape parameters. Here,
σ is related to the scale but does not equal the standard deviation. In particular, we take
σ2 = Γ(υ−1)Γ(3υ−1), which ensures that, conditional on θ0

t , the variance of yt is unity.
We vary the value of υ, where υ = 1 and υ = 2 correspond to the Laplace and Gaussian
distributions, respectively. For υ > 1, the log-density is continuously differentiable and
concave in θ ∈ R; for υ < 1, it is neither. The gradient is Lipschitz only if υ ∈ (1, 2]. A
comparative advantage of the ISD filter is that, for every time step, the implicit update θt|t

must lie between θt|t−1 and yt. In contrast, the ESD filter may “overshoot” in that θex
t|t and

θex
t|t−1 can lie on opposite sides of yt.

The true parameter evolves as θ0
t = 0.98θ0

t−1 +ηt, where ηt
i.i.d.∼ N(0, 1). The signal-to-noise

ratio is around one, as the variance of the state innovations equals that of the observation
noise. We simulate series with T = 2000 and use the first R = 1000 observations to estimate
the autoregressive parameter Φ ∈ (−1, 1) in the prediction step (4) and the learning rate
H > 0. For simplicity, we use ω = 0 and set υ equal to the true value in the DGP.

Table 3 shows the in- and out-of-sample MSEs of both filters. While the performance
for υ = 2 is near identical (in which case, the two filters are equivalent), the ISD filter
generally achieves substantially lower MSEs. For υ = 3.5 and 4, the ESD filter diverges
in the out-of-sample period in approximately 25% and 50% of cases, respectively. This is
because the gradient is roughly a polynomial of degree υ− 1 in the prediction error; that is,
it is excessively large for inaccurate predictions. Inaccurate predictions lead to inaccurate
updates and vice versa; hence, the filter may diverge. For υ < 1, on the other hand, the
gradient is unbounded only for highly accurate predictions, which occur less frequently and
not consecutively; even as the filter does not diverge, the resulting MSEs are very large
indeed.
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Figure 1: Illustration of filtering performance with dynamic Gamma distribution.

5.3 Dynamic Gamma distribution: Two time-varying parameters
and non-smooth DGP

For each time t, an observation yt > 0 is drawn from a Gamma distribution with two dynamic
parameters at > 0 and bt > 0, which are collected in the (true) state vector θ0

t = (at, bt)′ ∈
R2

>0, such that p(yt|θ0
t ) = (bt)atyat−1

t exp(−btyt)/Γ(at). The same parametrization is used
in Fearnhead and Meligkotsidou (2004, eq. 3), albeit in a static context. Conditional on
θ0

t , the mean and variance of yt are at/bt and at/b
2
t , respectively. The ISD filter can be

applied directly to θt = (at, bt)′, because optimization (1) guarantees that both elements
remain positive: the optimization domain Θ is the positive quadrant in K = 2 dimensions.
For each yt, the Gamma log-density is (jointly) concave in (at, bt) ∈ R2

>0; hence, Theorem 1
guarantees ISD filter stability. For the ESD filter, on the other hand, positivity of the time-
varying parameters must be enforced through exponential link functions. The resulting log
density is neither concave nor L-smooth in the transformed (i.e., logarithmic) parameters,
meaning no theoretical guarantees can be made for the ESD filter.

Figure 1 shows filtering results for a single time series {yt} of length T = 5000 based on
the (non-smooth) DGP at = 2+sign{sin(2πt/400)} and bt = 8+3sign{cos(2πt/1000)}. Only
the first R = 500 observations are used to estimate the static parameters: ω, Φ (assumed
diagonal), and P . The figure shows the theoretical mean of the data, at/bt, and its variance,
at/b

2
t , along with filtered versions. The in-sample performance is roughly similar for both

filters, but early in the out-of-sample period, the ESD filter diverges while the ISD filter
continues to track the mean and variance of the data relatively well.
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Figure 2: Performance of ISD and ESD filters with N -dimensional observations for dynamic
Dirichlet distribution with Gaussian or Student’s t state innovations.

5.4 Dynamic Dirichlet: High-dimensional observation and fat-
tailed state increments

For each time t, an N -dimensional observation yt ∈ [0, 1]N is drawn from a homoge-
neous Dirichlet distribution with density p(yt|λ0

t ) = Γ(λ0
tN)/Γ(λ0

t )N ∏N
i=1 y

λ0
t −1

it , where λ0
t =

exp(θ0
t ) > 0 is the dynamic concentration parameter and Γ(·) is the Gamma function. The

N elements of yt are positive and sum to unity (i.e., yit ≥ 0,∀i and ∑N
i=1 yit = 1). The

logarithmic density is concave in θ0
t , but the gradient is not Lipschitz; hence, no stability

guarantees can be made for the ESD filter. The true process satisfies θ0
t = ω+ϕ θ0

t−1 +ση ηt,
where the i.i.d. state increments {ηt} have variance one and are either Gaussian or Stu-
dent’s t distributed with ν = 5 degrees of freedom. The static parameters ω = 0.1, ϕ = 0.95,
and σ2

η = 0.195 are chosen such that the unconditional mean and variance of θ0
t equal two:

E(θ0
t ) = Var(θ0

t ) = 2. We vary the cross-sectional dimension N between 1 and 100. For each
N , we simulate 100 series of length T = 5000, where the first R = 500 observations are used
for estimating the static parameters (i.e., ω, ϕ, P ).

Figure 2 shows the MSEs of ISD- and ESD-filtered states in the out-of-sample period
under both fat-tailed and Gaussian state innovations. In both settings and for any N , the
ISD filter outperforms the ESD filter. Notably, the performance of the ISD filter barely
deteriorates under fat-tailed (as opposed to Gaussian) state innovations. In contrast, the
ESD filter under Student’s t innovations is unstable and, unlike the ISD filter, its performance
does not consistently improve as the dimensionality N grows. In particular, the MSE of
the ESD filter occasionally exceeds the unconditional variance Var(θ0

t ) = 2. It seems that
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abrupt state changes in combination with a non-Lipschitz gradient prohibit the ESD filter
from exploiting the increased information content of higher-dimensional draws.

6 Empirical illustrations

6.1 Linear regression with time-varying slope

The capital asset pricing model (CAPM), an important benchmark in finance, links the
expected excess returns of individual assets to those of the market in a linear fashion. How-
ever, empirical evidence (e.g., Jagannathan and Wang, 1996) shows that the assumption of
a constant market coefficient β may be unrealistic, especially in equity markets. Here, we
examine the possible time-varying nature of the CAPM market β using the ISD framework.
We model the excess asset return yt as

yt = α + βt xt + εt, εt
i.i.d.∼ N(0, σ2), (24)

where α is a static intercept, xt denotes the excess market return at time t, and εt is an
i.i.d. normally distributed shock with mean zero and variance σ2. The ISD update (1) at
time t applied to a prediction βt|t−1 for βt in (24) can be solved analytically (see online
Supplement B.2 for details). Specifically, we obtain the following closed-form solution for
βt|t:

βt|t = βt|t−1 + σ2

σ2 +Hx2
t

H ∇(yt|βt|t−1, xt), (25)

where H = P−1 > 0 is a constant scalar learning-rate parameter and ∇(yt|βt|t−1, xt) :=
xt(yt − βt|t−1 xt)/σ2 denotes the explicit score (i.e., evaluated in the prediction βt|t−1). For
the prediction step, we use the linear first-order specification (4).

The ISD update (25) illustrates the shrinkage result of Proposition 2 for the linear re-
gression model. The right-hand side of equation (25) features the shrinkage factor σ2/(σ2 +
Hx2

t ) ∈ (0, 1], which is absent (i.e., equal to unity) in the corresponding ESD update. The
amount of shrinkage increases with the magnitude of the explanatory variable x2

t . This might
suggest that the ISD update βt|t becomes equal to the prediction βt|t−1 for large xt, but this
is not the case. In fact, for the ISD update (25) it is straightforward to show that, for a fixed
yt, βt|t → 0 if |xt| → ∞. That the shrinkage factor depends on the exogenous variable xt

appears to be distinctive for the ISD version of the model.
Another difference with the ESD filter is that the ISD update (25) remains bounded as

the learning rate H grows. This is evident from the fact that H appears not only in front of
the score, but also in the denominator of the shrinkage factor. The practical relevance of this
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Figure 3: Time-evolution of βt|t−1 and estimated impact curve of the ISD and ESD models
for MSFT from March 1986 until April 2022. Vertical dotted lines mark Black Monday on
October 19, 1987.

observation, which extends beyond this linear regression example, is that the ISD filter is
robust to the (suboptimal) choice of learning rate, whereas ESD models tend to require more
careful finetuning. In the SGD literature, many of the comments above are analogous to
those made when comparing the least-mean-square adaptive filter and its normalized version
(e.g., Diniz, 1997).

We apply the ISD dynamic regression model (24) to simple daily excess returns of Mi-
crosoft (MSFT) from 14 March 1986 to 29 April 2022, obtained from Yahoo Finance.3 For
the market return and risk-free rate, we use the series from Kenneth French’s database.4

Figure 3 shows the evolution of βt|t−1 for the ISD and ESD models. It also shows the up-
dates βt|t − βt|t−1 as a function of the market return xt for a fixed yt = 0 and two different
predictions (βt|t−1 = 1 and βt|t−1 = −0.5). We refer to these as “impact curves” below.

In Figure 3, the ISD and ESD models produce relatively similar series {βt|t−1}, with a
slight advantage for the ISD model. In particular, the ESD model appears to be slow to
recover from large shocks, such as the crash on Black Monday, 1987. The reason for this
sluggish reaction is that the learning rate H must be substantially reduced to deal with
outliers, leading to reduced responsiveness in the remainder of the sample, as is evident
around 1994 and 2004.

This problem is drastically reduced for the ISD model by the more favorable (asymptotic)
impact curve with respect to the exogenous input. Figure 3 shows an unbounded quadratic
impact of xt on the update βt|t − βt|t−1 in the ESD model, while the ISD impact curve is
similar for small |xt| but bounded for large |xt|. Specifically, for the ISD model, |xt| → ∞
implies βt|t − βt|t−1 → −βt|t−1 and hence βt|t → 0. This illustrates the abovementioned
property of the ISD filter that the dynamic slope βt|t reverts to zero when the exogenous
variable is excessively large. The enhanced stability of the ISD approach allows its estimated

3https://finance.yahoo.com/quote/MSFT/history?p=MSFT
4https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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learning rate to substantially exceed that of the ESD model (Ĥ = 0.0169 versus Ĥ = 0.0092,
respectively), which explains the ISD’s higher sensitivity during non-crisis times.

6.2 Time-varying growth-at-risk

For policymakers, monitoring macroeconomic downside risk is crucial. One popular ap-
proach for macroeconomic risk assessment is the growth-at-risk (GaR) framework, which
refers to conditional lower quantiles of GDP growth. GaR, and its relationship with finan-
cial/economic conditions, is typically estimated using quantile regressions (QRs; see Koenker
and Hallock, 2001) with exogenous predictor variables (e.g., Adrian et al., 2019).

We propose to endogenously update a time-varying conditional quantile by postulating
an asymmetric Laplace distribution with a time-varying location. Maximizing such a density
is equivalent to minimizing Koenker and Bassett’s (1978) QR check function (see Koenker
and Machado, 1999). The ESD update for the τ -level quantile at time t with 0 < τ < 1,
denoted by qex

t|t(τ), is given by

qex
t|t(τ) = qt|t−1(τ) − 1[yt < qt|t−1(τ)]H(1 − τ)

σ
+ 1[yt > qt|t−1(τ)]Hτ

σ
, (26)

where yt denotes the GDP growth rate in period t, while 1[·] equals an indicator function
equal to one if the condition in square brackets is satisfied, and zero otherwise. In addition,
H > 0 and σ > 0 denote the scalar learning rate and a dispersion parameter, respectively,
both of which are assumed to be constant over time. The ESD update (26) yields a downward
adjustment of H(1 − τ)/σ if the observed growth yt falls below the quantile prediction
qt|t−1(τ) and an upward adjustment of Hτ/σ if yt exceeds qt|t−1(τ). No adjustment is made
(i.e., we set qex

t|t(τ) = qt|t−1(τ)) if the observation exactly matches the predicted quantile (i.e.,
yt = qt|t−1(τ)). Due to the non-differentiability of the Laplace density at this point, the
explicit gradient update must be interpreted in a generalized sense, involving a subgradient.
Apart from this probability-zero event, the explicit quantile update qex

t|t(τ) is identical to the
limiting version of Engle and Manganelli’s (2004) adaptive CAViaR update.

A disadvantage of the ESD update is that, due to the fixed size of the quantile adjustment,
the updated quantile may overshoot the observation yt. This issue is addressed by the ISD
update, which can be computed in closed form and is denoted by qt|t(τ) for the τ -level
quantile at time t. The implicit update is equivalent to the explicit update as long as the
latter does not overshoot the observation yt. Otherwise, it equals yt:

qt|t(τ) =

 min{yt, q
ex
t|t(τ)}, yt > qt|t−1(τ),

max{yt, q
ex
t|t(τ)}, yt ≤ qt|t−1(τ).

(27)
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This demonstrates that in this setting, too, the ISD update is essentially a shrunken version
of the ESD update. Specifically, if yt is above (below) the predicted quantile qt|t−1(τ), the
ISD update follows the ESD update upward (downward), but only up to the value yt. As a
result, the implicit update is capped at yt. This is advantageous, as overshooting (beyond yt)
decreases the model fit.

Quantile crossing poses an important practical problem when simultaneously tracking
multiple quantiles using QRs. Thanks to the particular form of the update (27), the ISD
model can ensure appropriate ordering of the quantiles using simple parameter restrictions.
Specifically, if all quantile updates share the same learning rate H and dispersion parameter
σ, the updated quantiles remain correctly ordered. To illustrate, consider an observation
yt that falls between the predictions of two different quantiles, meaning the estimate of the
higher quantile must be updated downward and the estimate of the lower quantile upward.
Because the ISD update is capped at the observation yt, it is, by design, not possible for the
two quantile estimates to cross. In contrast, for the ESD update, no positive learning rate
exists that is guaranteed to prevent such crossings; this can be interpreted as a practical ram-
ification of applying the ESD update to a logarithmic density without a Lipschitz-continuous
gradient. To maintain the correct ordering of quantiles not only in the update but also in
the prediction step, we specify the latter as

qt+1|t(τ) = c(τ) (1 − Φ) + Φ qt|t(τ) + γ xt, (28)

with an autoregressive parameter Φ ∈ [0, 1) that is common across quantiles and intercepts
c(τ) that are strictly ordered in τ . Furthermore, xt denotes an exogenous variable available
at time t with common slope parameter γ.5

We estimate the 5, 10, 25, and 50 percent GaR with the ISD and ESD models using
quarterly U.S. GDP growth rates from 1971Q1 to 2021Q4. For the exogenous variable xt,
we follow Adrian et al. (2019) in using the National Financial Conditions Index (NFCI),
where quarterly values are constructed by averaging the corresponding weekly values. Both
time series were obtained from the FRED database.6 To reduce the number of parameters
to estimate, we use a targeting approach (see, e.g., Engle, 2002 in the context of dynamic
covariance modeling) and set c(τ) equal to the corresponding full-sample empirical quantiles.
The remaining static parameters are estimated in a composite-likelihood fashion, comparable
to Zou and Yuan (2008). We fix the scale parameter σ = 1, as it does not influence the

5While it may be useful to allow different quantiles to have different sensitivities to the exogenous input
xt, this has the potential to introduce quantile crossings. Moreover, for our application, the likelihood
improvement of quantile specific slopes γ(τ) is too small to justify the additional model complexity.

6See https://fred.stlouisfed.org/series/GDP and https://fred.stlouisfed.org/series/NFCI.
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Figure 4: Growth-at-risk estimates for the ISD and ESD models for τ = 0.05, τ = 0.10,
τ = 0.25, and τ = 0.50, 1971Q1 to 2021Q4.

quantile dynamics and can be treated as a nuisance parameter (e.g., Geraci and Bottai, 2007).
Our postulated log-likelihood function equals the sum of four logarithmic Laplace densities,
of which three are asymmetric and one (corresponding to the median) is symmetric.

Figure 4 displays the 5, 10, 25, and 50 percent GaR estimates obtained from the ISD (27)
and ESD (26) models. The ISD model appears to be more responsive; for example, it shows
substantially larger downward adjustments during the onset of the COVID-19 pandemic in
2020Q2 and a faster recovery after the crisis than the ESD model. This is attributable
to the enhanced stability of the implicit update (27) relative to the explicit update (26),
whereby the estimated learning rate H of the ISD model greatly exceeds that of the ESD
model (Ĥ = 4.002 and Ĥ = 0.804, respectively). Furthermore, Figure 4 shows regular
quantile crossings for the ESD model, while the ISD quantiles remain strictly ordered at
all times. For example, the ESD update of the median (τ = 0.50) frequently cuts across
(i.e., overshoots) the observation yt, and occasionally then crosses the estimate of the first
quartile (τ = 0.25). In line with Adrian et al. (2019), we find a negative effect of the NFCI
(γ̂ = −0.052 and γ̂ = −0.019 for ISD and ESD, respectively), such that higher NFCI values
reflecting tighter financial conditions correspond to more negative quantile estimates.

7 Conclusion

This article introduced a novel framework for updating time-varying parameters in an
observation-driven setting. Specifically, we proposed an implicit score-driven (ISD) update
that maximizes, at each point in time, the logarithmic observation density subject to a
quadratic penalty centered at the one-step-ahead prediction. The name originates from the
first-order condition associated with this maximization, which can be written as an implicit
stochastic-gradient update. We derived model invertibility for the class of (possibly mis-
specified) log-concave observation densities and formulated sufficient conditions for a global
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contraction of the parameter update toward a pseudo-truth at every time step. We demon-
strated that the class of explicit score-driven (ESD) models—known variously as dynamic
conditional score (DCS; Harvey, 2013) or generalized autoregressive score (GAS; Creal et
al., 2013) models—can be obtained within the ISD framework by replacing the logarithmic
observation density at every time step by its local-linear approximation around the predic-
tion. Unlike the ESD update, the ISD update requires neither Lipschitz continuity of the
gradient of the logarithmic observation density nor a small learning rate. A simulation study
confirmed the theoretical advantages of the proposed method, and empirical benefits were
demonstrated in two illustrations involving asset pricing and growth-at-risk.
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Maximum likelihood estimation for score-driven models. Journal of Econometrics 227,
325–346.

Blasques, Francisco, Paolo Gorgi, Siem Jan Koopman, and Olivier Wintenberger (2018). Fea-
sible invertibility conditions and maximum likelihood estimation for observation-driven
models. Electronic Journal of Statistics 12, 1019–1052.

Blasques, Francisco, Siem Jan Koopman, and André Lucas (2015). Information-theoretic
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A Proofs

A.1 Proposition 1: Relationship ISD and ESD updates

By Assumption 2 we have that the regularized log likelihood f(θ|yt, θt|t−1) is concave in θ

with probability one in yt. As a result, we have for almost every yt that

f(θt|t|yt, θt|t−1) ≤ f(θt|t−1|yt, θt|t−1) + ⟨θt|t − θt|t−1,∇(yt|θt|t−1)⟩, (A.1)

reordering and using the fact that θt|t maximizes f(θ|yt, θt|t−1) we obtain the desired result:

⟨θt|t − θt|t−1,∇(yt|θt|t−1)⟩ ≥ f(θt|t|yt, θt|t−1) − f(θt|t−1|yt, θt|t−1) ≥ 0. (A.2)

In the scalar case, the first-order condition (FOC) and strict positivity of the learning
rate imply that ∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0 . Furthermore, ∇(yt|θt|t) = 0 produces θt|t = θt|t−1,
in turn implying that ∇(yt|θt|t−1) = ∇(yt|θt|t) = 0. Conversely, if ∇(yt|θt|t−1) = 0, we have
that θt|t = θt|t−1, as filling in θt|t−1 solves the FOC (and Assumption 2 implies uniqueness
of θt|t). Therefore, ∇(yt|θt|t−1) = 0 if and only if ∇(yt|θt|t) = 0. Combining this with
∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0, we obtain sgn(∇(yt|θt|t)) = sgn(∇(yt|θt|t−1)), which is the score-
equivalence as defined in Blasques et al. (2015).



Next, we use second-order differentiability (Assumption 4b) to write the ISD update as
a curvature-corrected ESD update. Specifically, we have that

∇(yt|θt|t) − ∇(yt|θt|t−1) = −It|t(θt|t − θt|t−1), (A.3)

where It|t is the negative average Hessian between θt|t−1 and θt|t:

It|t := −
∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t−1 + (1−u) θt|t

du. (A.4)

Roughly put, relationship (A.3) can be viewed as a multivariate analog of the mean-value
theorem. The integral form is necessary because, unlike the scalar case, there need not be
any single point θ for which the Hessian is exactly equal to −It|t. Using the ISD FOC for
θt|t − θt|t−1 on the right-hand side of (A.3) and rearranging yields:

(IK + It|tP
−1
t )∇(yt|θt|t) = ∇(yt|θt|t−1). (A.5)

Next, we note that Pt + It|t is positive definite, which follows from strict concavity of the
regularized log-likelihood (Assumption 2). That is, this assumption implies that the penalty
matrix Pt strictly exceeds (in an eigenvalue sense) the Hessian of log p(yt|θ) for any θ with
probability one in yt. From the definition of It|t, it follows that Pt ≻ −It|t ⇒ Pt + It|t ≻ OK .
Therefore Pt + It|t is invertible; premultiplying with (Pt + It|t)−1 gives:

P−1
t ∇(yt|θt|t) = (Pt + It|t)−1∇(yt|θt|t−1). (A.6)

Using (A.6) together with the ISD FOC produces the final result,

θt|t = θt|t−1 + (Pt + It|t)−1∇(yt|θt|t−1). (A.7)

A.2 Proposition 2: Step-size shrinkage

Using the FOCs, the difference between the implicit and explicit updates is given by:

θex
t|t − θt|t = θt|t−1 + P−1

t ∇(yt|θt|t−1) − θt|t−1 − P−1
t ∇(yt|θt|t), (A.8)

whereby rearranging and using the definition of It|t from (A.4) yields

θex
t|t − θt|t−1 = θt|t − θt|t−1 − P−1

t [∇(yt|θt|t) − ∇(yt|θt|t−1)] (A.9)

= (IK + P−1
t It|t)(θt|t − θt|t−1), (A.10)
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Pre-multiplying with P
1/2
t , which denotes the symmetric square root of Pt, and taking

the quadratic norm yields

∥θex
t|t − θt|t−1∥2

Pt
= ∥θt|t − θt|t−1∥2

(IK+P −1
t It|t)′Pt(IK+P −1

t It|t) (A.11)

= ∥θt|t − θt|t−1∥2
Pt+2It|t+It|tP −1

t It|t
(A.12)

= ∥θt|t − θt|t−1∥2
Pt

+ 2∥θt|t − θt|t−1∥2
It|t

+ ∥It|t(θt|t − θt|t−1)∥2
P −1

t
(A.13)

≥ ∥θt|t − θt|t−1∥2
Pt

+ 2λmin(It|t)∥θt|t − θt|t−1∥2 + λmin(P−1
t )∥θt|t − θt|t−1∥2

I2
t|t

(A.14)

≥ ∥θt|t − θt|t−1∥2
Pt

+ 2αt∥θt|t − θt|t−1∥2 +
λmin(I2

t|t)
λmax(Pt)

∥θt|t − θt|t−1∥2 (A.15)

≥ ∥θt|t − θt|t−1∥2
Pt

+
(

2αt + α2
t

λmax(Pt)

)
∥θt|t − θt|t−1∥2 (A.16)

≥
(

1 + 2αt

λmax(Pt)
+ α2

t

λmax(Pt)2

)
∥θt|t − θt|t−1∥2

Pt
=
(
λmax(Pt) + αt

λmax(Pt)

)2

∥θt|t − θt|t−1∥2
Pt
.

(A.17)

Here the fifth line uses λmin(It|t) ≥ αt which follows from concavity (Assumption 5) and the
definition of It|t in (A.4) as the average negative hessian. Because αt ≥ 0 it also follows
that λmin(I2

t|t) ≥ α2
t , which is used in the sixth line. The final line then uses ∥x∥2

Pt
≤

λmax(Pt)∥x∥2, which implies that ∥x∥2 ≥ 1
λmax(Pt)∥x∥2

Pt
for arbitrary K×1 vector x and using

that λmax(Pt) > 0. Note that 2αt + α2
t

λmax(Pt) ≥ 0, such that the correct sign is maintained.
Finally, rearranging the last expression above gives the desired result:

∥∥∥θt|t − θt|t−1

∥∥∥2

Pt
≤

(
λmax(Pt)

λmax(Pt) + αt

)2 ∥∥∥θex
t|t − θt|t−1

∥∥∥2

Pt
. (A.18)

A.3 Lemma 1: Prediction-to-update stability

Consider two predictions θt|t−1 and θ̃t|t−1 that are updated based on the observation yt to θt|t

and θ̃t|t, respectively. For the ISD update, we may write

θt|t − θ̃t|t = θt|t−1 − θ̃t|t−1 + P−1
t [∇(yt|θt|t) − ∇(yt|θ̃t|t)] (A.19)

= θt|t−1 − θ̃t|t−1 − P−1
t Ĩt|t(θt|t − θ̃t|t), (A.20)

where Ĩt|t is the negative average Hessian between θt|t and θ̃t|t:

Ĩt|t := −
∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t + (1−u) θ̃t|t

du. (A.21)
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Reordering of (A.20) yields

θt|t−1 − θ̃t|t−1 = (IK + P−1
t Ĩt|t)(θt|t − θ̃t|t). (A.22)

Next, pre-multiplying with P
1/2
t and taking the quadratic norm gives

∥θt|t−1 − θ̃t|t−1∥2
Pt

= ∥θt|t − θ̃t|t∥2
Pt+2Ĩt|t+Ĩt|tP −1

t Ĩt|t
. (A.23)

Using the same steps as in (A.11)-(A.18), we obtain

∥∥∥θt|t − θ̃t|t

∥∥∥2

Pt
≤

(
λmax(Pt)

λmax(Pt) + αt

)2 ∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
. (A.24)

For the ESD update, we may write

θex
t|t − θ̃ex

t|t = θt|t−1 − θ̃t|t−1 + P−1
t [∇(yt|θt|t−1) − ∇(yt|θ̃t|t−1)] (A.25)

= (IK − P−1
t Ĩt|t−1)(θt|t−1 − θ̃t|t−1), (A.26)

where Ĩt|t−1 is the negative average Hessian between θt|t−1 and θ̃t|t−1:

Ĩt|t−1 := −
∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t−1 + (1−u) θ̃t|t−1

du. (A.27)

Next, pre-multiplying with P
1/2
t and taking the quadratic norm gives

∥θex
t|t − θ̃ex

t|t∥2
Pt

= ∥θt|t−1 − θ̃t|t−1∥2
(IK−P −1

t Ĩt|t−1)′Pt(IK−P −1
t Ĩt|t−1) (A.28)

= ∥θt|t−1 − θ̃t|t−1∥2
Pt−2Ĩt|t−1+Ĩt|t−1P −1

t Ĩt|t−1
(A.29)

= ∥θt|t−1 − θ̃t|t−1∥2
Pt

+ ∥Ĩ1/2
t|t−1(θt|t−1 − θ̃t|t−1)∥2

Ĩ1/2
t|t−1P −1

t Ĩ1/2
t|t−1−2IK

(A.30)

≤ ∥θt|t−1 − θ̃t|t−1∥2
Pt

+ λmax(Ĩ1/2
t|t−1P

−1
t Ĩ1/2

t|t−1 − 2IK)∥θt|t−1 − θ̃t|t−1∥2
Ĩt|t−1

, (A.31)

where λmax(Ĩ1/2
t|t−1P

−1
t Ĩ1/2

t|t−1 − 2IK) = λmax(Ĩt|t−1P
−1
t ) − 2 ≤ λmax(Ĩt|t−1)λmax(P−1

t ) − 2 ≤
Lt/λmin(Pt) − 2 ≤ 0 and the final argument follows from the assumption λmin(Pt) ≥ Lt/2.
This means that the final term in (A.31) is negative. Continuing, we obtain

∥θex
t|t − θ̃ex

t|t∥2
Pt

≤ ∥θt|t−1 − θ̃t|t−1∥2
Pt

− [2 − Lt/λmin(Pt)]∥θt|t−1 − θ̃t|t−1∥2
Ĩt|t−1

(A.32)

≤ ∥θt|t−1 − θ̃t|t−1∥2
Pt

− αt[2 − Lt/λmin(Pt)]∥θt|t−1 − θ̃t|t−1∥2 (A.33)
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≤
(

1 − αt[2 − Lt/λmin(Pt)]
λmax(Pt)

)
∥θt|t−1 − θ̃t|t−1∥2

Pt
(A.34)

= λmax(Pt) − αt[2 − Lt/λmin(Pt)]
λmax(Pt)

∥θt|t−1 − θ̃t|t−1∥2
Pt
, (A.35)

where the second line uses λmin(Ĩt|t−1) ≥ αt ≥ 0 by concavity (Assumption 5) and the
third line uses that −∥x∥2 ≤ − 1

λmax(Pt)∥x∥2
Pt

for arbitrary K × 1 vector x. Finally, we note
that λmax(Pt)−αt [2 − Lt/λmin(Pt)] ≥ λmax(Pt)−αt [2 − αt/λmax(Pt)] = 1

λmax(Pt)(λmax(Pt)2 −
2αtλmax(Pt) + α2

t ) = 1
λmax(Pt)(λmax(Pt) − αt)2 ≥ 0, such that contraction coefficient is indeed

contained in the unit interval:

∥θex
t|t − θ̃ex

t|t∥2
Pt

≤ λmax(Pt) − αt[2 − Lt/λmin(Pt)]
λmax(Pt)︸ ︷︷ ︸

∈ [0, 1], contraction coefficient

∥θt|t−1 − θ̃t|t−1∥2
Pt
. (A.36)

A.4 Lemma 2: Prediction-to-prediction stability

The update-to-prediction mapping from time t to t+ 1 can be written as

∥θt+1|t − θ̃t+1|t∥2
Pt

= ∥Φ(θt|t − θ̃t|t)∥2
Pt

= −∥θt|t − θ̃t|t∥2
Pt−Φ′PtΦ + ∥θt|t − θ̃t|t∥2

Pt
(A.37)

≤ −λmin(Pt − Φ′PtΦ)∥θt|t − θ̃t|t∥2 + ∥θt|t − θ̃t|t∥2
Pt

(A.38)

≤ ε1,t∥θt|t − θ̃t|t∥2
Pt
, (A.39)

where the second line uses that λmin(Pt − Φ′PtΦ) ≥ 0 by positive semi-definiteness of Pt −
Φ′PtΦ, while the last line uses −∥ · ∥2 ≤ −λmax(Pt)−1∥ · ∥2

Pt
. Here ε1,t is given by

ε1,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

. (A.40)

By positive definiteness of Pt it follows that Φ′PtΦ is positive semi-definite due to its quadratic
form. Therefore, we have that 0 ≤ λmax(Φ′PtΦ) = λmax(Pt − (Pt − Φ′PtΦ)) ≤ λmax(Pt) +
λmax(−(Pt − Φ′PtΦ)) = λmax(Pt) − λmin(Pt − Φ′PtΦ) ≤ λmax(Pt), such that ε1,t ∈ [0, 1]. If
Pt − Φ′PtΦ is positive definite, we have that ε1,t ∈ [0, 1).

In addition, from Lemma 1, we have

∥θ̃t|t − θt|t∥2
Pt

≤ ε2,t∥θ̃t|t−1 − θt|t−1∥2
Pt
, ε2,t =

(
λmax(Pt)

λmax(Pt) + αt

)2

, (A.41)

where ε2,t ∈ [0, 1] if αt ≥ 0 and ε2,t ∈ [0, 1) if αt > 0. Combining (A.39) and (A.41), we
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obtain
∥θt+1|t − θ̃t+1|t∥2

Pt
≤ κt∥θt|t−1 − θ̃t|t−1∥2

Pt
, (A.42)

where κt is given as

κt = ε1,tε2,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

λmax(Pt)2

(λmax(Pt) + αt)2 (A.43)

= λmax(Pt)[λmax(Pt) − λmin(Pt − Φ′PtΦ)]
(λmax(Pt) + αt)2 . (A.44)

If either αt > 0 or Pt − Φ′PtΦ ≻ OK we obtain κt ∈ [0, 1), which concludes the proof.

A.5 Theorem 1: Invertibility

By assumption there exists a P̄ such that we have for all Pt that κtPt ≺ ρtP̄ ⪯ Pt for some
ρt > 0. This condition implies that the prediction-to-prediction mapping from time t to t+1
is strictly contracting in the norm ∥ · ∥ρtP̄ . To see this, we may write

∥θt+1|t − θ̃t+1|t∥2
ρtP̄ ≤ ∥θt+1|t − θ̃t+1|t∥2

Pt
≤ κt∥θt|t−1 − θ̃t|t−1∥2

Pt
(A.45)

= −∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ −κtPt

+ ∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ (A.46)

≤ δt∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ , (A.47)

where δt is given as

δt = λmax(ρtP̄ ) − λmin(ρtP̄ − κtPt)
λmax(ρtP̄ )

. (A.48)

Due to the condition ρtP̄ − κtPt ⪰ ρtA ≻ 0, we obtain that δt ∈ [0, δ], where δ is given as

δ = λmax(ρtP̄ ) − λmin(ρtA)
λmax(ρtP̄ )

= λmax(P̄ ) − λmin(A)
λmax(P̄ )

, (A.49)

where due to positive definiteness of P̄ and A we have that δ ∈ (0, 1). It now follows that

∥θt+1|t − θ̃t+1|t∥2
P̄ ≤ δ∥θt|t−1 − θ̃t|t−1∥2

P̄ , (A.50)

such that every prediction-to-prediction mapping is strictly contracting in a common norm
∥ · ∥2

P̄
with at least strength of contraction δ ∈ (0, 1). Therefore, for any c ∈ (1, 1

δ
), we have

lim
t→∞

ct∥θt|t−1 − θ̃t|t−1∥2
P̄ → 0, (A.51)

By norm equivalence it follows that this difference convergences to 0 in any norm.
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A.6 Theorem 2: Contraction to the NDR

We write the first-order condition of the ISD update as follows

P
1/2
t (θt|t − θt|t−1) = P

−1/2
t ∇(yt|θt|t), (A.52)

where adding P−1/2
t ∇(yt|θ⋆

t ) − P
1/2
t θ⋆

t to both sides and rearranging gives

P
1/2
t (θt|t − θ⋆

t ) + P
−1/2
t (∇(yt|θ⋆

t ) − ∇(yt|θt|t)) = P
1/2
t (θt|t−1 − θ⋆

t ) + P
−1/2
t ∇(yt|θ⋆

t ). (A.53)

Next, we write the difference in gradients, ∇(yt|θ⋆
t )−∇(yt|θt|t), as the product of the negative

average Hessian and the difference in two points. That is,

(P 1/2
t + P

−1/2
t I⋆

t|t)(θt|t − θ⋆
t ) = P

1/2
t (θt|t−1 − θ⋆

t ) + P
−1/2
t ∇(yt|θ⋆

t ), (A.54)

where I⋆
t|t ⪰ αtIK ⪰ OK is the negative average K ×K Hessian between θt|t and θ⋆

t :

I⋆
t|t := −

∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t + (1−u) θ⋆

t

du. (A.55)

Next, we consider the quadratic norm of (A.54) and take the expectation over yt with respect
to the DGP. Reordering and using that E

yt
[∇(yt|θ⋆

t )] = 0 by Assumption 6 gives:

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
︸ ︷︷ ︸

MSE after update

=
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE before update

−E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

2I⋆
t|t+I⋆

t|tP −1
t I⋆

t|t

]
︸ ︷︷ ︸

≥ 0, contractive force

+E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
︸ ︷︷ ︸

≥ 0, expansive force

.

(A.56)
The positivity of the contractive force is apparent from the positive semi-definiteness of I⋆

t|t,
which implies that also 2I⋆

t|t + I⋆
t|tP

−1
t I⋆

t|t is positive semi-definite.
For the second result, we write the ESD update as follows

P
1/2
t (θex

t|t − θt|t−1) = P
−1/2
t ∇(yt|θt|t−1), (A.57)

where subtracting P 1/2
t θ⋆

t on both sides and taking the quadratic norm yields:

∥θex
t|t − θ⋆

t ∥2
Pt

= ∥θt|t−1 − θ⋆
t ∥2

Pt
+ 2⟨θt|t−1 − θ⋆

t ,∇(yt|θt|t−1)⟩ + ∥∇(yt|θt|t−1)∥2
P −1

t
. (A.58)

We now take the expectation over yt with respect to the DGP. Using that E
yt

[∇(yt|θ⋆
t )] = 0

by Assumption 6, we also subtract 2E
yt

[⟨θt|t−1 − θ⋆
t ,∇(yt|θ⋆

t )⟩] = 0 from the right-hand side
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and write the difference in gradients, ∇(yt|θt|t−1) − ∇(yt|θ⋆
t ), as the product of the negative

average Hessian and the difference in two points. This gives

E
yt

[∥∥∥θex
t|t − θ⋆

t

∥∥∥2

Pt

]
︸ ︷︷ ︸

MSE after update

=
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE before update

−E
yt

[∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

2I⋆
t|t−1

]
︸ ︷︷ ︸

≥ 0, contractive force

+E
yt

[∥∥∥∇(yt|θt|t−1)
∥∥∥2

P −1
t

]
︸ ︷︷ ︸

≥ 0, expansive force

. (A.59)

where the positivity of the contractive force follows from the positive semi-definiteness of
I⋆

t|t−1 ⪰ αtIK ⪰ OK , which is the negative average K ×K Hessian between θt|t−1 and θ⋆
t :

I⋆
t|t−1 := −

∫ 1

0

∂2 log p(yt|θ)
∂θ∂θ′

∣∣∣∣∣
θ = u θt|t−1 + (1−u) θ⋆

t

du. (A.60)

A.7 Corollary 1: Geometric contraction to the NDR

Using αt-strong concavity and the same steps as in equations (A.11)-(A.18), we may obtain

∥θt|t − θ⋆
t ∥2

Pt
≤
(

λmax(Pt)
λmax(Pt) + αt

)2

∥θt|t − θ⋆
t ∥2

Pt+2I⋆
t|t+I⋆

t|tP −1
t I⋆

t|t
. (A.61)

Taking the expectation over yt with respect to the DGP and combining this with (A.56)
produces the final result:

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
≤

(
λmax(Pt)

λmax(Pt) + αt

)2

︸ ︷︷ ︸
∈ [0, 1), contraction coefficient

(∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

Pt

+ E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

])
. (A.62)

B Further results

B.1 Noise-dominated region for the ESD update

To obtain also a noise-dominated region contraction for the ESD update, we may write
∇(yt|θt|t−1) = ∇(yt|θ⋆

t ) − I⋆
t|t−1(θt|t−1 − θ⋆

t ) and substitute this in the final term. Expanding
this term yields a cross-product that is hard to assess. However, we can use the general
albeit loose bound ∥a + b∥2

P −1
t

≤ 2∥a∥2
P −1

t
+ 2∥b∥2

P −1
t

for arbitrary K × 1 vectors a, b. We
note that more generally, one could apply Young’s inequality to the cross-term 2⟨P−1

t a, b⟩
and fine-tune the exponent choice; the above is essentially a special case with exponent 2.
Using a = ∇(yt|θ⋆

t ) and b = −I⋆
t|t−1(θt|t−1 − θ⋆

t ), we obtain

E
yt

[∥∥∥∇(yt|θt|t−1)
∥∥∥2

P −1
t

]
= E

yt

[∥∥∥∇(yt|θ⋆
t ) − I⋆

t|t−1(θt|t−1 − θ⋆
t )
∥∥∥2

P −1
t

]
(B.63)
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≤ 2E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
+ 2E

yt

[∥∥∥I⋆
t|t−1(θt|t−1 − θ⋆

t )
∥∥∥2

P −1
t

]
(B.64)

= 2E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
+ 2E

yt

[∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

I⋆
t|t−1P −1

t I⋆
t|t−1

]
. (B.65)

Combining this with (A.59) gives:

E
yt

[∥∥∥θex
t|t − θ⋆

t

∥∥∥2

Pt

]
︸ ︷︷ ︸

MSE after update

≤
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE before update

− 2E
yt

[∥∥∥θt|t−1 − θ⋆
t

∥∥∥2

I⋆
t|t−1−I⋆

t|t−1P −1
t I⋆

t|t−1

]
︸ ︷︷ ︸

≥ 0, contractive force

(B.66)

+ 2E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

P −1
t

]
︸ ︷︷ ︸

≥ 0, expansive force

, (B.67)

where positivity of the new contractive force can be guaranteed using Lt-Lipschitz continuity
of the gradient combined with λmin(Pt) ≥ Lt ⇒ 1 − Lt/λmin(Pt) ≥ 0. That is,

E
yt

[
∥θt|t−1 − θ⋆

t ∥2
I⋆

t|t−1−I⋆
t|t−1P −1

t I⋆
t|t−1

]
(B.68)

= E
yt

[
∥(I⋆

t|t−1)1/2(θt|t−1 − θ⋆
t )∥2

IK−(I⋆
t|t−1)1/2P −1

t (I⋆
t|t−1)1/2

]
(B.69)

≥ λmin(IK − (I⋆
t|t−1)1/2P−1

t (I⋆
t|t−1)1/2)E

yt

[
∥(I⋆

t|t−1)1/2(θt|t−1 − θ⋆
t )∥2

]
(B.70)

≥ [1 − λmax(I⋆
t|t−1P

−1
t )]E

yt

[
∥(I⋆

t|t−1)1/2(θt|t−1 − θ⋆
t )∥2

]
(B.71)

≥ [1 − λmax(I⋆
t|t−1)λmax(P−1

t )]E
yt

[
∥(I⋆

t|t−1)1/2(θt|t−1 − θ⋆
t )∥2

]
(B.72)

≥ [1 − Lt/λmin(Pt)]E
yt

[
∥(I⋆

t|t−1)1/2(θt|t−1 − θ⋆
t )∥2

]
≥ 0. (B.73)

B.2 Dynamic linear regression

Consider the linear regression model with dependent variable yt ∈ R and independent vari-
able xt ∈ RK , that is,

yt = β′
t xt + εt, εt

i.i.d.∼ N(0, σ2), (B.74)

where βt is a K× 1 vector of time-varying parameters and εt is an i.i.d. normally distributed
innovation with variance σ2.

The log-likelihood contribution log p(yt|β) is obviously twice continuously differentiable
with respect to β for all yt, such that Assumption 4b (differentiability) holds. In addition, the
Hessian is equal to − 1

σ2xtx
′
t and is therefore negative semi-definite. Combined with strong

concavity of the penalty this means that the regularized log likelihood f(β|yt, βt|t−1, Pt) :=
log p(yt|β) − 1

2

∥∥∥β−βt|t−1

∥∥∥2

Pt
is strongly concave in β. Because f(β|yt, βt|t−1, Pt) is finite-valued
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for any β ∈ RK , we have that it is thus strictly proper concave such that Assumption 2
(strictly concave regularized log likelihood) holds.

The first-order condition (FOC) of the ISD update at time t associated with the model
(B.74) takes the following form

βt|t = βt|t−1 +Ht∇(yt|βt|t, xt), (B.75)

where Ht = P−1
t is the learning-rate matrix and ∇(yt|βt|t, xt) denotes the implicit score given

as,

∇(yt|βt|t, xt) =
yt − β′

t|t xt

σ2 xt. (B.76)

Note that strong concavity of f(β|yt, βt|t−1, Pt) and the unrestricted nature of the optimiza-
tion (i.e. we maximize over RK) imply that if the FOC (B.75) has a solution then it is the
unique global maximizer. Solving the FOC will thus also directly verify Assumptions 1
(existence) and 3 (interior solution).

Collecting all terms containing βt|t on the left-hand side, we may write the FOC in (B.75)
as

(IK +Ht
xtx

′
t

σ2 )βt|t = βt|t−1 +Ht
ytxt

σ2 . (B.77)

Now using the Sherman-Morrison identity, we left-multiply with (IK + Ht
xtx′

t

σ2 )−1 = IK −
Htxtx′

t

σ2+x′
tHtxt

, which yields

βt|t =
(
IK − Htxtx

′
t

σ2 + x′
tHtxt

)(
βt|t−1 +Ht

ytxt

σ2

)
. (B.78)

Eliminating brackets and using the notation ∥xt∥2
Ht

:= x′
tHtxt then gives

βt|t = βt|t−1 +Ht
ytxt

σ2 − Htxtx
′
t

σ2 + ∥xt∥2
Ht

βt|t−1 − Htxtx
′
t

σ2 + ∥xt∥2
Ht

Ht
ytxt

σ2 , (B.79)

where changing the ordering using the fact that yt, σ2, x′
tβt|t−1 and ∥xt∥2

Ht
are scalars and

again using the definition of ∥xt∥2
Ht

, we get

βt|t = βt|t−1 +Ht
yt

σ2xt − 1
σ2 + ∥xt∥2

Ht

Htx
′
tβt|t−1xt −

∥xt∥2
Ht

σ2 + ∥xt∥2
Ht

Ht
yt

σ2xt. (B.80)

Multiplying the second and third term on the right-hand side with σ2+∥xt∥2
Ht

σ2+∥xt∥2
Ht

and σ2

σ2 , respec-
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tively, allows us to combine the second through fourth terms as follows

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht

yt − x′
tβt|t−1

σ2 xt, (B.81)

where using the definition of the explicit gradient ∇(yt|βt|t−1, xt) gives the final result

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht∇(yt|βt|t−1, xt). (B.82)
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