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Abstract

A flexible predictive density combination is introduced for large financial
data sets which allows for model set incompleteness. Dimension reduction
procedures that include learning allocate the large sets of predictive
densities and combination weights to relatively small subsets. Given the
representation of the probability model in extended nonlinear state-space
form, efficient simulation-based Bayesian inference is proposed using parallel
dynamic clustering as well as nonlinear filtering, implemented on graphics
processing units. The approach is applied to combine predictive densities
based on a large number of individual US stock returns of daily observations
over a period that includes the Covid-19 crisis period. Evidence on dynamic
cluster composition, weight patterns and model set incompleteness gives
valuable signals for improved modelling. This enables higher predictive
accuracy and better assessment of uncertainty and risk for investment fund
management.
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1 Introduction
Predicting with large sets of data involving many model structures and explanatory
variables is a topic of substantial interest to academic researchers as well as to
professional forecasters. It has been studied in several papers (e.g., see Stock and
Watson, 1999, 2002, 2005, 2014, and Bańbura et al., 2010). The recent fast growth
in big data allows researchers to predict variables of interest more accurately (e.g.,
see Choi and Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav and Levin,
2014). Stock and Watson (2005, 2014), Bańbura et al. (2010) and Koop and
Korobilis (2013) suggest that there are also potential gains from predicting using a
large set of predictors. However, such predictions require new modelling strategies,
efficient inference methods and extra computing power possibly resulting from
parallel computing. We refer to Granger (1998) for an early discussion of these
issues.

Given a large financial micro-data set consisting of US individual stock
returns of daily observations over an extended period which includes the Covid-
19 crisis period, we propose a flexible predictive density combination in order to
approximate such data accurately while allowing for model set incompleteness and
combination weight learning. A major motivation for our approach is that in
portfolio analysis the process of collecting such a large data set and clustering it in a
relatively small number of groups where each group has typical data characteristics
is a popular strategy. Next, one replicates an aggregate index through a weighted
combination of assets which can be used for a predictive asset allocation strategy
in investment funds (e.g., see Corielli and Marcellino, 2006; Kim and Kim, 2020).
Our approach provides tools for the quantification of predictive uncertainty and
risk for such funds which may be useful management information. A second related
motivation is the appearance of fat tail behaviour (and possibly skewness) in most
financial data distributions. These data features are usually ignored in point
prediction and this may give wrong signals about financial uncertainty and risk.

In terms of methodology, we extend the combination strategies of Billio et al.
(2013) and McAlinn and West (2019). McAlinn and West (2019) is founded
on a decision theory framework providing a coherent Bayesian interpretation for
Bayesian Model Averaging (BMA). However, when the time series tend to become
large BMA tends to select one model, supposedly the true model, see Amisano and
Geweke (2010). In empirical analysis it is, however, known that the concept of a
true model is not very realistic, see Geweke (2010). Our aim is not to pursue the
approach of finding the true model, but rather to introduce a flexible predictive
density combination that provides an accurate approximation to nonstandard data
distributions in finance such as bimodal ones and/or distributions with heavy tails.
We refer to Hall and Mitchell (2007); Amisano and Geweke (2010); Billio et al.
(2013); Gneiting and Ranjan (2013); Yao et al. (2018) and the discussion therein
for further insight on the different combination approaches.

Our extensions to Billio et al. (2013) are threefold. First, replace their
normal combination model with a flexible mixture of predictive distributions to
account for possible multimodality and heavy tails and specify a measure for
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model incompleteness or misspecification. Second, make the combination approach
operational for large data sets by applying dimension reduction which includes
learning about the large sets of predictive densities as well as the combination
weights. A major reason for these different dimension reductions is that investment
fund managers are interested to obtain not only predictions of the fund but also
to learn about the composition over time of the clusters of assets and, also, to
learn about the behaviour of weights of these clusters. This may lead to improved
modelling, prediction and policy. Third, for efficient inferential purposes make use
of a recent parallel Sequential Monte Carlo method.

Extension one is described in the beginning of Section 2, here we explain
extensions two and three. Our empirical example contains a large data set of
individual US stock returns of daily observations over an extended time period
which includes the Covid-19 crisis. As a consequence, we deal with a large set
of predictive densities in the combination process, which makes the inference task
a substantial challenge. Inference based on the normal combination model from
Billio et al. (2013) is not operational in large panels since the latent space of
combination weights is high dimensional and overparameterization and overfitting
issues can easily arise. We extend Billio et al. (2013) with two dimension reductions.
The first one is based on dynamic clustering of the large set of predictive densities
exploiting common data features in the large set of stock return series such as
wide data bands and time-varying volatility. The dynamic clustering maps, at
each time t, the large set of predictive densities to a much smaller subset where
the cluster composition at time t depends on the past composition. We note that
clustering strategies have been successfully used in other models to cope with high
dimensional parameter spaces, (e.g., see MacLehose and Dunson, 2010; Billio et al.,
2019). The second dimension reduction deals with the large number of combination
weights. A nonlinear dynamic factor model is specified for these weights which
contains learning, possibly, using information about past predictive performance.
An alternative is to shrink the combination weights to zero as in the sparse factor
model literature, (e.g., see Carvalho et al., 2008; Kaufmann and Schumacher, 2017,
2019) but learning is not included. We note that our approach contributes to the
literature on time series models with time-varying parameters that take values on
a bounded domain, see, e.g., Aitchinson and Shen (1980) and Aitchinson (1982),
and applies it to large financial data extending the intuition in Stock and Watson
(2014).

With respect to the inference method we show that our mixture model allows for
an extended nonlinear state-space representation. This enables us to construct an
efficient simulation-based Bayesian inference procedure, where parallel Sequential
Monte Carlo is used to filter the set of probabilistic weights and integrate the set
of random parameters. Here we make use of the recently developed M-Filter, see
Baştürk et al. (2019) and Hoogerheide et al. (2012).

In terms of empirical analysis we provide three contributions: accuracy gains in
predictive moments compared to benchmark results; time-varying composition of
clusters and cluster weights; diagnostic information on model set incompleteness.
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Evidence on substantial accuracy gains in predictive means, volatilities and
tail events is presented compared to the no-predictive ability benchmark and
predictions from individual models and combination methods as BMA and Equal
Weights (EW). The time-varying composition of the set of clusters shows learning.
Individual stocks may switch across clusters or eventually exit them, for example,
during and after a crisis like the financial crisis and the Covid-19 crisis. Measures
of model set incompleteness and dynamic patterns in the cluster-based weights
give valuable diagnostic signals. These empirical results may provide useful
information for improved financial modelling and policy analysis by investment
fund management.

For a recent survey about the evolution of predictive density combinations we
refer to Aastveit et al. (2019), for background to Billio et al. (2013), McAlinn and
West (2019) and for a policy application to Baştürk et al. (2019).

The contents of this paper are structured as follows. Section 2 provides details
of the methodological contributions of our approach. Section 3 contains an efficient
simulation-based Bayesian inference procedure. Section 4 contains results of the
empirical application using a large set of US stock return data in regular and crisis
periods. Section 5 presents conclusions and suggestions for further research. Some
additional results are given in Supplementary Material that serves as an online
Appendix.

2 Mixture process with model set incomplete-
ness, dimension reduction and time-varying
component weights

We start with extending a standard mixture process for predictive densities to
include model set incompleteness. Let the conditional predictive probability
distribution of a financial variable of interest, yt, be specified as a mixture of
conditional predictive probability distributions of yt coming from a large set of
n individual financial models with information sets Ii,t−1, where the information
set Ii,t−1 includes data information as well as model structure, denoted by Mi,
with i = 1, . . . , n. Define weights wit that form a convex combination of the
conditional predictive probabilities. In terms of densities this implies a standard
mixture process:

f(yt|It−1) =
n∑
i=1

witf(yt|Ii,t−1), 0 ≤ wit ≤ 1,
n∑
i=1

wit = 1, (1)

where It−1 is the joint information set.
A key step is to give specific content to the i-th mixture component f(yt|Ii,t−1).

Let yt = y∗it with probability wit, where y∗it is defined for all models Mi as the sum
of the following two random variables:

y∗it = ỹit + εit, (2)
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where ỹit is a generated draw from the predictive distribution with density
f (ỹit|Ii,t−1) from model Mi. A new feature is the addition of the disturbance εit.
It points towards two sources of error. There may be misspecification errors due to
model set incompleteness and prediction errors due to, for instance, sudden shocks
in the series. In this paper we focus on the former, that is, a larger specification
error implies a larger error εit. Investigating the relative importance of a prediction
error component is a topic for further research. We note that Terui and van Dijk
(2002); Hoogerheide et al. (2010); Takanashi and McAlinn (2019), McAlinn and
West (2019) and recently Aastveit et al. (2022) make use of a combination equation
which can be interpreted as a linear regression model with time-varying parameters
and a time-varying constant and one disturbance term. In contrast, we work with
a flexible mixture approach in the combination process where for each component
of the mixture there exists a time-varying weight and a disturbance.

The probability density function of εit is given as:

εit ∼ N
(
0, σ2

it

)
, (3)

where
σ2
it = σ2

i exp(hit), hit = hi,t−1 + ζit, ζit ∼ N (0, σ2
ζ,i), (4)

for each i = 1, . . . , n. Given equation (2), the probability density function of y∗it is
the convolution of two densities given as:

f(y∗it|Ii,t−1, σ
2
it) =

∫
R

1
σit
φ
(
y∗it − ỹit
σit

)
f(ỹit|Ii,t−1)dỹit (5)

where φ(·) is the standard normal density. So, for our mixture of n models we have

f(yt|It−1, σ
2
t ) =

n∑
i=1

wit

∫
R

1
σit
φ
(
yt − ỹit
σit

)
f(ỹit|Ii,t−1)dỹit (6)

where σ2
t = {σ2

1t, . . . , σ
2
nt}. One may interpret the information from the predictive

densities f (ỹit|Ii,t−1), i = 1, . . . , n as prior-predictive information that is fed into
the predictive density combination (6).

However, a large set of predictive densities for each time observation allowing
for time-varying combination weights is not easy to handle in terms of econometric
inference. Reduction of the large information set is necessary. Dimension reduction
techniques are widely used in machine learning to reduce the information of high-
dimensional datasets (see e.g., Varian, 2014; Casarin and Veggente, 2020, and
references cited therein). We make use of dimension reduction steps for the large
number of components in the predictive mixture and the accompanying large
number of latent probabilistic weights. The different steps are schematically shown
in Table 1.

In our financial case, we start with a preliminary step using diagnostic graphical
evidence about typical data features in individual financial series of stock returns
like high and low time-varying volatility and wide and narrow data bands.
Our motivation for this is that in financial applications large differences across
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predictions occur in the higher moments and tail behaviour. This leads in our
case to the, a priori, choice of a Normal density with high and low volatility
and a Student-t density with large and small degrees of freedom. We use these
data features for dimension reduction of the large number of components in the
predictive mixture into four groups using dynamic K-means clustering where the
current cluster composition depends on the past composition. This allows for
learning about model dependence and cluster grouping, see e.g. Varian (2014);
Casarin and Veggente (2020), and for more general applications of machine learning
methods to financial predictions (Gu et al., 2020; Bianchi et al., 2020). This is
well documented in data but largely ignored in the predictive density combination
literature. We note that Bianchi and McAlinn (2018) and Takanashi and McAlinn
(2019) also discuss clustering procedures. Usually, these methods make use of
constant clustering. The clustering process is depicted in the second row of Table
1 and empirical results are presented in Section 4. For general background on K-
Means clustering we refer to (Frühwirth-Schnatter, 2006, pp. 97) and Malsiner
Walli et al. (2016) and for details about the implementation of our dynamic
clustering procedure we refer to Appendix B.1 in the Supplementary Material.

Large set of financial series leading to n predictive densities
↘ ↓ ↓ ↙

Dynamic clustering allocates n densities to m� n groups
↓ ↓ ↓ ↓

Cluster 1 Cluster 2 · · · Cluster m

Cluster weights zjt are logistic transformations of unrestricted random walk variables vjt:
(z1t, . . . , zmt) = g(v1t, . . . , vmt)
↙ ↓ ↓ ↘

Mapping m cluster weights zjt to n model weights wit

↓ ↓ ↓ ↓
Construction of convex combination of large set of n predictive densities

Table 1: Dimension reduction and computation of latent weights for predictive density
combination using a large financial data set. The function g(·) refers to the logistic transformation
given in equation (8).

In order to complete the specification of the probability model given in equation
(6), we specify a law of motion, which involves dimension reduction and learning,
for the latent probabilistic weights wit, i = 1, . . . , n, t = 1, . . . , T with large n and
large T . The weight model, given in equations (7)-(9), is a nonlinear dynamic factor
model of wit. Factor models are well-known as a vehicle for dimension reduction,
see Anderson (1984) and Lopes and West (2004) and we make use of a simple
nonlinear extension. Let

vjt = vj,t−1 + ηjt, ηjt ∼ N (0, σ2
η), j = 1, . . . ,m, (7)

zjt = exp(vjt)∑m
i=1 exp(vit)

, 0 ≤ zjt ≤ 1,
m∑
j=1

zjt = 1 (8)
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wit =
m∑
j=1

bijtzjt, i = 1, . . . , n. (9)

The unrestricted latent variables vjt, j = 1, . . . ,m in the m = 4 clusters are
normal random walk variables, see equation (7). This dynamic specification can be
generalised, see Billio et al. (2013). Next, a logistic transformation is applied from
the unrestricted latent variables vjt, j = 1, . . . ,m to an auxiliary set of probabilistic
cluster weights zjt, j = 1, . . . ,m, see equation (8), which is depicted in the bottom
part of Table 1. The purpose of the factor loadings bijt is to transform the m
weights zjt of the convex combination of m clusters to the n weights wit of the
convex combination of n � m models. Therefore, the factor loadings bijt are
restricted to be nonnegative and sum to 1. We assume in our case, for convenience,
that each model i has an equal weight within its cluster j. To allow for learning
one may consider a case where the weights are driven by model-specific predictive
performance using the log score, see Billio et al. (2013) and also Mitchell and Hall
(2005). Note that in our case there exists no noise in the connection between wit,
zjt and vjt, but this assumption can be relaxed to account for contemporaneous
uncertainty with the addition of logistic-normal noise in the equation for wit. This
is left for further research.

Given equations (7)-(9) we can complete the specification of the probability
model given in (6) with the specification of the law of motion for the probabilistic
weights wit, i = 1, . . . , n. Consider the m × 1 vector vt = (v1t, . . . , vmt)′ with
the multivariate normal distribution vt ∼ Nm(vt−1,Ση) where Ση is a diagonal
matrix. Given that the m × 1 vector zt = (z1t, . . . , zmt)′ is given as a logistic
transformation, see equation (8), the vector z̃t = (z1t, . . . , zm−1,t)′ follows a logistic-
normal distribution given as z̃t ∼ Lm−1(Dvt−1,DΣηD′) with zmt = 1−∑m−1

j=1 zjt,
where the expression of the matrix D is given in the proof of the result which is
presented in the Supplementary Material, Appendix A.

Since the large set of n probabilistic weights wit, i = 1, . . . , n consists of
linear combinations of the small set of m logistic-normal probabilistic weights
zjt, j = 1, . . . ,m, see equation (9), the distribution of the weights wit is logistic-
normal. Here, use is made of the class preserving property of the logistic-normal
distribution. In matrix notation, consider the vector w̃t = (w1t, . . . , wn−1,t)′ with
wnt = 1 −∑n−1

i=1 wit. Then we make use of w̃t = B̃tz̃t where B̃t is an (n − 1) ×m
matrix that contains an appropriate subset of elements bijt. As a consequence, one
can write that the implied logistic-normal distribution of w̃t is given as :

w̃t ∼ Ln−1
(
B̃tDvt−1, B̃tDΣηD′B̃

′

t

)
, (10)

for details on this result, see the Supplementary Material, Appendix A. Note that
the density of the complete vector wt = (w1t, ..., wnt)′ is singular due to the adding-
up restriction of the n weights. A second source of degeneracy is intrinsic to our
projection strategy which implies rank deficiency of the matrix B̃tDΣηD′B̃

′
t.1

1Other distributions can be used for weights such as the Dirichlet distribution, but as shown in
Aitchinson and Shen (1980) this distributional assumption can be too restrictive in our analysis
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The analytic solution of the probability model of equations (6) and (10) is
generally not known but the model can be represented in extended nonlinear state-
space form given as:

yt =
n∑
i=1

(ỹit + εit)sit, εit ∼ N (0, σ2
it) (11)

(s1t, . . . , snt) ∼Mn(1, (w1t, . . . , wnt)), (12)

wit =
m∑
j=1

bijtzjt, i = 1, . . . , n, (13)

zjt = exp(vjt)∑m
i=1 exp(vit)

, j = 1, . . . ,m, (14)

vjt = vj,t−1 + ηjt, ηjt ∼ N (0, σ2
η), j = 1, . . . ,m. (15)

The measurement equation (11) has as extension that the right-hand side variable
ỹit is not an observation from our dataset but refers to a random draw from
the predictive distribution of model Mi and εit gives an indication of possible
incompleteness. Using the Multinoulli distribution (also known as the Categorical
distribution) of (s1t, . . . , snt) with parameter vector (w1t, . . . , wnt) given in equation
(12), one generates draws from the i-th component of the mixture distribution with
probability wit where (s1t, . . . , snt) contains n − 1 0’s and one element equal to 1.
That is, sit = 1 means that model i is selected.

A schematic figure of the extended nonlinear state-space representation is given
in Figure 1. The sequence of steps starts with the dynamic clustering step shown
at the bottom left, then one proceeds upwards and next to the middle center where
the nonlinear dynamic factor model is shown which is constructed at the bottom
right and going upwards. At the top, the measurement equation is shown from
the finite mixture process with the n generated predictive draws and disturbances
that follow a stochastic volatility process. The complete state-space representation
enables us to make use of filtering methods of the nonlinear time series literature to
evaluate and update the unobserved weight components in the predictive density
combination.

3 Bayesian inference applying the M-Filter
The analytic solution of the optimal filtering problem is in most applications not
known, except for the case of a Kalman filter where use is made of well-known
properties of the multivariate normal distribution. For our large finite mixture
process with time-varying weights based on a nonlinear dynamic factor model, we
make use of simulation-based numerical methods to tackle the filtering problem and

since the components of a Dirichlet composition have a correlation structure determined solely
by the normalisation operation, so that only negative correlations are possible (and given the
means, there is only one free parameter for the variances and covariances).
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Measurement equation:
yt = ∑n

i=1(ỹit + εit)sit

Selection of
mixture component

(s1t, . . . , snt) ∼
Mn(1, (w1t, . . . , wnt))

Time series models Mi:
ỹit|It−1

Stochastic
volatility model:
εit ∼ N (0, σ2

it)
σ2
it = σ2

i exp(hit)
hit = hi,t−1 + ζit

ζit
iid∼ N (0, σ2

ζ,i)

Nonlinear dynamic
factor model

of wit = ∑m
j=1 bijtzjt

with large n and small m

Logistic transformation from
unrestricted latent variables

to probabilistic weights:
zjt = exp(vjt−vmt)∑m

k=1 exp(vkt−vmt)

Weights within m clusters:
bijt = 1

njt

Dynamic clustering of
predictions. Number of
predictions in cluster
j at time t is njt

Random walk
for unrestricted
latent variables:
vjt = vj,t−1 + ηjt

ηjt
iid∼ N (0, σ2

η)

Figure 1: Directed acyclic graph of the extended nonlinear state-space model. It shows the
connections between the variable of interest yt, the predicted variables ỹit (rectangles, solid line),
the dynamic clustering, the random walk process, the categorical Multinoulli distribution, the
stochastic volatility specification (ellipses), the link functions exp(vjt−vmt)∑m

k=1
exp(vkt−vmt)

, bijt and the
nonlinear dynamic factor model of the latent probabilistic weights wit (rectangles, dashed line).
The directed arrows show the dependence structure.

we make use of Bayesian inference to update information about the random model
parameters. For a fundamental discussion about a coherent Bayesian framework
for evaluation, calibration, and data-informed combination of multiple predictive
densities, see McAlinn and West (2019) and McAlinn et al. (2020).

Apart from the fundamental motivation for applying Bayesian inference there
exists a practical one which is based on simulation-based Bayesian methods.
That is, the generated draws ỹit from the predictive distributions of the different
models are carried forward into the predictive combination density. Thus, the
uncertainty in the predictions of the different models carries directly forward
into the uncertainty of the combined predictive density. In contrast, frequentist
methods like method of moments or maximum likelihood proceed in a two-
step fashion by first computing point predictions for the different models and
substituting these in a second stage into the combined predictive density. As
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such the second stage results suffer from the generated regressor problem, that is,
uncertainty measures of the second-stage predictions are sensitive to the estimation
procedure used for the model predictions, see Pagan (1984) for background details.

In order to filter the latent weights in equations (11)-(14) we make use of
the recently developed M-Filter introduced in Baştürk et al. (2019) and based on
Hoogerheide et al. (2012). We restrict ourselves to a summary of the novel, efficient
and robust properties of this method and refer to the cited references and Appendix
B.2 in the Supplementary Material for technical background.

The M-Filter is a member of the class of Sequential Monte Carlo (SMC)
algorithms that are suitable to solve filtering problems in nonlinear state-space
models, see Creal (2007) and Herbst and Schorfheide (2014) for background. The
basic idea of SMC is that a set of draws, labelled particles, is generated from an
approximation to the so-called target density, in our case, the combined predictive
density, in a sequential way at each time t. That is, such an SMC method consists
in general at each time point t of two steps: a sampling step to generate particles
from the approximate density and next a correction step to adjust for the distance
between the approximate density and the target. However, the propagation
of particles over time points leads to the situation that after many iterations
one particle receives all weights which implies degeneracy of the approximate
density. In order to avoid this, a so-called resampling step is introduced where
the approximate density is updated in such a way that degeneracy does not occur.

The M-filter has two innovations. First, this rather cumbersome resampling
procedure in the propagation step is replaced by independent sampling at each
time t. This also reduces Monte Carlo variation. Second, the independent sampling
step occurs in an online-fashion, contrary to other methods that make use of
independent sampling like Efficient Importance Sampling of Richard and Zhang
(2007) and Liesenfeld and Richard (2003), or Numerically Accelerated Importance
Sampling of Koopman et al. (2015) that are off-line methods.

The choice of an accurate approximate density is crucial for the performance of
any filter method and has received considerable attention in the SMC literature,
see Doucet et al. (2001), Liu (2001), Kunsch (2005) and Creal (2012). The M-
Filter method approximates a target density using the Mixture of t by Importance
Sampling Weighted Expectation–Maximization (MitISEM) algorithm proposed by
Hoogerheide et al. (2012) and further developed in Baştürk et al. (2016). MitISEM
has been shown to be able to effectively approximate complex, non-elliptical
distributions due to two features of this algorithm: the class of importance
distributions (mixtures of multivariate Student’s t distributions), and their joint
optimisation (with the Expectation-Maximisation, EM, algorithm). The former
allows to closely track distributions of nonstandard shape (multimodal, skewed).
The latter is iteratively carried out with the objective of minimising the Kullback-
Leibler (KL) divergence between target density and approximate density. This
robustness and flexibility of the M-Filter in constructing approximate densities
is particularly important in econometrics where breaks in time series are often
observed.
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The application of the M-Filter requires to choose the values of a few tuning
parameters. First, the number of components of the Student-t mixture to
approximate the target density is restricted to be no larger than a maximum
of four. For each component the initial mean, variance and degrees of freedom
parameter are set to zero, one and three, respectively. Those parameters are then
updated with an EM step. Second, the number of draws is fixed to 10000 which
is sufficient for good convergence in our case. Third, the measure that is used
in order to check the convergence of the algorithm is the relative change in the
Coefficient of Variation (CoV) of the Importance Sampling weights, where the
Importance Sampling weight is the ratio of target and approximate density. The
default convergence criterion is chosen as the change of the CoV being smaller than
0.5%.

The M-Filter is easy to parallelise, this enables our approach to speed up the
computations using Multiple CPUs or GPUs. In Table 2 we report results from an
experiment about the computing time of the M-Filter with different numbers of
threads, numbers of draws and maximum numbers of components of the Student-t
mixture. All the values reported are in ratio with the benchmark model given by
5000 draws, one thread and two threads. For a comparison of the computing time
between the M-Filter and particle filters we refer to Baştürk et al. (2019), where
extensive Monte Carlo studies in benchmark exercises are presented. The results

1 Thread 6 Threads 12 Threads 24 Threads
C 5000 10000 20000 5000 10000 20000 5000 10000 20000 5000 10000 20000
2 1.000 1.953 3.773 0.171 0.314 0.725 0.093 0.171 0.377 0.083 0.164 0.325
3 1.067 2.086 3.970 0.178 0.317 0.750 0.098 0.181 0.379 0.083 0.165 0.326
4 1.068 2.097 3.981 0.186 0.322 0.782 0.099 0.185 0.383 0.083 0.168 0.331

Table 2: Computing time for number of threads (1, 6, 12, 24), number of draws
(5000, 10000, 20000) and maximum number of Student-t components (C). All values are
in ratio with the benchmark model given by 5000 draws and one thread. Values higher
that 1 means that the computing time is higher than the benchmark. Values lower than
1 means that the computing time is lower than the benchmark.

reported in Table 2 show that using multiple threads reduces the computing time
considerably in our case. Results are not sensitive to the choice of the maximum
number of components in the mixture approximation, while doubling the number
of draws also doubles the computing time.

The information on the priors for the SV model in equation (4) and for the
random walk in equation (7) is given as follows. For the σ2

it we select a log-
normal distribution with mean log(0.1) and and standard deviation 0.175; for σ2

ζ ,
we also select a log-normal distribution with mean -2.3 and standard deviation
0.175. Our prior corresponds to an average incompleteness value that is equal to
10% of the unconditional volatility of our S&P500 data. For the σ2

η, in equation
(7), we select a log-normal distribution with mean -0.7 and standard deviation
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equal to 0.175. Therefore the prior mean for σ2
η is 5 times higher than for σ2

ζ ,
assuming bigger changes for the cluster weights than for the incompleteness over
time. The standard deviation of 0.175 for both priors implies a relative loose prior
in both cases. For the parameters in the four equation models we make use of
rather uninformative proper priors. All our priors are default choices, that can be
modified by the user, in the MATLAB toolbox that carries out the M-Filter, which
is available at http://www.francescoravazzolo.com/pages/DeCo.html.

4 Predicting and tracking the S&P500
As discussed in the introduction many investors of mutual funds, hedge funds and
exchange-traded funds try to replicate the performance of the S&P500 index by
holding a set of stocks, which are not necessarily the exact same stocks included
in the index.

We collected 496 individual daily stock prices, components of the S&P500, from
Datastream over the sample January 2, 2014, to June 30, 2021, for a total of 1888
daily observations for each series. We computed the time series of log-returns for
all stocks, see Figure 2. Table 3 reports several cross-section average statistics of
the individual series together with the same statistics for S&P500 index. Some
series have much lower average returns than the index with volatility up to 3 times
higher than the index. Heterogeneity in skewness and kurtosis is also evident with
the series with the lowest skewness equal to -1.829 and the highest skewness equal
to 0.335 and with the lowest kurtosis equal to 9.135 and the highest kurtosis equal
to 42.164.

The inclusion in our series of the Covid-19 pandemic explains such high values.2
We report results on several features of the combined predictive density of the
replication of the S&P500 index, including the economic value of tail events.

Diagnostic determination of four clusters and model estimation.
Given the basic statistics about time-series and cross-section patterns, we have
determined as typical data features of our financial micro-data set wide and narrow
data bands and high and low time-varying volatility.

This led us to specify two clusters of predictive densities based on a Normal
GARCH(1,1) model: one cluster with high volatility (labelled n1) and one
cluster with low volatility (labelled n2). Next, two clusters based on a Student-t
GARCH(1,1) model: one cluster with low degrees of freedom (labelled t1) and one
cluster with high degrees of freedom (labelled t2).3 Our motivation for this choice
is to obtain a mixture of densities which fits both in the center of the empirical
distribution (for mean prediction) and in the tails (for measuring uncertainty and

2It has been suggested to make use of the information about shares outstanding to determine
better the time behaviour of weights. We consider only stocks that have survived in the S&P500
basket over the period of our sample, but the methodology can handle series with different sample
lengths. We leave these as topics for further research.

3Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur
jointly with a low scale.
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Figure 2: Daily (%) log-returns for 496 individual stock components of the S&P500 over
the sample January 2, 2014 to June 30, 2021. The red line on January 2, 2019 indicates
the beginning of the out-of-sample period.

risk).
To ease on the computational workload, we have applied an optimisation

method to estimate the posterior modes of the parameters from a Normal
GARCH(1,1) model and a Student-t GARCH(1,1) model. Given our rather
uninformative proper priors, these mode estimates are equal to approximate Bayes
mean estimates.

We use rolling samples of 1258 trading days (about five years) for each stock
return in the model:

yit = ci + κitξit (16)
κ2
it = θi0 + θi1(yi,t−1 − ci)2 + θi2κ

2
i,t−1, i = 1, 2, . . . , n, (17)

where yit is the log return of stock i at day t, ξit ∼ N (0, 1) and ξit ∼ T (νi) for the
Normal and Student-t cases, respectively. The number of degrees of freedom νi is
estimated in the latter model. We produce 629 one day ahead predictive densities
from January 2, 2019 to June 30, 2021, see red line in Figure 2 for the sample split.
Our out-of-sample period is associated with relatively low volatility in 2019 and
high volatility from the end of February 2020 driven by the Covid-19 crisis. In the
initial and most dramatic part of the pandemic, the lowest daily return is almost
-80%.

Results are reported in Figure 3. It is seen that the Normal models in cluster
n2 have a predictive variance (top left plot, dashed line) more than double in
size than cluster n1 with several spikes over time and this increases further at the
beginning of the Covid-19 pandemic. Cluster n1 has a relatively constant predicted
variance (top left plot, solid line) over the entire period except at the beginning
of the Covid-19 pandemic. The Student-t models in cluster t1 have a relatively
constant thick tail just above 4 over the entire period (top right plot, solid line)
while cluster t2 has values around 7 for the degrees of freedom (top right plot,
dashed line) before the beginning of the Covid-19 which decreases to 6.5 after it.
Some instability is also measured in the second wave of the Covid-19 at the end of
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Subcomponents S&P500
Lower Median Upper

Average -0.012 0.051 0.116 0.045
St dev 1.328 1.810 2.997 1.111
Skewness -1.829 -0.469 0.335 -1.045
Kurtosis 9.135 16.707 42.164 24.640
Min -34.907 -17.013 -10.182 -12.765
Max 9.551 14.662 26.722 8.968

Table 3: Average cross-section statistics for the 500 daily log-returns of individual stocks
for the sample January 2, 2014 to June 30, 2021. The columns “Lower”, “Median” and
“Upper” refer to the cross-section 5% lower quantile, median and 95% upper quantile
of the 500 statistics in rows, respectively. The rows “Average”, “St dev”, “Skewness”,
“Kurtosis”, “Min” and “Max” refer to sample average, sample standard deviation,
sample skewness, sample kurtosis, sample minimum and sample maximum statistics,
respectively. The column “S&P500” reports the sample statistics for the log-returns of
the aggregate S&P500 index.

2020 and beginning of 2021.
Time-varying cluster composition and weights. The clustering of the

predictive densities is repeated at every time t and therefore the cluster composition
and weights vary over time. The middle and bottom panels in Figure 3 present
results about these features. The number of stocks varies across consecutive
vintages of predictions with the clusters n1 and t1 being dominant in terms of
attracting many individual stocks. The cluster n1 contains on average 400 stocks,
whereas cluster n2 has the remaining 100. The Covid-19 pandemic creates some
instability in the stock allocation, but similar patterns existed also in 2019. The
cluster t1 includes on average 450 stocks, whereas cluster t2 has on average 50
stocks. The beginning of the Covid-19 pandemic is associated with a 5% increment
in the allocation of stocks to cluster t1; the second wave at the end of 2020 and
early months of 2021 produces some changes in the stock allocation.

Plots of the estimated cluster weights are shown at the bottom left panel in
Figure 3. These weights are the average weights of wit per cluster. In terms of the
importance of the different clusters, we notice that the clusters n1 and t1 receive
large part of the weight over the full sample, see the bottom panel in Figure 3.
At the end of the period, they sum almost to 70% of the total weight. Therefore,
the two clusters include most of the stocks and give the larger contribution to the
combination. However, there is also evidence of time variations in the weights. The
weights of clusters n2 and t2 are larger at the beginning of sample, but their size
reduces from 50% to 30% just before the Covid-19 pandemic. The crisis increases
substantially their weights, in particular for n2 when volatility increases. The
weights of clusters n2 and t2 reduce after the first part of the Covid-19 period and
in the final part of the sample their contribution is similar to the pre-Covid-19
period.
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Figure 3: Top left: the average variance of the predictions from the n1 (solid blue line) and n2
(dashed blue line) clusters. Top right: the average degree of freedom of the predictions from the
t1 (solid red line) and t2 (dashed red line) clusters. The degrees of freedom are bounded to 30.
Middle left: cluster allocation over time between the two clusters for the Normal case: n1 (solid
blue line) and n2 (dashed blue line). Middle right: cluster allocation over time between the two
clusters for the Student’s t case: t1 (solid red line) and t2 (dashed red line). Bottom left: the
mean logistic-normal weights for the n1, n2, t1 and t2 clusters. Bottom right: posterior mean
estimates of the incompleteness measures in the four clusters.

Measures of incompleteness. We measure incompleteness for the model
set Density Combination with Equal Weights and Stochastic Volatility, (DCEW-
SV) at the bottom right panel in Figure 3. We plot the average estimate of the
four clusters incompleteness. The estimates are similar over time and they show a
500% increase in February-March 2020, which is due to the Covid-19 pandemic. In
particular, the incompleteness for cluster n2 has the larger increase. Interestingly,
the volatilities start to reduce quite fast and they do over the remaining part of
the sample. The values for clusters n1 and t1 in June are still twice the value
pre-Covid-19; whereas the values for clusters n2 and t2 are closer to pre-Covid-19
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Models RMSPE LS CRPS avQS-T avQS-L Violation

WN 1.518 -2.129 0.689 0.085 0.114 7.15%
Normal GARCH 1.513 −1.532∗∗ 0.638∗∗ 0.072∗∗ 0.104∗∗ 5.73%
Student-t GARCH 1.525 −1.420∗∗ 0.649∗∗ 0.074∗∗ 0.106∗∗ 3.50%
GJR GARCH 1.512 −1.517∗∗ 0.639∗∗ 0.072∗∗ 0.105∗∗ 5.56%
EW 1.522 -14.303 0.804 0.119 0.130 32.11%
BMA 1.525 -21.095 0.822 0.116 0.126 32.47%
DCEW-SV 1.509∗ −1.372∗∗ 0.557∗∗ 0.065∗∗ 0.090∗∗ 4.97%

Table 4: Predictive results for next day S&P500 log-returns. Root mean square prediction
error (RMSPE), logarithmic score (LS) and the continuous rank probability score (CRPS)
are reported. Bold numbers indicate the best statistic for each loss function. One
or two asterisks indicate that differences in accuracy from the white noise (WN)
benchmark are credibly different from zero at 5%, and 1%, respectively, using Bayes
estimates of the Diebold-Mariano t-statistic for equal loss. The underlying p-values are
based on t-statistics computed with a serial correlation-robust variance, using the pre-
whitened quadratic spectral estimator of Andrews and Monahan (1992). The alternative
models considered are: GARCH model with Normal error for the aggregate index
(Normal GARCH); GARCH model with Student-t error for the aggregate index (Student-
t GARCH); Glosten-Jagannathan-Runkle GARCH model for the aggregate index (GJR
GARCH, see Glosten et al., 1993); Equal Weights of all disaggregate models (EW);
Bayesian Model Averaging of the models of all disaggregate models (BMA); Density
Combination with Equal Weights within the clusters and Stochastic Volatility (DCEW-
SV). The column “Violation” shows the number of times the realised value exceeds the
5% Value-at-Risk (VaR) predicted by the different models over the sample.

values.
Predictive accuracy of center and shape of the distribution. We

compare the performance of our combination approach with results from five
different basic models applied to the S&P500 log-returns: a white noise model
in mean, often used as the main benchmark in equity premium predictability; the
Normal GARCH(1,1) and the Student-t GARCH(1,1) models described above and
applied to the aggregate S&P500 log-returns.

To explore the sensitivity of our results for model set incompleteness in more
detail, we include the Normal GJR GARCH(1,1) model in Glosten et al. (1993)
that includes leverage effects in the model set. This model is a richer model
than the standard GARCH and should fit the data better. The leverage effect is
considered among the stylized facts of financial returns and the added feature may
become relevant in our analysis. Finally, given that simple combination methods
might handle uncertainty accurately, we apply an equal weight combination of the
all disaggregated GARCH models, labeled EW; and Bayesian model averaging,
labelled BMA. In Section C in the Supplementary Material we also run AR models,
AR GARCH models, different EW and BMA combinations of the models in the
different clusters, see Table C.1. None of these provides very accurate predictions
and are therefore excluded from the main text.
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Out-of-sample predictive result are presented in Table 4. The first three
columns deal with location and shape features of the predictive densities. It is seen
that our combination scheme produces the lowest Root Mean Squared Prediction
Error (RMSPE) and Cumulative Rank Probability Score (CRPS) and the highest
Log Score (LS). The results indicate that the combination scheme is statistically
superior to the no-predictability WN benchmark and it offers the most accurate
statistics. The Normal GARCH(1,1) model, the Student-t GARCH(1,1) model
and the Normal GJR GARCH(1,1) model fitted on the index also provide more
accurate density predictions than the WN in terms of density prediction, but not on
point prediction while our DCEW-SV is the only model that is statically superior
at 5% level. For all three score criteria, the statistics given by BMA and EW are
inferior to our combination scheme. In particular the density performance is very
inferior. The lack of time-varying learning weights appears responsible for the poor
performance in our data set.

Tail estimates and their economic value. We consider two statistics that
refer to tails of the predictive densities. These statistics are the weighted averages
of the Gneiting and Raftery (2007) quantile scores that are based on quantile
predictions that correspond to the predictive densities from the different models.
In the Supplementary Material, it is shown that avQS-T emphasises both tails
and avQS-L the left tail of the predictive density relative to the realisation 1-step
ahead. The fourth and fifth columns of Table 4 show results for tail evaluation. Our
scheme provides the lowest avQS-T and avQS-L statistics, confirming the accuracy
of our method in the tails of the distribution.

As an economic measure, we apply a Value-at-Risk (VaR) based measure, see
Jorion (2006). We compare the accuracy of our models in terms of violations,
that is the number of times that negative returns exceed the VaR predictions at
time t, with the implication that actual losses on a portfolio are worse than was
predicted. Higher accuracy results in numbers of violations close to the nominal
value of 5%.4 When looking at VaR violations, reported in the final column of
Table 4, the number for all individual models is not very accurate, with the WN
higher than 7%, the normal GARCH almost at 6%, the other two GARCH models
at 3.5% indicating too large and a conservative density. Our DCEW-SV is the only
one having a realised violation close to the 5% nominal value. The dramatic events
in particular at the beginning of the Covid-19 pandemic in February/March 2020
drive the results. The property of our combination scheme to increase volatility
in both normal clusters, and moreover, allocating more stock series to the fat tail
cluster and a larger weight to the high volatility normal one, helps to model more
accurately the lower tail of the index returns and covers more adequately risk.

4We choose a 5% nominal value and not the standard 1% due to a large number of negative
returns and the high variability at the beginning of the Covid-19 pandemic. Restricting to 1%
will limit the analysis.
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5 Conclusions
We proposed in this paper a flexible Bayesian modelling approach with the
construction of a predictive density combination with model set incompleteness
and combination weight learning that can deal with large data sets in finance.
The approach makes use of dimension reduction by dynamic clustering of the
large number of components of the predictive mixture in mutually exclusive small
subsets. Using a nonlinear dynamic factor model reduces the dimension of the
large number of combination weights to a small set of cluster weights where a
learning step is added. A parallel Sequential Monte Carlo algorithm is introduced
for efficient Bayesian inference.

We applied the methodology to a large financial data set of individual stock
returns which includes the Covid-19 crisis period. Empirical results show that our
approach yields substantial accuracy gains in predictive means, volatilities and tail
events compared to predictions from individual models and combination methods
as Bayesian Model Averaging (BMA) and Equal Weights (EW). Measures of model
set incompleteness and dynamic patterns in the cluster weights give valuable signals
for improved financial modelling and policy analysis. These empirical results may
provide useful information for investment fund management.

The line of research presented in this paper can be extended in several
directions. For example, the cluster-based weights contain relevant signals about
the importance of the predictive performance and composition of each of the
clusters. Some clusters have a substantial weight while others have only little
weight and such a pattern may vary over long time periods. This may lead to the
construction of alternative model combinations for more accurate out-of-sample
prediction and improved policy analysis. Another suggestion is to make use of
judgemental information from individual forecasters, see McAlinn and West (2019),
and combine this with the predictive information based on our modelling approach.
Finally, we emphasise a fruitful connection and possible extension of our approach
with work in the field of dynamic portfolio allocation, see Baştürk et al. (2019)
for a basic analysis of a momentum strategy with a relatively small set of financial
assets, and for a connection with work on machine learning methods for stock and
bond market predictions, see Gu et al. (2020); Bianchi et al. (2020).

18



References
Aastveit, K. A., Cross, J. L., and van Dijk, H. K. (2022). Quantifying time-varying

forecast uncertainty and risk for the real price of oil. Journal of Business &
Economic Statistics, 0(0):1–15.

Aastveit, K. A., Mitchell, J., Ravazzolo, F., and van Dijk, H. K. (2019). The
Evolution of Forecast Density Combinations in Economics. In Oxford Research
Encyclopedia of Economics and Finance. Oxford University Press.

Aitchinson, J. (1982). The Statistical Analysis of Compositional Data. Journal of
the Royal Statistical Society Series, Series B, 44:139–177.

Aitchinson, J. and Shen, S. M. (1980). Logistic-Normal Distributions: Some
Properties and Uses. Biometrika, 67:261–272.

Amisano, G. and Geweke, J. (2010). Comparing and Evaluating Bayesian
Predictive Distributions of Asset Returns. International Journal of Forecasting,
26:216–230.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. John
Wiley & Sons, New York.

Andrews, D. W. K. and Monahan, J. C. (1992). An Improved Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix Estimator. Econometrica,
60:953–966.
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Supplementary Material for the paper “A
Flexible Predictive Density Combination
for Large Financial Data Sets in Regular
and Crisis Periods”

A Derivation of the probability density function
of the logistic normal distribution of the
weight vector wt.

We present the proof for the vector of m probabilistic weights z on the low
dimensional space and then make use of the specification that the n probabilistic
weights w are linear combinations of the weights z. For notational convenience we
delete the subindex t.

Proposition A.1. Given that the m×1 vector v = (v1, . . . , vm)′ has a multivariate
normal distribution, see equation (7):

v ∼ Nm(v−1,Ση),

where Ση is a diagonal matrix and the m× 1 vector z = (z1, . . . , zm)′ is given as:

zj = exp(vj)∑m
i=1 exp(vi)

, j = 1, . . . ,m, (A.1)

see equation (8), the vector z̃ = (z1, . . . , zm−1)′ follows a logistic-normal distribution
z̃ ∼ Lm−1(Dv−1,DΣηD′) with density function:

f(z̃|Dv−1,DΣηD′) = (2π)−(m−1)/2|DΣηD′|−1/2

 m∏
j=1

zj

−1

×

exp
(
−1

2

(
log

( z̃
zm

)
−Dvt−1

)′
(DΣηD′)−1

(
log

( z̃
zm

)
−Dv−1

))
, (A.2)

where zm = 1−∑m−1
i=1 zi, and the (m− 1)×m matrix D is given by

D = (Im−1 | − ιm−1),

with Im−1 equal to the (m−1)×(m−1) identity matrix, and ιm−1 is the (m−1)×1
vector containing only ones.

The proof that (A.2) is the density function of z̃ = (z1, . . . , zm−1)′ consists
of three main steps. First, divide the numerator and denominator of (A.1) by
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exp(vm), which yields:

zj = exp(vj − vm)∑m
i=1 exp(vi − vm) j = 1, . . . ,m− 1,

where zm = 1−∑m−1
i=1 zi. Define:

u =


v1 − vm

...
vm−1 − vm

 = Dv,

then z̃ = g(u), where g(·) is a one-to-one or bijective function. Note that the
symbol u is only used in this derivation. Further,

u = Dv ∼ Nm−1(Dv−1,DΣηD′).

Second, the inverse transformation u = g−1(z̃) is given as:

uj = log
(
zj
zm

)
= log(zj)− log

(
1−

m−1∑
i=1

zi

)
j = 1, . . . ,m− 1

with Jacobian matrix

∂u
∂z̃

=


z−1

1 0 · · · 0
0 z−2

2
...

... . . . 0
0 · · · 0 z−1

m−1

+
(

1−
m−1∑
i=1

zi

)−1


1 1 · · · 1
1 1 ...
... . . . 1
1 · · · 1 1



=


z−1

1 0 · · · 0
0 z−2

2
...

... . . . 0
0 · · · 0 z−1

m−1

+ z−1
m × ι(m−1)×(m−1),

where ι(m−1)×(m−1) is the (m− 1)× (m− 1) matrix containing only ones.

The determinant of ∂u
∂z̃ is ∣∣∣∣∣∂u

∂z̃

∣∣∣∣∣ =
m∏
j=1

z−1
j , (A.3)

where use is made of the following determinant rule 5

|A + xy′| = |A| × (1 + y′A−1x)
5See Anderson (1984)
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with

A =


z−1

1 0 · · · 0
0 z−2

2
...

... . . . 0
0 · · · 0 z−1

m−1


x = z−1

m × ι(m−1)

y = ι(m−1)

where

|A| =
m−1∏
j=1

z−1
j

A−1 =


z1 0 · · · 0
0 z2

...
... . . . 0
0 · · · 0 zm−1


y′A−1x = z−1

m

m−1∑
j=1

zj = 1− zm
zm

1 + y′A−1x = 1 + 1− zm
zm

= zm + 1− zm
zm

= 1
zm
,

where pre and postmultiplying by ι′m−1 and ιm−1 obviously means that one can
compute the sum of all elements of the matrix A−1 (where this sum is here equal
to ∑m−1

j=1 zj), and where ∑m−1
j=1 zj = 1− zm, so that it follows that

|A| × (1 + y′A−1x) =
m∏
j=1

z−1
j .

Third, given that u has multivariate normal Nm−1(Dv−1,DΣηD′) distribution
with density

f(u|Dv−1,DΣηD′) = (2π)−(m−1)/2|DΣηD′|−1/2 ×

exp
(
−1

2 (u−Dv−1)′ (DΣηD′)−1 (u−Dv−1)
)
.
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Substituting u = log
(

z̃
zm

)
into (A.4) and multiplying with

∣∣∣∂u
∂z̃

∣∣∣ = ∏m
j=1 z

−1
j yields:

f(z̃|Dv−1,DΣηD′) = (2π)−(m−1)/2|DΣηD′|−1/2

 m∏
j=1

zj

−1

×

exp
(
−1

2

(
log

( z̃
zm

)
−Dv−1

)′
(DΣηD′)−1

(
log

( z̃
zm

)
−Dv−1

))
. (A.4)

Q.E.D.
As a final step we make use of the specification that the n − 1 weights

w̃ = (w1, ..., wn−1)′ are linear combinations of the logistic-normal weights z̃. In
matrix notation we use w̃ = B̃z̃ where B̃ is an (n− 1)×m matrix containing an
appropriate subset of elements bij and ∑n−1

i=1 wi = 1−wn. Then one can write that
the logistic normal distribution of w̃ is given as :

w̃ ∼ Ln−1
(
B̃Dv−1, B̃DΣηD′B̃

′)
. (A.5)

We note that the density of the complete vector wt = (w1t, ..., wnt)′ is singular
due to the adding-up restriction of all n weights. A second source of degeneracy
is intrinsic to our projection strategy which implies rank deficiency of the matrix
B̃DΣηD′B̃

′ .

B Algorithm details
The analytical solution of the optimal filtering problem is generally not known.
Also, the cluster-based mapping requires the solution of an optimisation problem
which is not available in analytical form. Thus, we apply a parallel sequential
clustering in order to determine the series allocation and the M-Filter in order
to estimate the latent weights and combination parameters. The details of the
algorithms are given in the following subsections.

B.1 Parallel dynamic clustering
The clustering step of classifying predictive draws to a particular group is done
using the K-Means algorithm, which groups these draws based on their distance
from the nearest cluster mean. These means are given in our dataset, see Section
4, as mt1, . . . ,mt4 corresponding to high and low volatility and large and small
degrees of freedom. In each step of the algorithm the computation of the cluster
mean, the distances from the cluster means and the selection of the cluster mean
with minimum distance are easy to parallelise.
The generated draws from the predictive distributions are allocated according to
the number of available cores, see Favirar et al. (2008) and the reference therein.
More specifically, the parallel evaluation of the dynamic clustering process, using
the K-Means algorithm is done as follows. The first step is to partition the
generated draws of ỹit, i = 1, . . . , n at each period t into P subsets, where P
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is chosen according to the number of available threads. In our case we made use
of AMD Ryzen 3900X that is a 12 core 24 threads processor, then P = 24.
In our empirical application the number of models are 4 and the number of series
are 496, this brings to a total of n = 1984 predictive densities to cluster, with
κ = n/P = 83.

Then for each t = 1, . . . , T one proceeds as follows: given initial guess of 4
means m1t, . . . ,m4t, the algorithm proceeds by alternating between two steps:

1) For each thread p, p = 1, . . . , P , assign κ = n/P generated draws ỹit:

2a) Assignment step: Assign each generated draw ỹit, i = 1, . . . , n to the
cluster Spt with the nearest mean:

Spt = {ỹκt : ||ỹκt −mit|| ≤ ||ỹκt −mjt|| 1 ≤ j ≤ 4}, (B.6)

2b) Update step: Recalculate means (centroids) for generated draws
assigned to each thread:

mp(t+1) = 1
|Spt|

∑
ỹjt∈Spt

ỹjt.

3) Uses all local means for each thread to find the global mean.

4) Repeat until convergence.

The dynamic clustering is parallel in point 2a) and 2b) and this can be done in
the CPU or GPU context. The step 3) takes the clusters means and calculates the
global mean.

B.2 M-Filter
Our Predictive Density Combination (PDC) has the general state-space
representation

yt ∼ ft(yt|vt),
vt ∼ pt(vt|vt−1),
v0 ∼ p0(v0),

(B.7)

t = 1, . . . , T , where ft(yt|vt) is the measurement density, pt(vt|vt−1) is the
transition density, and p0(v0) the initial density of the state. The dependence
on the static parameter vector θ (which contains σ2

η) and on the sets ỹit and σ2
it

(i = 1, . . . , n; t = 1, . . . , T ) is omitted for notational convenience. In the application
the parameters are included into an augmented state vector and a simulation-based
filtering method is applied to the augmented state space model, which is presented,
for our case, in equations (6) and (10) with state-space representation given in (11)
to (15).
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Our model is non-linear and non-Gaussian and, therefore, the standard Kalman
filter cannot be used. We make use of a numerical method in the class of the
Sequential Monte Carlo (SMC) algorithms, see Doucet et al. (2001) for a review.
Specifically, we apply the M-Filter of Baştürk et al. (2019). This application
assumes a Gaussian measurement density, thus it needs to be adapted to our PDC.
The initial density p0(v0) and the transition density pt(vt|vt−1) of the PDC are the
Gaussian densities Nm(0,Ση) and Nm(vt−1,Ση) respectively.

The filtering density is:

p(vt|y1:T ) = ft(yt|vt)pt(vt|vt−1)
pt(yt|y1:t−1) . (B.8)

It is approximated by a set of random probability weights and variables (known
as particles) {v(i)

t , ω
i
t}Ni=1. The usual SMC algorithms consist of sequences of

propagation and updating steps. The propagation step relates to the way the
sample is drawn at time t and the updating step provides an importance sampling
(IS) correction for not using the true target density for sampling. It is well known
that the propagation step leads to the necessity of resampling, as the sequential
importance sampling is bound to lead to weight degeneracy problems. Moreover,
the resampling may be time consuming but it also introduces additional MC
variation.

The M-Filter tackles the filtering process differently. The propagation step is
replaced by an IS step at each time point t, avoiding resampling. Moreover, it is
well known that the choice of the proposal density is crucial for the performance
of any IS scheme, see Doucet et al. (2001) for a general discussion and Section
3 for an application to our case. The M-Filter method approximates a target
density in equation (B.7) using the Mixture of t by Importance Sampling Weighted
Expectation–Maximization (MitISEM) algorithm proposed by Hoogerheide et al.
(2012), where a mixture of Student-t distributions is used as the importance
distribution. The MitISEM approach is able to effectively approximate complex,
heavy-tailed, non-elliptical distributions and the M-Filter has been shown to be
very fast and reliable, see Baştürk et al. (2019).

The M-Filter algorithm is presented below:

1) Initialization. Draw v(j)
0 for j = 1, . . . ,M , from the initial density6 p(v0),

e.g. a uniform density.

2) Recursion. For t = 1, . . . , T construct the candidate density gt(vt) using
the MitISEM algorithm as follows:

a) Initialization: Simulate draws v(j)
t , j = 1, . . . ,M , from a naive candidate

density g(0)
t (·) (e.g. a Student-t with ν = 3 degrees of freedom).

6Strictly speaking random draws are generated from a particular distribution with a
corresponding density. For notational convenience and when there is no ambiguity, we make
use of the short-hand given in the text.
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Compute the corresponding IS weights:

ω̃
(j)
t = fT (yt|v(j)

t , ỹt)pt(v(j)
t |v

(j)
t−1)

g
(0)
t (v(j)

t )
,

where the target density kernel has the form f(yt|vt, ỹt)p(vt|v(j)
t−1).

Normalize the weights to ω(j)
t .

b) Adaptation: Use the draws v(j)
t and the weights ω(j)

t from the naive
density g(0)

t (·) to estimate the mean and covariance matrix of the target
distribution. Use these estimates as the mode and the scale matrix of
the adapted Student-t density g

(a)
t (·). Draw a sample v(j)

t from g
(a)
t (·)

and compute the IS weights for this sample.
c) Apply the IS weighted EM algorithm (see Hoogerheide et al., 2012)

given the sample from step b) and the corresponding IS weights. The
output consists of the new candidate Student-t density with H =
1 component g

(1)
t (·) and optimized parameters (mean, variance and

degrees of freedom, namely µ1, Σ1 and ν1). Draw a new sample v(j)
t,H from

this candidate, and compute the corresponding IS weights. Calculate
the coefficient of variation CV (H) (H = 1) of the normalized weights
ω

(j)
t , j = 1, . . . ,M .

d) Iterate on the number of mixture components. Given the current mixture
of H components with corresponding µh, Σh, νh and the mixture weight
ξh (h = 1, . . . , H), add the next component H + 1 to the mixture in the
following way:

d.1) Select a sub-sample v(i1)
t,h , . . . ,v

(iN )
t,h of size N , where N is a certain

small percentage of M , where the selection indexes i1, . . . , iN
correspond to the particles with the highest IS weights, and estimate
the mean and variance. Use these parameters as the starting mode
and scale parameters for the new mixture component, µH+1 and
ΣH+1. This step ensures that the new component covers a region
where previous candidate mixture had a relatively low probability
mass. Usually, two or three components are sufficient given the
flexibility of the mixture of Student-t densities.

d.2) Given the draws and weights from previous mixture g(H)
t (·) apply

the EM algorithm to optimize (again) each mixture component µh,
Σh, νh and the ξh (h = 1, . . . , H + 1).

d.3) Draw v(j)
t,H+1 from the new mixture g

(H+1)
t (·) of H + 1 Student-t

densities from step d.2) and evaluate the corresponding normalized
importance weights ω(j)

t , j = 1, . . . ,M .
d.4) Calculate the coefficient of variation CV (H+1) of the normalised

weights ωt, j = 1, . . . ,M .
e) Assess convergence of the candidate density’s quality by inspecting
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whether the relative change between CV (H) and CV (H+1) is greater
than the chosen threshold (e.g. 0.01) and return to step d) unless the
algorithm has converged. Set H = H + 1.

3) Draws. Use the constructed mixture density in IS: Draw v(j)
t,H from the

mixture density g
(H)
t (·), compute the corresponding normalised IS weights

ω
(j)
t , and approximate E[ht(vt)|y1:T ] by:

ĥt(vt) =
M∑
j=1

ω
(j)
t ht(v(j)

t,H). (B.9)

The main advantages of the M-Filter are adaptation, which requires only candidate
draws and IS weights and, by implication, that the M-Filter can simultaneously
deal with several target densities over time, see (Baştürk et al., 2019) for a
discussion. The computational efficiency gains are feasible by making use of parallel
computing, for instance, using graphics processing units.
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C Additional details on empirical results
Table C.1 reports the full sample of results for all alternative methods. We extend
both models for the aggregate series by considering a white noise without mean;
an AR model; AR-GARCH model with Normal error; AR-GARCH model with
Student-t error. Moreover, we consider other equal weights and Bayesian model
averaging combinations: EW of the models in the two Normal clusters; EW of
the models in the two Student-t clusters; BMA of the models in the two Normal
clusters; BMA of the models in the two Student-t cluster. Finally, we report EW
of the models in the “n1” cluster; EW of the models in the “n2” cluster; EW of
the models in the “t1” cluster; EW of the models in the “t2” cluster. None of the
above models perform similarly to our DCEW-SV, neither to the other alternative
models, in particular in terms of density predicting and violation. All the individual
clusters do poorly, indicating that selecting only a sample of models is not a good
strategy.
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Models RMSPE LS CRPS avQS-T avQS-L Violation

WN 1.518 -2.129 0.689 0.085 0.114 7.15%
WN without mean 2.452 -2.213 1.075 0.135 0.167 6.36%
Normal GARCH 1.513 −1.532∗∗ 0.638∗∗ 0.072∗∗ 0.104∗∗ 5.73%
Student-t GARCH 1.525 −1.420∗∗ 0.649∗∗ 0.074∗∗ 0.106∗∗ 3.50%
GJR GARCH 1.512 −1.517∗∗ 0.639∗∗ 0.072∗∗ 0.105∗∗ 5.56%
AR 1.601 −2.266 0.716 0.089 0.119 7.15%
AR Normal GARCH 1.541 −1.544∗∗ 0.639∗∗ 0.072∗∗ 0.105∗∗ 6.52%
AR Student-t GARCH 1.543 −1.419∗∗ 0.650∗∗ 0.074∗∗ 0.107∗∗ 3.97%
EW 1.522 -14.303 0.804 0.119 0.130 32.11%
EW Normal 1.520 -13.560 0.784 0.116 0.126 31.63%
EW Student-t 1.525 -9.041 0.742 0.116 0.126 31.63%
BMA 1.525 -21.095 0.822 0.116 0.126 32.47%
BMA Normal 1.522 -20.810 0.839 0.130 0.137 38.47%
BMA Student-t 1.523 -20.503 0.839 0.130 0.137 37.83%
EW n1 1.523 -21.099 0.841 0.131 0.138 38.95%
EW n2 1.535 -5.921 0.802 0.111 0.128 21.46%
EW t1 1.528 -14.965 0.811 0.122 0.134 35.13%
EW t2 1.518 -3.434 0.699 0.089 0.114 17.17%
DCEW-SV 1.509∗ −1.372∗∗ 0.557∗∗ 0.065∗∗ 0.090∗∗ 4.97%

Table C.1: Predicting results for next day S&P500 log-returns. Root mean square
prediction error (RMSPE), logarithmic score (LS) and the continuous rank probability
score (CRPS) are reported. Bold numbers indicate the best statistic for each loss
function. One or two asterisks indicate that differences in accuracy from the white
noise (WN) benchmark are credibly different from zero at 5%, and 1%, respectively,
using the Diebold-Mariano t-statistic for equal loss.The underlying p-values are based
on t-statistics computed with a serial correlation-robust variance, using the pre-whitened
quadratic spectral estimator of Andrews and Monahan (1992). The alternative models
considered are: a white noise without mean (WN without nmean); GARCH model with
Normal error for the aggregate index (Normal GARCH); Garch model with Student-t
error for the aggregate index (Student-t GARCH); Glosten-Jagannathan-Runkle Garch
model for the aggregate index (GJR GARCH); AR model for the aggregate index (AR);
AR-GARCH model with Normal error for the aggregate index (AR Normal GARCH);
AR-GARCH model with Student-t error for the aggregate index (AR Student-t GARCH);
Equal Weights of all disaggregate models (EW); Equal Weights of the models in the
two Normal clusters (EW Normal); Equal Weights of the models in the two Student-
t clusters (EW Student-t); Bayesian Model Averaging of all models (BMA); Bayesian
Model Averaging of the models in the two Normal clusters (BMA Normal); Bayesian
Model Averaging of the models in the two Student-t cluster (BMA Student-t ); Equal
Weights of the models in the “n1” cluster (EW n1); Equal Weights of the models in
the “n2” cluster (EW n2); Equal Weights of the models in the “t1” cluster (EW t1);
Equal Weights of the models in the “t2” cluster (EW t2); Density combination with equal
weights and stochastic volatility (DCEW-SV). The column “Violation” shows the number
of times the realised value exceeds the 5% Value-at-Risk (VaR) predicted by the different
models over the sample.
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