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Abstract

This paper examines the optimal allocation of risk across generations whose

savings mix is subject to illiquidity in the form of uncertain trading costs. We

use a stylized two-period OLG framework, where each generation makes a portfolio

allocation decision for retirement, and show that illiquidity reduces the range of

transferable shocks between generations and thus lowers the bene�ts of risk-sharing.

Higher illiquidity then may justify higher levels of risk sharing to compensate for

the trading friction. We still �nd that a contingent transfers policy based on a

reasonably parametrized savings portfolio with liquid and illiquid assets increases

aggregate welfare.
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1 Introduction

There are well-known hurdles in a free market economy to sharing risk between gen-
erations that are born over distinct periods and thus are subject to di�erent economic
prosperity over their lifetimes. Due to the natural physical limitation of a �nite life-
time, individuals cannot directly participate in risk that materializes before or after they
become economically active. Combined with a lack of a strong bequest motive this cre-
ates a classical incomplete market ine�ciency. A policy intervention that sets contingent
transfers between young and old generations can improve social welfare by widening the
risk-bearing pool in the economy and thus increasing its capacity to bear risk1

However, any illiquidity that comes in the form of uncertain transaction cost to be
paid when selling an asset from the lifetime savings mix of households has the potential
to lower the bene�ts of such transfers. An increase in illiquidity, �rst of all, discourages
individuals from holding risky assets, as the transaction cost that could be incurred when
exiting the investment lowers the expected return from the asset. Second, it compresses
the distribution of returns and thus lowers the range of asset returns that can be realized.2.
As a result, there is less �nancial risk to be shared between generations, and the potential
bene�ts from sharing the risk between generations is lower. We �nd that higher illiquidity,
measured as higher expected transaction costs in selling an asset, requires higher levels
of risk sharing to compensate for the loss of sensitivity of the risk transfers to the asset
variance. Nevertheless, the total improvement in welfare compared to a situation of no
risk-sharing decreases with the level of illiquidity.

The �elds of intergenerational risk sharing (IRS) and asset illiquidity overlap natu-
rally when we consider the typical structure of lifetime savings and investments, and the
institutions that manage them. First, long-term investors are often seen as well-poised to
bear liquidity risk3. In the search for diversi�cation and return potential, pension funds in
the developed world tend to allocate signi�cant portions of their portfolios to alternative
asset classes such as hedge funds, infrastructure, real estate, and private equity funds4.
These alternative investments impose a liquidity cost that can be a substantial source of
investment risk. Second, housing wealth tends to account for a signi�cant share of the
retirement wealth of individuals worldwide and the marketability of housing is found to
be a signi�cant factor a�ecting the well-being of retirees5.

Nevertheless, there is currently, to the best of our knowledge, no other study that
explores the intersection between risk sharing (intergenerational or otherwise) and market
illiquidity. This is a signi�cant gap in the literature, given that the implications of
illiquidity are well known for portfolio choice (Ang et al., 2014; Constantinides, 1986;
Acharya and Pedersen, 2005), as well as for the conduct of �scal (Kaplan and Violante,
2014) and monetary (Sousa, 2010; Chatziantoniou et al., 2017) policy. In this study, we

1See Merton (1981); Gordon and Varian (1988); Shiller (1999); Ball and Mankiw (2007); Gottardi
and Kubler (2011); Lancia et al. (2020). Beetsma and Romp (2016) provide an overview of the growing
literate of intergenerational risk sharing, its policy relevance, and institutional arrangements.

2Assume a �xed proportional liquidation cost l̄ ∈ (0, 1) exists such that the realized returns net of
liquidation costs are measured as R(1− l̄). The variance of the realized returns will be (1− l̄)2

Var(R) <
Var(R). The treatment of illiquidity here is more nuanced (see Section (3.2)) but follows this line of
thinking.

3Academically, the point has been made for example by Ang (2014); Amihud and Mendelson (1991);
Gârleanu (2009)

4See, for example, data from OECD (2019); PensionsEurope (2018)
5Refer to Lusardi and Mitchell (2007); Crawford and O'Dea (2020); Shao et al. (2019); Nakajima and

Telyukova (2020); Munk (2020)
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connect the personal �nance aspect of illiquidity to its policy relevance.
We de�ne illiquidity in an ex-ante sense as the expected proportional cost that needs

to be paid to liquidate a risky investment. In terms of modeling the risk of illiquidity, we
use a simple on and o� shock that materializes with a given probability each period. This
relates to the approach of Acharya and Pedersen (2005) who de�ne illiquidity as a latent
factor with a time-varying cost component in order to establish testable hypotheses of
the way liquidity risk a�ects asset prices. The binary liquidity cost assumed in this paper
can then be seen as a wedge between the fair value of the asset and its realizable market
value in the spirit of Brunnermeier and Pedersen (2009).6

Our modeling approach relates to the fact that investments in alternative asset classes,
such as private equity, often su�er large haircuts on their NAV when taken to the sec-
ondary market (Nadauld et al., 2019; Bollen and Sensoy, 2015; Albuquerque et al., 2018).
It can also be seen as an expression of the latent costs associated with illiquidity, such as
foregone earnings or diversi�cation loss due to trading delays. Note that we look at the
liquidity of the investor's portfolio around the time of switching from old age to young
age. We ignore any illiquidity e�ects occurring before that. Expanding the model with
more granular time periodicity, however, could also take that into account.

We develop a stylized framework with two overlapping generations (OLG) to consider
the outlined problem. Wealth shocks arise from the returns of risky assets in the savings
portfolio of individuals and from liquidation costs when the portfolio is sold to fund
retirement consumption. Shocks each period occur before the current young have accessed
the capital markets, and before they have made any investment decisions. The young
start with labor endowment that is not a�ected by the current shock while the old bear
�nancial risk on their savings. In a fully decentralized market economy, the young are
making consumption, savings, and allocation decisions that optimize their lifetime utility,
while the old consume from the accumulated retirement wealth.

This arrangement leaves room for an institutional designer to intervene and enforce
transfers between the young and the old, which are contingent on the accumulated return
of the old generation's savings portfolio. The transfers are designed from an ex-ante point
of view and welfare in the economy is evaluated before any shocks materialize. The trans-
fers are linear in the realized return on the individuals' retirement portfolio after paying
out any liquidation costs and act as a partial insurance on retirement wealth, covered
by the young. Once aware of the policy implementation, utility-optimizing individuals
adjust their savings mix by factoring in the regulated transfer policy, giving rise also to
indirect welfare e�ects.

We show that the link between optimal risk-sharing and risk itself can be split into
two opposing e�ects. On one hand, a policy that engages the young in the shock that
otherwise a�ects only the old widens the pool of people who can participate in that shock
and increases the risk-bearing capacity of the economy. At the same time, this imports
additional risk in the youth's labor endowment, thus extending the horizon over which
individuals bear risk. Cumulatively, the later e�ect also leads to more risk in their old
age. The larger the variance of the asset is, the more the second e�ect dominates, and
thus the lower optimal risk sharing needs to be. Similarly, the lower the asset variance,

6Brunnermeier and Pedersen (2009) distinguish between market liquidity, the ease with which an asset
can be placed on the market, and funding liquidity, the ease with which outside funds can be accessed
once a liability shock hits on an agent's balance sheet. In this paper, liquidity is of the �rst kind as it
is concerns only the marketability of accumulated assets at a particular point in the lifetime of agents
associated with retirement age.
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the more the �rst e�ect dominates, and the higher the optimal risk sharing should be.
We abstract from the particularities of the institutions through which IRS occurs.

In reality, the contingent transfers between young and old, as modeled here, could be
the result of several arrangements. First, risk sharing rules could be embedded in a
collective pension system, for example, through indexation of the bene�ts received and
contributions paid based on the funding ratio of the pension plan (Cai et al., 2013; Gollier,
2008). Alternatively, they could be implemented through counter-cyclical adjustments in
the tax code in combination with adjustments to the public debt, through the pay-as-
you-go pension system, or by some combination of each of these (Chen et al., 2016).7

As a benchmark risk-sharing case, we look at a planner solution, where the planner
invests on behalf of the young and allocates consumption centrally between all young and
old generations. In the spirit of Gollier (2008) this allows the clever use of wealth bu�ers
to spread risk between generations that do not necessarily live in the same time periods.

Overall, we �nd that IRS mechanism increases the young's capacity to bear liquidity
risk and allows them to allocate more wealth to illiquid assets compared to the case
when those individuals are saving in isolation from the shocks that other cohorts are
experiencing. We extend the results from earlier models which show that IRS increases
the demand for risky assets (Gollier, 2008; Campbell and Nosbusch, 2007) by showing
that the same e�ect holds for illiquid assets as well.

Quantitatively, we show that contingent transfers between two generations, as a
second-best implementation of intergenerational risk-sharing (IRS) to what a central
planner can do, can achieve a welfare improvement relative to the no-risk sharing case
that is not too far from the benchmark �rst-best solution. For a reasonable parametriza-
tion based on global asset returns, we �nd that when the young can borrow, a policymaker
should set risk sharing to 5% of the asset returns variation for risky liquid assets (and
2.1% for illiquid risky assets if agents are constrained), achieving 36% welfare improve-
ment (17% improvement in the constrained case) relative to the no-risk-sharing case,
when welfare is measured in the ex ante sense, i.e. before the realization of any shocks.
Illiquid risky holdings by individuals increase by 61% on average after they adjust their
portfolio to the policy. The benchmark planner case, on the other hand, realizes a welfare
improvement of 48% by being able to spread risk among in�nitely many generations.8

The paper continues as follows. Section (2) provides a short literature overview of two
separate �elds relating to the current paper, IRS and portfolio choice with illiquidity fric-
tions, and puts the current paper in perspective. Section (3) provides the basic structure
of the overlapping generations in the economy, de�nes the social welfare function, con-
structs the illiquid asset and discusses its properties. Section (4) de�nes the benchmark
model with an in�nitely lived planner. Section (5) rede�nes the problem for a decen-
tralized economy where each generation solves its own savings-consumption-allocation
optimization, while a policymaker determines the transfer policy between young and old.
Section (6) explores the main mechanisms of risk sharing by exploring the analytical

7One can refer to the existing literature on details about the optimal institutional arrangements of
IRS. Beetsma and Romp (2016) provide an overview of the institutional side; Bovenberg and Mehlkopf
(2014) review the literature on funded pension schemes, exploring the overlap between life-cycle investing
and IRS, elaborating on commitment issues, problems of intergenerational fairness, and sustainability
of the pension contract. Gollier (2008) (revisited by Schumacher (2020)) looks at a collective pension
plan which allocates funds between a risky and a riskless asset and pays out bene�ts on a rolling-window
basis. Similarly, Cui et al. (2011) look at risk sharing within funded plans with de�ned-bene�t and
hybrid structures, where IRS occurs through adjustments in the contribution and bene�t levels.

8Refer to tables (3) and (2) for further details.
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solutions to several simpli�ed cases which illustrate the bene�ts of pooling risks versus
the costs of compounding risky returns over time. This provides a rationale for role of
asset variance and illiquidity in the context of IRS. Finally, section (7) provides a welfare
analysis and discusses the quantitative results.

2 Relation to the Literature

Several pioneering studies provide the theoretical backing for this paper. Gordon and
Varian (1988) show the main mechanisms behind IRS and illustrate the possibility for
welfare improvements for all generations together with the constraints that such a policy
needs to handle. Even though their argument was initially developed to provide a non-
Keynesian justi�cation for the use of debt and social security transfers towards unlucky
generations as a counter-cyclical policy, it also provided economic intuition for the exis-
tence of social security systems as risk-sharing mechanisms. We embed their arguments
in a more formal OLG set-up, introducing a clear-cut welfare rule for the policymaker to
set optimal policy, and add illiquidity risk to the investment asset.

Shiller (1999) argues that designing a social security system is a problem of creating a
tool for optimal risk management, placing it naturally in the realm of theoretical �nance
and asset pricing. The planner problem is non-trivial compared to the standard problem
of designing individual optimal asset allocation under risk. The risk-sharing system has
to be implemented in a way that generations that are either not born yet or are not
economically active, can participate in shocks currently occurring. We extend that point
of view, arguing that the risk-sharing properties of the social security system should also
be able to consider illiquidity of savings.

Within a general equilibrium framework, Ball and Mankiw (2007) develop the ratio-
nale for a funded social security trust that is sensitive to equity shocks in order to achieve
an e�cient allocation of risk across generations. Lancia et al. (2020) look at risk shar-
ing between generations when the social planner policy cannot be enforced and needs
to ensure that the participation constraints of each cohort are satis�ed. In that case,
a trade-o� emerges between the e�ciency of the policy and its sustainability over time.
The current paper draws from their formulation of the policymaker welfare function while
keeping the social policy mandatory and embedding it in a richer asset allocation context.

Merton (1981) develops the rationale that social security, if appropriately designed,
can indirectly allow people to trade some of their human capital for partial old-age market-
risk insurance. IRS policies thus allow agents to participate early in their lifetime in
lotteries that otherwise materialize in old age. In aggregate, this widens the pool of risk
participants each period and expands the risk-bearing capacity of the economy. The
modeling framework in the current paper is di�erent, but we also come to the same
conclusion and extend the known results to the case where market illiquidity is present.

We relate also to the literature of portfolio choice with illiquidity and with transaction
costs. In Ang et al. (2014), the illiquid asset is marketable only when liquidity materializes
with the arrival of a Poisson shock. We relax this assumption by allowing access to a
secondary market by accepting a price discount on the fair value of the asset, rather than
barring trading altogether. This makes the properties of the asset more suitable to a
two-period model of lifetime dynamics. Calibrating a period to 30-years, an individual
should be able to always sell the illiquid asset within that time frame, what will vary is
only whether a liquidation cost is paid or not. At the same, we keep the risk component
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that illiquidity has, deviating from the common assumption of �xed proportional cost in
the transaction cost literature (Magill and Constantinides, 1976; Cai et al., 2013).

We also loosely relate to the macro literature of durable investments with life-cycle
portfolio choice, and their policy implications. Kaplan and Violante (2014) in particular
look at consumers' response to a �scal stimulus when holding non-durable assets, and �nd
that the ratio of housing to total wealth has signi�cant implications on the e�ectiveness
and timely response consumption demand to �scal expansions. We add in the discussion
the risk properties of liquidity and provide another regulatory perspective.

3 The Model

3.1 Assumptions

Time is discrete and indexed by t ∈ {0, 1, 2, 3 . . . }. There is a small open overlapping
generations (OLG) economy, where each generation lives for a �xed duration of two peri-
ods (youth and old age), the two cohorts are of equal sizes, each cohort has homogeneous
preferences and receives the same �xed endowment, there is no population growth, and
there is no technological progress. All stochastic variables are de�ned by the probability
space (Ω,F ,P) and all variables indexed by t are measurable w.r.t. the �ltration Ft
which de�nes all public information. Agents form expectations conditional on current
information and there is no information asymmetry between agents and policymakers.

Individuals have time-separable discounted lifetime utility of consumption which can
be written as:

uy(Cy,t) + βEtuo(Co,t+1)

where uy(.) and uo(.) stand for the utility of consumption of the young and the old, with
positive and diminishing marginal utility of consumption, and β ∈ (0, 1] is a subjective
lifetime discount factor for the agent. In the general case, we assume that the Inada con-
ditions for utility hold, even though in Section 6, we break this assumption for illustrative
purposes.

At the beginning of their lifetime, individuals receive a �xed endowment Y . The
endowment which is not consumed can be saved and transferred for consumption in the
next period trough several investment opportunities. First, agents can invest in a risk-
free asset with �xed gross return of Rf > 1. Second, a frictionless market for N risky
assets exists, where the price of each asset i follows a stochastic process P s,i

t , and its gross
return is de�ned as

P s,i
t

P s,i
t−1

= Rs,i
t = µs,i + εs,it

Third, an illiquid market exists where an asset can be bought at a price P x
t but can

only be sold at the price P x
t (1 − lt) where the liquidity cost lt evolves independently of

any asset shocks εs,it and εxt , and follows an i.i.d. stochastic jump process such that

lt =

{
0 with probab. p

l̄ with probab. 1− p
(1)
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The proportional liquidity cost l ∈ (0, 1) stands for the price discount over the fair
value of the asset at the time of the sale in case an illiquidity shock hits. Illiquidity is
thus asymmetric and presents only downside risk.

Short-selling of risky assets is not allowed.

3.2 Properties of the Illiquid Return

The gross return of the illiquid asset, excluding the e�ect ot illiquidity itself, is de�ned
as Rx

t = µx + εxt and we have
[
ε1t , . . . , ε

N
t , ε

x
t

]′ ∼ IID(0,Σ). In a two period setting,
assuming that agents buy the illiquid asset when young and sell it when old, we can write
the after-liquidation return as:

R̃x
t =

P x
t (1− lt)
P x
t−1

= Rx
t (1− lt) = µx − µxlt + εxt (1− lt)

(2)

The illiquidity component is thus �rst of all a drag on the expected return of the asset.
At the same time, the illiquidity shock interacts with the asset-speci�c risk component εxt ,
and whenever a liquidity shock hits, it lowers the magnitude of the asset speci�c return.

Note that we can also write the gross return of the asset in a way that isolates the
expected return from the noise term, where each of the two take into account the e�ect
of illiquidity:

R̃x
t = µ̃x + ε̃xt (3)

with

µ̃x ≡ E(R̃x
t ) = µx(1− E(lt))

= µx
(
p+ (1− l)(1− p)

)
ε̃xt ≡ Rt(1− lt)− µ̃x

(4)

The liquid asset then will be a special case with either p or l set to zero.
Formally, we de�ne ex-ante illiquidity as the expected proportional cost that needs to

be paid when selling the illiquid asset:

E(lt) = l(1− p) (5)

As a result, ex-ante illiquidity will be increasing in the liquidation cost of the asset l and
will be decreasing in the probability of incurring this cost p. Ex-post illiquidity, on the
other hand, is quanti�ed as l and measures the proportional transaction cost that needs
to be paid given that the illiquidity risk has materialized. Going forward, unless speci�ed
otherwise, the illiquidity considered here refers to the ex-ante type.

We can then isolate several properties of the illiquid asset return. First of all, the
expected return of the illiquid asset is monotonously decreasing with the severity of the
liquidity friction (as l increases or p decreases). This is clear from (4). Taking �rst
derivatives, we get ∂µ̃x

∂l
= l < 0 and ∂µ̃x

∂p
= p− 1 > 0.

Second, as the asset becomes more illiquid, the expected quadratic variations in the
asset returns become smaller. To see that, note that the independence between the
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illiquidity shock lt and the shock εt implies that

E

(
(R̃x

t+1)2
)

= E
(
(Rx

t+1)2(1− lt+1)2
)

= E
(
(Rx

t+1)2
)
E
(
(1− lt+1)2

)
=
(
µ2
x + σ2

x

) (
p+ (1− l)2(1− p)

) (6)

Then, the partial derivatives of E(R̃t+1)2 are:

∂E
(

(R̃x
t+1)2

)
∂p

=
(
µ2
x + σ2

x

)
l(2− l) > 0

∂E
(

(R̃x
t+1)2

)
∂l

= 2
(
µ2
x + σ2

x

)
(1− l)(p− 1) < 0

(7)

.
The e�ect of illiquidity on the variance of the asset returns is unclear in general, as

both the expectation and the expected variation of asset returns are decreasing. To see
that formally, note that

σ̃2
x ≡ Var

(
R̃x
t

)
= E

(
(R̃x

t )
2
)
−
(
ER̃x

t

)2

= E
(
(Rx

t )
2(1− lt)2

)
− (ERx

t )
2 (E(1− lt))2

= (σ2
x + µ2

x)(p+ (1− p)(1− l̄)2)− µ2
x(p+ (1− p)(1− l))2

Even though in general the e�ect is ambiguous, �gure (1) illustrates that for a reason-
able parametrization the variance will be monotonously decreasing in illiquidity. Figure
(2) illustrates how the distribution of the illiquid asset return is formed by mixing the
distribution of the ex-post liquid returns Rx

t and the distribution of the ex-post illiquid
returns Rx

t (1 − l). The higher the liquidation cost l, the more the distribution of R̃x
t

(illustrated with the dashed-line distribution) is shifted to the left, and the lower is the
resulting range of possible returns. At the same time, when the trading probability p is
low, the ex-post illiquid returns distribution dominates when forming the distribution for
R̃x
t and in the extreme case of p approaching one, the ex-post and ex ante distributions

will merge.

Figure 1: Illiquid Return Variance

0.0 0.2 0.4 0.6 0.8 1.0

l

0.15

0.20

0.25

0.30

0.35

0.40

Va
r(R

x t)

p=0.2
p=0.5
p=0.8

Note. This plot shows the e�ect of varying the liquidity parameters to the variance of asset return R̃xt if
Rxt is log-normally distributed with annualized mean .061 and variance of .156, and the asset is held for
30 years.
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Figure 2: Gross Return with Illiquidity

5 10 15 20 25 30 35 40
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Rx
t
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0.10
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t
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t (1 l)
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t

Note. This �gure illustrates the e�ect of the stochastic illiquidity cost lt on the gross return distribution
of the illiquid asset. The dotted line shows the distribution of the ex-post liquid returns. The dashed
line shows the ex-post illiquid returns, where the cost lt = l is paid in all scenarios. The solid line in
each case shows the ex-ante illiquid returns R̃t = Rt(1 − lt), where lt is unknown in advance. Returns
are log-normally distributed with µx = .061 and σx = .156, and the asset is held for 30 years.

Finally, note that the combined term ε̃x, satis�es the same properties that are other-
wise natural for a liquid asset, regardless of the liquidity parameters:

E(ε̃x) = 0

E((ε̃x)2) = E(ε̃xR̃x
t ) = Var(ε̃xt ) ≡ σ̃2

x

(8)

3.3 Social Welfare

Welfare is quanti�ed ex-ante through the unconditional expectation with respect to all
generations' lifetime utilities in all possible states of the world, over all future time periods.
The resulting social welfare is the discounted sum of the weighted expected utilities of all
future young and old generations:

V0 = E

(
∞∑
t=1

δt−1

(
β

δ
uo(Co,t) + uy(Cy,t)

))
(9)

where δ < 1 is a policy-relevant discount factor and β
δ
keeps the relative social weights

between young and old utility �xed between time periods910.
It is worth noting that in order to make the problem tractable, we abstract from some

real-world complexity. First of all, we look at a partial equilibrium setting, justi�ed by the
assumption of a small open economy, such that world market returns are left una�ected
by investment or consumption decisions within the home country. Thus, asset market

9Equivalently, we can also write the expectation as conditional on all information that the policymaker
has available in period t = 0, as only consumption happening after period zero is policy relevant, and
shocks happening in period one are independent from the realizations in period zero.

10This welfare speci�cation is similar to Lancia et al. (2020) who use it in a social planner setting
to develop an optimal intergenerational insurance rule under a voluntary scheme. The approach relates
back to Ball and Mankiw (2007).
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returns are assumed to be exogenous and any possible general equilibrium e�ects on asset
prices and on economic growth once the risk sharing system is implemented are ignored.
Also, we ignore any spillover e�ects from the investment. In reality, potential investments
in illiquid assets which �nance for example infrastructure projects could have a positive
spillover on social welfare. Second, we concentrate on risk coming from asset holdings
and ignore labor income risk and possible correlations between labor and �nancial market
earnings11. Third, we focus on a purely utilitarian approach and ignore any political risks
on keeping the policy. It is well known that risk sharing is welfare improving for all future
generations on an ex-ante basis (before shocks materialize), and not necessarily bene�cial
for a particular generation on an ex-post basis, as paying compensation after the shock
has materialized will make a particular generation worse o� (Ball and Mankiw, 2007).
Here, generations pre-commit to the scheme before they are born, and participation
is mandatory. In reality, there is an incentive for the young to walk away from the
arrangement if a negative asset return shock occurs, or the old to walk away if a positive
asset return shock occurs. Finally, following the standard approach of a representative
agent, we abstract also from any heterogeneity within cohorts.

4 Planner Problem

First, we consider a mechanism for optimizing social welfare, de�ned through an in�nitely
lived planner. The planner is taking over the young generation's labor endowment and is
providing consumption for the young and the old every period. Any residual is invested
on the market with allocations optimally set across the available assets. The resulting
problem is in line with Gollier (2008), whose planner simultaneously optimizes over retire-
ment bene�ts and the investment allocation for multiple overlapping generations. Two
generations are used to illustrate the dynamics of the problem, even though in theory the
model can be extended to cover multiple generations. In contrast to Gollier, we model
consumption for the young in addition to retirement (old-age) consumption to capture
more completely lifetime motives of investment. The illiquid asset here extends the in-
vestment universe of Gollier's problem and provides an additional dimension for asset
allocation.

Using liquid and illiquid wealth as separate state variables is common in the portfolio
choice literature whenever there is a transaction cost (Cai et al., 2013) or a liquidity
friction (Ang et al., 2014) associated with one of the assets. Wefollow the same convention
here. The planner allocates aggregate savings between liquid wealth Wt (consisting of
a risk-free liquid investment and a risky liquid investment St) and illiquid wealth Xt,
which is managed by withdrawing amounts D+

t and investing amounts D−t . Note that
modeling the �ows into and out of illiquid wealth as separate choice variables allows the
introduction of asymmetric liquidity costs while also allowing for di�erentiability of the
objective with respect to all decision variables. Here whenever some amount is withdrawn
from illiquid wealth, the stochastic proportional cost lt has to be paid for being able to
access the market.

This gives rise to the intertemporal wealth constraints:

11Models relating labor income risks and investment shocks have been developed, for example, by
Hemert (2005); Krueger and Kubler (2006); Boelaars and Mehlkopf (2018)
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Wt+1 =
(
Wt + Y − Cy,t − Co,t −D+

t +D−t (1− lt)
)
Rf + S ′tr

s
t+1

Xt+1 =
(
Xt +D+

t −D−t
)
Rx
t+1

(10)

where rst+1 = Rs
t+1 −Rf

1 is the vector of excess returns on the liquid risky assets, and 1

is a vector of ones.
Denoting rxt+1 = Rx

t+1 −Rf as the excess return on the illiquid asset, we can see that
total wealth Qt+1 = Wt+1 +Xt+1 evolves as:

Qt+1 = (Wt + Y − Cy,t − Co,t)Rf + (D+
t −D−t )rxt+1 + S ′tr

s
t+1 +XtR

x
t −D−t ltRf

Wealth is thus being destroyed each period when the liquidity shock hits through the
term D−t ltR

f , as the planner needs to pay the costs of withdrawing from illiquid wealth
instead of earning the risk-free rate on this investment.

The solvency region A is de�ned by several constraints. First, borrowing is allowed
up to a limited amount L ≥ 0, so that aggregate consumption and investment do not
exceed the available liquid wealth and income by more than the limit amount. Since the
planner needs to stay solvent in all states of nature, the withdrawal amount is corrected
by the maximum liquidity costs l̄ that can be paid:

Cy,t + Co,t +D+
t −D−t (1− l̄) + S ′t1 ≤ Wt + Y + L (11)

Second, the illiquid asset cannot be set up as collateral, indicating that the amount
withdrawn from illiquid wealth cannot be larger than illiquid wealth itself. The liquid
risky asset cannot be short as well. These lead to the following constraints, respectively:

D−t ≤ Xt

D−t , St, D
+
t ≥ 0

(12)

The planner is maximizing the ex-ante social welfare de�ned in equation (9). Following
Bellman's principle of optimality, we can re-write it in recursive form as:

V (Wt, Xt) = max
Cy,t,Co,t,St,D

+
t ,D

−
t ∈A

{
ũ(Cy,t, Co,t) + δEV (Wt+1, Xt+1)

}
(13)

with ũ(Cy,t, Co,t) = β
δ
uo(Co,t) + uy(Cy,t).

In optimality, as shown in the appendix (A.1) the planner will then set the consump-
tion of the young and the old such that

u′y(Cy,t) =
β

δ
u′o(Co,t) = VW (Wt, Xt) (14)

The appendix derives also the �rst-order relations with respect to the investments in
each risky asset.

5 Intergenerational Transfer Scheme

Now, we transition from an economy fully governed by a planner to one where generations
make independent savings and asset allocation decisions. In the process, we introduce a
policymaker, operating in that environment, who decides on welfare-improving transfers
between the young and the old.
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5.1 The Individuals' Problem

In a decentralized framework, agents decide how much of their endowment Y to save and
how to allocate it across liquid and illiquid wealth (Wt and Xt respectively). Individuals
are solving a similar problem to the planner, with the di�erence that now they face a
limited horizon and have to liquidate all holdings before retirement, paying any liquidity
cost if such arise. Unlike the planner, who can take advantage of illiquid wealth bu�ers
over time, a single generation has to liquidate all wealth in the second period of their life
to �nance retirement consumption.

Between periods zero and one, transfer policy Tt is introduced between the young and
the old. The policy is not anticipated before its introduction12. All future cohorts are
obliged to participate without a walk-out option. The transfers can be either positive or
negative for each cohort depending on the realization of the risky returns. The evolution
of wealth from young age to retirement can then be written as

Wt+1 = (Y − Cy,t −D+
t − Tt)Rf + S ′tr

s
t+1

Xt+1 = D+
t R

x
t+1

In old age, agents sell all accumulated assets paying any liquidation fees, and consume
their retirement wealth net of the transfers Tt+1 with the new-born cohort:

Co,t+1 = Wt+1 +Xt+1(1− lt+1) + Tt+1

I ignore any bequests in the utility speci�cation. This keeps the model tractable,
avoiding any time path dependencies across generations. On an intuitive level, it can be
expected that the stronger the bequest motive, the closer the decentralized solution will
get to the planner solution de�ned earlier.

Denoting Mt ≡ Y −Cy,t − S ′t1−D+
t − Tt as the investment in the risk-free asset and

combining the equations above, we get a simpler formulation of the problem. Individuals
optimize consumption, taking the current state of the world and any transfer policy at
the time they are born as given. This gives rise to the following optimization problem:

max
Mt,St,D

+
t

{uy(Cy,t) + βEtuo(Co,t+1)}

s.t. Cy,t = Y − I ′t1− Tt
Co,t+1 = I ′tRt+1 + Tt+1

(15)

where Rt+1 =
[
Rf , (R

s
t+1)′, Rx

t+1(1− lt+1)
]′ is a vector of asset returns net of any liqui-

dation fees, and It =
[
Mt, S

′
t, D

+
t

]′ is a vector of investment amounts allocated across all
available assets.

The transfers between generations that we consider are driven purely by risk sharing
and thus are designed to be neutral in expectation. As the policymaker does not have a
re-distributive objective, there is no sharing in the expected asset returns. This is ensured
by considering transfers which are linear in the shock.13 The transfers are thus given by

12A more granular multi-period speci�cation can incorporate anticipation e�ects. In a two-period
setting, however, where each period represents 30 years the implementation of an unanticipated policy
seems more realistic.

13While linear transfers are to some extent restrictive, this does capture �rst-order e�ects and signi�-
cantly simpli�es the consequent optimization problems. Non-linear transfers which will further increase
welfare are possible, but the added insight relative to the added modeling complexity is likely to be low.
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Tt≥1 = T (τ, Rt) where τ is a vector of parameters standing for the portion of the risk in
each asset that is transferred from the old to the young.

To ensure that there is no systematic component and expected transfers are zero, the
transfer function is constrained to be linear in the deviations of asset returns, net of any
liquidation costs:

T (τ, Rt) = Y τ ′ (E(Rt)−Rt) (16)

To illustrate, assume that there is only one risky asset and that τ is set to be positive.
A negative shock (εt = Rt− µ < 0) then implies that returns fall bellow the expectation,
which in turn implies that the transfer Tt = −τεt will have a positive value for the old, so
the young will partially reimburse the old for their losses. If the shock is positive on the
other hand, this implies that the old will share a proportion of their excess return with
the young.

We can then write the individual's �rst-order optimizing conditions with respect to
each asset in the portfolio as a vector equation:

1u′y(Cy,t) = βEtRt+1u
′
o(Co,t+1)

=⇒ 1u′y(Y − I ′t1 + T (τ, Rt)) = βEtRt+1u
′
o(I
′
tRt+1 − T (τ, Rt+1)) (17)

where 1 is a vector of ones, u′i(.) stands for the marginal utility of young-age or respectively
old-age consumption with i = y, o.

The system (17) implicitly de�nes the optimal investment amounts as a function
of the policy instruments and of the realized random shocks, which can be written as
It = I(τ, Rt). Substituting into the budget constraints of (15) we get the resulting
optimal consumption policies:

Cy(τ, Rt) = Y − I(τ, Rt)
′
1− T (τ, Rt)

Co(τ, Rt) = I(τ, Rt)
′Rt+1 + T (τ, Rt+1)

(18)

Note that, when a policymaker sets the risk-sharing parameters τ , this a�ects optimal
consumption in two ways: �rst, through the transfers that are directly dependent on the
policy parameters, and second, through the adjustment that individuals make on their
savings and asset allocations mix in anticipation of the policy. This will then guide the
marginal e�ect on the individuals' utility from changing the policy parameters.

As policy anticipation e�ects have been ruled out, the generation born in period
zero will not factor in the possibility of a transfer in its optimal investment-consumption
decision, but still will get to participate in the risk-sharing scheme once it is old:

Co(τ, R1) = I
′
R1 + T (τ, R1) (19)

where the investment amounts in the vector I are �xed before the risk-sharing policy is
implemented. This implies that while I is set without anticipating the ensuing installment
of a transfer scheme when the generation born in period zero reaches old age it gets to
participate in the risk-sharing scheme, and they are compensated by the young born in
period one if a negative shock is realized or get to transfer to the young some of the
accumulated wealth if the shock is positive. Thus, only the direct channel of transfers
will a�ect their lifetime utility.
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Figure 3: Two-period OLG Model
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This �gure illustrates the timing of the intergenerational transfers in the presented model, the policy
introduction and the overlapping structure of the generations.

5.2 Policymaker's Problem

The policymaker maximizes the welfare for current and future generations by implement-
ing the IRS policy between periods zero and period one as illustrated in Figure (3).
She �ne-tunes the transfers, knowing that the young will take the transfer policy is into
account when choosing consumption and asset allocation. In this context, the welfare
function in (9) becomes an indirect utility that arises from summing up and weighting
each generation's optimization problem as a function of the policy instrument τ .

To illustrate that, �rst note that we can write the social welfare function from (9) as:

V0 = E
β

δ
u(Co,1) + E [uy(Cy,1) + βE1uo(Co,2)] + δE [uy(Cy,2) + βE2uo(Co,3)] + ...

We can then substitute in the individuals' optimal consumption from (15). Denote the
optimal lifetime utility of a generation as v(τ, Rt). Since asset returns are independent
and identically distributed, and the optimal decision of each generation born after period
zero is equivalent to the optimal decision of each consequent generation, the problem is
stationary, and when looked at from period zero, v(τ, Rt) is identical in expectation for
any t. We can factor it out of the sum, such that:

V (τ) = E
β

δ
u
(
Co(τ, R1)

)
+
∞∑
j=1

δj−1
Ev(τ, Rt) = E

β

δ
u(Co(τ, R1)) + Ev(τ, Rt)

∞∑
j=1

δj−1

13The planner and the policymaker problems de�ned here fall under a Ramsey planner macro treatment
where the policymaker has a restricted set of policy instruments at her disposal. The pension �nance
literature is relatively loose in de�ning both as social planner problems, even though in macro context
there is a strict distinction between the two. Ball and Mankiw (2007) provide a link between the social
planner and the Ramsey planner problems in the context of risk sharing with conditions on the social
planner weights which ensure equivalence to a Ramsey solution.
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which results in the indirect utility of the policymaker as a function of the policy instru-
ments

V (τ) = E
β

δ
u
(
Co(τ, R1)

)
+

1

1− δ
Ev(τ, Rt) (20)

The policymaker then solves for the optimal transfer parameters τ ∗:

τ ∗ = arg max
τ

{
β

δ
Euo

(
Co(τ, R1)

)
+

1

1− δ
Euy (Cy(τ, Rt)) +

β

1− δ
Euo(Co(τ, Rt))

}
(21)

The degree of risk sharing will then naturally depend on the individuals' optimal
investments as determined in (17), or equivalently, the resulting optimal consumption
from (18-19). This implies that the government needs to balance the utility of the old
generation present immediately after the scheme is implemented with young age and old
age utilities of future cohorts, weighted appropriately through the discount factors of the
policymaker and the individuals. To reduce the notation overload going forward, we write
Co,1,Cy,t and Co,t while keeping in mind that each of these satisfy the forms of (18) and
(19).

Assuming that the expectation operator and the derivative can be interchanged, the
optimality condition with respect to one of the instruments i can be written as:

∂V (τ)

∂τi
:

β

δ

∂Euo (Co,1)

∂τi
+

1

1− δ
∂Ev(τ, Rt)

∂τi
= 0 (22)

As all consumption terms are assumed to satisfy the individual optimality conditions,
relying on the Envelope Theorem for the individuals' optimal consumption sensitivity to
τ , we can write:

β

δ
E

[
u′o(Co,1)

∂Co,1
∂τi

]
+

1

1− δ
E

[
u′y(Cy,t)

∂Cy,t
∂τi

+ βu′o(Co,t)
∂Co,t
∂τi

]
= 0 (23)

This can further be expanded by splitting the expectation-of-product terms into expec-
tations and covariances, and noting that for generation zero E

∂Co,1
∂τi

= 0, we have :

β

δ
Cov

(
u′o(Co,1),

∂Co,1
∂τi

)
+

1

1− δ

[
Eu′y(Cy,t)E

∂Cy,t
∂τi

+ Cov

(
u′y(Cy,t),

∂Cy,t
∂τi

)]
+

β

1− δ

[
Eu′o(Co,t)E

∂Co,t
∂τi

+ Cov

(
u′o(Co,t),

∂Co,t
∂τi

)]
= 0

(24)

6 Main Mechanism with Quadratic Utility

In the general set-up, in optimality the individuals' condition (17) and the policymaker's
condition (22) are simultaneously ful�lled. Now, we look at several special cases, which
keep this set up but simplify the optimization conditions to make the resulting problem
analytically tractable and to provide intuition in the dynamics of the model.

Assume for now that agents have the same quadratic period utility of the form u(C) =
C − γ

2
C2 implying that their expected utility is a function of the mean and the variance

of the random payo� C such that
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Eu(C) = EC − γ

2

(
VarC + (EC)2

)
(25)

where γ > 0 de�nes the degree of risk aversion, with higher γ implying higher aversion.
Once the shock is realized, and consumption is deterministic, it also de�nes the marginal
utility of consumption, evaluated as u′(C) = 1 − γC. Consumption is assumed to stay
below the statiation level of utility, such that C < 1

γ
almost surely.14.

Next, section (6.1) looks at a simple setting when agents do not adjust their savings
levels in response to the risk-sharing policy, section (6.2) introduces endogenous savings,
and section (6.3) summarizes the main mechanisms at play and clari�es the intuition
behind the observed mechanism. Appendix (A.4 looks at a setup with a risky and risk-free
asset as individuals can consume in their youth and retirement. The analytical expressions
become very complex, so we examine further the case in detail in the numerical section
of 7 where additional complexity is added.

6.1 Exogenous Savings

Assume now that the savings are �xed to some S̄ where S̄ ∈ (0, Y ). All shocks imported
in the young age endowment wealth through the transfer scheme are completely absorbed
through the consumption of the young. Assume for simplicity that only one risky asset
is available, such that Tt = τY (µ̃− R̃x

t ) = −τY ε̃xt where the risk-sharing parameter is τ .
Optimal consumption de�ned in (18) then evolves as follows:

Cy,t = Y − S + τ ε̃xt Y

Co,t+1 = SR̃x
t+1 − τ ε̃xt+1Y

(26)

Now, investments are �xed and do not react to changes in τ , so we have that E∂Cy,t
∂τ

=

E
∂Co,t+1

∂τ
= 0, and the policymaker's optimality condition (24) simpli�es. Furthermore, the

policy surprise e�ect becomes irrelevant for the generation born in period zero, as neither
they, nor by construction any future generation adjust their investments to the policy
parameters. Also, The policy parameter τ is set once and for all before the realization
of any shocks. As a result, the consumption streams for the old in period one and in
any other period di�er only in the realization of the shock. As a result, we can write
condition (24) as

β

δ
Cov

(
u′(Co,t),

∂Co,t
∂τ

)
+

[
1

1− δ
Cov

(
u′(Cy,t),

∂Cy,t
∂τ

)
+

β

1− δ
Cov

(
u′(Co,t),

∂Co,t
∂τ

)]
≡ δCov

(
u′(Cy,t),

∂Cy,t
∂τ

)
︸ ︷︷ ︸

<0

+ βCov

(
u′(Co,t),

∂Co,t
∂τ

)
︸ ︷︷ ︸

>0

!
= 0 (27)

14Loosely speaking, the quadratic utility assumption can be seen as a second-order approximation
of the expected utility of a more complex utility function (Levy and Markowtiz, 1979; Buccola, 1982;
Sharpe, 2007). For details on the use of quadratic utility in portfolio choice models see Brandimarte
(2006), �erný (2009), and D'Amato and Galasso (2010) who use it within an IRS context with a political
game determining the optimal level of risk sharing with voting.
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The underbrackets show the signs of the covariance terms assuming15 that 0 < τ < S
Y
.

They hold for any utility function with a decreasing marginal utility of consumption. To
illustrate why this is happening, imagine that there is a negative �nancial shock (εt < 0).
The IRS mechanism then transfers wealth from the young to the old. This has two e�ects.
First, the marginal consumption of the old (∂Co,t

∂τ
) increases and their marginal utility

decreases for higher τ as they get compensated for the resource loss on their retirement
savings. Second, the transfers induce a resource loss to the young as any compensation
for the old is subtracted from their initial endowment, driving down the young's marginal
consumption (∂Cy,t

∂τ
) and driving up their marginal utility. Since the transfers are linear,

exactly the opposite e�ect occurs with a positive �nancial shock.
Overall, the IRS policy allows the old to trade negative retirement-wealth shocks with

the currently young, who in turn in good times gain from the additional accumulated
wealth of the old. The risk-sharing parameter τ drives the sizes of the trade-o�s for each
generation, so it needs to balance out the willingness of one generation to get protection in
bad states of nature in lieu of smaller gain in good states with the willingness of the other
generation to forego current consumption in bad states in lieu of higher consumption in
good states. Overall, optimal τ needs to be set such that the two e�ects, as captured by
the covariance terms, balance out.

In particular, for quadratic utility, we have

Cov

(
u′(Cy,t),

∂Cy,t
∂τ

)
= Cov(−γτ ε̃xt , ε̃xt ) = −γτVar(ε̃xt ) ≤ 0

Cov

(
u′(Co,t+1),

∂Co,t+1

∂τ

)
= Cov

(
−γ
(
S

Y
− τ
)
ε̃xt+1,−ε̃xt+1

)
= γ

(
S

Y
− τ
)
Var

(
ε̃xt+1

)
≥ 0

Substituting in (27), the asset return variance and risk preferences cancel out of the
policymaker condition and do not play a role in determining optimality. The optimal
proportion of the shock that will be shared across generations is proportional to the
savings rate and depends on the discount rates:

τ ∗ =

(
β

β + δ

)
S

Y
(28)

The more a generation values old-age relative to young-age utility (higher personal dis-
count factor β), the higher the optimal level of IRS should be in order to allow generations
to hedge the negative states of nature they could experience in retirement. Similarly, by
construction a lower value for δ decreases the relative weight of the young in the welfare
function (9) driving down the need for IRS.

6.2 Utility of Old-age Consumption Only

Now, assume that agents derive utility from old-age consumption only.16 By construction,
they will save all their young-age endowment and consume it when old. In contrast to

15It can also be shown that in optimality τ cannot be negative when savings are positive, as then both
covariances will be positive and the �rst-order condition would never hold. If τ > S̄/Y on the other
hand, both covariances are negative, and again the optimality condition cannot hold.

16This set-up is common in the pension literature where agents derive utility only from pension income
and retirement consumption.
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the previous case, where young-age wealth shocks resulting from the transfers were fully
absorbed by consumption, now the transfer shocks are fully absorbed by savings.17.

Formally, the indirect utility of consumption for each generation becomes

v(τ, ε̃xt ) = βEtuo(Co,t+1) (29)

where

Co,t+1 = StR̃
x
t+1 − τY ε̃xt+1 (30)

For each generation born after implementation of the policy we have St = Y + τY ε̃xt ,
while in absence of anticipation e�ects generation zero has �xed savings S0 = Y .

Substituting in the policymaker's optimizing condition (23) and simplifying we get:

β

δ
E

(
u′(Co,1) · ∂Co,1

∂τ

)
+

β

1− δ
E

(
u′(Co,t+1) · ∂Co,t

∂τ

)
= 0

Simplifying further (Appendix (A.2) shows the derivation details), Y , γ and σ̃2 cancel
out, and we can solve for the optimal level of risk-sharing

τ ∗ =
1

δE
(

(R̃x
t )

2
)

+ 1
=

1

δE (µ̃2 + σ̃2) + 1
(31)

In contrast to the case with �xed savings, τ ∗ is now a decreasing function of the
riskiness of the asset, quanti�ed as the expected quadratic variation in the return of the
asset after the risk of liquidity costs is covered. The discount rates do not appear here in
the optimal term, as young-age consumption is not modeled and risk is not discounted
over the lifetime of individuals.

The expected quadratic variation E

(
(R̃x

t )
2
)
is positively related to the probability

to trade and negatively related to the liquidity cost, as shown in section (3.2). Then it
follows that as the illiquidity friction becomes more severe, the quadratic variations in
the asset returns become smaller and an increase in the risk-sharing parameter is needed
to ensure that enough risk is transferred across generations. Formally, we can show that

∂τ ∗

∂p
< 0,

∂τ ∗

∂l
> 0 (32)

6.3 Risk Pooling vs. Compounding of Risk

Now, we explore the relationship between the level of IRS and the variance of the risky
asset. We decompose the relationship into two counterbalancing e�ects. First, in aggre-
gate, IRS expands the pool of people who can participate in a shock occurring in a given
period by including the individuals who are not economically active in the risk-bearing
pool. Second, it extends the time window over which individuals bear risk by forcing
them to participate earlier in their lifetime in the realization of �nancial shocks, which

17A similar risk-sharing set up appears within the context of a political game for example in D'Amato
and Galasso (2010); Ciurila and Romp (2015)
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are otherwise only a�ecting the wealth of the old. We know that the �rst e�ect enhances
the overall risk-bearing capacity of the population. The second e�ect, however, on its
own produces a welfare loss for the young and needs to be explored further.

It is well-known that the uncertainty in a risky asset's returns does not diversify with
time, and that longer investment horizons do not lead to lower variance of the accumulated
wealth. In essence, this is the fallacy of time diversi�cation which states that aggregating
shocks over time increases their cumulative variability (Samuelson, 1963; Ross, 1999).
Gordon and Varian (1988) also refer to the compounding of lotteries and suggest that the
time accumulation of variance, due to the random shocks transferred from one generation
to the next, embeds a cost in the IRS mechanism. In our setting, as well, compounding
of uncertainty makes it expensive in utility terms to transfer risks over to the young as
the risk they will start bearing when young will accumulate through their savings and
will lead to higher consumption variability in retirement. It is then natural that the
larger the variance of the savings portfolio is, the more costly it is to transfer risk across
generations.

Consider again the set-up of section (6.2). The multiplicative shock which will appear
in the old-age consumption equation (30) is the key driver of the inverse relationship
between the level of optimal IRS and the magnitude of the asset variance. To illus-
trate, assume for the sake of argument that the savings asset is liquid. Then, old-age
consumption is

Co,t+1 = StRt+1 + Tt+1 = Y ((1 + τεt)Rt+1 − τεt+1)

This means that the policy (τ > 0) imports additional uncertainty into old-age con-
sumption, having made the young-age starting wealth uncertain as Y (1 + τεt). In old
age, the variance of endowment is translated into additional variance of savings and in
old age gets magni�ed by the variance of the accumulated asset return. Old-age wealth
as a fraction of Y then becomes (1 + τεt)Rt+1 = µ + εt+1 + τµεt + τεtεt+1. As a result,
the variance of consumption becomes function of the risk sharing parameter.

We can decompose the total variance of old age consumption with IRS into the fol-
lowing two e�ects18:

Var(Co,t+1) = Var (StRt+1 − Y τεt+1)

= Y 2

σ2(1− τ)2︸ ︷︷ ︸
Pooling E�ect

+ µ2σ2τ 2 + τ 2σ4︸ ︷︷ ︸
Risk-Compoinding E�ect

 (33)

First of all, the IRS mechanism expands the pool of individuals that can participate
in the risk, which is about to materialize in a given period. So, the old will bear only
1− τ proportion of the risk occurring in their retirement, while the rest is transferred to
the newly born. This drives the pooling e�ect of the variance.

The young consume their wealth when they retire. The risk that they have to par-
ticipate in while young, proportional to τ , is then reinvested until retirement, when a
new shock occurs and this ampli�es the initial one. This results in the risk-compounding
e�ect.

As the variance of consumption is convex in the risk-sharing parameter, there will
be a point after which the uncertainty imported in old age consumption through risk

18See Appendix (A.3) for details on the derivation
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sharing will dominate over the reduction in uncertainty coming from the increased risk-
bearing pool. The policymaker's problem then is to set τ such that the two e�ects are
balanced. The variance of consumption is thus minimized for τ ∗ = 1

1+σ2+µ2 . Note that as
the variance of the asset increases, the risk-compounding e�ect, having a higher order,
dominates over the pooling e�ect, and to achieve optimal variance of consumption, the
policymaker needs to reduce the level of risk sharing.

The individuals born in period zero, before the policy is implemented, get to ex-
perience solely the pooling e�ect, without being subject to the compounding cost. In
particular, the variance of their consumption is

Var(Co,1) = Y 2
Var(R1 − τε1) = Y 2

Var(µ+ (1− τ)ε1) = Y 2 (1− τ)2σ2︸ ︷︷ ︸
Pooling bene�t

(34)

These individuals are thus privileged from an ex-ante point of view, as they bene�t
for each τ ∈ (0, 1] and in optimality will want to have it set to unity. With no risk
sharing, they bear the full risk of their old-age consumption, and with complete sharing
their old-age consumption risk is reduced to zero and any negative shocks are shifted to
the newly born young generation at period one. For this generation, the risk reduction
occurs free of the compounding cost, that other generations need to bear.

Note that sometimes the literature uses time-additive shocks to illustrates the pooling
bene�ts of risk sharing. Crucially, this misses the time aggregation component of risk risk.
To illustrate how additive shocks can mislead, assume �rst that the young bear τ portion
of the shock while the old take proportion 1 − τ . Additive shocks would imply that the
young save St = Y +τεtY and the old consume Co,t = St−1+(1−τ)εtY = Y (1+τεt−1+(1−
τ)εt). It is clear that with i.i.d. shocks, we then have Var(Co,t) = ((1− τ)2 + (τ)2)σ2Y 2.
The sharing parameter which minimizes the variance of consumption then is τ ∗add. = 1/2
and it is clearly independent of the variance of the asset returns.

From that point of view, the argument can be made that averaging n independent
shocks additive shocks, such that each generation gets a portion 1

n
of each shock, leads

to Var
(

1
n

∑n
i=0 εt−i

)
= 1

n
σ2, and n → ∞, the shocks will diversify away. Using this

argument within the context of risk sharing can mislead that splitting shocks over many
generations can make the risk disappear. When aggregating stochastic i.i.d. returns over
time, however, which is in a way done by multiplying out the gross returns over time, the
variance of the accumulated return will grow linearly with time:

Var(Rt·Rt−1 . . . Rt−n) = Var(εt·εt−1 . . . εt−n) = E
(
ε2t · ε2t−1 . . . ε

2
t−n
)
+E(εt) . . .E(εt−n) = nσ2

7 Quantitative Evaluation and Welfare Analysis with

CRRA Utility

7.1 Set-up, Parameters and Initial Conditions

Now, assume that there are three assets available for investment: a risk-free liquid, a
risky liquid, and a risky illiquid asset. The risky assets' gross returns follow a log-

normal distribution, such that Rt =

[
Rs
t

Rx
t

]
where log(Rt) ∼ N(µ,Σ) with µ =

[
µs
µx

]
and
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Σ =

[
σ2
s ρσsσx

ρσsσx σ2
x

]
and returns are scaled over a thirty-year holding period in line with

the two-period OLG setting.
The risk-free asset is calibrated to the expected return of medium-term world gov-

ernment bonds. The risky liquid asset matches global equity's risk and returns charac-
teristics. The risky illiquid asset is calibrated to match the properties of a portfolio of
representative illiquid asset classes, where the weights are based on the relative sizes in a
typical pension fund of private loans, equity, hedge funds, real estate and infrastructure
holdings. Aggregated data on pension fund allocations are gathered from OECD (2019)
for global funds and (PensionsEurope, 2018) for European funds. The data is summarized
in Table (1). Expected asset returns, volatility, and correlations across the asset classes
are based on the long term capital market forecasts in JP Morgan (2020).

The costless trading probability (1) follows from a Poisson speci�cation as the prob-
ability of having at least one trading opportunity during a time period ∆t, such that19:

p = 1− e−η∆t (35)

Note that in this set-up (1/η) is the average time one needs to wait for a costless
trading opportunity to arrive. In calibrating η, we rely on data from Ang et al. (2014),
who provide estimates of the average holding times and turnover of the illiquid asset
classes considered here. Table (1) summarizes the data and the corresponding probability
estimates for the variety of illiquid assets considered here. Further, ∆t represents the
period over which individuals would seek to sell their illiquid holdings. Weassume �ve
years as an approximation of the time before or after retirement during which individuals
liquidate their asset holdings in order to fund retirement consumption. Overall, based on
these considerations and based on the data, we assume p = .8 for the base scenario as
a reasonable ballpark �gure corresponding to the representative illiquid asset considered
here.

The liquidity cost parameter l is calibrated through the average trading discount on
the Net Asset Value (NAV) which needs to be accepted when selling private investments
on the secondary market. Nadauld et al. (2019) explore the secondary market for private
equity funds and �nd that they trade on average at a discount of 13.8%. The number
varies signi�cantly, typically in a range between 5% and 30%, depending on market
conditions, fund age, and fund type (e.g., Buyout, Venture Capital, Real Estate). we
assume l = 20% as a ballpark base �gure. Further on, we explore the solution's sensitivity
by varying both p and l parameters. We set γ = 5 and β = δ = e−.03·30.

19The costless trading opportunity for the illiquid asset arrives as a Poisson event with an expectation
η. The probability of having n such trading opportunities over a period of time ∆t then is

P (n) = e−η∆t (η∆t)n

n!
, n = 0, 1, ...

Denoting Nt as the cumulative number of trading events which occurred up to time t, the probability
p of being able to trade costlessly in the illiquid asset at least once over a given period can then be
derived as

p = P (Nt+∆t −Nt ≥ 1) = 1− P (Nt+∆t −Nt = 0) = 1− e−η∆t

Formally, this is equivalent to modeling liquidity events as a Poisson process, as in e.g. Ang et al.
(2014).
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Table 1: Parameters Calibration

Holding Time p Weight µ σ ρ

Liquid Risk-Free Asset
- Mid-Term Gov Bonds 100% 0.002 -
Liquid Risky Asset - - 1.000
- Global Equity 100% 0.061 0.156
Illiquid Risky Asset 0.049 0.120 0.586
- Hedge Funds 1 - 2 0.92 - 0.99 16% 0.030 0.074 0.730
- Private Equity 4 0.71 23% 0.078 0.202 0.800
- Institutional Real Estate 8 - 10 0.39 39% 0.046 0.111 0.500
- Institutional Infrastructure 50 - 60 0.08 14% 0.047 0.105 0.550
- Private Loans - - 8% 0.017 0.045 0.150

This table shows the calibrated values for the return and risk properties of the three assets in the model.
The average number of years it takes to trade on one of the illiquid assets is used as input to calculate
the probability p that the asset can be sold over a �ve-year period. The Poisson probability formula links
the two. The �gures on µ and σ indicate the expected return and standard deviation respectively of the
asset class, and ρ indicates the corresponding correlation to equity global. Data is used from JP Morgan
(2020) adjusted for a �xed in�ation rate of 2%. The weights indicate the asset proportions within the
illiquid portfolio of a typical global pension fund as in OECD (2019) and they are used to aggregate the
basket of illiquid asset into one representative illiquid asset.

The young and the old are assumed to have the same CRRA Utility of consumption,
where γ > 1 is the usual parameter of risk aversion:

u(C) ≡ 1

1− γ
C1−γ, C > 0

In the planner case, after the system is initiated (for t ≥ 1), due to (14) in optimality
we have:

C∗y,t =

(
β

δ

)− 1
γ

C∗o,t

As a result, one only needs to solve for the youth age consumption in the planner case,
and optimal old-age consumption will be proportional.

Using the social welfare formulation of (9), we can translate the utility units into
Certainty Equivalent Consumption (CEC) units, where the CEC measures the stream of
�xed risk-free future consumption that the current and all future generations would be
willing to accept for the stream of risky consumption leaving the indi�erent utility-wise
between the two options. In the case of a CRRA utility, as Appendix (A.5) shows, the
CEC for the whole population can then be written as:

CEC0 =

[
(1− δ)(1− γ)

δ

β + δ
V0

] 1
1−γ

(36)

where V0 is a function of the starting wealth values V0 = V (W0, X0) in the case of the
planner problem, while in the case of intergenerational transfers, it is a function of the
policy instruments such that V0 = V (τ ∗).
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In the decentralized cases, either with or without risk sharing, all generations but
generation zero are identical ex-ante and start with the same endowment and the same
wealth, so this eliminates the need to establish initial conditions. In the autarky case,
welfare is evaluated through equation (20), with all transfers set to zero, while in the case
with transfers, the policymaker picks the optimal risk-sharing parameters.

In the planner economy, the initial conditions matter. To be consistent with the
policymaker problem of section 5, we assume that the economy exists initially in a decen-
tralized no-risk-sharing regime. Individuals from generation zero then freely pick their
asset allocation and savings level ignorant of the following policy implementation. Be-
tween periods zero and one, the planner appropriates the accumulated savings in the
economy. After period one, she starts optimally distributing consumption between the
young and the old and starts picking the appropriate asset mix and the aggregate savings
level, as indicated in section 7.2. The accumulated up to period one liquid and illiquid
wealth then provide the initial conditions on which the planner relies. Consequently,
we evaluate the welfare as the probability-weighted value-function level at accumulated
liquid and illiquid wealth in period one, assuming that further on the planner is picking
optimal values for the decision variables.

7.2 Planner Solution

First, in the planner economy, we look at how aggregate welfare, consumption and invest-
ment behave as functions of the stochastic state variables Xt and Wt. Figures (4a) and
(4b) show that welfare and aggregate consumption, respectively, unambiguously increase
if more liquid or illiquid wealth becomes available. The increase with respect to illiquid
wealth follows from the fact that for l < 1 and p > 0 the illiquidity friction is only setting
a potential cost to withdrawing funds for consumption but is not barring withdrawals
entirely. Note, however, that due to the risk of incurring withdrawal costs, a proportional
increase in liquid or illiquid wealth does not lead to an equal increase in welfare, so the
slope of the iso-lines is not unity.

Figure (4c) shows the optimal levels of liquid risky asset investments St given the
beginning of period illiquid and liquid wealth. First, it can be seen that if the current
liquid wealth is already high (the right half of the chart), it is not optimal to allocate
resources to the liquid risky assets, as the regular endowment income provides enough
liquidity for the coming period, and it becomes more pro�table to allocate to the illiquid
asset and reap the illiquidity premium embedded in it. At the same time, if the start-of-
period illiquid wealth is too high (in the upper half of the chart) it becomes optimal to
shift resources from the illiquid risky asset towards liquid risky assets, so St starts picking
up, again to secure diversi�cation.

Figure (4d) shows the total amount of withdrawals D−t (if negative) and investments
D+
t (if positive) in illiquid wealth. This chart complements the �ndings so far. If a certain

proportion of illiquid-to-liquid wealth is breached, indicated with the zero diagonal line,
the planner will reallocate, withdrawing or depositing into illiquid savings in order to
avoid over-concentrated holdings in one type of wealth. That relocation will either be
consumed or invested in risk-free liquid holdings or risky-liquid holdings.
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Figure 4: Planner Optimal Policies
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(d) Illiquid Wealth Withdrawals

This set of �gures shows the solution of the planner dynamic programming problem. The charts show
the value function (presented in CEC units), optimal consumption, optimal risky liquid investments,
and the withdrawals (dashed, negative lines) and investments (solid, positive lines) into illiquid wealth,
respectively. Borrowing is constrained with L = 0 in (11). The optimal solutions are presented as
functions of the two stochastic state variables, Wt and Xt. In a dynamic setting, optimal consumption
and investment for the coming period are set by knowing the two-state variables at the beginning of the
period.
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Figure 5: Illiquidity without Risk Sharing
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(d) Illiquid Risky Investments

This set of contour plots show the e�ect of the liquidity friction in the base case on the invested amounts
in each of the assets. The lifetime CEC measures the certainty equivalent consumption of individuals
over the two periods of their lifetime.
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7.3 No Risk Sharing Solution

Now we look at an economy where generations themselves optimize the asset mix in their
portfolio. First, they cannot share risks with other generations. we keep in line with
the literature by referring to this as autarky, taking into account the fact that agents
consume purely out of their endowments and do not have the technology to consume
out of the endowment income of other generations (Beetsma and Romp, 2016; Gollier,
2008). Formally, the solution follows from the individuals' savings problem (15) where
all transfers Tt are set to zero and where the policymaker does not play any role.

The set of �gures (5) shows how welfare and investments are a�ected by illiquidity.
It is clear that as the liquidity friction increases (either p increases or l decreases), the
welfare in the economy (Figure (5a)) goes down monotonically. This is driven by several
factors. First, investment in the illiquid asset decreases (Figure (5d)). Investment in the
risky liquid asset increases (Figure (5c)) to compensate, but overall there is a drop in
total risky asset holdings as illiquidity rises20. Precautionary risk-free savings increase
(Figure 5b). In this case, as the illiquidity friction increases, agents su�er from reduced
diversi�cation in their investment mix. At the same time, their capacity to bear market
risk is reduced and they are not in a position to exploit fully the market risk premia.

7.4 Risk Sharing Transfers

Agents now solve the allocation-savings problem in a decentralized economy, where a
policymaker administers the risk-sharing instruments by optimizing aggregate ex-ante
welfare. The set of �gures (6) shows the e�ect that risk sharing has on welfare and
investment. The parameters τs and τx stand for sharing in the liquid and in the illiquid
risky asset respectively. Individuals are allowed to borrow in their youth.

Figure (6a) shows the aggregate welfare in the economy in period one as a function of
the policy instruments. Welfare is measured in CEC units in line with (36). It is growing
for the most part with the degree of risk-sharing, but it suddenly cuts o� to zero at the
chart's upper-right edge. This occurs when the risk-sharing parameters are set too high,
which in combination with a large negative shock in either of the risky assets has the
potential to produces scenarios where the endowment income of the young after transfers
to the old leave nothing for young-age consumption and thus marginal utility becomes
in�nite.

Figures (6b), (6c), (6d) illustrate how the allocation to each of the three assets changes
when either of the risk sharing instruments is varied. The charts, thus, show the expected
investments over time, since (as shown in Section (5)) risk sharing makes the amount
available for investment random by being dependent on the realized �nancial shocks of
the current period.

In line with studies done before (Gollier, 2008; Shiller, 1999; Campbell and Nosbusch,
2007), the increase in risk sharing between generations enhances the ability of individuals
to bear investment risk. The average amounts allocated to the liquid (Figure (6c)) and
the illiquid asset (Figure (6d)) increase with the degree of IRS, while the investment in
the risk-free asset decreases (Figure (6b)) and even becomes negative, as the individual
leverages up by borrowing. In line with the diversi�cation principle, the increase in risk

20For example, in a high liquidity case (bottom right corner of each chart, where l is low and p is high)
total risky investments are around .26. In the low-liquidity case (the upper right corner of each chart),
total liquid and illiquid risky investments drop to about .195
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sharing even in one of the assets increases the ability to bear risk in both of the risky
assets. For example, an increase in τx from .009 to .016 increases the average optimal
holdings in the liquid asset from .135 to .15. Still, an equivalent increase in one sharing
parameter favors more the risky asset that it targets.

Figure 6: Illiquidity with Risk-Sharing Transfers
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(d) Illiquid Risky Asset

This plot shows the e�ect of varying the risk-sharing parameters on welfare and the average levels of the
optimal asset holdings. The white space in the upper-right edge of Figure (6a) shows the values of τs
and τx where the CEC cuts o� to zero as scenarios appear in which transfers become larger than the
endowment of the young.

Table (2) presents the values for consumption and optimal investment in an economy
under optimal risk sharing. Two cases are considered for robustness: when agents are
either able to borrow and when borrowing is restricted. As observed before, compared to
autarky, risk sharing e�ectively increases the capacity to invest in the risky assets in both
cases, even though the e�ect is more substantial without a borrowing constraint. Even in
the case of restricted borrowing, the portfolio is on average fully invested in risky assets.

Going forward, we quantify the degree of welfare improvement in line with Beetsma
and Romp (2016): (

CECi

CECa
− 1

)
· 100%

where CECi stands either for the speci�c policy to be evaluated, and CECa stands for
the aggregate welfare in the benchmark autarky economy.

Table (3) compares the welfare improvement from the two IRS mechanisms considered
so far - from the intergenerational transfers and from the planner case. Naturally, the
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welfare achieved through a planner is higher, as a policymaker can share risk between two
generations only, while a planner can share risk with in�nitely many future generations.
In addition, policymaker is restricted to apply only linear transfers of risk. Still, whether
borrowing is restricted or not, the model projects that a policymaker is already able to
realize a lot of the bene�ts possible through risk sharing, and the di�erence to what is
achievable by the planner is not large. If borrowing is possible, the model projects a
welfare improvement of 36% in the decentralized case with transfers vs. 48% for in the
policymaker case. With borrowing, the relation is 17% vs. 21%.

Table 2: Risk Sharing vs. Base Case

No Risk Sharing Risk Sharing Risk Sharing
with borrowing without borrowing

ECy 0.694 1.008 0.805
ECo 1.359 1.374 1.379
EM 0.054 -0.446 0.000
ES 0.119 0.224 0.110
ED+ 0.133 0.214 0.085
τ ∗s 0.050 0.018
τ ∗x 0.021 0.030

Note. This table compares the policymaker risk-sharing and the autarky (no risk sharing) solution,
looking at the case where a lower limit of zero on borrowing (investment Mt) is applied and when no
such limit is applied. There is an internal optimal solution in the no sharing solution, so a constraint on
borrowing does not change anything. The expected values are calculated for generations born in t > 0.

Table 3: Risk Sharing

No Risk Sharing Policymaker Planner

With borrowing

CEC 0.687 0.932 1.014
Improvement - 36% 48%

Without borrowing

CEC 0.687 0.805 0.830
Improvement - 17% 21%

Note. This table shows the welfare improvement over autarky when risk sharing is introduced either
through a policymaker or through a planner approach. In the former case, individuals are allowed to
borrow. In the later case, borrowing is allowed only up to a level comparable to the one observed in the
policymaker optimal solution.

A question of interest is to what degree the introduction of risk-sharing between the
young and the old can help lower the welfare losses from increased asset risk. Next, we
look at how changes in the risk pro�le of the illiquid asset, either in terms of increased
variance or increased liquidity cost, a�ect welfare.

First, holding investment and risk-sharing �xed as in Figure (7a), we can see that
for increased risk, there is, at least initially, more potential for welfare improvement in
transferring part of it from the old to the young. The linear intergenerational transfers
relocate wealth from the old to the young in states of nature where the marginal utility
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of the additional consumption of the old is low, and when asset returns are above their
expected values. Furthermore, wealth is relocated in the oposite direction, from the young
to the old, in states of nature when asset returns are low, consequently savings of the old
are depreciated, and the old's marginal utility is currently high.

However, when the variance of the investment portfolio and consequently the variance
of transfers increases, at some point the transfers may become too much for the young
to bear. As scenarios of larger transfers from the young become more frequent, this
may leave them with too little endowment to cover their young-age consumption, causing
more scenarios where young-age utility drops more than the corresponding increase in
the utility of the old, and thus also lowering the overall expected lifetime utility of the
generation. As a result, at some point, this second push-back e�ect prevails and the
welfare improvement starts declining with further variance. If τx is set too large, it may
even happen that the risk-sharing policy comes at a disadvantage compared to the initial
situation. Allowing τx to be adjusted avoids the problem of transferring too much risk
from one generation to another, as shown in Figures (8).

Figure 7: Fixed Allocation and Risk Sharing
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Note. This set of charts shows the e�ect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The invetments are �xed in all states of nature to Mt = St = D+

t = .1, and risk sharing
is �xed such that τs = 0, τx = .05

Note however that increased liquidity risk does not increase the variance of transfers
(7b). This is in line with the way illiquidity a�ects asset returns as shown in Section
(3.2): higher illiquidity lowers the variance of wealth, thus lowering also the chance that
more variance is transferred to the young than they could bear. As a result, improvement
in welfare is monotonously increasing with rising illiquidity cost, in contrast to the e�ect
observed for higher variance.

Second, as the risk of the illiquid asset increases, an investment substitution e�ect
occurs, where individuals reduce holdings in that asset and increase their holdings in the
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Figure 8: Fixed Allocation and Optimized Risk Sharing

0.09 0.10 0.11 0.12 0.13 0.14 0.15

x

0.64

0.66

0.68

0.70

0.72

0.74

CEC

Aut
Transfers

(a) Increased Asset Variance

0.09 0.10 0.11 0.12 0.13 0.14 0.15

x

5.00

6.00

7.00

8.00

9.00

10.00

11.00

Improvement (%)

0.09 0.10 0.11 0.12 0.13 0.14 0.15

x

0.026

0.028

0.030

0.032

0.034

*
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

l

0.64

0.66

0.68

0.70

0.72

CEC

Aut
Transfers

(b) Increased Liquidity Cost

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

l

7.00

8.00

9.00

10.00

11.00

Improvement (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

l

0.028

0.029

0.030

0.031

0.032

0.033

0.034

0.035

*
x

Note. This set of charts shows the e�ect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The invetments are �xed in all states of nature to Mt = St = D+

t = .1, and risk sharing
for the illiquid asset is optimized by the policymaker, while τs = 0.
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risky liquid asset. This is clearly seen in Figures (9) where allocations are optimized while
the risk sharing instruments stay �xed. The implementation of risk-sharing transfers
shifts up the investments in each of the two risky assets, the increase being �nanced
through lower holdings in the risk-free asset.

The plots in Figure (10) combine the e�ects of individuals optimizing their asset
holdings and the policymaker simultaneously setting the optimal degree of risk sharing.
First, as variance increases, the amount of optimal risk-sharing τ ∗x decreases to stabilize
the variance of transfers. Second, risk sharing increases the desire of individuals to hold
risky assets compared to autarky. Still, with higher risk, individuals hold less of the riskier
illiquid asset and more of the substitute liquid asset. The investment in risky assets, in
total, is diminishing with the increase in risk. In end e�ect, as the variance of the asset
increases, the reduction of diversi�cation in the savings portfolio held by the individuals
results in lower welfare improvements as the variance of the illiquid asset increases. IRS
cannot compensate for this e�ect, so overall, as the risk of the illiquid asset increases, the
improvement in welfare is going down.

There is one notable di�erence in how an increase in σx versus an increase in l is
a�ecting optimal risk sharing. Higher volatility justi�es sharing a lower degree of IRS
τx, while higher illiquidity calls for increased risk-sharing. The decrease in the variance
of transfers caused by illiquidity needs to be compensated by a higher sensitivity of the
transfers to the variance of the asset. This is in line with the arguments made earlier
that with growing illiquidity, the variance of the savings portfolio decreases and sharing
in the illiquid asset needs to be increased to compensate.

Figure (11) summarizes all cases considered and illustrates that the welfare increases
with each relaxation of the constraints from the base case, de�ned as an individual with
�xed investment shares without access to a risk sharing technology. The highest welfare
occurs with case C5 when both IRS parameters are optimized by the policymaker while
simultaneously individuals optimize their asset holdings.

8 Conclusion

This paper examined the problem of optimally allocating risks across generations in the
presence of market illiquidity within the asset mix of individuals' savings. we show in a
stylized two-period overlapping generations framework that a contract of risk transfers
between coexisting young and old cohorts enforced by a policymaker can improve welfare.

First, we show that optimal IRS is dependent on the variance of the savings portfolio
of individuals. On one hand, the policymaker can create a mechanism that expands the
pools of individuals who can bear the variance risk by including the young in the risk-
sharing pool (pooling e�ect). On the other hand, introducing additional risk early on
in individuals' lifetime savings accumulates higher variance in their old-age consumption
(risk-compounding e�ect). The higher the variance, the more the latter dominates, and
the lower the risk-sharing parameter should be.

From that point of view, illiquidity poses a friction to risk sharing between generations,
as it reduces the variance over which the illiquid asset in the portfolio can be traded. To
compensate for the loss of sensitivity of the IRS transfers to movements in the fair value of
the asset, a policymaker needs to increase the level of risk sharing. In contrast, increases
in the variance of a liquid asset, ceteris paribus, justify lower levels of risk sharing, as
otherwise resources of the young will be destabilized, pushing them towards states of
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Figure 9: Optimized Allocation and Fixed Risk Sharing
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Note. This set of charts shows the e�ect of varying the volatility on the illiquid asset and respectively
its liquidity cost. The investments are determined based on the individual optimality conditions while
the risk sharing is �xed such that τs = 0, τx = .05.
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Figure 10: The E�ect of Risk on Welfare Improvements. Optimal Solution
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Note. This set of charts shows the e�ect of varying the volatility on the illiquid asset and respectively its
liquidity cost. The level of inter-generational risk sharing is optimized over τx while τs = 0. The model
is parameterized for the base case, and in the �rst column the variance is varied, while in the second
column the liquidation cost is varied. 33



Figure 11: Welfare Improvements vs. the Constrained No-Risk-Sharing Benchmark
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Note. This set of charts shows the resulting welfare improvement vs. an autarky benchmark economy,
in which agents cannot adjust their savings and Mt = St = D+

t = 0.1 in all states of nature. The lines
represent the percentage CEC improvement resulting from switching to an intergenerational risk-sharing
economy where C1: τs = 0, τx = .05, while the investments that individuals hold are �xed; C2: τs = 0,
τx = .05, while individuals can adjust their asset holdings; C3: investments are �xed, τs = 0 and τx is
optimally adjusted; C4: investments are optimized, τs = 0 and τx is optimized; C5: investments, τs and
τx are optimized.

nature where the decline in young age utility of consumption is higher than the bene�t
of the elderly, thus lowering their lifetime utility and lowering the overall welfare in the
aggregate economy.

Second, we �nd that risk sharing allows individuals to invest more into illiquid as-
sets compared to the case when they are holding personal savings accounts without a
mechanism to shift risks across generations. This is also in line with the literature which
explores intergenerational risk-sharing mechanisms within funded pension plans (Gollier,
2008; Cui et al., 2011; Shiller, 1999).

The analytical results were justi�ed by a quantitative welfare analysis with a realistic
asset composition and utility speci�cation. The framework highlights several policy-
relevant implications. The tendency of pension funds to invest in illiquid asset classes,
such as private equity, infrastructure projects, etc., may call for increased risk-sharing
mechanisms between pension fund participants of di�erent generations. Alternatively,
increasing the liquidity of otherwise illiquid assets, for example with the development of
attractive secondary markets for OTC traded assets, has the potential to also increase
the bene�ts of intergenerational risk sharing, while also allowing for lower levels of risk
sharing between cohorts.
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A Appendix: Derivations

A.1 Planner Problem Derivations

Taking into account the constraints of the Bellman equation (13), we can write the
optimization problem in Lagrangian form:

L = ũ(Cy,t, Co,t) + δEV (Wt+1, Xt+1)−
∑
j

λjgj(Wt, Xt, Cy,t, Co,y, St, D
+
t , D

−
t )

where each of the gj(.) functions, j = 1, . . . 6, represent one of the constraints written in
a form such that gj(.) ≤ 0

g1(.) = Cy,t + Co,t +D+
t −D−t (1− l) + St1−Wt − Y − L;

g2(.) = D−t −D+
t −Xt;

g3(.) = D−t −Xt;

g4(.) = −D−t ; g5(.) = −D+
t ; g6(.) = −St

and λj are the non-negative KKT multipliers subject to the standard interpretation as
sensitivity of the optimal solution to relaxing the corresponding constraint. The standard
�rst-order conditions apply together with complementary slackness and non-negativity:

∂L
∂x

= 0 x ∈ {Cy,t, Co,y, St, D+
t , D

−
t }

λjgj(.) = 0

gj(.) ≤ 0

λj ≤ 0, j = 1, ...6

In particular, the �rst-order conditions with respect to consumption can be written
as

∂L
∂Cy,t

:
∂ũ(Cy,t, Co,t)

∂Cy,t
= δRfEVW (Wt+1, Xt+1) + λ1

=⇒ u′y(Cy,t) = δRfEVW (Wt+1, Xt+1) + λ1

∂L
∂Co,t

:
∂ũ(Cy,t, Co,t)

∂Co,t
= δRfEVW (Wt+1, Xt+1) + λ1

=⇒ β

δ
u′o(Co,t) = δRfEVW (Wt+1, Xt+1) + λ1

(37)

As the optimal condition is symmetric w.r.t. the consumption of the young and the old,
from (37) we have:

u′y(Cy,t) =
β

δ
u′o(Co,t) (38)

Applying the Envelope Theorem on the constrained problem, we get:

∂V (Wt, Xt)

∂Wt

: VW (Wt, Xt) = δRfEVW (Wt+1, Xt+1) + λ1 (39)
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and combining (39) with (37), we get this planner's version of the standard Ramsey
equivalence of the marginal utility and the (liquid) wealth derivative of the value function:

u′y(Cy,t) = VW (Wt, Xt)

β

δ
u′o(Co,t) = VW (Wt, Xt)

(40)

Substituting (40) forward in (37), we can get the Euler relation, now corrected for a
possible breach of the non-negativity borrowing constraint:

u′y(Cy,t) = δRfEũ
′(Ci,t+1) + λ1

β

δ
u′o(Co,t) = δRfEũ

′(Ci,t+1) + λ1

(41)

The �rst-order condition w.r.t. the liquid risky investment in asset i is

∂L
∂Sit

: EVW (Wt+1, Xt+1)rs,it+1 −
1

δ
(λ1 − λ6) = 0 (42)

The �rst-order condition w.r.t. new investments in the illiquid asset D+
t and with-

drawals from illiquid wealth D−t , respectively, can be written as

∂L
∂D+

t

: RfEVW (Wt+1, Xt+1) +
1

δ
(λ1 − λ2 − λ5) = EVX(Wt+1, Xt+1)Rx

t+1

∂L
∂D−t

: RfEVW (Wt+1, Xt+1)(1− lt) +
1

δ

(
λ1(1− l)− λ2 − λ3 + λ4

)
= EVX(Wt+1, Xt+1)Rx

t+1

A.2 Utility of Old-Age Consumption

The generation born before implementation of the policy saves S0 = Y , and consumes
Co,1 = Y

(
R̃1 − τ ε̃1

)
which implies the sensitivity of consumption to the risk-sharing

parameter of ∂Co,1
∂τ

= −Y ε̃1.
Using the quadratic utility assumption, we get

E

(
u′o(Co,1) · ∂Co,1

∂τ

)
= E ((1− γC1) (−Y ε̃1))

= E

((
1− γY (R̃1 − τ ε̃1)

)
(−Y ε̃1)

)
= −Y E (ε̃1) + γY E

(
(R̃1 − τ ε̃1)ε̃1)

)
= γY 2σ̃2 (1− τ)

where we use the fact that E(ε̃t) = 0, E(R̃x
t ε̃t) = E(ε̃t) = σ̃2.

Generations born in periods t ≥ 1, after the policy has been implemented, save
St = Y + τY εt and consume in old age Co,t+1 = StR̃t+1 − τY εt+1 with ∂Co,t+1

∂τ
=
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Y
(
ε̃tR̃t+1 − ε̃t+1

)
. As a result:

E

(
u′o(Co,t+1) · ∂Co,t+1

∂τ

)
= E

(
(1− γCt+1) · ∂Co,t+1

∂τ

)
= E

(
∂Co,t+1

∂τ

)
− γE

(
Ct+1

∂Co,t+1

∂τ

)
= −γY E

(
Ct+1

(
ε̃tR̃t+1 − ε̃t+1

))
= −γY 2

E

(
(1 + τ ε̃t)R̃t+1 − τ ε̃t+1

)(
ε̃tR̃t+1 − ε̃t+1

)
Opening up the brackets and noting that due to time independence

E(R̃2
t+1εt) = ER̃2

t+1Eεt = 0

Eε̃2t R̃
2
t+1 = Eε̃2tER̃

2
t+1 = σ̃2(µ̃2 + σ̃2)

E(ε̃2t R̃
2
t+1) = Eε̃2tER̃

2
t+1 = σ̃2

we get

E

(
u′o(Co,t+1) · ∂Co,t+1

∂τ

)
= γY 2σ̃2

(
1− µ̃2τ − σ̃2τ − τ

)
The policymaker maximizes welfare by reconciling the marginal expected bene�ts for

all generations by applying condition (23).

β

δ
E

(
u′o(Co,1) · ∂Co,1

∂τ

)
+

β

1− δ
E

(
u′o(Co,t+1) · ∂Co,t+1

∂τ

)
= 0

Substituting in the derived terms for the generations born at period zero and after
that, and canceling out γ, Y , β we get

1

δ
σ̃2 (1− τ) +

1

1− δ
σ̃2
(
1− (µ̃2 + σ̃2)τ − τ

)
= 0

=⇒ τ ∗ =
1

δER̃2
t + 1

=
1

δ(µ̃2 + σ̃2) + 1

A.3 Variance of Old-Age Consumption

In (33) we have:

Var(
Co,t+1

Y
) = Var

(
St
Y
Rt+1 − τεt+1

)
= Var ((1 + τεt)(µ+ εt+1)− τεt+1)

= Var (µ+ εt+1 + τµεt + τεtεt+1 − τεt+1)

= Var ((1− τ)εt+1 + τµεt + τεtεt+1)

= Var((1− τ)εt+1) + Var(τµεt) + Var(τεtεt+1)

= (1− τ)2σ2 + (τ)2µ2σ2 + (τ)2σ4
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where due to the zero-mean and i.i.d. properties of the shock we have Cov(εt, εt+1) =
Cov(εt, εtεt+1) = Cov(εt+1, εtεt+1) = 0 and V ar(εtεt+1) = σ4 or in more details:

Cov(εt, εtεt+1) = E(ε2t εt+1) + E(εt)E(εtεt+1)
i.i.d.
= E(ε2t )E(εt+1) = 0

Var(εtεt+1) = E(ε2t ε
2
t+1)− E(εt)E(εt+1)

i.i.d.
= E(ε2t )E(ε2t+1) = σ4

Minimizing the variance of consumption for the generation born after t > 0, we get
the �rst-order condition with respect to τ

∂Var(Co,t+1)

∂τ
= −(1− τ)σ2 + τµ2 + τσ2 = 0

=⇒ τ(µ2 + σ2 + 1) = 1

This illustrates again that for an increase in the variance, τ needs to go down in order
to keep the outcome optimal for a future generation.

A.4 Allocation Decision with Risk-Free and Risky Assset

Assume that generations have a nonzero utility of consumption when old and when young,
such that uy(C) = uo(C). Also, there is a risk-free asset with a �xed gross return of Rf

and a risky asset. At the same time, the young have to decide how much to consume
and save and how to allocate their savings between the risk-free asset and the risky asset.
The two-period budget constraints of (15) simplify to

Cy,t = Y −Mt − St + ε̃tτY

Co,t+1 = MtR
f + StR̃

s
t+1 − ε̃t+1τY

Applying the individuals' optimality conditions (17), it can be shown that

I(τ, εt) =

[
Mt

St

]
= Y

([
−(a1 + b1)

a1

]
+

[
−(a2 + b2)

a2

]
τ +

[
−(a3 + b3)

a3

]
τ ε̃t

)
(43)

where all coe�cients but b1 are positive functions of the problem's primals. Optimal
consumption for the young and the old then is

Cy,t = Y [1 + b1 + b2τ + (1− b3)τ ε̃t]

Co,t = Y [− ((a1 + b1) + (a2 + b2)τ − (a3 + b3)τ ε̃t−1)Rf + (a1 + a2τ − a3τ ε̃t−1) (µ+ ε̃t)− τ ε̃t]
(44)

where µ = µ̃−Rf is the excess return on the risky asset the coe�cients in equation (43)
are

a1 =
µ (−RfY γ +Rf + 1)

Y γ
(
R2
fβσ̃

2 + µ2 + σ̃2
) ; a2 =

σ̃2
(
R2
fβ + 1

)
R2
fβσ̃

2 + µ2 + σ̃2
; a3 =

Rfµ

R2
fβσ̃

2 + µ2 + σ̃2

b1 =
−Rfβσ̃

2 − Y µ2γ − Y γσ̃2 + µ2 + σ̃2

Y γ
(
R2
fβσ̃

2 + µ2 + σ̃2
) ; b2 =

Rfµβσ̃
2

R2
fβσ̃

2 + µ2 + σ̃2
; b3 =

µ2 + σ̃2

R2
fβσ̃

2 + µ2 + σ̃2
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The parameters have an appealing interpretation: a1 captures the autonomous level
of savings, independent of the realized shocks; a2 is the increase in the share of (risky)
savings which varies with the risk sharing; a3 is the variation in savings due to shocks;
b1 and b2 capture the autonomous change in young-age consumption after the policy
is implemented while 1 − b3 captures consumption variation with the realization of the
shock.

As a result, with risk sharing, on average the individual starts investing more into
risky assets and less into risk-free assets. So, the standard conjecture that the capacity
of individuals to bear risk increases with risk sharing, holds here as well. In addition,
now we can see that the realization of a positive shock leads to a decrease in risky asset
holdings and either increase in risk-free assets or an increase in young-age consumption.

A.5 Certainty Equivalent Consumption

Equating the cumulative utility for the two, we get:

∞∑
j=1

δt−1

(
u(CEC) +

β

δ
u(CEC)

)
=
∞∑
j=1

δt−1
E

(
β

δ
u(Co,t) + u(Cy,t))

)
= V0

where in the case of the planner problem of Section (4), V0 is a function of the starting
wealth values V0 = V (W0, X0), while in the case of optimal transfers of Section (5.2),
welfare is a determined by the optimal transfers, such that V0 = V (τ ∗).

The left-hand side can then be expanded so that we get

1

1− δ

(
u(CEC) +

β

δ
u(CEC)

)
=

1

1− δ

(
1 +

β

δ

)
u(CEC)

which produces the equation

CEC0 = Iu

[
(1− δ) δ

β + δ
V0

]
(45)

where Iu is the inverse of the utility function.
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B Appendix: Numerical Algorithms

B.1 Solution Algorithm for the Planner Problem

I solve the problem numerically through value function iteration. Several authors among
other examine the tools needed to set up the examination algorithm (Judd, 1998; Miranda
and Fackler, 2002; Cai and Judd, 2014; Rust, 1996; Cai et al., 2013). We use the following
approach:

0. Initialize

• Set up a grid for the two state variables {Wt}jw , {Xt}jx
• Set up an initial guess on the function values V0 on the grid.

• Set-up interpolating splines for V (W,X) to approximate the value function.
We use in particular cubic splines, which allows me to evaluate also the �rst-
order derivatives of the function.

• Get bivariate quadrature points and weights for RS and RX (see Section B.3)

1. Maximization: For each Wjw and for each Xjx �nd the consumpiton and in-
vestment vector which maximize the RHS of the Bellman equation (13) subject
to the constraints. Sequential Quadratic Programming (SLSQP) is used to solve
numerically the resulting problem.

2. Approxmiation: Find the left-hand side of (13) and �t a new splines approxima-
tion to the value function approximating

3. Evaluation Evaluate distance from previous-run value function dist = ||V i −
V i−1||1 and iterate until dist < tol for some error tolerance level

B.2 Solution Algorithm for the Policymaker Problem

Solving the risk-sharing problem accounts to solving two optimization problems. We
have to solve the unconstrained optimization of the policymaker (21) by providing as
input the optimal solution of the individual portfolio choice problem (15). We use the
Nelder-Mead method to �nd numerically the solution of the former and the SLSQP to
�nd the optimum of the later. Again, a two-dimensional quadrature (Section B.3) is used
to evaluate expectations.

Also, note that this speci�cation of the liquidity factor allows me, using the law of
iterated expectations, to evaluate individuals indirect utility function as

Ev(τ, Rt) = pE (v(τ, Rt)|lt = 0) + (1− p)E
(
v(τ, Rt)|lt = l̄

)
I also split the expectation of the value function of the planner in the same way.

B.3 Quadrature

I use quadrature to evaluate the expectation terms in the numerical section of this pa-
per. In low dimensions, the quadrature provides a fast and reliable approximation.21

21For more details see (Judd, 1998; Cai et al., 2013; Cai and Judd, 2014).

43



Multi-dimensional quadrature methods are less common, so I provide here explicitly the
approach taken.

In the uni-variate space, the Gaussian quadrature performs the following approxima-
tion: ∫ b

a

f(x)w(x)dx ≈
m∑
i=1

wif(xi)

for some quadrature nodes xi, and some positive quadrature weights wi, and m is the
number of quadrature points used.

When working with a normally distributed random variable, it is usefule to apply
in particular the Gauss-Hermite (GH) quadrature which selects a weight function of the
form w(x) = e−x

2
. ∫ ∞

−∞
f(x)e−x

2

dx ≈
m∑
i=1

wif(xi) (46)

with xi and wi as the GH nodes and weights, respectively.
Assume for example that the random variable y is normally distributed with y ∼

N(µ, σ). We can evaluate the expectation of f(y) as

E(f(y)) = (2πσ2)−1/2

∫ ∞
−∞

f(y)e−
(y−µ)2

2σ2 dy

To reconcile this with the Gauss-Hermite approach of (46), we use a change of variable
y =
√

2σx+ µ such that

E(f(
√

2σx+ µ)) = (2πσ2)−1/2

∫ ∞
−∞

f(
√

2σx+ µ)e−x
2√

2σdx

≈ 1√
π

m∑
i=1

wif(
√

2σxi + µ)

We can apply this approximation in asset pricing context for an asset whose log
returns R are normally distributed such that ln(R) ≡ y ∼ N(µ, σ). We can then �nd the
expectation of a function of R as Ef(R) as

Ef(ey) = (2πσ2)−1/2

∫ ∞
−∞

f(ey)e−
(y−µ)2

2σ2 dy ≈ 1√
π

m∑
i=1

wif(e
√

2σxi+µ)

In the multi-dimensional space, we can use the quadrature product rule, which ap-
proximates ∫

Rd
f(x)dx ≈

m∑
i1=1

· · ·
m∑
id=1

wi1wi2 · · ·widf(xi1 , xi2 , · · · , xid)

For example, assuming that a two-dimensional vector process Y ∼ N(µ,Σ) where µ
is a 2× 1 vector of expectations and Σ is the (positive semi-de�nite) covariance matrix.
To reconcile this with the Hermite-Gauss approximation, we follow the same approach
as before. We perform a Choleski decomposition Σ = LL′ and do a change of variable
Y =

√
2LX + µ and as a result, we get
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E(f(x)) = 2π|Σ|−1/2

∫
R2

f(y)e−
(Y−µ)′Σ(Y−µ)

2 dY

= 2π|Σ|−1/2

∫
R2

f(X)e−X
′X2|L|dX

≈ 1

π

m∑
i1=1

m∑
i2=1

wi1wi2f(
√

2L11xi1 + µ1,
√

2(L21xi1 + L22xi2) + µ2)

where xi and wi are the nodes and weights from the Gaus-Hermite quadrature, µ1,µ2

are elements of the vector of expectations, and L11,L22 are elements of the L matrix.
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