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Abstract

We propose a smooth shadow-rate version of the dynamic Nelson-Siegel (DNS)

model to analyze the term structure of interest rates during the recent zero lower

bound (ZLB) period. By relaxing the no-arbitrage restriction, our shadow-rate

model becomes highly tractable with a closed-form yield curve expression. The

model easily permits the implementation of readily available DNS extensions such

as time-varying loadings, integration of macroeconomic variables and time-varying

volatility. Using U.S. Treasury data, we provide clear evidence of a smooth tran-

sition of the yields entering and leaving the ZLB state. Moreover, we show that

the smooth shadow-rate DNS model dominates the baseline DNS model in terms of

fitting and forecasting the yield curve, while being competitive with a shadow-rate

a�ne term structure model.
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1 Introduction

Accurately modelling and forecasting the term structure of interest rates is of key im-

portance to market participants and financial institutions in the context of portfolio and

risk management, derivatives pricing, and monetary policy. However, in the aftermath

of the global financial crisis and the recent coronavirus pandemic, this task has become

more challenging in several major economies due to a prolonged period of low interest

rates close to the so-called zero lower bound (ZLB). This ZLB is an absorbing state and

forces short-term yields to become flat and less volatile leading to asymmetric behaviour

in the entire yield curve. Unfortunately, traditional term structure models are not able

to capture these changed dynamics at the ZLB (see the discussions in Christensen and

Rudebusch, 2015, 2016; Bauer and Rudebusch, 2016; Ullah, 2019, among others). As a

result, there is a need for the development of tractable models that are able to handle

the non-linearity of the term structure of interest rates at the ZLB.

To address this issue, we propose a smooth shadow-rate version of the dynamic Nelson-

Siegel (DNS) model of Diebold and Li (2006) that softly imposes the ZLB onto the yields

via the shadow short-rate concept of Black (1995). Our model is highly tractable and,

in contrast to the no-arbitrage shadow-rate a�ne term structure models that we discuss

below, neither needs computationally intensive numerical methods nor forward-rate data

to be estimated. In addition, our modelling approach explicitly allows for a more gradual

transition into and out of the ZLB state such that medium- and long-term yields, that

are themselves not directly restricted by the ZLB, still recognize and account for the

presence of a lower bound and its accompanying bounded short-term yields. The smooth

shadow-rate DNS model also easily permits the implementation of readily available DNS

model extensions, which we illustrate by allowing for time-varying factor loadings in the

manner of Koopman et al. (2010) in order to capture further changed dynamics of the

yield curve at the ZLB.

We consider monthly U.S. zero-coupon government bond yields from September 1981

to October 2020, which experienced a prolonged period of being subject to the ZLB

from November 2008 to December 2015 and from March 2020 onwards.1 Moreover, we

put the smooth shadow-rate DNS model in a nonlinear state-space form such that it

1The sample starts in September 1981 as the three- and six-month yields are only available from this
month onwards.
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can be estimated with maximum likelihood estimation and extended Kalman filtering

methods, see Durbin and Koopman (2012).2 Our empirical analysis shows that our

smooth shadow-rate DNS model provides a better in-sample fit than the DNS model in

terms of log-likelihood value, information criteria and root mean squared errors (RMSE),

especially during the ZLB period. In fact, the overall improvement in RMSE is about

8.5% over the total period and 38.8% over the ZLB period. Based on our estimated

model, we also find evidence that there is a smooth transition from a high interest-

rate to a low interest-rate environment, indicated by a significant smoothness parameter,

which captures the gradual transition, as well as better fitting performance of the smooth

shadow-rate model relative to a non-smooth version. This implies that the complete term

structure of interest rates gradually enters and leaves the ZLB state. Furthermore, we

provide evidence of time-varying loadings, where allowing for this feature in the DNS

and smooth shadow-rate DNS seems to improve the in-sample fit even further. Finally,

our smooth shadow-rate model produces a similar in-sample fit as the shadow-rate a�ne

term structure model.

Next, we show that the original DNS model is not able to generate plausible future

yield curve paths at the ZLB. Specifically, the DNS model lacks the ability to account for

the compression of yield volatility at the ZLB, leading to improbably high positive prob-

abilities of negative projected short- and medium-term yields. Meanwhile, the smooth

shadow-rate DNS model imposes yields to be non-negative and therefore accurately repli-

cates the low yield volatility at the ZLB. Our model additionally delivers valuable output

that can be useful for shaping policy expectations. For example, we estimate lifto↵ hori-

zons that indicate when the policy rate starts to diverge from the ZLB again, and find

that these are close to the realized lifto↵ date in December 2015. Furthermore, we exam-

ine its shadow short-rate estimates and compare them to the measures of Wu and Xia

(2016) and Krippner (2015a). Our estimates closely resemble these alternatives in terms

of level and dynamics, but they are also sensitive to the specification of the lower bound

value and smoothness parameter that governs the softness of the ZLB imposition. Yet,

the sensitivity of shadow short rates estimates to specific modelling choices is also found

in Christensen and Rudebusch (2015, 2016) and Krippner (2020), hence these estimates

2Alternatively, our smooth shadow-rate DNS model could be estimated with the two-step approach
of Diebold and Li (2006) based on (nonlinear) least squares to make estimation even more tractable.
Yet, this two-step procedure ignores the estimation uncertainty associated with the first step such that
we instead opt for the one-step extended Kalman filter approach.
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should always be used with caution.

Lastly, we assess the relative out-of-sample performance of the smooth shadow-rate

DNS model. Most prominently, we find that our smooth shadow-rate DNS model out-

performs the baseline DNS model for all forecasting horizons and yield horizons, where

this improvement is strongest for longer horizons during the ZLB period. In contrast,

the imposition of time-varying loadings does not lead to forecast improvements compared

to constant loading models. We additionally find that our smooth shadow-rate model

produces better forecasts than the shadow-rate a�ne term structure model for longer

horizons and short-term yields, but is outperformed for long-term yields.

Our work is closely related to and builds on two strands of term structure modelling

literature. First, it relates to the existing literature on shadow-rate term structure models

that respect the ZLB.3 Specifically, shadow-rate models impose that the observed short

rate is the maximum of a lower bound, often assumed zero, and a shadow short-rate

that would prevail in a world without physical currency and hence can become negative.

Most, if not all, literature on shadow-rate models apply this concept in the framework of

the theoretically consistent class of (no-arbitrage) a�ne term structure models (ATSM)

(Vasicek, 1977; Cox et al., 1985; Du�e and Kan, 1996; Dai and Singleton, 2000). However,

this implementation does not lead to closed-form analytic bond price formulas such that

numerical methods (Gorovoi and Linetsky, 2004; Bomfim, 2003; Kim and Singleton, 2012;

Ichiue and Ueno, 2007) or ZLB bond price approximations (Krippner, 2012; Christensen

and Rudebusch, 2015, 2016; Wu and Xia, 2016; Bauer and Rudebusch, 2016) are required.

Despite these advances, shadow-rate ATSM estimation remains computationally intensive

(Bauer and Rudebusch, 2016), especially with a large number of parameters as in macro-

finance models. Hence, we contribute to this strand of literature by providing a reduced-

form shadow-rate model that is highly tractable, even in a large dimensional parameter

space. This tractability comes at the cost of not necessarily satisfying the no-arbitrage

restriction. Whether or not that matters a lot is an open question, as literature generally

finds mixed results on the empirical importance of no-arbitrage restrictions and empirical

di↵erence of the DNS model and arbitrage-free models (see, for example, Du↵ee, 2011;

3Other term structure models that obey the ZLB are, among others, quadratic models
(Kim and Singleton, 2012; Chung and Iiboshi, 2015; Chung et al., 2017; Andreasen and Meldrum, 2019),
autoregressive gamma zero models (Monfort et al., 2017; Roussellet, 2020), linear-rational models (Fil-
ipović et al., 2017) and regime switching models (Christensen, 2015).
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Coroneo et al., 2011; Krippner, 2015b).4

Second, our work is related to the strand of literature that employs reduced-form

models for the term structure of interest rates. Most prominently, the DNS model of

Diebold and Li (2006) gained popularity due to its simplicity, stable estimation and

good in-sample and out-of-sample performance. Moreover, the DNS model allows itself

to be fairly easily augmented in various directions. Extensions include the integration

of macroeconomic variables (Diebold et al., 2006; Exterkate et al., 2013; Koopman and

van der Wel, 2013; Coroneo et al., 2016), or adding time-varying volatility or factor

loadings (Koopman et al., 2010; Caldeira et al., 2010; Laurini and Hotta, 2010; Hautsch

and Ou, 2012; Hautsch and Yang, 2012; Hevia et al., 2015; Laurini and Caldeira, 2016),

time-varying unconditional means (Dijk et al., 2014), or time-varying parameter vector

autoregressions (Byrne et al., 2017). However, applying the reduced-form DNS model in

the context of shadow-rate term structure modelling has, to the best of our knowledge,

not been considered.5 Our work bridges the gap between the shadow-rate class and

reduced-form class of term structure models to obtain a model that obeys the ZLB and

at the same time remains highly tractable. Besides the tractability, our novel shadow-rate

DNS model thus has as appealing feature that there is the flexibility to incorporate the

aforementioned model extensions.

The remainder of this paper is as follows. Section 2 introduces our smooth shadow-

rate version of the DNS model. Section 3 discusses and presents the U.S. government

bond yield data. Section 4 displays our empirical analysis in terms of in-sample and out-

of-sample performance as well as some policy insights at the ZLB. Section 5 summarizes

our main conclusions.

2 Smooth shadow-rate dynamic Nelson-Siegel model

In this section we discuss the dynamic Nelson-Siegel model of Diebold and Li (2006) and

its augmentation into the smooth shadow-rate version that respects the ZLB. Moreover,

we discuss the time-varying factor loading extension and the estimation framework of the

4For further discussion on and comparison of the DNS and arbitrage-free Nelson-Siegel (AFNS)
models, see Diebold and Rudebusch (2013).

5Related work of Kang (2015) and Abdymomunov et al. (2016) does impose a ZLB restriction onto
the DNS model, but this essentially boils down to a Bayesian estimation approach that restricts yields
to be non-negative and does not reflect the idea of the shadow-rate framework.
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models in a (non)linear state-space form.

2.1 Dynamic Nelson-Siegel model

The term structure of interest rates can take on a variety of shapes such as monotonically

increasing or decreasing, humped and inverted humped. A parsimonious yield curve

expression that is able to capture all these di↵erent shapes is the function proposed by

Nelson and Siegel (1987). This function is, in turn, modified by Diebold and Li (2006)

to allow for time-varying factors resulting in the expression

yt(⌧) = �1t + �2t

✓
1� e��⌧

�⌧

◆
+ �3t

✓
1� e��⌧

�⌧
� e��⌧

◆
, (1)

where yt(⌧) is the yield of a zero-coupon bond at time t with time to maturity ⌧ , � is

the factor loading parameter, and �1t, �2t and �3t are latent time-varying factors, which

have the interpretation of level, slope and curvature, respectively.

These factor interpretations are explicitly imposed by the factor loading structure.

More specifically, the level factor is a long-term factor as it has a constant loading that

does not decay to zero when time to maturity increases, that is, lim
⌧!1

yt(⌧) = �1t. The

slope factor is a short-term factor as its loading starts at one and converges to zero

when time to maturity increases, while the curvature factor is a medium-term factor as

its loading start at zero, then increases, but in the end converges to zero when time to

maturity increases. Lastly, the model-implied short rate rt is given by the sum of the

level and slope factors, that is, rt = lim
⌧!0

yt(⌧) = �1t + �2t.

The model lends itself to be easily written in state space form, following Diebold et al.

(2006). Given a set of N observed yields at time t, collected in the observation vector

y
o
t = (yot (⌧1), . . . , y

o
t (⌧N))

0, the measurement equation is given by

y
o
t = ⇤(�)�t + "t, "t ⇠ N (0,⌃"), (2)

for t = 1, . . . , T , where �t = (�1t, �2t, �3t)0 is the 3 ⇥ 1 vector with latent factors, "t is

the N ⇥ 1 measurement disturbance vector with covariance matrix ⌃", and ⇤(�) is the
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N ⇥ 3 factor loading matrix given by

⇤(�) =

0

BBB@

1 1�e��⌧1

�⌧1
1�e��⌧1

�⌧1
� e��⌧1

...
...

...

1 1�e��⌧N

�⌧N
1�e��⌧N

�⌧N
� e��⌧N

1

CCCA
.

Furthermore, we model the dynamics of �t as a vector autoregressive (VAR) process of

order 1 such that the state equation is given by

�t = ↵+ ��t�1 + ⌘t, ⌘t ⇠ N (0,⌃⌘), (3)

for t = 1, . . . , T , where ↵ is a 3 ⇥ 1 vector with constants, � is a 3 ⇥ 3 matrix with

VAR coe�cients and ⌘t is the 3 ⇥ 1 state disturbance vector with covariance matrix

⌃⌘. The initial conditions are specified as �0 ⇠ N (µ,⌃�), where µ = (I � � )�1
↵ and

covariance matrix ⌃� is chosen such that it satisfies ⌃� � �⌃��
0 = ⌃⌘, see Hamilton

(1994, section 2.2) for further details. We ensure stationarity of the VAR process via

the reparameterization of � and ⌃⌘ as proposed by Ansley and Kohn (1986). Moreover,

we follow Diebold et al. (2006) and assume for computational tractability that ⌃" is

diagonal, while ⌃⌘ remains non-diagonal. The complete dynamic Nelson-Siegel (DNS)

model is given by equations (2) and (3).

2.2 Imposing a smooth lower-bound restriction

On its own, the DNS model does not restrict yields to be non-negative and, consequently,

assumes that the yield curve behaves the same in low interest-rate environments as in

high interest-rate environments. However, Black (1995) already notes that the observed

short rate in the market cannot become (too) negative due to the presence of a physical

currency with a natural interest rate of zero.6 Therefore, the short rate rt is the maximum

of a lower bound rLB and a shadow short rate st that would prevail in a world without

the option of physical currency, that is, rt = max(rLB, st).

By assuming that all yields can not go below the lower bound value, we generalize

6In practice, the natural interest rate of physical currency is not exactly zero due to transaction and
storage costs.
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this idea directly onto the yield curve such that

y
t
(⌧) = rLB +max

⇣
0, yt(⌧)� rLB

⌘
,

where y
t
(⌧) is called the zero lower bound (ZLB) yield curve and yt(⌧) is now called the

shadow yield curve.7 Plugging in the Nelson-Siegel equation (1) as shadow yield curve,

results in a DNS model that imposes yields to be equal or larger than the lower bound

rLB and for which the shadow short rate is equal to st = �1t+�2t. We refer to this model

as the shadow-rate DNS (B-DNS) model.8

This direct lower bound approach nevertheless assumes that yields are either behaving

in a traditional way above rLB or are flat and equal to rLB. That is, the B-DNS model

is non-smooth with a kink at rLB that separates yields into two possible states. Conse-

quently, an interest rate close, but above, the lower bound value (say, 0.25%) behaves

similarly as when it is further away from the lower bound (say, 4%), while it seems more

plausible that the asymmetry of the ZLB already starts to present at small, but positive,

interest-rate levels close to the lower bound (say at 1%). This is particularly relevant for

medium- and longer-term yields that are themselves not directly constrained by the ZLB,

but experience the asymmetry caused by the restricted short-term yields. Therefore, we

introduce a smoother transition between a high interest-rate state and the ZLB state.

To do so, we consider a smooth approximation function of the max function, denoted by

f(·), such that we obtain the ZLB yield curve expression

y
t
(⌧) = rLB + �f

✓
yt(⌧)� rLB

�

◆
, (4)

where � > 0 measures the smoothness of the approximation. We adopt the function

f(x) = x�(x) + �(x) that could be obtained as the antiderivative of �(·), where �(·)

and �(·) are the cumulative and probability density functions of the standard normal

distribution, respectively.9 This specific function f(·) is inspired by the ZLB forward-rate

7Note that the assumption that all yields can not go below the lower bound value is also implicitly
made in the shadow-rate a�ne term structure models, see the discussion in Christensen and Rudebusch
(2015, p. 233).

8We follow the convention of Kim and Singleton (2012) to use the prefix ”B-” for a shadow-rate
model in the spirit of Black (1995).

9Naturally, there exist various other functions that could be used for this approximation such as the
softplus function f(x) = log(1 + ex). However, we opt for the function f(x) = x�(x) + �(x) due to its
resemblance with the ZLB forward-rate approximation in the no-arbitrage shadow-rate models.
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approximation of Krippner (2012) and Wu and Xia (2016) in the context of a shadow-rate

a�ne term structure model.10 The advantage of our reduced-form DNS framework is that

we can directly impose the function onto the yield curve without the need for numerical

integration, while in these aforementioned papers the ZLB forward-rate approximation

does require numerical integration to obtain the ZLB yield curve.

Figure 1 shows the smooth approximation of the max function for a range of values

of �. From the figure it is clear that a higher (smaller) value of � results in a less

(more) noticeable kink. In the context of the ZLB forward rate approximation in the

shadow-rate a�ne term structure model class, this smoothness parameter � is related to

the conditional variance in the shadow-bond option-price formula such that it becomes a

function of the time-to-maturity and risk-neutral volatility parameters of the latent factor

dynamics (Christensen and Rudebusch, 2015). However, in our reduced-form framework

the parameter � can be specified more freely. For example, we can pre-specify �, say at

a value of 1, or it can be estimated as a free parameter. In fact, � could be specified as a

function of the time-to-maturity ⌧ , for example, by using spline functions, or even made

time-varying, but these extensions are left for further research.11

Taking the function f(x) = x�(x) + �(x) and plugging it into equation (4) provides

Figure 1: Illustration of the function �f(·/�) as approximation of the max function

10See Appendix A for further details on this approach in the context of the shadow-rate arbitrage-free
Nelson-Siegel (B-AFNS) model of Christensen and Rudebusch (2015, 2016).

11Some preliminary results in Appendix B indeed show that the estimate of � is slightly decreasing
as a function of ⌧ .
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the smooth ZLB yield curve

y
t
(⌧) = rLB + (yt(⌧)� rLB)�

✓
yt(⌧)� rLB

�

◆
+ ��

✓
yt(⌧)� rLB

�

◆
.

We refer to this model as the smooth shadow-rate DNS (SB-DNS) model. Writing again

y
o
t for the observation vector at time t, the measurement equation of the SB-DNS model

is given by

y
o
t = rLB◆+ (⇤(�)�t � rLB◆)� Ft + �ft + "t, "t ⇠ N (0,⌃"), (5)

where� is the Hadamard product, ◆ denotes anN⇥1 vector with ones, Ft = (F1t, . . . , FNt)0

with Fit = �
�
(yt(⌧i)�rLB)/�

�
and ft = (f1t, . . . , fNt)0 with fit = �

�
(yt(⌧i)�rLB)/�

�
. We

thus get a nonlinear state-space model as the factors �t appear in the nonlinear functions

�(·) and �(·) in Ft and ft of equation (5), as well as in ⇤(�)�t�rLB◆. The state equation

of the SB-DNS model, governing the dynamics of the factors, is the same as for the DNS

model in equation (3).

2.3 Time-varying factor loadings

To demonstrate the potential and model flexibility of the SB-DNS model to be easily

augmented with readily available DNS extensions, we allow for time-varying factor load-

ings based on the approach of Koopman et al. (2010). Consequently, this enables us to

examine whether time-varying loadings help to capture changed dynamics of the yield

curve at the ZLB, as was suggested by Diebold and Rudebusch (2013, p. 103). This

has, to the best of our knowledge, not been assessed yet. Traditionally, the DNS model

assumes constant factor loadings via a time-invariant parameter �, where Diebold and Li

(2006) fix � at 0.0609 such that it maximizes the curvature factor loading at a maturity of

30 months, while Diebold et al. (2006) estimate it to be 0.077 in a state-space framework

with a maximum at 23.3 months. Meanwhile, the arbitrage-free Nelson-Siegel (AFNS)

model of Christensen et al. (2011) and its shadow-rate counterpart (Christensen and

Rudebusch, 2015) require � to be constant over time in order to impose the no-arbitrage

restriction.12

12Recently, though, Han et al. (2021) relax this strict assumption needed for the no-arbitrage restric-
tion and generalize the AFNS model to have a time-varying loading, which they show to have predictive

9



Koopman et al. (2010) argue that the assumption of constant factor loadings might be

too restrictive since the factor structure of the slope and curvature factors could change

over time. Koopman et al. (2010) and Laurini and Caldeira (2016) indeed show that �t is

time-varying for U.S. government bond yields and that incorporating this feature improves

the fit relative to constant loadings, whereas this improvement is even more pronounced

in emerging markets such as Brazil (Caldeira et al., 2010). To implement this feature

into the baseline and smooth shadow-rate DNS models, we follow Koopman et al. (2010)

and consider �4t = �t to be an additional latent factor such that the state equation (3)

increases in dimension with a fourth latent factor. We denote the corresponding models

as (SB-)DNS-TVL.

2.4 Estimation framework

The DNS model given by equations (2)-(3) falls in the class of linear Gaussian state-space

models such that, given the parameter set ⇥ consisting of � and the elements in ↵, � , ⌃"

and ⌃⌘, the latent factors in the state vector can be recursively estimated via the Kalman

filter (KF). Furthermore, the SB-DNS model with measurement equation (5) and state

equation (3) as well as the TVL models fall in the class of nonlinear Gaussian state-space

models, with ⇥ potentially extended to include rLB and �, such that the latent factors can

be estimated via the extended Kalman filter (EKF). For a complete treatment of the KF

and EKF, see Durbin and Koopman (2012). Given the estimated/predicted states, we

can evaluate the log-likelihood function based on the prediction error decomposition. We

numerically maximize the log-likelihood function with respect to ⇥ via a quasi-Newton

optimization method, where the starting values are obtained via the two-step estimation

approach of Diebold and Li (2006). For further details on the estimation framework and

the (E)KF recursions, see Appendix C.

3 Data

In our empirical application we consider U.S. Treasury zero-coupon bond yields for eight

maturities, namely three months, six months, one year, two years, three years, five years,

seven years and ten years, which are similar to the ones used by Christensen and Rude-

power for business cycles and real economic activity.
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busch (2016). The yields are obtained from the H.15 series of the Federal Reserve Board,

where we take the end-of-the-month yield observations, starting from the date where they

become available for all maturities, that is, September 1981 up to October 2020, resulting

in 470 monthly observations.13

Table 1 displays the summary statistics of the monthly yields across maturities con-

taining the mean, standard deviation, minimum, maximum and three autocorrelations.

The yield curve is on average upward sloping, which also holds for the minimum of the

Table 1: Summary statistics of U.S. government bond yields across maturities

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: Total period (September 1981 - October 2020)

Mean 3.89 4.07 4.24 4.58 4.79 5.15 5.43 5.63
Std. 3.21 3.32 3.39 3.48 3.46 3.34 3.25 3.14
Min. 0.00 0.03 0.09 0.11 0.11 0.21 0.39 0.55
Max 15.05 16.19 16.64 16.69 16.45 16.27 16.05 15.84
⇢̂(1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
⇢̂(12) 0.88 0.89 0.89 0.91 0.92 0.92 0.93 0.93
⇢̂(24) 0.75 0.77 0.79 0.83 0.86 0.88 0.89 0.90

Panel B: Pre-ZLB period (September 1981 - October 2008)

Mean 5.38 5.61 5.81 6.21 6.41 6.72 6.94 7.08
Std. 2.71 2.83 2.89 2.94 2.91 2.80 2.75 2.67
Min. 0.46 0.94 1.09 1.32 1.58 2.30 2.87 3.37
Max 15.05 16.19 16.64 16.69 16.45 16.27 16.05 15.84
⇢̂(1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
⇢̂(12) 0.77 0.78 0.80 0.82 0.83 0.85 0.86 0.87
⇢̂(24) 0.56 0.58 0.63 0.70 0.74 0.79 0.82 0.84

Panel C: ZLB period (November 2008 - December 2015)

Mean 0.08 0.16 0.26 0.55 0.86 1.52 2.07 2.56
Std. 0.06 0.10 0.16 0.27 0.39 0.54 0.62 0.63
Min. 0.00 0.03 0.09 0.20 0.30 0.59 0.98 1.51
Max 0.26 0.49 0.90 1.14 1.70 2.69 3.39 3.85
⇢̂(1) 0.78 0.83 0.83 0.90 0.91 0.92 0.92 0.92
⇢̂(12) 0.23 0.26 0.38 0.52 0.49 0.36 0.31 0.29
⇢̂(24) 0.34 0.16 0.00 -0.26 -0.39 -0.39 -0.31 -0.17

Notes: This table contains the mean, standard deviation (std.), minimum (min.) and maximum
(max.) of monthly U.S. government bond yields across maturities in percentage points. The rows
with ⇢̂(1), ⇢̂(12), ⇢̂(24) display the one month, one year and two year sample autocorrelations,
respectively.

13The data set of the H.15 series can be found at https://www.federalreserve.gov/releases/
h15/default.htm. Further details about the yield curve data methodology are available at https:
//home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics.
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yields. Indeed, Figure 2 shows that long-term yields are generally above short-term yields.

Next, we see that after the global financial crisis (GFC) of 2007-2008 short-term yields

have been close to the ZLB for a prolonged period from December 2008 till December

2015. After this ZLB period, interest rates started to increase again until the corona virus

pandemic hit, which brought yields back to the ZLB. The ZLB periods are indicated with

grey in the figures.

The ZLB period is accompanied with changed dynamics for the entire yield curve.

Table 1 shows summary statistics also for the pre-ZLB period (Panel B) and for the ZLB

period (Panel C). During the pre-ZLB period there seems to be an inverted U-shape

curve between the yield curve volatility (measured as the standard deviation) and the

time to maturity, with the highest volatility at the two-year maturity. However, during

the ZLB period there exists an increasing volatility pattern in maturity as short-term

yields are stuck at the ZLB. This compression of the short-term yield level and volatility

relative to long-term yields is also observed in Figure 2. Furthermore, Table 1 shows

that yields are less persistent during the ZLB period than is observed during the pre-

ZLB period. In particular, long-term yields are more persistent than short-term yields

during the pre-ZLB period, whereas this stylized fact disappears for the one and two year

autocorrelations during the ZLB period. Overall, these changes in dynamics indicate the

need of a model that accounts for the yield asymmetry and volatility compression at the

ZLB.

(a) Total period (b) Post-GFC period

Figure 2: Time series of U.S. government bond yields with shaded ZLB periods. Panel
(a) shows the full sample-period while panel (b) zooms in on the period after the global
financial crisis.
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4 Empirical results

In Section 4.1 we first assess the estimation results and in-sample fit of the smooth

shadow-rate model compared to the baseline DNS model, time-varying factor loading

models and (shadow-rate) a�ne term structure models. Next, in Section 4.2 we examine

the shortcomings of the DNS model at the ZLB and how these are resolved with the

smooth shadow-rate adaption, after which we look in Section 4.3 how our novel model is

able to provide policy insights during ZLB periods. Lastly, in Section 4.4 we examine the

relative out-of-sample performance of the smooth shadow-rate model compared to other

benchmarks.

4.1 In-sample fit

We start our in-sample fit analysis by comparing the estimated models in terms of their

log-likelihood values, Akaike information criteria (AIC) and Bayesian information criteria

(BIC), which are given in Table 2. Following the recommendation of Christensen and

Rudebusch (2016) for U.S. government bond yields, we estimate all shadow-rate models

with a fixed lower-bound specification of 0%, something which we relax in Appendix D.14

The table presents the DNS and SB-DNS models with and without time-varying loadings

(indicated with TVL in the table) and the B-DNS model. We also include the closest

a�ne term structure model and its shadow-rate counterpart: the arbitrage-free Nelson-

Siegel (AFNS) model of Christensen et al. (2011) and the shadow-rate AFNS model of

Christensen and Rudebusch (2015), see Appendix A for further details.

There are three key findings based on this comparison. First, by comparing the DNS

and SB-DNS model, we find that the imposition of the smooth shadow-rate framework

results in a substantial gain in the log-likelihood value from 2615.7 to 3080.6. This gain

is accompanied with only one additional free parameter that is estimated, namely the

smoothness parameter �. The AIC and BIC values indeed indicate that, despite the

penalization of the additional model parameter, the SB-DNS model is still preferred over

the baseline DNS model. The maximum likelihood estimate of � is equal to 2.679 with

a standard error of 0.206.15 Hence, the estimate of � is highly significant and provides

14For some regions, for example in Europe, it seems more plausible to have a time-varying lower
bound, see Kortela (2016), Lemke and Vladu (2017) and Wu and Xia (2020), among others. This can
easily be accommodated in our SB-DNS model as well, but these applications are left for further research.

15The complete overview of parameter estimates of the DNS and SB-DNS models are given in Ap-

13



Table 2: Log-likelihood values and information criteria

Log-likelihood #⇥ AIC BIC LR-statistic

DNS 2615.7 27 -11.0 -10.8
DNS-TVL 3007.6 38 -12.6 -12.3 783.8

B-DNS 2614.1 27 -11.0 -10.8 X
SB-DNS 3080.6 28 -13.0 -12.7 929.8
SB-DNS-TVL 3251.0 39 -13.7 -13.3 1270.5

AFNS 2245.1 27 -9.4 -9.2
B-AFNS 2593.2 27 -10.9 -10.7

Notes: This table contains the log-likelihood values, Akaike information criteria (AIC), Bayesian
information criteria (BIC) and the likelihood-ratio (LR) test statistics across models. The LR test
statistics consider the DNS as null. We discard the first three observations from this calculation
to make the results robust to the initial conditions. The shadow-rate models are estimated with a
fixed lower-bound specification of rLB = 0%, while the smooth shadow-rate models have an estimated
smoothness parameter �.

strong evidence of a smooth transition into the ZLB state. Notably, the B-DNS model

has a substantially lower log-likelihood value than the SB-DNS model. In fact, its log-

likelihood value is even smaller than the one of the baseline DNS model, although the

di↵erence is small. The filtered yield factors of the DNS and SB-DNS models are shown

and compared in Figure 3. The filtered factors of the DNS and SB-DNS models di↵er

more for the slope and curvature factors than for the level factor, where for all factors

the di↵erences are more pronounced during the shaded ZLB periods. The di↵erences

between the filtered shadow short rate and short rate proxies the ZLB wedge measure,

which gauges how tightly the ZLB restricts the yield curve, see for example Bauer and

Rudebusch (2016) for a more detailed discussion on the ZLB wedge. As expected, this

wedge is large during the ZLB period. However, it is also sizeable outside of this period,

when yields are close to zero, as for example was the case during 2002 through 2005.

Second and consistent with the findings of Koopman et al. (2010), we find that al-

lowing for time-varying factor loadings results in a significant improvement in the log-

likelihood value for both the DNS and SB-DNS model with likelihood gains of 391.1 and

170.4, respectively. When introducing time-varying loadings, 11 new parameters are in-

troduced, but penalizing the number of parameters still results in lower AIC and BIC

values for the time-varying loading models. Figure 4 plots the filtered factor loading

parameter. For both the DNS and SB-DNS variant with time-varying loadings the se-

pendix B.
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(a) Filtered level factors (b) Filtered slope factors

(c) Filtered curvature factors (d) Filtered (shadow) short rate

Figure 3: Filtered factors with their empirical proxies of the level (10-year yield), slope
(3-month minus 10-year yield), curvature (twice the 2-year yield minus the sum of the
3-month and 10-year yields), and short rate (3-month yield) as well as the di↵erences
between the filtered factors of the DNS and SB-DNS models with shaded ZLB periods

(a) Filtered TVLs (b) DNS-TVL minus SB-DNS-TVL

Figure 4: Filtered time-varying factor loading parameters of the DNS-TVL and SB-
DNS-TVL models and their di↵erences with shaded ZLB periods
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ries behave similarly and both display strong time-variation. The loadings di↵er most

strongly during the ZLB period, albeit also outside of it, where they are slightly higher

for the SB-DNS model during the ZLB periods than for the DNS model.

Third, when comparing with the AFNS and B-AFNS models, there is a stark di↵erence

in likelihood. The log-likelihood values of the (B-)AFNS model variants are substantially

lower than the ones of the DNS and SB-DNS model. Nevertheless, also for the AFNS

model class it is clear that the imposition of the shadow-rate framework improves the

log-likelihood value and information criteria.

Next, we assess the in-sample fit across models in terms of their root mean squared

errors (RMSEs). Table 3 presents the RMSEs of the aforementioned models for all eight

maturities during the total sample period, the pre-ZLB period and the ZLB period. For

all three periods, the SB-DNS model has a lower RMSE than the DNS model for five out

of eight maturities, where the DNS model seems to overfit the three-month and three-year

yields.16 Figure 5 presents the yield curve fit for nine selected dates, with varying yield

curve shapes. Both the DNS and SB-DNS model are able to accurately fit the di↵erent

yield curve shapes, although the SB-DNS model seems to be more flexible for short- and

long-term yields. Specifically, on 27 February 2004, which occurs during the low interest

rate period of 2004, the DNS and SB-DNS model have a highly similar yield curve fit for

all maturities. This also holds for 31 December 2008, just after the FOMC announcement

of cutting the federal funds rate for the first time to the 0%-0.25% range.17 However,

the dates occurring in the middle of a ZLB period (that is, 29 October 2010, 31 August

2011 and 30 October 2020) clearly show a better fit of the SB-DNS model, particularly

for short-term maturities. The overall improvement across maturities in RMSE of the

SB-DNS model relative to the DNS model is about 8.5% for the total period, 6.7% for

the pre-ZLB period, and 38.3% for the ZLB period. Noteworthy, the B-DNS model has a

similar in-sample fit as the DNS model, which indicates that the imposition of the smooth

lower bound restriction really helps to improve the fit relative to a hard lower bound. To

summarize, the SB-DNS model delivers a substantial improvement in terms of in-sample

fit relative to the DNS and B-DNS models, particularly during the ZLB period.

The inclusion of time-varying factor loadings improves the total RMSE relative to the

16This overfitting seems to be an idiosyncrasy of this selection of maturities as Christensen and
Rudebusch (2016) find something similar for the AFNS model and the one-year and three-year yields.

17See the FOMC statement on 16 December 2008: https://www.federalreserve.gov/newsevents/
pressreleases/monetary20081216b.htm.
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Table 3: In-sample model fit

RMSE Maturities (in months) Total

3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

DNS 18.1 0.0 8.8 6.8 0.0 5.6 3.0 7.1 8.2
DNS-TVL 14.1 2.2 6.2 4.9 1.8 4.6 4.8 2.5 6.3

B-DNS 18.1 0.0 8.7 6.8 0.0 5.6 3.0 7.0 8.2
SB-DNS 17.4 1.7 7.5 5.1 1.6 5.0 4.1 3.8 7.5
SB-DNS-TVL 15.6 2.3 6.2 4.9 2.2 4.7 4.6 2.4 6.8

AFNS 16.7 2.1 8.1 5.3 0.1 6.1 4.2 7.5 7.8
B-AFNS 16.0 1.8 8.4 5.0 1.5 5.7 4.0 6.3 7.5

Panel B: Pre-ZLB period (December 1981 - October 2008)

DNS 20.7 0.0 9.2 6.8 0.0 5.8 3.0 6.3 9.0
DNS-TVL 16.1 2.5 6.8 5.5 1.8 5.1 4.9 2.6 7.1

B-DNS 20.7 0.0 9.2 6.8 0.0 5.8 3.1 6.3 9.0
SB-DNS 20.0 1.0 8.3 5.7 1.4 5.2 4.3 3.9 8.4
SB-DNS-TVL 17.8 1.8 6.8 5.6 2.1 5.2 4.9 2.4 7.6

AFNS 19.3 2.3 9.0 5.5 0.1 6.4 4.1 7.1 8.6
B-AFNS 18.6 1.4 9.7 5.6 1.2 6.2 3.8 6.4 8.4

Panel C: ZLB period (November 2008 - December 2015)

DNS 11.0 0.0 8.8 7.9 0.0 5.9 3.3 10.7 7.3
DNS-TVL 7.5 1.1 4.9 3.3 2.0 3.7 5.3 2.9 4.3

B-DNS 10.9 0.0 8.6 7.9 0.0 5.9 3.4 10.7 7.2
SB-DNS 8.1 2.1 4.4 3.4 2.0 4.6 4.4 4.1 4.5
SB-DNS-TVL 8.0 2.6 3.6 2.5 2.3 3.4 4.5 2.9 4.1

AFNS 9.5 1.8 6.6 5.9 0.1 6.5 5.1 10.2 6.6
B-AFNS 7.2 2.4 4.5 3.3 2.0 4.7 4.7 6.6 4.8

Notes: This table contains the Root Mean Squared Errors (RMSE) in basis points across maturities and baseline, time-
varying loading and shadow-rate models over three sample periods. We discard the first three observations from this
calculation to make the results robust to the initial conditions. The shadow-rate models are all estimated with a fixed
lower bound specification of rLB = 0%, while the smooth shadow-rate models have an estimated smoothness parameter
�. The bold numbers indicate the lowest RMSE for that particular maturity and period.

baseline DNS model even further for all three periods. Specifically, the decrease in total

RMSE is about 23.2% for the total period, 21.1% for the pre-ZLB period, and 41.1% for

the ZLB period. Including time-varying factor loadings in the SB-DNS model also seems

to improve the fit, albeit to a lesser extent, with decreases in total RMSE of 9.3% for the

total period, 9.5% for the pre-ZLB period, and 8.9% for the ZLB period. Most of these

improvements in RMSE are observed for the three-month, one-year, two-year, five-year

and ten-year yields, whereas for the other maturities there is a slight deterioration in fit.

Lastly, the AFNS model performs slightly worse than the original DNS model for five

out of eight maturities during the total and pre-ZLB period, and for four out of eight
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Figure 5: Yield curve fit and observations across maturities (in months) for nine selected
dates

maturities during the ZLB period. Nonetheless, the total RMSE, taking all maturities

into account, is smaller for AFNS than for the DNS model in all three periods. The

B-AFNS model performs substantially better than the AFNS model, particularly during

the ZLB period with a decrease in total RMSE of 28.8%. The RMSEs of the B-AFNS

model are close to the ones of the SB-DNS model for most maturities. Looking at the

total RMSEs, they are the same for the total period and the pre-ZLB period, but lower

for the SB-DNS model during the ZLB period. To examine this further, Figure 6 plots

the residuals of four models: DNS, SB-DNS, AFNS and B-AFNS. The residuals of the

SB-DNS and B-AFNS are close to each other and both improve upon the DNS and AFNS

models during certain parts of the ZLB period, particularly for the three-month, one-year

and ten-year maturities. Hence, the SB-DNS model is competitive with the more rigorous

class of shadow-rate a�ne term structure models in terms of in-sample fit.
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Figure 6: Time series of yield curve residuals across maturities in the post-GFC period
with shaded ZLB periods

4.2 Why do we need to impose the ZLB?

Beside the inferior in-sample fit of the plain DNS model compared to the shadow-rate

models, we show in this subsection that the DNS model also lacks the ability to generate

plausible future yield curve behaviour at the ZLB, which is also found for the plain a�ne

term structure models. First, Figure 7 displays the conditional probabilities of negative

three-month ahead yields from the DNS model, based on 10,000 simulations at each

observation date t. Prior to the GFC, all yields have negligible probabilities of turning

into negative territory, except perhaps for the three-month yield around 2004. However,

the probabilities of the three-month and two-year yields increase substantially during the

ZLB period. In fact, even the ten-year yield shows positive probabilities close to 0.2 after

the corona virus pandemic hit the U.S. Hence, by ignoring the ZLB, the DNS model is not

able to generate realistic future interest rate paths as U.S. interest rates did not become

negative during our sample with a minimum of 0.55 for the ten-year yields (see Table 1).
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Figure 7: Conditional probabilities of negative three-month ahead yields from the DNS
model with shaded ZLB periods

These unlikely high positive probabilities of negative interest rates are also found for the

standard a�ne term structure model class, see Christensen and Rudebusch (2015, 2016)

and Bauer and Rudebusch (2016), among others.

Second, we address the inability of the DNS model to capture yield-curve compres-

sion at the ZLB. Figure 8 shows the conditional volatility of three-month ahead yields

obtained from the DNS, B-DNS and SB-DNS models, based on 10,000 simulations at

each observation date t. For comparison, we also include a realized-volatility (RV) mea-

sure, where we follow Christensen and Rudebusch (2016) and compute rolling standard

deviations of daily yield changes over the number of trading days in the next 91-day win-

dow. Due to the linearity of the DNS measurement equation and the convergence of the

covariance matrix of the latent factors, we expect that the DNS model produces constant

yield volatility, which is indeed found in Figure 8 with a level close to 0.6. However, for

both the three-month and two-year yield, the RV measure decreases drastically after the

GFC to a level of 0.1-0.2. Meanwhile, the SB-DNS model is able to replicate this decrease

in volatility and sticks more closely to the RV measure, although there is some divergence

of the series between the two ZLB periods. The B-DNS model is partly able to capture

the volatility compression, but it converges rather quickly to the constant volatility level

of the DNS model. Overall, the DNS model is not able to capture the observed yield

volatility compression at the ZLB, while the SB-DNS model can accurately replicate this

compression. These shortcomings in capturing the low yield volatility is also found for the
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(a) Three-month yield (b) Two-year yield

Figure 8: Three-month ahead realized and model-implied conditional volatility series of
yields in the post-GFC period with shaded ZLB periods

standard a�ne term structure model (Christensen and Rudebusch, 2015, 2016), which is

then resolved with the shadow-rate a�ne term structure model.

4.3 Policy insights at the ZLB

In this subsection we provide some policy insights at the ZLB that can be obtained from

our smooth shadow-rate DNS model. More specifically, we first examine and compare the

estimated shadow short rates, which some advocate to be a useful measure of the stance of

unconventional monetary policy at the ZLB (Bullard, 2012; Krippner, 2013; Wu and Xia,

2016; Francis et al., 2020). Indeed, quite some recent work has adopted shadow short-rate

estimates to assess the e�ciency of (un)conventional monetary policy (Damjanović and

Masten, 2016; von Borstel et al., 2016; Ouerk et al., 2020). Nonetheless, Christensen and

Rudebusch (2015, 2016) and Krippner (2020) show that shadow short-rate estimates are

highly sensitive to choices in their estimation such as the model specification and the

used data. Unsurprisingly, in Appendix E we show that the level of our shadow short

rate estimates are also highly sensitive to the lower bound and smoothness parameter

specifications. Hence, these estimates should always be employed with caution.

Figure 9 shows the filtered shadow short rates based on the SB-DNS model with

a fixed lower-bound specification of 0% and a smoothness parameter � that is either

estimated or fixed at a value of 1. For comparison, we also include the filtered shadow

short rate of the B-AFNS model and the estimates from Wu and Xia (2016).18 Four

18The shadow short-rate estimate of Wu and Xia (2016) can be obtained from the website of Jing
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Figure 9: Shadow short rate estimates in the post-GFC period with shaded ZLB periods

things stand out. First, all shadow short-rate estimates are close to the three-month

yield when it is not close to the ZLB, where they start to diverge closer to the ZLB.

Second, the SB-DNS model with an estimated smoothness parameter generates a filtered

shadow short rate that is highly similar to the one of the B-AFNS model in terms of

dynamics and level. In fact, their correlation is 0.998, while the correlation of their first

di↵erences is 0.942. Third, the filtered shadow short rate of the SB-DNS model with a

fixed smoothness parameter of � = 1 resembles the estimate from Wu and Xia (2016) in

terms of level, even though the latter is obtained from a shadow-rate a�ne term structure

model estimated with forward-rate data and a lower-bound specification of 0.25%. The

correlation of their levels and first di↵erences are 0.935 and 0.600, respectively. Lastly,

in Appendix E we additionally show that our shadow short-rate estimate based on a

two-factor smooth shadow-rate model, which Krippner (2015a) argues to produce more

robust and economically meaningful estimates, are close to the ones based on Krippner

(2015a).19 Overall, the SB-DNS model is thus able to generate similar shadow short-rate

estimates, in terms of dynamics and level, as are currently produced in the literature.

Another policy-related measure that can be obtained from the SB-DNS model is the

lifto↵ horizon that indicates the timing of future policy lifto↵, see Bauer and Rudebusch

(2016) for further details. Figure 10 shows the median and interquartile range (IQR)

Cynthia Wu: https://sites.google.com/view/jingcynthiawu/shadow-rates.
19The shadow short rate estimates of Krippner (2015a) can be obtained from the website of Leo

Krippner: https://www.ljkmfa.com/visitors/.
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lifto↵-horizon estimates (in years) obtained from the SB-DNS model with an estimated

smoothness parameter �, based on 10,000 simulations at each observation date t. Sim-

ilarly as Lemke and Vladu (2017), we identify a lifto↵ date as the initial time that the

projected short rate is above the threshold of 25 basis points, which corresponds to the

0 to 25 basis points range of the Federal Reserve during the ZLB period, and stays there

for 12 consecutive months.20 Figure 10 indicates that the lifto↵ horizon is increasing

after the GFC, but that it starts to decrease almost linearly from 2013 onwards until

the end of the ZLB period. The median lifto↵ horizon is close to the realized lifto↵ line

and generally within the IQR, albeit the predicted lifto↵ date has a delay of about six

months. Noteworthy, the lifto↵ horizon increased dramatically at the start of the corona

virus pandemic, although it starts to decrease again from mid-2020 onwards. Hence, this

suggests that it will take quite some years before the policy rate is lifted from the ZLB

again.

Figure 10: Lifto↵ horizon estimates from the SB-DNS model (including the realized
lifto↵ horizon) in the post-GFC period with shaded ZLB periods

20Note that the model-implied short rate under the SB-DNS model is given by rt = rLB+�f
⇣

st�rLB
�

⌘
.
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4.4 Forecasting the yield curve

Finally, we assess the out-of-sample performance of the smooth shadow-rate model and

compare it to the other models. Similarly as Christensen and Rudebusch (2016), we

employ expanding-window estimation with an initial estimation sample from September

1981 to August 2001 (240 observations).21 By adding one month of observations each

time, we conduct a total of 231 estimations per model. Across all estimations, we assume

a fixed lower-bound specification of 0% and a fixed smoothness parameter of 1.22 This pre-

fixing of lower bound and smoothness parameters is necessary to circumvent overfitting

issues that would happen when the shadow-rate models are estimated over a period

with only high interest-rate data. Then, at each end date of the estimation sample,

we construct one-month-ahead (h = 1), six-month-ahead (h = 6), one-year-ahead (h =

12) and two-year-ahead (h = 24) forecasts. As a result, we obtain 230 one-month-

ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207

two-year-ahead forecasts that can be evaluated. For each forecast horizon and maturity,

we compute the root mean squared forecast errors (RMSFE).

Table 4 displays the RMSFE of all models across the four horizons and eight matu-

rities. Beside the six model forecasts, we also include random walk forecasts, which are

known to be a hard-to-beat benchmark for yields (Du↵ee, 2002). Indeed, we find that the

DNS model is outperformed by the random walk forecasts for almost all forecast horizons

and yield maturities. In fact, the random walk forecasts seem to outperform most mod-

els, particularly for shorter horizon forecasts. This outperformance of the random walk

also becomes clear from the cumulative sum of squared forecast errors (CSSFE) plots for

six-months-ahead and two-year-ahead forecasts in Figures 11 and 12, respectively.23

Most prominently, we find that the SB-DNS model outperforms the DNS model for

all horizons and maturities, where this improvement is strongest for longer horizons.

Moreover, the SB-DNS model is also able to outperform the random walk for longer

horizon forecasts of short-term yields. Figure 12 shows that his outperformance of the

SB-DNS model for the two-year ahead forecasts mostly stems from the beginning of the

21Alternatively, Appendix G.1 includes the rolling-window estimation results, where the (SB-)DNS-
type models slightly deteriorate in accuracy relative to the(B-)AFNS-type models. Still, the best per-
forming forecasts for most models are generally based on the expanding-window estimation approach.

22For relaxations of these lower-bound and smoothness parameter specifications in the forecasting
exercise, see Appendices D and F, respectively.

23The CSSFEs for one-month-ahead and one-year-ahead forecasts are given in Appendix G.2.
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Table 4: Out-of-sample performance

RMSFE Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 20.5 19.3 19.4 22.7 24.7 26.3 26.4 25.5

DNS 24.9 18.7 19.9 23.7 25.6 27.3 27.2 26.9
DNS-TVL 25.0 19.3 18.6 23.2 26.2 27.2 27.4 26.6

B-DNS 25.4 19.1 19.8 23.7 25.7 27.4 27.2 26.9
SB-DNS 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0
SB-DNS-TVL 24.1 19.1 18.8 23.3 25.9 26.9 27.2 26.1

AFNS 34.5 29.9 29.3 29.7 29.0 26.6 28.1 27.0
B-AFNS 21.1 21.7 22.4 24.2 25.3 26.0 26.8 26.1

Panel B: Six-month-ahead forecasts (h = 6)

RW 66.8 66.7 65.3 66.1 67.3 65.8 63.5 60.0

DNS 69.6 68.1 68.6 73.1 75.9 75.1 71.7 68.3
DNS-TVL 74.5 71.5 71.7 76.1 79.7 78.7 75.2 71.5

B-DNS 70.8 68.9 68.7 72.4 74.8 74.0 70.7 67.4
SB-DNS 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0
SB-DNS-TVL 70.7 69.5 70.3 74.3 76.7 74.5 70.7 66.1

AFNS 123.4 118.0 113.7 106.5 97.5 79.4 72.6 62.9
B-AFNS 72.8 74.9 73.8 72.3 70.2 64.6 62.0 57.6

Panel C: One-year-ahead forecasts (h = 12)

RW 116.5 115.1 109.6 101.4 95.9 86.8 81.4 75.5

DNS 118.2 116.7 116.0 116.5 115.9 109.6 103.3 97.6
DNS-TVL 121.7 119.3 119.3 120.6 121.0 114.6 107.7 101.6

B-DNS 117.0 115.1 113.2 112.2 111.1 105.0 99.2 94.1
SB-DNS 107.1 109.4 109.2 107.8 105.8 98.7 92.4 84.8
SB-DNS-TVL 116.9 116.0 115.8 115.6 113.9 105.0 97.6 90.7

AFNS 187.8 182.2 177.9 166.3 150.3 117.9 102.5 85.0
B-AFNS 110.6 112.0 109.9 104.7 98.0 84.6 79.9 73.7

Panel D: Two-year-ahead forecasts (h = 24)

RW 191.4 190.9 181.1 161.6 146.8 124.4 110.4 97.5

DNS 201.2 199.1 194.6 186.6 180.0 165.5 152.9 141.5
DNS-TVL 193.2 190.7 189.1 185.5 181.9 169.2 156.8 146.1

B-DNS 189.0 186.5 180.7 171.0 163.8 149.8 138.2 128.7
SB-DNS 170.1 170.3 165.2 155.8 149.9 137.7 125.8 111.5
SB-DNS-TVL 185.1 183.4 181.1 175.5 170.0 155.0 141.7 129.8

AFNS 264.3 257.7 251.3 232.2 207.6 159.7 132.6 104.5
B-AFNS 176.6 175.7 170.3 158.2 145.8 123.5 111.2 97.3

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons. We consider expanding-window estimation with the initial sample from
September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-ahead forecasts, 225 six-
month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts to compute the
RMSFEs. The shadow-rate models are all estimated with a fixed lower bound specification of rLB = 0%,
while the smooth shadow-rate model has a fixed smoothness parameter � = 1. The bold numbers indicate
the lowest RMSFE for that particular maturity and horizon.
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Figure 11: Cumulative sum of squared forecast errors for six-month ahead forecasts
with shaded ZLB periods

Figure 12: Cumulative sum of squared forecast errors for two-year ahead forecasts with
shaded ZLB periods
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ZLB period. Hence, imposing the smooth shadow-rate restriction, and thereby allowing

for a smooth transition into the ZLB state, substantially improves the out-of-sample

performance, especially compared to the baseline DNS and B-DNS models.

Moving to the time-varying loading models, we find that these generally do not out-

perform their constant loading counterparts. More specifically, the DNS model often

performs better than the DNS-TVL model, while the SB-DNS model performs better

than the SB-DNS-TVL model. So, despite that allowing for time-varying loadings seems

to improve the in-sample fit, this comes at the cost of poorer forecasting performance.

This result could be due to additional forecasting uncertainty as the TVL models also

need to predict the time-varying loadings, but it might also indicate that the TVL models

are prone to overfitting. By looking at subperiods in Appendix G.3, though, we find that

during non-ZLB periods the (SB-)DNS-TVL model performs somewhat better for several

maturities and horizons.

Next, the out-of-sample performance of the SB-DNS model is compared to the AFNS

and B-AFNS models. We find that the SB-DNS model performs better than the AFNS

and B-AFNS models for longer horizons and short-term yields. Yet, the B-AFNS model

performs substantially better for long-term yields, which could be due to the yield adjust-

ment term of the (B-)AFNS expression (Christensen et al., 2011). The B-AFNS model,

in turn, outperforms the AFNS model across all horizons and maturities, which is con-

sistent with the results of Christensen and Rudebusch (2016). Also, the AFNS is able

to outperform the DNS model for long-term yields and long forecast horizons, although

the AFNS performance quickly deteriorates for short-term yields, which becomes also

clear from Figures 11 and 12. To summarize, we conclude that the SB-DNS model is

competitive with the B-AFNS model for short- and medium term yield forecasts, but is

lacking for longer maturities.

Lastly, we test the significance of the forecasting accuracy of the SB-DNS model

against its competitors by means of Diebold and Mariano (1995) (DM) tests. The null

hypothesis is that the two competing forecasts are equally accurate, while the alternative

hypothesis states that the forecast with a lower RMSFE is significantly more accurate.

The test statistic is obtained as the average di↵erence between the RMSFE of the SB-DNS

and its competitor, divided by the square of the long-run variance of these di↵erentials,

based on the Bartlett kernel with automatic bandwidth selection as in Newey and West
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Table 5: Significance of SB-DNS forecasting performance over alternatives

DM stat. Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 0.92 -0.89 0.11 1.25 2.76
⇤⇤⇤

1.57
⇤

1.72
⇤⇤

1.74
⇤⇤

DNS -4.11
⇤⇤⇤

-0.59 -0.51 -0.27 0.05 -1.14 -0.10 -2.21
⇤⇤

DNS-TVL -4.72
⇤⇤⇤

-1.26 1.02 0.41 -0.99 -0.81 -0.73 -0.87

B-DNS -3.95
⇤⇤⇤

-1.15 -0.44 -0.24 -0.09 -1.18 -0.24 -2.19
⇤⇤

SB-DNS-TVL -2.90
⇤⇤⇤

-1.03 0.83 0.32 -0.58 0.27 -0.14 -0.04

AFNS -4.98
⇤⇤⇤

-4.02
⇤⇤⇤

-3.21
⇤⇤⇤

-3.01
⇤⇤⇤

-3.15
⇤⇤⇤

1.20 -1.89
⇤⇤

-2.44
⇤⇤⇤

B-AFNS 0.74 -2.02
⇤⇤

-2.14
⇤⇤

-0.65 0.73 1.37
⇤

1.05 -0.21

Panel B: Six-month-ahead forecasts (h = 6)

RW -0.91 -0.27 0.39 1.28 1.72
⇤⇤

2.04
⇤⇤

1.73
⇤⇤

1.30
⇤

DNS -1.43
⇤

-0.58 -0.28 -0.53 -0.81 -1.14 -1.16 -1.65
⇤⇤

DNS-TVL -1.87
⇤⇤

-0.94 -0.68 -0.93 -1.49
⇤

-1.84
⇤⇤

-1.79
⇤⇤

-1.98
⇤⇤

B-DNS -1.52
⇤

-0.71 -0.30 -0.33 -0.52 -0.79 -0.81 -1.26
SB-DNS-TVL -1.38

⇤
-0.71 -0.52 -0.67 -0.94 -0.91 -0.79 -0.79

AFNS -4.71
⇤⇤⇤

-4.04
⇤⇤⇤

-3.76
⇤⇤⇤

-3.57
⇤⇤⇤

-3.39
⇤⇤⇤

-2.06
⇤⇤

-1.38
⇤

0.05
B-AFNS -1.71

⇤⇤
-1.82

⇤⇤
-1.43

⇤
-0.47 1.18 3.21

⇤⇤⇤
2.62

⇤⇤⇤
2.28

⇤⇤

Panel C: One-year-ahead forecasts (h = 12)

RW -1.02 -0.56 -0.05 0.83 1.50
⇤

2.19
⇤⇤

2.18
⇤⇤

1.96
⇤⇤

DNS -1.09 -0.73 -0.68 -0.91 -1.09 -1.31
⇤

-1.39
⇤

-1.74
⇤⇤

DNS-TVL -1.31
⇤

-0.84 -0.89 -1.28 -1.71
⇤⇤

-1.98
⇤⇤

-1.92
⇤⇤

-2.08
⇤⇤

B-DNS -1.02 -0.60 -0.43 -0.50 -0.62 -0.78 -0.87 -1.21
SB-DNS-TVL -0.97 -0.63 -0.65 -0.86 -0.97 -0.79 -0.63 -0.68

AFNS -4.27
⇤⇤⇤

-3.73
⇤⇤⇤

-3.64
⇤⇤⇤

-3.63
⇤⇤⇤

-3.46
⇤⇤⇤

-2.30
⇤⇤

-1.50
⇤

-0.05
B-AFNS -0.44 -0.35 -0.10 0.61 2.17

⇤⇤
4.03

⇤⇤⇤
3.19

⇤⇤⇤
2.75

⇤⇤⇤

Panel D: Two-year-ahead forecasts (h = 24)

RW -1.51
⇤

-1.40
⇤

-1.15 -0.47 0.26 1.27 1.60
⇤

1.62
⇤

DNS -1.64
⇤

-1.55
⇤

-1.57
⇤

-1.67
⇤⇤

-1.70
⇤⇤

-1.72
⇤⇤

-1.78
⇤⇤

-2.09
⇤⇤

DNS-TVL -1.43
⇤

-1.23 -1.48
⇤

-1.99
⇤⇤

-2.31
⇤⇤

-2.54
⇤⇤⇤

-2.66
⇤⇤⇤

-3.12
⇤⇤⇤

B-DNS -1.25 -1.07 -1.01 -1.00 -0.94 -0.86 -0.90 -1.27
SB-DNS-TVL -1.10 -0.95 -1.16 -1.51

⇤
-1.57

⇤
-1.36

⇤
-1.25 -1.45

⇤

AFNS -4.08
⇤⇤⇤

-3.68
⇤⇤⇤

-3.76
⇤⇤⇤

-3.82
⇤⇤⇤

-3.42
⇤⇤⇤

-1.84
⇤⇤

-0.70 1.13
B-AFNS -0.85 -0.74 -0.72 -0.36 0.63 2.21

⇤⇤
2.32

⇤⇤
2.45

⇤⇤⇤

Notes: This table contains the Diebold and Mariano (1995) (DM) test statistics of the SB-DNS model against its com-
petitors. The null hypothesis of the test is that the two competing forecasts are equally accurate, while the alternative
hypothesis states that the forecast with a lower RMSFE is significantly more accurate. A negative value indicates that
the RMSFE of the SB-DNS model is lower than the one of its competitor. The test statistic is obtained as the average
di↵erence between the RMSFE of the SB-DNS and its competitor, divided by the square of the long-run variance of these
di↵erentials, based on the Bartlett kernel with automatic bandwidth selection as in Newey and West (1994). The asterisks
⇤,⇤⇤, and ⇤ ⇤ ⇤ indicate significance at the 10%, 5% and 1% level, respectively. A bold number indicates significance at the
5% level.
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(1994). Table 5 presents the DM statistics and the corresponding significance at the

1%, 5% and 10% levels. We find a large number of negative values, which indicate that

the SB-DNS model outperforms its competitors. The outperformance over the DNS and

DNS-TVL models is mostly significant for longer horizons and maturities, but also for

the three-month yield at shorter horizons. In addition, the AFNS model is significantly

outperformed at almost all maturities and horizons, while the B-AFNS is outperformed

at the short-end of the yield curve for short horizons. Still, the B-AFNS significantly out-

performs the SB-DNS model for longer horizons and maturities, whereas the random walk

generally outperforms for short horizons. Hence, it ultimately depends on the horizon

and maturity which model performs best.

5 Conclusion

In this paper we develop a smooth shadow-rate version of the dynamic Nelson-Siegel

(DNS) model to analyze and forecast U.S. government bond yields during the recent

zero lower bound (ZLB) periods. Our smooth shadow-rate DNS model has a closed-form

yield curve expression and hence can be easily put into a nonlinear state-space form to

facilitate tractable estimation. Consequently, it is straightforward to extend our model

with time-varying parameters, macroeconomic variable integration or other variations of

interest, which are not always possible in the more rigorous and less tractable class of

shadow-rate a�ne term structure models.

Our results show that the smooth shadow-rate DNS (SB-DNS) model dominates the

original DNS model in terms of fitting and forecasting the yield curve with better out-of-

sample performance for all yield maturities and forecast horizons. The SB-DNS model

is also competitive with the shadow-rate a�ne term structure models in fitting and fore-

casting the yield curve for short- and medium-term maturities, particularly for longer

horizons. Furthermore, we provide evidence of a smooth transition of the term structure

of interest rates entering and leaving the ZLB state, indicated by a highly significant

smoothness parameter and improved in- and out-of-sample performance of the smooth

shadow-rate model over a non-smooth version. Finally, we show that the DNS model

lacks in generating plausible future yield curve paths, which can be resolved with the

smooth shadow-rate augmentation, and we illustrate how the smooth shadow-rate model

can be used to shape future policy expectations at the ZLB.
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A Arbitrage-free models

Here we discuss the specification and estimation of the arbitrage-free Nelson-Siegel (AFNS)

model proposed by Christensen et al. (2011). Moreover, we consider the specification

and estimation of the shadow-rate AFNS (B-AFNS) model proposed by Christensen and

Rudebusch (2015). Both these models are used as benchmarks throughout the empirical

results section.

A.1 Arbitrage-free Nelson-Siegel model

Based on the general framework of Du�e and Kan (1996), Christensen et al. (2011) show

that the arbitrage-free bond yield with time to maturity ⌧ at time t can be described as

the well-known Nelson and Siegel (1987) factor loading structure given by

yt(⌧) = X1
t +

 
1� e��⌧

�⌧

!
X2

t +

 
1� e��⌧

�⌧
� e��⌧
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X3

t �
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, (A.1)

where the latent factors X1
t , X

2
t and X3

t have the interpretation of level, slope and cur-

vature, respectively, and follow the continuous-time process
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(A.2)

under the risk-neutral Q-measure where � > 0 and dW i,Q
t is a standard Brownian motion

for i = 1, 2, 3. Note that this specification already includes the identification that the

mean levels of the factors under the Q-measure are zero and that the volatility matrix is

lower triangular. The corresponding short rate is defined as rt = X1
t +X2

t .

The yield-adjustment term, �A(⌧)/⌧ , is given in Christensen et al. (2011) and is a

function of the volatility matrix parameters, the loading parameter �, and the time-to-

maturity ⌧ . This term is also the key di↵erence between the yield curve expression of

the DNS and AFNS model, that is, setting this term equal to zero in the AFNS model

returns the yield curve expression of the DNS model.

The relation between the real-world dynamics under the P-measure and the risk-

1



neutral dynamics under the Q-measure is given by

dW Q
t = dW P

t + �tdt, (A.3)

where dW u
t = (dW 1,u

t , dW 2,u
t , dW 3,u

t )0 for u 2 {P,Q} and �t is a 3⇥1 vector representing

the risk premium. Christensen et al. (2011) assume the essentially a�ne risk premium

specification of Du↵ee (2002), that is,
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such that the real-world dynamics of the latent factors under the P-measure are given by
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(A.5)

where the parameters are allowed to vary freely due to the flexible specification of �t,

while at the same time preserving the Q-dynamics and thus the arbitrage-free yield curve

expression.

We follow the estimation procedure of Christensen et al. (2011) where the AFNS

model is put in a linear Gaussian state space form such that it can be estimated with

the Kalman filter, see subsection C.1. Note that F and Q, in the notation of subsection

C.1, are obtained via eigensystem decomposition (see Fisher and Gilles, 1996; Caldeira

et al., 2016, for further details) and that the constant c in the measurement equation is

equal to the yield-adjustment term. Moreover, we assume that the real component of the

eigenvalues of the matrix with kappa elements in equation (A.5) are positive to ensure

covariance stationarity. The starting values for the maximization of the log-likelihood

are based on the two-step approach for the DNS model, but transformed such that they

correspond to the AFNS model parameters, after which we initially optimize the log-

likelihood using a gradient-based optimization method. Then, based on these parameter

values as starting values, the final maximization of the log-likelihood is done using the

2



Nelder-Mead simplex algorithm, which is also used by Christensen et al. (2011).1

A.2 Shadow-rate arbitrage-free Nelson-Siegel model

The three-factor shadow-rate arbitrage-free Nelson-Siegel (B-AFNS) model of Christensen

and Rudebusch (2015) defines the short rate as proposed by Black (1995), that is,

rt = max(rLB, st), (A.6)

where rLB is the lower bound value and the shadow short rate is given by

st = X1
t +X2

t , (A.7)

where the latent factors (X1
t , X

2
t , X

3
t ) again follow the continues-time process under the

risk-neutral Q-measure given in equation (A.2).

Under this specification, Krippner (2012) derives based on a bond option price ap-

proach that, for any shadow-rate Gaussian a�ne term structure model, the zero lower

bound (ZLB) forward rate approximation is given by

f
t
(⌧) = rL +

�
ft(⌧)� rL

�
�

 
ft(⌧)� rL
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!
+ !(⌧)�

 
ft(⌧)� rL

!(⌧)

!
, (A.8)

where ft(⌧) is called the shadow forward rate and f
t
(⌧) the ZLB forward rate, and �(·)

and �(·) are the cumulative and probability density functions of a standard normal dis-

tribution, respectively. Moreover, !(⌧) is related to the risk-neutral conditional variance

of the shadow short rate. In particular, Christensen and Rudebusch (2015) show that for

a shadow-rate AFNS model
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1In the expanding-window forecasting exercise, we only do the two consecutive numerical optimization
steps for the first estimation round, after which we only consider the optimization based on the Nelder-
Mead simplex algorithm with as starting values the optimized parameters of the previous round.
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,

and that the shadow forward rate is equal to

ft(⌧) =
d

d⌧

�
⌧yt(⌧)

�
= X1

t + e��⌧X2
t + �⌧e��⌧X3

t � Af (⌧). (A.9)

The forward rate adjustment term, �Af (⌧), is given in Christensen and Rudebusch (2015)

and is also a function of the volatility matrix parameters, the loading parameter �, and

the time-to-maturity ⌧ . Finally, by using this approximation and the standard yield-

forward relation, the arbitrage-free ZLB yield with ⌧ time to maturity at time t is given

by

y
t
(⌧) =

1

⌧

Z ⌧

0

"
rL +

�
ft(s)� rL

�
�

 
ft(s)� rL

!(s)

!
+ !(s)�

 
ft(s)� rL

!(s)

!#
ds. (A.10)

Again, the essentially a�ne risk premium specification of Du↵ee (2002) given in equation

(A.4) is assumed such that the factors have the P-dynamics given in equation (A.5).

We follow the estimation procedure of Christensen and Rudebusch (2015) where the

B-AFNS model is put in nonlinear Gaussian state space form such that it can be estimated

with the extended Kalman filter (EKF), see subsection C.2. The matrices F and Q, in

the notation of subsection C.2, can be obtained in similar fashion as for the AFNS model.

Furthermore, the derivatives needed for the EKF are given in Krippner (2015), who also

proposes to approximate the integral with rectangular increments. We again restrict the

real part of the eigenvalues of the matrix with kappa elements given in equation (A.5) to

be positive. Lastly, we use similar starting values for the optimization as for the AFNS

model and follow the same optimization routine.
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B Parameter estimates

Table B.1: Parameter estimates of the DNS model

� ⌃⌘ ↵

1.003⇤⇤⇤ 0.009 -0.008 0.114⇤⇤⇤ -0.002
(0.004) (0.008) (0.011) (0.009) (0.033)

-0.039⇤⇤⇤ 0.918⇤⇤⇤ 0.071⇤⇤⇤ -0.055⇤⇤⇤ 0.142⇤⇤⇤ 0.133⇤⇤

(0.008) (0.013) (0.011) (0.007) (0.010) (0.051)

0.056⇤⇤⇤ 0.061⇤⇤⇤ 0.895⇤⇤⇤ -0.015 -0.041⇤⇤⇤ 0.574⇤⇤⇤ -0.336⇤⇤⇤

(0.014) (0.029) (0.024) (0.016) (0.015) (0.050) (0.102)

diag(⌃") �

0.036⇤⇤⇤ 0.000 0.008⇤⇤⇤ 0.005⇤⇤⇤ 0.000 0.003⇤⇤⇤ 0.002⇤⇤⇤ 0.007⇤⇤⇤ 0.051⇤⇤⇤

(0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Notes: This table contains the parameter estimates of the DNS model. The asterisks ⇤, ⇤⇤, and ⇤⇤⇤ indicate significance
at the 10%, 5% and 1% level, respectively. The standard errors are given in parentheses.

Table B.2: Parameter estimates of the SB-DNS model

� ⌃⌘ ↵

0.999⇤⇤⇤ -0.004 -0.003⇤ 0.108⇤⇤⇤ -0.010
(0.001) (0.007) (0.002) (0.008) (0.032)

-0.025⇤⇤⇤ 0.969⇤⇤⇤ 0.053⇤⇤⇤ -0.046⇤⇤⇤ 0.198⇤⇤⇤ 0.103⇤

(0.007) (0.005) (0.009) (0.008) (0.016) (0.058)

0.045⇤⇤⇤ 0.007 0.916⇤⇤⇤ 0.036⇤⇤ -0.112⇤⇤ 0.763⇤⇤⇤ -0.405⇤⇤⇤

(0.015) (0.010) (0.018) (0.016) (0.023) (0.072) (0.089)

diag(⌃") � �

0.032⇤⇤⇤ 0.000⇤⇤ 0.006⇤⇤⇤ 0.003⇤⇤⇤ 0.000⇤⇤⇤ 0.003⇤⇤⇤ 0.002⇤⇤⇤ 0.003⇤⇤⇤ 2.679⇤⇤⇤ 0.062⇤⇤⇤

(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.206) (0.001)

Notes: This table contains the parameter estimates of the SB-DNS model. The asterisks ⇤, ⇤⇤, and ⇤ ⇤ ⇤ indicate significance
at the 10%, 5% and 1% level, respectively. The standard errors are given in parentheses.

Table B.3: Smoothness parameter estimates based on subsets of yield observations

Short-term yields Medium-term yields Long-term yields

�̂ 4.124⇤⇤⇤ 2.182⇤⇤⇤ 2.015⇤⇤⇤

(0.527) (0.216) (0.106)

Notes: This table shows the smoothness parameter estimates based on a subset of
yields observations, that is, short-term yields are 3-month to 2-year yields, medium-
term yields are 1-year to 5-year yields, and long-term yields are 3-month to 10-year
yields. The asterisks ⇤, ⇤⇤, and ⇤ ⇤ ⇤ indicate significance at the 10%, 5% and 1% level,
respectively. The standard errors are given in parentheses.
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C Estimation framework

C.1 Kalman filter based estimation

The general linear Gaussian state space model (see Durbin and Koopman, 2012) can be

written as

yt = c+Z⇠t + "t, "t ⇠ N (0,H), (C.1)

⇠t+1 = d+ F ⇠t + ⌘t, ⌘t ⇠ N (0,Q), t = 1, . . . , T, (C.2)

where equations (C.1) and (C.2) are the measurement and state equation, respectively,

yt is the N ⇥ 1 observation vector and ⇠t is the K ⇥ 1 state vector with some unobserved

factors. Also, some elements of c (N⇥1), Z (N⇥K), H (N⇥N), d (K⇥1), F (K⇥K)

and Q (K ⇥ K) are known, while the others are unknown parameters that need to be

estimated. Both the DNS and AFNS model fit this representation, see Christensen et al.

(2011) for further details.

Given the unknown parameter set ⇥, the latent factors in the state vector ⇠t can be

recursively obtained via the Kalman filter (KF) (see Durbin and Koopman, 2012). We

define the predicted state and its covariance matrix at time t as b⇠t|t�1 = E(⇠t|I t�1) and

Pt|t�1 = var(⇠t|I t�1), respectively, where I t�1 = (y0
1, . . . ,y

0
t�1)

0 denotes the information

set available at time t � 1. Moreover, we define the updated state and its covariance

matrix at time t as b⇠t|t = E(⇠t|I t) and Pt|t = var(⇠t|I t), respectively. For given values

of the predicted state and its uncertainty at time t, we conduct the updating step of the

KF to obtain the updated state and its uncertainty, that is,

b⇠t|t = b⇠t|t�1 + Pt|t�1Z
0
V

�1
t vt, (C.3)

Pt|t = Pt|t�1 � Pt|t�1Z
0
V

�1
t ZPt|t�1, (C.4)

where vt = yt � c�Z b⇠t|t�1 is the prediction error vector and Vt = ZPt|t�1Z
0 +H is the

prediction error covariance matrix. Next, for given values of the updated state and its

uncertainty at time t, we conduct the prediction step of the KF to obtain the predicted

state and its uncertainty, that is,

b⇠t+1|t = d+ F b⇠t|t, (C.5)
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Pt+1|t = FPt|tF
0 +Q. (C.6)

A formal derivation of the KF can be found in Durbin and Koopman (2012). We as-

sume that ⇠0 ⇠ N (µ,W ) such that b⇠0|0 = µ and P0|0 = W , where µ = (Ir � F )�1
d

is the unconditional mean and W is the unconditional covariance matrix for which it

holds that W � FWF
0 = Q, see Hamilton (1994, section 2.2). Finally, based on the

initialization and the recursions of the KF in equations (C.3)-(C.6) we are able to obtain

the latent factor estimates b⇠t|t�1 and the covariance matrices Pt|t�1 of these estimates for

t = 1, . . . , T .

Given the latent factor estimates, we can evaluate the log-likelihood function based

on the prediction error decomposition given by

`(y1, . . . ,yT ;⇥) = �nT

2
log 2⇡ � 1

2

TX

t=1

⇣
log |Vt|+ v

0
tV

�1
t vt

⌘
, (C.7)

where vt and Vt are the prediction error vector and covariance matrix, respectively, and

are given by the KF. We numerically maximize the log-likelihood with respect to ⇥ to

obtain the maximum likelihood parameter estimates.

C.2 Extended Kalman filter based estimation

The general nonlinear Gaussian state space model (see Durbin and Koopman, 2012) can

be written as

yt = Z(⇠t) + "t, "t ⇠ N (0,H), (C.8)

⇠t+1 = d+ F ⇠t + ⌘t, ⌘t ⇠ N (0,Q), t = 1, . . . , T, (C.9)

where equations (C.8) and (C.9) are the nonlinear measurement and linear state equation,

respectively, and Z(⇠t) is a di↵erentiable function of ⇠t. Both the (smooth) shadow-rate

models as well as the models with time-varying factor loadings fit this nonlinear state

space representation. The expressions of ⇠t and Z(⇠t) for each specific model are given

in subsection C.3. The parameter set ⇥ is the same as for the linear Gaussian state space

model, except that we could also include the lower bound rLB and/or the smoothness

parameter � as additional unknown parameters in case we do not prefix them.
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Given the parameter set ⇥, the latent factors in the state vector ⇠t can be recursively

obtained via the extended Kalman filter (EKF). In order to implement the EKF, we

first need to linearize the nonlinear meausrement equation (C.8) by applying a first-order

Taylor series expansion of Z(⇠t) at ⇠t = b⇠t|t�1, that is,

yt = Z(⇠t) + "t

= Z(b⇠t|t�1) + Żt(⇠t � b⇠t|t�1) + "t

= ct + Żt⇠t + "t,

(C.10)

where

Żt =
@Z(⇠t)

@⇠0t

�����
⇠t=b⇠t|t�1

and ct = Z(b⇠t|t�1)� Żt
b⇠t|t�1. (C.11)

The expression of Żt for each specific model is given in Appendix C.3. For given values

of the predicted state and its uncertainty at time t, we are able to conduct the updating

step of the EKF to obtain the updated state and its uncertainty, that is,

b⇠t|t = b⇠t|t�1 + Pt|t�1Ż
0
tV

�1
t vt, (C.12)

Pt|t = Pt|t�1 � Pt|t�1Ż
0
tV

�1
t ŻtPt|t�1, (C.13)

where vt = yt �Z(b⇠t|t�1) is the prediction error vector and Vt = ŻtPt|t�1Ż
0
t +H is the

prediction error covariance matrix. Next, for given values of the updated state and its

uncertainty at time t, we conduct the prediction step of the EKF, which is in this case

the same as for the KF given by equations (C.5)-(C.6), to obtain the predicted state and

its uncertainty. A formal derivation of the EKF can be found in Durbin and Koopman

(2012). We again assume the initialization ⇠0 ⇠ N (µ,W ) such that the recursions of

the EKF in equations (C.12)-(C.13) and (C.5)-(C.6) provide us with the latent factor

estimates b⇠t|t�1 and the covariance matrix Pt|t�1 of these estimates for t = 1, . . . , T .

Similarly as for the KF based estimation of the linear Gaussian state space model, we

estimate the unknown parameters in ⇥ by means of maximizing the log-likelihood given

by equation (C.7) with numerical optimization, where vt and Vt are now obtained via

the EKF.
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C.3 Derivatives for extended Kalman filter

C.3.1 DNS-TVL

In the context of the DNS-TVL model, we have

Z(⇠t) = ⇤(�t)�t, (C.14)

where ⇠t = (�t
0,�t)0. The derivative of Z(⇠t) with respect to ⇠

0
t is given by

@Z(⇠t)

@⇠0t
=
⇣

@⇤(�t)�t

@�t
0

@⇤(�t)�t

@�t

⌘
=
⇣
⇤(�t) U (�t)�t

⌘
, (C.15)

where

U (�t) =

0

BBB@

0 u1(⌧1,�t) u2(⌧1,�t)
...

...
...

0 u1(⌧N ,�t) u2(⌧N ,�t)

1

CCCA
, (C.16)

with

u1(⌧i,�t) =
@

@�t

 
1� e��t⌧i

�t⌧i

!
=

(1 + ⌧i�t)e��t⌧i � 1

�2
t ⌧i

, (C.17)

and

u2(⌧i,�t) =
@

@�t

 
1� e��t⌧i

�t⌧i
� e��t⌧i

!
=

(1 + ⌧i�t)e��t⌧i � 1

�2
t ⌧i

+ ⌧ie
��t⌧i , (C.18)

for i = 1, . . . , N .

C.3.2 B-DNS

In the context of the B-DNS model, we have

Z(⇠t) = rLB◆+ (⇤(�)�t � rLB◆)�Lt, (C.19)

where ⇠t = �t, � is the Hadamard product, ◆ denotes an N ⇥ 1 vector with ones,

Lt = (L1t, . . . , LNt)0 and Lit = I(yt(⌧i)� rLB > 0) with I(A) being an indicator function

that is equal to 1 if event A is true and zero otherwise. The derivative of Z(⇠t) with
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respect to ⇠
0
t is given by

@Z(⇠t)

@⇠0t
= Lt �⇤(�). (C.20)

C.3.3 SB-DNS

In the context of the SB-DNS model, we have

Z(⇠t) = rLB◆+ (⇤(�)�t � rLB◆)� Ft + �ft, (C.21)

where ⇠t = �t, Ft = (F1t, . . . , FNt)0 with Fit = �
�
(yt(⌧i)�rLB)/�

�
and ft = (f1t, . . . , fNt)0

with fit = �
�
(yt(⌧i)� rLB)/�

�
. The derivative of Z(⇠t) with respect to ⇠

0
t is given by

@Z(⇠t)

@⇠0t
= Ft �⇤(�). (C.22)

C.3.4 SB-DNS-TVL

In the context of the SB-DNS-TVL model, we have

Z(⇠t) = rLB◆+ (⇤(�t)�t � rLB◆)� Ft + �ft, (C.23)

where ⇠t = (�t
0,�t)0. The derivative of Z(⇠t) with respect to ⇠

0
t is given by

@Z(⇠t)

@⇠0t
= Ft �

⇣
⇤(�t) U (�t)�t

⌘
. (C.24)
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D Nonzero lower bound analysis

D.1 In-sample fit

Table D.1: Lower bound estimate, log-likelihood and information criteria of shadow
rate models

r̂LB �̂ Log-likelihood #⇥ AIC BIC LR-test

Statistic p-value

SB-DNS 0.044
(0.008)

2.532
(0.183)

3091.3 29 -13.0 -12.8 21.3 0.000

SB-DNS-TVL 0.011
(0.018)

4.296
(0.836)

3251.7 40 -13.7 -13.3 1.4 0.230

B-AFNS 0.072
(0.007)

2632.1 28 -11.1 -10.8 77.8 0.000

Notes: This table contains the lower bound estimates, log-likelihood values, Akaike information criteria (AIC), Bayesian
information criteria (BIC) and the likelihood ratio (LR) test statistics and corresponding p-values across shadow-rate models.
The LR tests consider the models with fixed lower bound specification of 0% given in Table 2 as null model.

Table D.2: Relative in-sample fit of shadow-rate models with estimated lower bound

Rel. RMSE Maturities (in months) Total

3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

SB-DNS 1.00 1.10 0.99 1.00 0.99 1.00 1.01 0.94 1.00
SB-DNS-TVL 1.00 1.01 1.00 1.00 0.99 1.00 1.00 0.98 1.00
B-AFNS 1.01 1.07 1.00 0.97 1.12 0.98 0.99 0.98 1.00

Panel B: Pre-ZLB period (December 1981 - October 2008)

SB-DNS 1.00 1.07 1.00 1.01 0.97 1.00 1.02 0.96 1.00
SB-DNS-TVL 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00
B-AFNS 1.01 0.90 1.00 0.97 1.10 0.99 0.98 1.00 1.00

Panel C: ZLB period (November 2008 - December 2015)

SB-DNS 1.12 2.19 0.85 1.00 1.00 1.26 0.80 1.23 1.05
SB-DNS-TVL 0.98 1.28 0.82 0.73 1.16 0.73 1.03 0.69 0.91
B-AFNS 1.11 1.13 0.95 0.87 1.12 0.82 1.01 0.90 0.99

Notes: This table contains the relative Root Mean Squared Errors (RMSE) across maturities of shadow-rate models
with a fixed lower bound specification of 0% compared to an estimated lower bound over three sample periods. We
discard the first three observations from this calculation to make the results robust to the unconditional initialization.
The shaded cells indicate a relative RMSE that is smaller than 1, which implies a better fit of the shadow-rate model
with an estimated lower bound relative to the fixed lower bound specification of 0% given in Tables 3.
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Table D.3: In-sample fit of SB-DNS models with various lower bound values

RMSE rLB Maturities (in months) Total

3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

SB-DNS

0.00% 17.7 1.1 8.0 5.8 0.8 5.3 4.1 4.0 7.7

0.05% 17.6 1.5 7.9 5.7 0.9 5.3 4.2 3.7 7.6
0.10% 17.5 2.7 7.4 5.5 1.0 5.2 4.2 3.4 7.6
0.15% 17.8 4.5 6.9 5.2 1.4 5.2 4.2 3.2 7.7
0.20% 18.4 6.3 7.0 5.0 1.9 5.1 4.2 2.9 8.0

Panel B: Pre-ZLB period (December 1981 - October 2008)

SB-DNS

0.00% 20.5 0.3 9.0 6.4 0.4 5.5 4.3 4.0 8.7

0.05% 20.3 0.6 8.9 6.4 0.5 5.5 4.4 3.8 8.6
0.10% 19.8 1.9 8.3 6.1 0.7 5.5 4.5 3.6 8.4
0.15% 19.6 3.5 7.6 5.8 1.1 5.4 4.5 3.4 8.3
0.20% 19.7 4.7 7.1 5.5 1.6 5.4 4.5 3.2 8.3

Panel C: ZLB period (November 2008 - December 2015)

SB-DNS

0.00% 8.3 1.3 4.8 4.2 1.1 5.2 4.4 4.6 4.7

0.05% 8.7 2.1 4.5 4.1 1.3 5.3 4.4 4.1 4.8
0.10% 10.7 4.3 4.2 3.7 1.3 5.2 4.3 3.5 5.3
0.15% 13.5 7.3 5.1 3.2 1.5 5.0 4.1 3.0 6.4
0.20% 16.8 10.7 7.1 3.0 1.8 4.8 3.9 2.7 7.9

Notes: This table contains the Root Mean Squared Errors (RMSE) across maturities of shadow-rate models with a fixed
lower bound specification of 0% and smoothness parameter � = 1 compared to various nonzero lower bound values over
three sample periods. We discard the first three observations from this calculation to make the results robust to the initial
conditions. The shaded cells indicate a RMSE that is smaller than the SB-DNS model with a lower bound of 0%, which
implies a better fit of the shadow-rate model with a nonzero lower bound value relative to a fixed lower bound specification
of 0%.
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D.2 Forecasting results

Table D.4: Forecasting performance of SB-DNS models with various lower bound values

RMSFE rLB Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

SB-DNS

0.00% 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0

0.05% 23.3 18.4 19.2 23.5 25.7 27.0 27.2 26.0
0.10% 23.9 18.5 19.1 23.5 25.7 27.0 27.1 25.9
0.15% 24.5 18.8 19.0 23.4 25.7 27.1 27.2 25.8
0.20% 25.7 19.5 19.2 23.2 25.6 27.2 27.1 25.9

Panel B: Six-month-ahead forecasts (h = 6)

SB-DNS

0.00% 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0

0.05% 64.7 66.0 68.0 72.3 74.3 72.8 69.1 63.8
0.10% 66.5 67.2 69.0 73.2 75.1 72.9 69.0 63.5
0.15% 66.6 66.9 68.5 72.7 74.6 72.4 68.4 62.6
0.20% 67.2 66.8 67.8 71.7 73.7 72.5 69.0 64.2

Panel C: One-year-ahead forecasts (h = 12)

SB-DNS

0.00% 107.1 109.4 109.2 107.8 105.8 98.7 92.4 84.8

0.05% 112.9 114.0 113.7 113.0 111.2 103.2 96.0 87.2
0.10% 117.5 117.9 117.5 116.6 114.3 105.2 97.5 88.4
0.15% 117.5 117.5 117.1 116.3 113.8 103.9 95.6 85.9
0.20% 116.3 115.8 114.8 113.4 111.2 103.5 96.9 89.6

Panel D: Two-year-ahead forecasts (h = 24)

SB-DNS

0.00% 170.1 170.3 165.2 155.8 149.9 137.7 125.8 111.5

0.05% 188.9 188.0 183.1 174.0 167.4 152.2 138.2 122.3
0.10% 202.1 200.8 195.8 185.9 177.9 160.7 145.5 128.6
0.15% 204.5 203.0 198.0 188.0 179.1 159.5 143.3 126.7
0.20% 198.1 196.2 190.6 180.0 172.0 156.7 144.1 132.2

Notes: This table contains the Root Mean Squared Forecast Errors (RMSFE) across maturities and horizons
of SB-DNS models with a fixed lower bound specification of 0% and smoothness parameter � = 1 compared
to various nonzero lower bound values over three sample periods. We consider expanding-window estimation
with the initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-
ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts
to compute the RMSFEs. The shaded cells indicate a RMSFE that is smaller than the one of the SB-DNS
model with a lower bound of 0%, which a better out-of-sample performance of the shadow-rate model with a
nonzero lower bound value relative to a fixed lower bound specification.
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E Alternative shadow short rate estimates

(a) Lower bound analysis with � = 1 (b) Smoothness analysis with rLB = 0%

Figure E.1: Robustness analysis of shadow short rate estimates towards lower bound
value and smoothness parameter

Figure E.2: Shadow short rate estimates based on two-factor models with � = 1
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F Smoothness analysis

F.1 In-sample fit

Table F.1: In-sample fit of SB-DNS models with various smoothness parameter values

RMSE � Maturities (in months) Total

3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

B-DNS 18.1 0.0 8.7 6.8 0.0 5.6 3.0 7.0 8.2

SB-DNS

0.5 17.9 0.8 8.3 6.1 0.4 5.5 3.6 5.6 7.9
1.0 17.7 1.1 8.0 5.8 0.8 5.3 4.1 4.0 7.7
1.5 17.6 1.4 7.8 5.5 1.1 5.1 4.1 3.7 7.6
2.0 17.4 1.6 7.6 5.3 1.4 5.0 4.1 3.7 7.5
2.5 17.4 1.7 7.5 5.2 1.6 5.0 4.1 3.8 7.5
3.0 17.4 1.8 7.5 5.0 1.7 5.0 4.1 3.9 7.5
3.5 17.3 1.9 7.4 4.9 1.9 5.0 4.0 4.0 7.5
4.0 17.3 2.0 7.4 4.9 2.0 5.0 4.0 4.1 7.5

Panel B: Pre-ZLB period (December 1981 - October 2008)

B-DNS 20.7 0.0 9.2 6.8 0.0 5.8 3.1 6.3 9.0

SB-DNS

0.5 20.6 0.0 9.2 6.7 0.2 5.7 3.7 5.2 8.9
1.0 20.5 0.3 9.0 6.4 0.4 5.5 4.3 4.0 8.7
1.5 20.2 0.6 8.7 6.1 0.8 5.3 4.4 3.8 8.6
2.0 20.1 0.8 8.5 5.9 1.1 5.2 4.4 3.8 8.5
2.5 20.0 0.9 8.4 5.7 1.3 5.2 4.3 3.9 8.4
3.0 19.9 1.1 8.3 5.6 1.5 5.2 4.2 3.9 8.4
3.5 19.9 1.2 8.2 5.4 1.7 5.2 4.2 4.0 8.4
4.0 19.9 1.3 8.2 5.3 1.8 5.2 4.1 4.1 8.3

Panel C: ZLB period (November 2008 - December 2015)

B-DNS 10.9 0.0 8.6 7.9 0.0 5.9 3.4 10.7 7.2

SB-DNS

0.5 8.9 1.3 5.5 5.3 0.6 5.9 4.2 7.8 5.6
1.0 8.3 1.3 4.8 4.2 1.1 5.2 4.4 4.6 4.7
1.5 8.2 1.6 4.6 3.7 1.5 4.9 4.3 4.0 4.5
2.0 8.2 1.9 4.5 3.5 1.7 4.7 4.2 4.0 4.5
2.5 8.1 2.0 4.4 3.4 1.9 4.7 4.4 4.0 4.5
3.0 8.1 2.2 4.4 3.4 2.1 4.6 4.4 4.2 4.5
3.5 8.1 2.3 4.4 3.4 2.3 4.6 4.4 4.4 4.6
4.0 8.2 2.4 4.4 3.4 2.4 4.6 4.4 4.5 4.6

Notes: This table contains the Root Mean Squared Errors (RMSE) across maturities of the B-DNS model with a fixed
lower bound specification of 0% compared to SB-DNS models with various nonzero smoothness parameters over three
sample periods. We discard the first three observations from this calculation to make the results robust to the initial
conditions. The shaded cells indicate a RMSE that is smaller than the one of the B-DNS, which implies a better fit of
the SB-DNS model with � > 0 relative to a B-DNS model.
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F.2 Forecasting results

Table F.2: Forecasting performance of SB-DNS models with various smoothness pa-
rameter values

RMSFE � Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

B-DNS 25.4 19.1 19.8 23.7 25.7 27.4 27.2 26.9

SB-DNS

0.5 23.2 18.3 19.6 24.0 25.8 27.2 27.2 26.5
1.0 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0
1.5 23.7 18.5 19.1 23.5 25.7 27.0 27.1 25.8
2.0 23.9 18.7 19.1 23.4 25.8 27.2 27.3 26.0
2.5 24.0 18.8 19.1 23.4 25.9 27.3 27.4 26.1
3.0 23.7 19.0 19.2 23.4 25.8 27.2 27.3 26.2
3.5 23.9 19.1 19.1 23.3 25.9 27.4 27.3 26.3
4.0 24.1 19.2 19.2 23.3 26.0 27.4 27.3 26.5

Panel B: Six-month-ahead forecasts (h = 6)

B-DNS 70.8 68.9 68.7 72.4 74.8 74.0 70.7 67.4

SB-DNS

0.5 66.7 68.2 70.7 75.3 76.9 74.2 70.3 65.5
1.0 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0
1.5 66.8 67.5 69.4 73.7 75.4 72.9 68.9 63.4
2.0 67.1 67.7 69.4 73.6 75.4 73.7 70.1 64.7
2.5 66.9 67.5 69.0 73.1 75.2 74.0 70.7 65.9
3.0 65.2 66.3 67.5 71.2 73.4 72.7 69.7 65.4
3.5 66.1 66.9 67.8 71.5 73.9 73.5 70.5 66.5
4.0 66.5 67.0 67.7 71.1 73.5 73.4 70.6 67.7

Panel C: One-year-ahead forecasts (h = 12)

B-DNS 117.0 115.1 113.2 112.2 111.1 105.0 99.2 94.1

SB-DNS

0.5 119.6 120.6 121.1 120.8 118.1 107.7 99.4 90.6
1.0 107.1 109.4 109.2 107.8 105.8 98.7 92.4 84.8
1.5 118.2 118.5 118.2 117.5 114.8 105.0 97.2 88.3
2.0 118.1 118.4 117.9 116.9 114.6 105.9 98.6 89.9
2.5 117.0 117.2 116.7 115.9 114.1 106.8 100.3 92.5
3.0 110.7 111.5 110.7 109.7 108.6 103.0 97.6 91.3
3.5 111.6 112.1 111.0 110.2 109.4 104.6 99.5 94.0
4.0 111.7 111.8 110.3 109.0 108.3 104.5 100.5 97.1

Panel D: Two-year-ahead forecasts (h = 24)

B-DNS 189.0 186.5 180.7 171.0 163.8 149.8 138.2 128.7

SB-DNS

0.5 203.3 202.2 197.8 189.2 181.7 163.6 147.5 130.8
1.0 170.1 170.3 165.2 155.8 149.9 137.7 125.8 111.5
1.5 204.6 203.5 198.7 189.0 180.7 163.3 148.5 132.0
2.0 201.1 199.9 195.1 185.3 177.0 159.8 145.5 130.5
2.5 196.6 195.7 191.2 182.6 175.9 161.6 149.2 136.0
3.0 175.9 175.6 171.4 164.1 159.7 149.7 140.1 129.5
3.5 175.0 174.7 170.6 163.9 160.4 152.2 143.5 134.2
4.0 172.2 171.2 166.1 158.5 155.4 150.0 144.1 138.9

Notes: This table contains the Root Mean Squared Forecast Errors (RMSFE) across maturities and horizons
of the B-DNS model with a fixed lower bound specification of 0% compared to SB-DNS models with various
nonzero smoothness parameters over three sample periods. We consider expanding-window estimation
with the initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-
month-ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead
forecasts to compute the RMSFEs. The shaded cells indicate a RMSFE that is smaller than the one of the
B-DNS model, which implies a better out-of-sample performance of the SB-DNS model with � > 0 relative
to the B-DNS model.
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G Additional forecasting results

G.1 Forecasting results for rolling-window estimation

Table G.1: Out-of-sample performance based on rolling-window estimation

RMSFE Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 20.5 19.3 19.4 22.7 24.7 26.3 26.4 25.5

DNS 25.5 19.0 19.0 23.6 26.5 28.0 27.7 28.1
DNS-TVL 23.8 18.6 18.7 23.5 26.9 27.7 27.5 26.5

B-DNS 24.4 18.6 19.0 23.6 26.3 27.6 27.5 27.9
SB-DNS 24.2 18.8 18.7 23.3 26.1 27.4 27.5 26.4
SB-DNS-TVL 23.8 18.9 19.0 23.9 27.3 28.4 28.1 27.1

AFNS 32.4 31.3 31.7 31.2 30.2 28.0 28.0 28.3
B-AFNS 24.2 21.9 23.0 25.4 26.4 26.5 27.0 26.6

Panel B: Six-month-ahead forecasts (h = 6)

RW 66.8 66.7 65.3 66.1 67.3 65.8 63.5 60.0

DNS 71.3 69.5 70.5 76.3 80.3 79.7 75.9 73.1
DNS-TVL 71.4 70.3 73.7 80.6 85.2 83.0 77.6 72.8

B-DNS 65.7 65.2 66.6 72.5 76.3 75.7 72.5 69.4
SB-DNS 65.9 65.7 66.8 71.7 74.8 73.7 70.2 65.4
SB-DNS-TVL 70.2 70.0 73.5 80.9 85.8 84.1 78.9 73.3

AFNS 111.0 109.9 106.5 99.1 91.4 76.9 69.8 63.4
B-AFNS 79.9 80.5 81.1 80.5 77.6 69.9 65.7 61.0

Panel C: One-year-ahead forecasts (h = 12)

RW 116.5 115.1 109.6 101.4 95.9 86.8 81.4 75.5

DNS 121.6 119.9 119.7 121.7 122.5 117.2 110.9 106.4
DNS-TVL 123.6 123.2 127.1 131.8 133.6 126.2 116.6 108.5

B-DNS 111.5 110.9 110.9 112.4 113.0 107.6 101.9 96.8
SB-DNS 114.2 113.9 113.2 113.0 112.0 104.9 98.4 91.5
SB-DNS-TVL 120.5 121.2 125.4 130.5 132.5 125.3 115.9 107.1

AFNS 146.0 143.9 139.7 129.2 117.6 96.1 86.2 77.7
B-AFNS 123.8 123.2 122.2 116.3 107.8 90.3 82.6 75.0

Panel D: Two-year-ahead forecasts (h = 24)

RW 191.4 190.9 181.1 161.6 146.8 124.4 110.4 97.5

DNS 198.4 195.2 191.4 185.5 181.4 169.8 159.0 151.0
DNS-TVL 205.2 203.3 203.3 201.5 198.3 183.9 168.9 155.7

B-DNS 178.5 175.9 171.4 164.5 160.3 149.3 138.9 129.4
SB-DNS 188.9 186.7 181.8 173.1 166.8 152.6 140.5 129.2
SB-DNS-TVL 198.3 198.3 200.1 199.4 197.0 183.8 169.6 156.5

AFNS 176.2 172.6 166.8 154.0 142.1 120.5 108.7 97.7
B-AFNS 185.1 181.4 176.0 163.1 149.5 123.6 108.4 93.8

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons. We consider rolling-window estimation with a 240-month window and an
initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-ahead
forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts to
compute the RMSFEs. The shadow-rate models are all estimated with a fixed lower bound specification
of rLB = 0%, while the smooth shadow-rate model has a fixed smoothness parameter � = 1. The bold
numbers indicate the lowest RMSFE for that particular maturity and horizon.
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G.2 Additional CSSFE plots

Figure G.1: Cumulative sum of squared forecast errors for one-month ahead forecasts

Figure G.2: Cumulative sum of squared forecast errors for one-year ahead forecasts
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G.3 Forecasting results for subperiods

Table G.2: Forecasting performance over the pre-ZLB period (September 2001 - October
2008)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 29.3 27.3 27.0 31.6 33.2 31.7 29.6 26.9

DNS 33.5 25.8 26.8 32.6 34.1 32.2 30.2 27.4
DNS-TVL 33.5 26.6 25.8 31.9 34.3 32.1 30.3 27.4

SB-DNS 31.7 25.7 26.9 32.4 33.7 31.7 29.7 27.2
SB-DNS-TVL 33.1 26.4 25.8 31.9 34.2 32.0 30.2 27.3

AFNS 43.9 39.3 38.2 38.9 37.6 31.4 31.1 27.6
B-AFNS 28.7 30.3 31.0 33.1 33.6 31.4 29.5 27.0

Panel B: Six-month-ahead forecasts (h = 6)

RW 90.4 89.4 85.9 86.2 85.1 73.1 64.3 55.3

DNS 87.4 89.3 91.5 96.2 94.8 82.7 73.1 63.1
DNS-TVL 84.0 82.5 82.8 88.0 90.1 81.4 74.0 65.6

SB-DNS 80.4 85.5 87.2 89.4 86.7 74.1 64.6 55.9
SB-DNS-TVL 84.0 83.5 84.3 90.1 91.8 82.5 74.6 65.9

AFNS 144.3 139.0 133.4 123.7 110.9 82.0 70.0 53.6
B-AFNS 94.5 99.9 97.9 94.4 88.2 70.5 59.6 48.9

Panel C: One-year-ahead forecasts (h = 12)

RW 162.4 158.7 148.7 136.7 126.0 100.4 84.7 68.5

DNS 163.0 162.8 159.9 156.0 147.4 123.7 108.3 92.1
DNS-TVL 140.0 137.4 134.9 134.4 131.5 115.4 104.7 92.6

SB-DNS 144.9 148.1 144.2 136.5 125.9 101.9 87.0 73.7
SB-DNS-TVL 143.9 142.6 140.5 140.5 136.6 118.3 106.1 92.3

AFNS 212.8 206.1 200.5 187.2 166.3 120.6 98.3 71.2
B-AFNS 154.8 157.6 152.6 143.1 128.9 96.7 79.5 60.7

Panel D: Two-year-ahead forecasts (h = 24)

RW 242.4 239.9 223.1 195.3 169.2 120.2 92.4 65.0

DNS 235.9 233.7 220.4 197.2 176.9 142.3 125.0 106.6
DNS-TVL 184.2 180.3 171.7 160.1 151.3 131.9 122.6 110.4

SB-DNS 213.4 214.0 198.2 167.4 141.6 103.8 86.4 72.6
SB-DNS-TVL 196.8 193.9 185.6 173.7 163.8 141.7 129.7 114.9

AFNS 251.4 240.0 230.0 207.4 178.7 121.6 93.8 65.5
B-AFNS 231.2 229.5 214.8 187.2 160.5 114.1 89.4 68.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the pre-ZLB period from September 2001 to October 2008. The
shadow-rate models are all estimated with a fixed lower bound specification of rLB = 0%, while the smooth
shadow-rate model has a fixed smoothness parameter � = 1. The bold numbers indicate the lowest RMSFE
for that particular maturity and horizon.
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Table G.3: Forecasting performance over the ZLB period (November 2008 - December
2015)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 6.3 7.7 9.7 13.2 17.3 23.9 26.5 27.3

DNS 14.1 9.2 12.6 15.0 18.6 25.6 27.6 30.0
DNS-TVL 16.0 10.4 9.6 15.0 20.9 25.8 28.0 29.1

SB-DNS 12.9 7.9 7.2 13.4 19.0 25.4 28.0 28.3
SB-DNS-TVL 15.4 10.7 9.6 14.5 19.6 24.6 27.4 27.7

AFNS 29.0 24.1 24.5 24.1 24.0 25.1 29.0 30.1
B-AFNS 13.0 10.2 11.9 15.8 18.6 23.2 27.2 28.2

Panel B: Six-month-ahead forecasts (h = 6)

RW 37.2 39.3 40.5 43.1 49.0 61.3 65.4 65.8

DNS 52.3 47.2 45.4 51.8 61.8 73.2 74.9 75.8
DNS-TVL 74.8 70.8 71.0 75.3 81.1 85.4 83.9 82.3

SB-DNS 46.3 42.2 41.4 49.7 60.7 72.7 74.6 73.0
SB-DNS-TVL 68.3 65.0 64.2 66.0 69.6 72.6 71.2 68.1

AFNS 126.0 120.2 116.5 108.7 100.5 86.1 81.7 74.4
B-AFNS 54.8 52.1 52.5 54.8 57.1 61.8 66.0 65.4

Panel C: One-year-ahead forecasts (h = 12)

RW 68.9 70.0 66.5 58.4 58.2 69.3 75.4 76.6

DNS 80.2 75.8 76.0 82.5 92.5 101.9 102.0 101.7
DNS-TVL 126.9 123.9 125.0 126.5 128.9 126.2 119.6 115.1

SB-DNS 68.1 64.4 64.1 71.3 83.3 95.7 97.2 94.9
SB-DNS-TVL 111.0 107.7 106.7 103.8 102.9 97.7 91.1 86.5

AFNS 201.6 196.3 192.1 178.5 162.0 130.5 115.9 99.5
B-AFNS 70.8 68.8 69.4 68.4 68.5 70.6 77.5 79.5

Panel D: Two-year-ahead forecasts (h = 24)

RW 184.9 184.6 174.3 152.6 140.8 129.1 119.0 107.4

DNS 216.5 212.3 210.8 209.0 207.6 196.1 179.3 162.4
DNS-TVL 239.5 236.2 236.4 234.3 231.0 215.1 196.0 179.9

SB-DNS 152.6 148.0 145.9 147.3 153.0 153.8 143.6 129.1
SB-DNS-TVL 212.4 208.9 207.8 203.7 198.9 181.9 162.5 145.5

AFNS 320.1 315.3 309.9 287.7 258.4 200.4 164.5 125.2
B-AFNS 158.2 155.6 155.6 152.6 146.6 131.6 122.6 107.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the ZLB period from November 2008 to December 2015. The shadow-
rate models are all estimated with a fixed lower bound specification of rLB = 0%, while the smooth shadow-
rate model has a fixed smoothness parameter � = 1. The bold numbers indicate the lowest RMSFE for
that particular maturity and horizon.
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Table G.4: Forecasting performance over the most recent period (January 2016 - Octo-
ber 2020)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RW 18.5 16.9 16.4 17.7 18.7 20.0 20.5 20.1

DNS 22.1 16.7 16.4 18.0 18.9 21.2 21.0 20.8
DNS-TVL 20.8 16.2 15.9 17.4 18.4 20.5 21.0 20.7

SB-DNS 16.7 16.6 19.0 19.8 19.6 20.8 21.2 20.1
SB-DNS-TVL 17.8 15.6 16.8 18.3 19.1 21.0 21.4 21.2

AFNS 24.7 20.0 18.5 19.5 19.6 20.0 21.1 20.5
B-AFNS 16.8 18.6 19.0 17.9 18.4 20.5 21.3 21.1

Panel B: Six-month-ahead forecasts (h = 6)

RW 62.0 61.7 61.5 61.7 62.4 61.2 59.2 57.3

DNS 63.9 59.5 59.2 62.1 64.1 66.3 64.4 63.3
DNS-TVL 57.9 53.8 53.8 57.0 59.7 62.9 62.2 61.4

SB-DNS 55.3 60.7 66.3 68.1 66.9 64.0 61.0 55.8
SB-DNS-TVL 51.1 52.5 56.1 60.0 62.2 64.8 64.1 63.5

AFNS 80.1 74.7 72.0 71.2 68.9 63.7 60.9 55.6
B-AFNS 60.4 61.5 60.3 58.3 58.8 60.0 58.9 56.4

Panel C: One-year-ahead forecasts (h = 12)

RW 100.4 101.0 101.1 97.9 95.9 90.9 85.6 82.4

DNS 93.9 93.1 95.7 98.6 99.8 100.9 98.6 98.3
DNS-TVL 81.8 80.9 84.2 88.8 91.3 93.5 91.8 90.8

SB-DNS 96.3 103.4 109.7 110.5 107.2 98.9 91.8 82.2
SB-DNS-TVL 80.8 85.2 90.8 94.4 95.6 96.8 95.2 94.5

AFNS 119.9 115.2 112.8 108.9 103.0 91.8 85.3 77.7
B-AFNS 88.1 90.5 91.2 89.2 88.5 86.9 83.7 79.7

Panel D: Two-year-ahead forecasts (h = 24)

RW 127.4 130.2 134.0 131.3 128.1 121.7 115.1 110.5

DNS 120.7 123.7 128.3 131.4 133.3 136.7 137.2 141.4
DNS-TVL 106.6 108.5 112.9 116.7 118.8 121.0 120.0 122.0

SB-DNS 138.8 146.0 152.3 154.9 154.0 144.5 133.5 118.1
SB-DNS-TVL 115.2 120.4 124.8 125.1 123.8 121.8 119.5 119.8

AFNS 169.8 164.6 160.0 151.6 141.8 124.2 114.2 105.3
B-AFNS 127.2 130.8 132.3 129.3 126.7 120.9 114.6 108.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the most recent period from January 2016 to October 2020. The
shadow-rate models are all estimated with a fixed lower bound specification of rLB = 0%, while the smooth
shadow-rate model has a fixed smoothness parameter � = 1. The bold numbers indicate the lowest RMSFE
for that particular maturity and horizon.

21



References

Black, F. (1995): “Interest Rates as Options,” The Journal of Finance, 50, 1371–1376.

Caldeira, J. F., G. V. Moura, A. A. P. Santos, and F. Tourrucôo (2016):
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