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Abstract

We propose a smooth shadow-rate version of the dynamic Nelson-Siegel (DNS)
model to analyze the term structure of interest rates during the recent zero lower
bound (ZLB) period. By relaxing the no-arbitrage restriction, our shadow-rate
model becomes highly tractable with a closed-form yield curve expression. The
model easily permits the implementation of readily available DNS extensions such
as time-varying loadings, integration of macroeconomic variables and time-varying
volatility. Using U.S. Treasury data, we provide clear evidence of a smooth tran-
sition of the yields entering and leaving the ZLB state. Moreover, we show that
the smooth shadow-rate DNS model dominates the baseline DNS model in terms of
fitting and forecasting the yield curve, while being competitive with a shadow-rate

affine term structure model.
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1 Introduction

Accurately modelling and forecasting the term structure of interest rates is of key im-
portance to market participants and financial institutions in the context of portfolio and
risk management, derivatives pricing, and monetary policy. However, in the aftermath
of the global financial crisis and the recent coronavirus pandemic, this task has become
more challenging in several major economies due to a prolonged period of low interest
rates close to the so-called zero lower bound (ZLB). This ZLB is an absorbing state and
forces short-term yields to become flat and less volatile leading to asymmetric behaviour
in the entire yield curve. Unfortunately, traditional term structure models are not able
to capture these changed dynamics at the ZLB (see the discussions in Christensen and
Rudebusch, 2015, 2016; Bauer and Rudebusch, 2016; Ullah, 2019, among others). As a
result, there is a need for the development of tractable models that are able to handle
the non-linearity of the term structure of interest rates at the ZLB.

To address this issue, we propose a smooth shadow-rate version of the dynamic Nelson-
Siegel (DNS) model of Diebold and Li (2006) that softly imposes the ZLB onto the yields
via the shadow short-rate concept of Black (1995). Our model is highly tractable and,
in contrast to the no-arbitrage shadow-rate affine term structure models that we discuss
below, neither needs computationally intensive numerical methods nor forward-rate data
to be estimated. In addition, our modelling approach explicitly allows for a more gradual
transition into and out of the ZLB state such that medium- and long-term yields, that
are themselves not directly restricted by the ZLB, still recognize and account for the
presence of a lower bound and its accompanying bounded short-term yields. The smooth
shadow-rate DNS model also easily permits the implementation of readily available DNS
model extensions, which we illustrate by allowing for time-varying factor loadings in the
manner of Koopman et al. (2010) in order to capture further changed dynamics of the
yield curve at the ZLB.

We consider monthly U.S. zero-coupon government bond yields from September 1981
to October 2020, which experienced a prolonged period of being subject to the ZLB
from November 2008 to December 2015 and from March 2020 onwards.! Moreover, we

put the smooth shadow-rate DNS model in a nonlinear state-space form such that it

!The sample starts in September 1981 as the three- and six-month yields are only available from this
month onwards.



can be estimated with maximum likelihood estimation and extended Kalman filtering
methods, see Durbin and Koopman (2012).? Our empirical analysis shows that our
smooth shadow-rate DNS model provides a better in-sample fit than the DNS model in
terms of log-likelihood value, information criteria and root mean squared errors (RMSE),
especially during the ZLB period. In fact, the overall improvement in RMSE is about
8.5% over the total period and 38.8% over the ZLB period. Based on our estimated
model, we also find evidence that there is a smooth transition from a high interest-
rate to a low interest-rate environment, indicated by a significant smoothness parameter,
which captures the gradual transition, as well as better fitting performance of the smooth
shadow-rate model relative to a non-smooth version. This implies that the complete term
structure of interest rates gradually enters and leaves the ZLB state. Furthermore, we
provide evidence of time-varying loadings, where allowing for this feature in the DNS
and smooth shadow-rate DNS seems to improve the in-sample fit even further. Finally,
our smooth shadow-rate model produces a similar in-sample fit as the shadow-rate affine
term structure model.

Next, we show that the original DNS model is not able to generate plausible future
yield curve paths at the ZLB. Specifically, the DNS model lacks the ability to account for
the compression of yield volatility at the ZLB, leading to improbably high positive prob-
abilities of negative projected short- and medium-term yields. Meanwhile, the smooth
shadow-rate DNS model imposes yields to be non-negative and therefore accurately repli-
cates the low yield volatility at the ZLB. Our model additionally delivers valuable output
that can be useful for shaping policy expectations. For example, we estimate liftoff hori-
zons that indicate when the policy rate starts to diverge from the ZLB again, and find
that these are close to the realized liftoff date in December 2015. Furthermore, we exam-
ine its shadow short-rate estimates and compare them to the measures of Wu and Xia
(2016) and Krippner (2015a). Our estimates closely resemble these alternatives in terms
of level and dynamics, but they are also sensitive to the specification of the lower bound
value and smoothness parameter that governs the softness of the ZLB imposition. Yet,
the sensitivity of shadow short rates estimates to specific modelling choices is also found

in Christensen and Rudebusch (2015, 2016) and Krippner (2020), hence these estimates

2 Alternatively, our smooth shadow-rate DNS model could be estimated with the two-step approach
of Diebold and Li (2006) based on (nonlinear) least squares to make estimation even more tractable.
Yet, this two-step procedure ignores the estimation uncertainty associated with the first step such that
we instead opt for the one-step extended Kalman filter approach.



should always be used with caution.

Lastly, we assess the relative out-of-sample performance of the smooth shadow-rate
DNS model. Most prominently, we find that our smooth shadow-rate DNS model out-
performs the baseline DNS model for all forecasting horizons and yield horizons, where
this improvement is strongest for longer horizons during the ZLB period. In contrast,
the imposition of time-varying loadings does not lead to forecast improvements compared
to constant loading models. We additionally find that our smooth shadow-rate model
produces better forecasts than the shadow-rate affine term structure model for longer
horizons and short-term yields, but is outperformed for long-term yields.

Our work is closely related to and builds on two strands of term structure modelling
literature. First, it relates to the existing literature on shadow-rate term structure models
that respect the ZLB.? Specifically, shadow-rate models impose that the observed short
rate is the maximum of a lower bound, often assumed zero, and a shadow short-rate
that would prevail in a world without physical currency and hence can become negative.
Most, if not all, literature on shadow-rate models apply this concept in the framework of
the theoretically consistent class of (no-arbitrage) affine term structure models (ATSM)
(Vasicek, 1977; Cox et al., 1985; Duffie and Kan, 1996; Dai and Singleton, 2000). However,
this implementation does not lead to closed-form analytic bond price formulas such that
numerical methods (Gorovoi and Linetsky, 2004; Bomfim, 2003; Kim and Singleton, 2012;
Ichiue and Ueno, 2007) or ZLB bond price approximations (Krippner, 2012; Christensen
and Rudebusch, 2015, 2016; Wu and Xia, 2016; Bauer and Rudebusch, 2016) are required.
Despite these advances, shadow-rate ATSM estimation remains computationally intensive
(Bauer and Rudebusch, 2016), especially with a large number of parameters as in macro-
finance models. Hence, we contribute to this strand of literature by providing a reduced-
form shadow-rate model that is highly tractable, even in a large dimensional parameter
space. This tractability comes at the cost of not necessarily satisfying the no-arbitrage
restriction. Whether or not that matters a lot is an open question, as literature generally
finds mixed results on the empirical importance of no-arbitrage restrictions and empirical

difference of the DNS model and arbitrage-free models (see, for example, Duffee, 2011;

30ther term structure models that obey the ZLB are, among others, quadratic models
(Kim and Singleton, 2012; Chung and Tiboshi, 2015; Chung et al., 2017; Andreasen and Meldrum, 2019),
autoregressive gamma zero models (Monfort et al., 2017; Roussellet, 2020), linear-rational models (Fil-
ipovié et al., 2017) and regime switching models (Christensen, 2015).



Coroneo et al., 2011; Krippner, 2015b).4

Second, our work is related to the strand of literature that employs reduced-form
models for the term structure of interest rates. Most prominently, the DNS model of
Diebold and Li (2006) gained popularity due to its simplicity, stable estimation and
good in-sample and out-of-sample performance. Moreover, the DNS model allows itself
to be fairly easily augmented in various directions. Extensions include the integration
of macroeconomic variables (Diebold et al., 2006; Exterkate et al., 2013; Koopman and
van der Wel, 2013; Coroneo et al., 2016), or adding time-varying volatility or factor
loadings (Koopman et al., 2010; Caldeira et al., 2010; Laurini and Hotta, 2010; Hautsch
and Ou, 2012; Hautsch and Yang, 2012; Hevia et al., 2015; Laurini and Caldeira, 2016),
time-varying unconditional means (Dijk et al., 2014), or time-varying parameter vector
autoregressions (Byrne et al., 2017). However, applying the reduced-form DNS model in
the context of shadow-rate term structure modelling has, to the best of our knowledge,
not been considered.” Our work bridges the gap between the shadow-rate class and
reduced-form class of term structure models to obtain a model that obeys the ZLB and
at the same time remains highly tractable. Besides the tractability, our novel shadow-rate
DNS model thus has as appealing feature that there is the flexibility to incorporate the
aforementioned model extensions.

The remainder of this paper is as follows. Section 2 introduces our smooth shadow-
rate version of the DNS model. Section 3 discusses and presents the U.S. government
bond yield data. Section 4 displays our empirical analysis in terms of in-sample and out-
of-sample performance as well as some policy insights at the ZLB. Section 5 summarizes

our main conclusions.

2 Smooth shadow-rate dynamic Nelson-Siegel model

In this section we discuss the dynamic Nelson-Siegel model of Diebold and Li (2006) and
its augmentation into the smooth shadow-rate version that respects the ZLB. Moreover,

we discuss the time-varying factor loading extension and the estimation framework of the

4For further discussion on and comparison of the DNS and arbitrage-free Nelson-Siegel (AFNS)
models, see Diebold and Rudebusch (2013).

Related work of Kang (2015) and Abdymomunov et al. (2016) does impose a ZLB restriction onto
the DNS model, but this essentially boils down to a Bayesian estimation approach that restricts yields
to be non-negative and does not reflect the idea of the shadow-rate framework.
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models in a (non)linear state-space form.

2.1 Dynamic Nelson-Siegel model

The term structure of interest rates can take on a variety of shapes such as monotonically
increasing or decreasing, humped and inverted humped. A parsimonious yield curve
expression that is able to capture all these different shapes is the function proposed by
Nelson and Siegel (1987). This function is, in turn, modified by Diebold and Li (2006)

to allow for time-varying factors resulting in the expression

_ AT _ AT
Yi(7) = B + B (1)\—(;) + B3¢ (1)\—(; — 6”) ; (1)

where y,(7) is the yield of a zero-coupon bond at time ¢ with time to maturity 7, A is
the factor loading parameter, and [y, oy and [3; are latent time-varying factors, which
have the interpretation of level, slope and curvature, respectively.

These factor interpretations are explicitly imposed by the factor loading structure.
More specifically, the level factor is a long-term factor as it has a constant loading that
does not decay to zero when time to maturity increases, that is, Tlggo yi(7) = P The
slope factor is a short-term factor as its loading starts at one and converges to zero
when time to maturity increases, while the curvature factor is a medium-term factor as
its loading start at zero, then increases, but in the end converges to zero when time to
maturity increases. Lastly, the model-implied short rate r; is given by the sum of the
level and slope factors, that is, r, = 113% Y (1) = Bie + P

The model lends itself to be easily written in state space form, following Diebold et al.
(2006). Given a set of N observed yields at time ¢, collected in the observation vector

y? = (y2(m), ...,y (7n))’, the measurement equation is given by

y? = A(A)ﬁt + &4, &y~ N(Oa 2&‘)7 (2)

for t = 1,...,T, where B; = (P, Par, B3t)" is the 3 x 1 vector with latent factors, e; is

the N x 1 measurement disturbance vector with covariance matrix X, and A(\) is the



N x 3 factor loading matrix given by

_e—ATL _e—AT] _
e

A =

1 1—e N 1—e N AT
ATN ATN

Furthermore, we model the dynamics of 3; as a vector autoregressive (VAR) process of

order 1 such that the state equation is given by
Br=a+I'Bi1+mn, n ~ N(0, %), (3)

fort = 1,...,T, where ¢ is a 3 x 1 vector with constants, I' is a 3 X 3 matrix with
VAR coefficients and 7, is the 3 x 1 state disturbance vector with covariance matrix
X,. The initial conditions are specified as By ~ N (p, X3), where p = (I — I') 'ex and
covariance matrix Xg is chosen such that it satisfies X3 — I'Y3I" = X, see Hamilton
(1994, section 2.2) for further details. We ensure stationarity of the VAR process via
the reparameterization of I" and X, as proposed by Ansley and Kohn (1986). Moreover,
we follow Diebold et al. (2006) and assume for computational tractability that X. is
diagonal, while X, remains non-diagonal. The complete dynamic Nelson-Siegel (DNS)

model is given by equations (2) and (3).

2.2 Imposing a smooth lower-bound restriction

On its own, the DNS model does not restrict yields to be non-negative and, consequently,
assumes that the yield curve behaves the same in low interest-rate environments as in
high interest-rate environments. However, Black (1995) already notes that the observed
short rate in the market cannot become (too) negative due to the presence of a physical
currency with a natural interest rate of zero.® Therefore, the short rate 7, is the maximum
of a lower bound 7,5 and a shadow short rate s; that would prevail in a world without
the option of physical currency, that is, r, = max(rpg, s;).

By assuming that all yields can not go below the lower bound value, we generalize

6In practice, the natural interest rate of physical currency is not exactly zero due to transaction and
storage costs.



this idea directly onto the yield curve such that

y,(T) = rip + max (07 (1) — TLB>,

where y (7) is called the zero lower bound (ZLB) yield curve and y;(7) is now called the
shadow yield curve.” Plugging in the Nelson-Siegel equation (1) as shadow yield curve,
results in a DNS model that imposes yields to be equal or larger than the lower bound
rrp and for which the shadow short rate is equal to s; = S1; + B2:. We refer to this model
as the shadow-rate DNS (B-DNS) model.?

This direct lower bound approach nevertheless assumes that yields are either behaving
in a traditional way above rpp or are flat and equal to rpg. That is, the B-DNS model
is non-smooth with a kink at r;p that separates yields into two possible states. Conse-
quently, an interest rate close, but above, the lower bound value (say, 0.25%) behaves
similarly as when it is further away from the lower bound (say, 4%), while it seems more
plausible that the asymmetry of the ZLB already starts to present at small, but positive,
interest-rate levels close to the lower bound (say at 1%). This is particularly relevant for
medium- and longer-term yields that are themselves not directly constrained by the ZLB,
but experience the asymmetry caused by the restricted short-term yields. Therefore, we
introduce a smoother transition between a high interest-rate state and the ZLB state.
To do so, we consider a smooth approximation function of the max function, denoted by
f(+), such that we obtain the ZLB yield curve expression

0, (r) = ru5 + 2 (“%ﬂ | @)

where v > 0 measures the smoothness of the approximation. We adopt the function
f(z) = z®(z) + ¢(x) that could be obtained as the antiderivative of ®(-), where ®(-)
and ¢(-) are the cumulative and probability density functions of the standard normal

distribution, respectively.” This specific function f(-) is inspired by the ZLB forward-rate

"Note that the assumption that all yields can not go below the lower bound value is also implicitly
made in the shadow-rate affine term structure models, see the discussion in Christensen and Rudebusch
(2015, p. 233).

8We follow the convention of Kim and Singleton (2012) to use the prefix "B-" for a shadow-rate
model in the spirit of Black (1995).

9Naturally, there exist various other functions that could be used for this approximation such as the
softplus function f(x) = log(1l + e*). However, we opt for the function f(z) = z®(x) + ¢(z) due to its
resemblance with the ZLB forward-rate approximation in the no-arbitrage shadow-rate models.

7



approximation of Krippner (2012) and Wu and Xia (2016) in the context of a shadow-rate
affine term structure model.'® The advantage of our reduced-form DNS framework is that
we can directly impose the function onto the yield curve without the need for numerical
integration, while in these aforementioned papers the ZLB forward-rate approximation
does require numerical integration to obtain the ZLB yield curve.

Figure 1 shows the smooth approximation of the max function for a range of values
of 7. From the figure it is clear that a higher (smaller) value of v results in a less
(more) noticeable kink. In the context of the ZLB forward rate approximation in the
shadow-rate affine term structure model class, this smoothness parameter v is related to
the conditional variance in the shadow-bond option-price formula such that it becomes a
function of the time-to-maturity and risk-neutral volatility parameters of the latent factor
dynamics (Christensen and Rudebusch, 2015). However, in our reduced-form framework
the parameter v can be specified more freely. For example, we can pre-specify v, say at
a value of 1, or it can be estimated as a free parameter. In fact, v could be specified as a
function of the time-to-maturity 7, for example, by using spline functions, or even made
time-varying, but these extensions are left for further research.!!

Taking the function f(z) = z®(z) + ¢(x) and plugging it into equation (4) provides

6 -
—~y =0.5
5Ll---v=1.0 3
~v=1.5
L[y = 2.0

-4 -2 0 2 4

Figure 1: Illustration of the function vf(-/) as approximation of the max function

10Gee Appendix A for further details on this approach in the context of the shadow-rate arbitrage-free
Nelson-Siegel (B-AFNS) model of Christensen and Rudebusch (2015, 2016).

HSome preliminary results in Appendix B indeed show that the estimate of v is slightly decreasing
as a function of 7.



the smooth ZLB yield curve

y,(7) =715 + (Y(7) —TLB)® (yt(ﬂ%) + 6 (?/15(7')%7113) '

We refer to this model as the smooth shadow-rate DNS (SB-DNS) model. Writing again
yy for the observation vector at time ¢, the measurement equation of the SB-DNS model

is given by
yf:’/’LBL—i-(A()\)ﬁt_TLBL>®E+7ft+5tv €tNN(0>Z€)a (5)

where @ is the Hadamard product, ¢ denotes an N x 1 vector with ones, F; = (Fyy, ..., Fny)
with Fyy = ®((ye(s) —rs)/7) and f; = (fie, .., fve) with fir = ¢((ye(m:) —rp) /7). We
thus get a nonlinear state-space model as the factors 3; appear in the nonlinear functions
®(-) and ¢(+) in F; and f; of equation (5), as well as in A(X)B; —rppt. The state equation
of the SB-DNS model, governing the dynamics of the factors, is the same as for the DNS

model in equation (3).

2.3 Time-varying factor loadings

To demonstrate the potential and model flexibility of the SB-DNS model to be easily
augmented with readily available DNS extensions, we allow for time-varying factor load-
ings based on the approach of Koopman et al. (2010). Consequently, this enables us to
examine whether time-varying loadings help to capture changed dynamics of the yield
curve at the ZLB, as was suggested by Diebold and Rudebusch (2013, p. 103). This
has, to the best of our knowledge, not been assessed yet. Traditionally, the DNS model
assumes constant factor loadings via a time-invariant parameter A\, where Diebold and Li
(2006) fix A at 0.0609 such that it maximizes the curvature factor loading at a maturity of
30 months, while Diebold et al. (2006) estimate it to be 0.077 in a state-space framework
with a maximum at 23.3 months. Meanwhile, the arbitrage-free Nelson-Siegel (AFNS)
model of Christensen et al. (2011) and its shadow-rate counterpart (Christensen and
Rudebusch, 2015) require A to be constant over time in order to impose the no-arbitrage

restriction.'?

12Recently, though, Han et al. (2021) relax this strict assumption needed for the no-arbitrage restric-
tion and generalize the AFNS model to have a time-varying loading, which they show to have predictive



Koopman et al. (2010) argue that the assumption of constant factor loadings might be
too restrictive since the factor structure of the slope and curvature factors could change
over time. Koopman et al. (2010) and Laurini and Caldeira (2016) indeed show that \; is
time-varying for U.S. government bond yields and that incorporating this feature improves
the fit relative to constant loadings, whereas this improvement is even more pronounced
in emerging markets such as Brazil (Caldeira et al., 2010). To implement this feature
into the baseline and smooth shadow-rate DNS models, we follow Koopman et al. (2010)
and consider Sy = A\; to be an additional latent factor such that the state equation (3)

increases in dimension with a fourth latent factor. We denote the corresponding models

as (SB-)DNS-TVL.

2.4 Estimation framework

The DNS model given by equations (2)-(3) falls in the class of linear Gaussian state-space
models such that, given the parameter set © consisting of A and the elements in o, I'; 3,
and X, the latent factors in the state vector can be recursively estimated via the Kalman
filter (KF). Furthermore, the SB-DNS model with measurement equation (5) and state
equation (3) as well as the TVL models fall in the class of nonlinear Gaussian state-space
models, with © potentially extended to include 5 and 7, such that the latent factors can
be estimated via the extended Kalman filter (EKF). For a complete treatment of the KF
and EKF, see Durbin and Koopman (2012). Given the estimated/predicted states, we
can evaluate the log-likelihood function based on the prediction error decomposition. We
numerically maximize the log-likelihood function with respect to © via a quasi-Newton
optimization method, where the starting values are obtained via the two-step estimation
approach of Diebold and Li (2006). For further details on the estimation framework and
the (E)KF recursions, see Appendix C.

3 Data

In our empirical application we consider U.S. Treasury zero-coupon bond yields for eight
maturities, namely three months, six months, one year, two years, three years, five years,

seven years and ten years, which are similar to the ones used by Christensen and Rude-

power for business cycles and real economic activity.
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busch (2016). The yields are obtained from the H.15 series of the Federal Reserve Board,
where we take the end-of-the-month yield observations, starting from the date where they
become available for all maturities, that is, September 1981 up to October 2020, resulting
in 470 monthly observations.'?

Table 1 displays the summary statistics of the monthly yields across maturities con-
taining the mean, standard deviation, minimum, maximum and three autocorrelations.

The yield curve is on average upward sloping, which also holds for the minimum of the

Table 1: Summary statistics of U.S. government bond yields across maturities

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: Total period (September 1981 - October 2020)

Mean 3.89 4.07 4.24 4.58 4.79 5.15 5.43 5.63
Std. 3.21 3.32 3.39 3.48 3.46 3.34 3.25 3.14
Min. 0.00 0.03 0.09 0.11 0.11 0.21 0.39 0.55
Max 15.05 16.19 16.64 16.69 16.45 16.27 16.05 15.84
p(1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
p(12) 0.88 0.89 0.89 0.91 0.92 0.92 0.93 0.93
p(24) 0.75 0.77 0.79 0.83 0.86 0.88 0.89 0.90
Panel B: Pre-ZLB period (September 1981 - October 2008)

Mean 5.38 5.61 5.81 6.21 6.41 6.72 6.94 7.08
Std. 2.71 2.83 2.89 2.94 2.91 2.80 2.75 2.67
Min. 0.46 0.94 1.09 1.32 1.58 2.30 2.87 3.37
Max 15.05 16.19 16.64 16.69 16.45 16.27 16.05 15.84
p(1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
p(12) 0.77 0.78 0.80 0.82 0.83 0.85 0.86 0.87
p(24) 0.56 0.58 0.63 0.70 0.74 0.79 0.82 0.84
Panel C: ZLB period (November 2008 - December 2015)

Mean 0.08 0.16 0.26 0.55 0.86 1.52 2.07 2.56
Std. 0.06 0.10 0.16 0.27 0.39 0.54 0.62 0.63
Min. 0.00 0.03 0.09 0.20 0.30 0.59 0.98 1.51
Max 0.26 0.49 0.90 1.14 1.70 2.69 3.39 3.85
p(1) 0.78 0.83 0.83 0.90 0.91 0.92 0.92 0.92
p(12) 0.23 0.26 0.38 0.52 0.49 0.36 0.31 0.29
p(24) 0.34 0.16 0.00 -026 -039 -0.39 -0.31 -0.17

Notes: This table contains the mean, standard deviation (std.), minimum (min.) and maximum
(max.) of monthly U.S. government bond yields across maturities in percentage points. The rows
with p(1), p(12), p(24) display the one month, one year and two year sample autocorrelations,
respectively.

13The data set of the H.15 series can be found at https://www.federalreserve.gov/releases/
h15/default.htm. Further details about the yield curve data methodology are available at https:
//home . treasury.gov/policy-issues/financing-the-government/interest-rate-statistics.
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yields. Indeed, Figure 2 shows that long-term yields are generally above short-term yields.
Next, we see that after the global financial crisis (GFC) of 2007-2008 short-term yields
have been close to the ZLB for a prolonged period from December 2008 till December
2015. After this ZLB period, interest rates started to increase again until the corona virus
pandemic hit, which brought yields back to the ZLB. The ZLB periods are indicated with
grey in the figures.

The ZLB period is accompanied with changed dynamics for the entire yield curve.
Table 1 shows summary statistics also for the pre-ZLB period (Panel B) and for the ZLB
period (Panel C). During the pre-ZLB period there seems to be an inverted U-shape
curve between the yield curve volatility (measured as the standard deviation) and the
time to maturity, with the highest volatility at the two-year maturity. However, during
the ZLB period there exists an increasing volatility pattern in maturity as short-term
yields are stuck at the ZLB. This compression of the short-term yield level and volatility
relative to long-term yields is also observed in Figure 2. Furthermore, Table 1 shows
that yields are less persistent during the ZLB period than is observed during the pre-
ZLB period. In particular, long-term yields are more persistent than short-term yields
during the pre-ZLB period, whereas this stylized fact disappears for the one and two year
autocorrelations during the ZLB period. Overall, these changes in dynamics indicate the

need of a model that accounts for the yield asymmetry and volatility compression at the

ZLB.
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Figure 2: Time series of U.S. government bond yields with shaded ZLB periods. Panel
(a) shows the full sample-period while panel (b) zooms in on the period after the global
financial crisis.
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4 Empirical results

In Section 4.1 we first assess the estimation results and in-sample fit of the smooth
shadow-rate model compared to the baseline DNS model, time-varying factor loading
models and (shadow-rate) affine term structure models. Next, in Section 4.2 we examine
the shortcomings of the DNS model at the ZLB and how these are resolved with the
smooth shadow-rate adaption, after which we look in Section 4.3 how our novel model is
able to provide policy insights during ZLB periods. Lastly, in Section 4.4 we examine the
relative out-of-sample performance of the smooth shadow-rate model compared to other

benchmarks.

4.1 In-sample fit

We start our in-sample fit analysis by comparing the estimated models in terms of their
log-likelihood values, Akaike information criteria (AIC) and Bayesian information criteria
(BIC), which are given in Table 2. Following the recommendation of Christensen and
Rudebusch (2016) for U.S. government bond yields, we estimate all shadow-rate models
with a fixed lower-bound specification of 0%, something which we relax in Appendix D."
The table presents the DNS and SB-DNS models with and without time-varying loadings
(indicated with TVL in the table) and the B-DNS model. We also include the closest
affine term structure model and its shadow-rate counterpart: the arbitrage-free Nelson-
Siegel (AFNS) model of Christensen et al. (2011) and the shadow-rate AFNS model of
Christensen and Rudebusch (2015), see Appendix A for further details.

There are three key findings based on this comparison. First, by comparing the DNS
and SB-DNS model, we find that the imposition of the smooth shadow-rate framework
results in a substantial gain in the log-likelihood value from 2615.7 to 3080.6. This gain
is accompanied with only one additional free parameter that is estimated, namely the
smoothness parameter v. The AIC and BIC values indeed indicate that, despite the
penalization of the additional model parameter, the SB-DNS model is still preferred over
the baseline DNS model. The maximum likelihood estimate of v is equal to 2.679 with

a standard error of 0.206.!> Hence, the estimate of ~ is highly significant and provides

14For some regions, for example in Europe, it seems more plausible to have a time-varying lower
bound, see Kortela (2016), Lemke and Vladu (2017) and Wu and Xia (2020), among others. This can
easily be accommodated in our SB-DNS model as well, but these applications are left for further research.
15The complete overview of parameter estimates of the DNS and SB-DNS models are given in Ap-
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Table 2: Log-likelihood values and information criteria

Log-likelihood #6 AIC BIC LR-statistic

DNS 2615.7 27 -11.0 -10.8

DNS-TVL 3007.6 38 -12.6 -12.3 783.8
B-DNS 2614.1 27 -11.0 -10.8 X
SB-DNS 3080.6 28 -13.0 -12.7 929.8
SB-DNS-TVL 3251.0 39 -13.7 -13.3 1270.5
AFNS 2245.1 27 -94 -9.2

B-AFNS 2593.2 27 -10.9 -10.7

Notes: This table contains the log-likelihood values, Akaike information criteria (AIC), Bayesian
information criteria (BIC) and the likelihood-ratio (LR) test statistics across models. The LR test
statistics consider the DNS as null. We discard the first three observations from this calculation
to make the results robust to the initial conditions. The shadow-rate models are estimated with a
fixed lower-bound specification of ;g = 0%, while the smooth shadow-rate models have an estimated
smoothness parameter .

strong evidence of a smooth transition into the ZLB state. Notably, the B-DNS model
has a substantially lower log-likelihood value than the SB-DNS model. In fact, its log-
likelihood value is even smaller than the one of the baseline DNS model, although the
difference is small. The filtered yield factors of the DNS and SB-DNS models are shown
and compared in Figure 3. The filtered factors of the DNS and SB-DNS models differ
more for the slope and curvature factors than for the level factor, where for all factors
the differences are more pronounced during the shaded ZLB periods. The differences
between the filtered shadow short rate and short rate proxies the ZLB wedge measure,
which gauges how tightly the ZLB restricts the yield curve, see for example Bauer and
Rudebusch (2016) for a more detailed discussion on the ZLB wedge. As expected, this
wedge is large during the ZLB period. However, it is also sizeable outside of this period,
when yields are close to zero, as for example was the case during 2002 through 2005.
Second and consistent with the findings of Koopman et al. (2010), we find that al-
lowing for time-varying factor loadings results in a significant improvement in the log-
likelihood value for both the DNS and SB-DNS model with likelihood gains of 391.1 and
170.4, respectively. When introducing time-varying loadings, 11 new parameters are in-
troduced, but penalizing the number of parameters still results in lower AIC and BIC
values for the time-varying loading models. Figure 4 plots the filtered factor loading

parameter. For both the DNS and SB-DNS variant with time-varying loadings the se-

pendix B.
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ries behave similarly and both display strong time-variation. The loadings differ most
strongly during the ZLB period, albeit also outside of it, where they are slightly higher
for the SB-DNS model during the ZLB periods than for the DNS model.

Third, when comparing with the AFNS and B-AFNS models, there is a stark difference
in likelihood. The log-likelihood values of the (B-)AFNS model variants are substantially
lower than the ones of the DNS and SB-DNS model. Nevertheless, also for the AFNS
model class it is clear that the imposition of the shadow-rate framework improves the
log-likelihood value and information criteria.

Next, we assess the in-sample fit across models in terms of their root mean squared
errors (RMSEs). Table 3 presents the RMSEs of the aforementioned models for all eight
maturities during the total sample period, the pre-ZLB period and the ZLB period. For
all three periods, the SB-DNS model has a lower RMSE than the DNS model for five out
of eight maturities, where the DNS model seems to overfit the three-month and three-year
yields.'® Figure 5 presents the yield curve fit for nine selected dates, with varying yield
curve shapes. Both the DNS and SB-DNS model are able to accurately fit the different
yield curve shapes, although the SB-DNS model seems to be more flexible for short- and
long-term yields. Specifically, on 27 February 2004, which occurs during the low interest
rate period of 2004, the DNS and SB-DNS model have a highly similar yield curve fit for
all maturities. This also holds for 31 December 2008, just after the FOMC announcement
of cutting the federal funds rate for the first time to the 0%-0.25% range.!” However,
the dates occurring in the middle of a ZLB period (that is, 29 October 2010, 31 August
2011 and 30 October 2020) clearly show a better fit of the SB-DNS model, particularly
for short-term maturities. The overall improvement across maturities in RMSE of the
SB-DNS model relative to the DNS model is about 8.5% for the total period, 6.7% for
the pre-ZLB period, and 38.3% for the ZLB period. Noteworthy, the B-DNS model has a
similar in-sample fit as the DNS model, which indicates that the imposition of the smooth
lower bound restriction really helps to improve the fit relative to a hard lower bound. To
summarize, the SB-DNS model delivers a substantial improvement in terms of in-sample
fit relative to the DNS and B-DNS models, particularly during the ZLB period.

The inclusion of time-varying factor loadings improves the total RMSE relative to the

16This overfitting seems to be an idiosyncrasy of this selection of maturities as Christensen and
Rudebusch (2016) find something similar for the AFNS model and the one-year and three-year yields.

17See the FOMC statement on 16 December 2008: https://www.federalreserve.gov/newsevents/
pressreleases/monetary20081216b.htm.
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Table 3: In-sample model fit

RMSE Maturities (in months) Total
3 6 12 24 36 60 84 120
Panel A: Total period (December 1981 - October 2020)
DNS 18.1 0.0 8.8 6.8 0.0 5.6 3.0 7.1 8.2
DNS-TVL 14.1 2.2 6.2 4.9 1.8 4.6 4.8 2.5 6.3
B-DNS 18.1 0.0 8.7 6.8 0.0 0.6 3.0 7.0 8.2
SB-DNS 174 1.7 7.5 0.1 1.6 2.0 4.1 3.8 7.5
SB-DNS-TVL 15.6 2.3 6.2 4.9 2.2 4.7 4.6 2.4 6.8
AFNS 16.7 2.1 8.1 5.3 0.1 6.1 4.2 7.5 7.8
B-AFNS 16.0 1.8 8.4 5.0 1.5 5.7 4.0 6.3 7.5
Panel B: Pre-ZLB period (December 1981 - October 2008)
DNS 20.7 0.0 9.2 6.8 0.0 0.8 3.0 6.3 9.0
DNS-TVL 16.1 2.5 6.8 5.5 1.8 5.1 4.9 2.6 7.1
B-DNS 20.7 0.0 9.2 6.8 0.0 5.8 3.1 6.3 9.0
SB-DNS 20.0 1.0 8.3 5.7 1.4 5.2 4.3 3.9 8.4
SB-DNS-TVL 17.8 1.8 6.8 0.6 2.1 5.2 4.9 2.4 7.6
AFNS 19.3 2.3 9.0 9.5 0.1 6.4 4.1 7.1 8.6
B-AFNS 18.6 1.4 9.7 5.6 1.2 6.2 3.8 6.4 8.4
Panel C: ZLB period (November 2008 - December 2015)
DNS 11.0 0.0 8.8 7.9 0.0 2.9 3.3 10.7 7.3
DNS-TVL 7.5 1.1 4.9 3.3 2.0 3.7 5.3 2.9 4.3
B-DNS 10.9 0.0 8.6 7.9 0.0 5.9 3.4 10.7 7.2
SB-DNS 8.1 2.1 4.4 3.4 2.0 4.6 4.4 4.1 4.5
SB-DNS-TVL 8.0 2.6 3.6 2.5 2.3 3.4 4.5 2.9 4.1
AFNS 9.5 1.8 6.6 2.9 0.1 6.5 5.1 10.2 6.6
B-AFNS 7.2 24 4.5 3.3 2.0 4.7 4.7 6.6 4.8

Notes: This table contains the Root Mean Squared Errors (RMSE) in basis points across maturities and baseline, time-
varying loading and shadow-rate models over three sample periods. We discard the first three observations from this
calculation to make the results robust to the initial conditions. The shadow-rate models are all estimated with a fixed
lower bound specification of g = 0%, while the smooth shadow-rate models have an estimated smoothness parameter
~. The bold numbers indicate the lowest RMSE for that particular maturity and period.

baseline DNS model even further for all three periods. Specifically, the decrease in total
RMSE is about 23.2% for the total period, 21.1% for the pre-ZLB period, and 41.1% for
the ZLB period. Including time-varying factor loadings in the SB-DNS model also seems
to improve the fit, albeit to a lesser extent, with decreases in total RMSE of 9.3% for the
total period, 9.5% for the pre-ZLB period, and 8.9% for the ZLB period. Most of these
improvements in RMSE are observed for the three-month, one-year, two-year, five-year
and ten-year yields, whereas for the other maturities there is a slight deterioration in fit.

Lastly, the AFNS model performs slightly worse than the original DNS model for five
out of eight maturities during the total and pre-ZLB period, and for four out of eight
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Figure 5: Yield curve fit and observations across maturities (in months) for nine selected
dates

maturities during the ZLB period. Nonetheless, the total RMSE, taking all maturities
into account, is smaller for AFNS than for the DNS model in all three periods. The
B-AFNS model performs substantially better than the AFNS model, particularly during
the ZLB period with a decrease in total RMSE of 28.8%. The RMSEs of the B-AFNS
model are close to the ones of the SB-DNS model for most maturities. Looking at the
total RMSEs, they are the same for the total period and the pre-ZLB period, but lower
for the SB-DNS model during the ZLB period. To examine this further, Figure 6 plots
the residuals of four models: DNS, SB-DNS, AFNS and B-AFNS. The residuals of the
SB-DNS and B-AFNS are close to each other and both improve upon the DNS and AFNS
models during certain parts of the ZLB period, particularly for the three-month, one-year
and ten-year maturities. Hence, the SB-DNS model is competitive with the more rigorous

class of shadow-rate affine term structure models in terms of in-sample fit.

18



12-months

T REAT
—=n

0.2+

o
:: -
-
<7
-2
o e
Sy
2>
Ao ol
et
2k
wre o
5,5-‘.
o
- =

-0.2 ¢

2010 2012 2014 2016 2018 2020

36-months 120-months

0.2+

0rz VovE “"“Wwwr‘

-0.2 ¢

2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020
----------- DNS SB-DNS - - - AFNS -.----B-AFNS

Figure 6: Time series of yield curve residuals across maturities in the post-GFC period
with shaded ZLB periods

4.2 Why do we need to impose the ZLB?

Beside the inferior in-sample fit of the plain DNS model compared to the shadow-rate
models, we show in this subsection that the DNS model also lacks the ability to generate
plausible future yield curve behaviour at the ZLB, which is also found for the plain affine
term structure models. First, Figure 7 displays the conditional probabilities of negative
three-month ahead yields from the DNS model, based on 10,000 simulations at each
observation date ¢. Prior to the GFC, all yields have negligible probabilities of turning
into negative territory, except perhaps for the three-month yield around 2004. However,
the probabilities of the three-month and two-year yields increase substantially during the
ZLB period. In fact, even the ten-year yield shows positive probabilities close to 0.2 after
the corona virus pandemic hit the U.S. Hence, by ignoring the ZLB, the DNS model is not
able to generate realistic future interest rate paths as U.S. interest rates did not become

negative during our sample with a minimum of 0.55 for the ten-year yields (see Table 1).
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Figure 7: Conditional probabilities of negative three-month ahead yields from the DNS
model with shaded ZLB periods

These unlikely high positive probabilities of negative interest rates are also found for the
standard affine term structure model class, see Christensen and Rudebusch (2015, 2016)
and Bauer and Rudebusch (2016), among others.

Second, we address the inability of the DNS model to capture yield-curve compres-
sion at the ZLB. Figure 8 shows the conditional volatility of three-month ahead yields
obtained from the DNS, B-DNS and SB-DNS models, based on 10,000 simulations at
each observation date t. For comparison, we also include a realized-volatility (RV) mea-
sure, where we follow Christensen and Rudebusch (2016) and compute rolling standard
deviations of daily yield changes over the number of trading days in the next 91-day win-
dow. Due to the linearity of the DNS measurement equation and the convergence of the
covariance matrix of the latent factors, we expect that the DNS model produces constant
yield volatility, which is indeed found in Figure 8 with a level close to 0.6. However, for
both the three-month and two-year yield, the RV measure decreases drastically after the
GFC to a level of 0.1-0.2. Meanwhile, the SB-DNS model is able to replicate this decrease
in volatility and sticks more closely to the RV measure, although there is some divergence
of the series between the two ZLB periods. The B-DNS model is partly able to capture
the volatility compression, but it converges rather quickly to the constant volatility level
of the DNS model. Overall, the DNS model is not able to capture the observed yield
volatility compression at the ZLB, while the SB-DNS model can accurately replicate this

compression. These shortcomings in capturing the low yield volatility is also found for the
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Figure 8: Three-month ahead realized and model-implied conditional volatility series of
yields in the post-GFC period with shaded ZLB periods

standard affine term structure model (Christensen and Rudebusch, 2015, 2016), which is

then resolved with the shadow-rate affine term structure model.

4.3 Policy insights at the ZLB

In this subsection we provide some policy insights at the ZLB that can be obtained from
our smooth shadow-rate DNS model. More specifically, we first examine and compare the
estimated shadow short rates, which some advocate to be a useful measure of the stance of
unconventional monetary policy at the ZLB (Bullard, 2012; Krippner, 2013; Wu and Xia,
2016; Francis et al., 2020). Indeed, quite some recent work has adopted shadow short-rate
estimates to assess the efficiency of (un)conventional monetary policy (Damjanovi¢ and
Masten, 2016; von Borstel et al., 2016; Ouerk et al., 2020). Nonetheless, Christensen and
Rudebusch (2015, 2016) and Krippner (2020) show that shadow short-rate estimates are
highly sensitive to choices in their estimation such as the model specification and the
used data. Unsurprisingly, in Appendix E we show that the level of our shadow short
rate estimates are also highly sensitive to the lower bound and smoothness parameter
specifications. Hence, these estimates should always be employed with caution.

Figure 9 shows the filtered shadow short rates based on the SB-DNS model with
a fixed lower-bound specification of 0% and a smoothness parameter ~ that is either
estimated or fixed at a value of 1. For comparison, we also include the filtered shadow

short rate of the B-AFNS model and the estimates from Wu and Xia (2016)."® Four

18The shadow short-rate estimate of Wu and Xia (2016) can be obtained from the website of Jing
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Figure 9: Shadow short rate estimates in the post-GFC period with shaded ZLB periods

things stand out. First, all shadow short-rate estimates are close to the three-month
yield when it is not close to the ZLB, where they start to diverge closer to the ZLB.
Second, the SB-DNS model with an estimated smoothness parameter generates a filtered
shadow short rate that is highly similar to the one of the B-AFNS model in terms of
dynamics and level. In fact, their correlation is 0.998, while the correlation of their first
differences is 0.942. Third, the filtered shadow short rate of the SB-DNS model with a
fixed smoothness parameter of v = 1 resembles the estimate from Wu and Xia (2016) in
terms of level, even though the latter is obtained from a shadow-rate affine term structure
model estimated with forward-rate data and a lower-bound specification of 0.25%. The
correlation of their levels and first differences are 0.935 and 0.600, respectively. Lastly,
in Appendix E we additionally show that our shadow short-rate estimate based on a
two-factor smooth shadow-rate model, which Krippner (2015a) argues to produce more
robust and economically meaningful estimates, are close to the ones based on Krippner
(2015a)." Overall, the SB-DNS model is thus able to generate similar shadow short-rate
estimates, in terms of dynamics and level, as are currently produced in the literature.
Another policy-related measure that can be obtained from the SB-DNS model is the
liftoff horizon that indicates the timing of future policy liftoff, see Bauer and Rudebusch

(2016) for further details. Figure 10 shows the median and interquartile range (IQR)

Cynthia Wu: https://sites.google.com/view/jingcynthiawu/shadow-rates.
9The shadow short rate estimates of Krippner (2015a) can be obtained from the website of Leo
Krippner: https://wuw.ljkmfa.com/visitors/.
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liftoff-horizon estimates (in years) obtained from the SB-DNS model with an estimated
smoothness parameter v, based on 10,000 simulations at each observation date t. Sim-
ilarly as Lemke and Vladu (2017), we identify a liftoff date as the initial time that the
projected short rate is above the threshold of 25 basis points, which corresponds to the
0 to 25 basis points range of the Federal Reserve during the ZLB period, and stays there
for 12 consecutive months.?’ Figure 10 indicates that the liftoff horizon is increasing
after the GFC, but that it starts to decrease almost linearly from 2013 onwards until
the end of the ZLB period. The median liftoff horizon is close to the realized liftoff line
and generally within the IQR, albeit the predicted liftoff date has a delay of about six
months. Noteworthy, the liftoff horizon increased dramatically at the start of the corona
virus pandemic, although it starts to decrease again from mid-2020 onwards. Hence, this
suggests that it will take quite some years before the policy rate is lifted from the ZLB

again.
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Figure 10: Liftoff horizon estimates from the SB-DNS model (including the realized
liftoff horizon) in the post-GFC period with shaded ZLB periods

20Note that the model-implied short rate under the SB-DNS model is given by r; = r;g+7.f (%) .
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4.4 Forecasting the yield curve

Finally, we assess the out-of-sample performance of the smooth shadow-rate model and
compare it to the other models. Similarly as Christensen and Rudebusch (2016), we
employ expanding-window estimation with an initial estimation sample from September
1981 to August 2001 (240 observations).?! By adding one month of observations each
time, we conduct a total of 231 estimations per model. Across all estimations, we assume
a fixed lower-bound specification of 0% and a fixed smoothness parameter of 1.2? This pre-
fixing of lower bound and smoothness parameters is necessary to circumvent overfitting
issues that would happen when the shadow-rate models are estimated over a period
with only high interest-rate data. Then, at each end date of the estimation sample,
we construct one-month-ahead (h = 1), six-month-ahead (h = 6), one-year-ahead (h =
12) and two-year-ahead (h = 24) forecasts. As a result, we obtain 230 one-month-
ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207
two-year-ahead forecasts that can be evaluated. For each forecast horizon and maturity,
we compute the root mean squared forecast errors (RMSFE).

Table 4 displays the RMSFE of all models across the four horizons and eight matu-
rities. Beside the six model forecasts, we also include random walk forecasts, which are
known to be a hard-to-beat benchmark for yields (Duffee, 2002). Indeed, we find that the
DNS model is outperformed by the random walk forecasts for almost all forecast horizons
and yield maturities. In fact, the random walk forecasts seem to outperform most mod-
els, particularly for shorter horizon forecasts. This outperformance of the random walk
also becomes clear from the cumulative sum of squared forecast errors (CSSFE) plots for
six-months-ahead and two-year-ahead forecasts in Figures 11 and 12, respectively.??

Most prominently, we find that the SB-DNS model outperforms the DNS model for
all horizons and maturities, where this improvement is strongest for longer horizons.
Moreover, the SB-DNS model is also able to outperform the random walk for longer
horizon forecasts of short-term yields. Figure 12 shows that his outperformance of the

SB-DNS model for the two-year ahead forecasts mostly stems from the beginning of the

21 Alternatively, Appendix G.1 includes the rolling-window estimation results, where the (SB-)DNS-
type models slightly deteriorate in accuracy relative to the(B-)AFNS-type models. Still, the best per-
forming forecasts for most models are generally based on the expanding-window estimation approach.

22For relaxations of these lower-bound and smoothness parameter specifications in the forecasting
exercise, see Appendices D and F, respectively.

23The CSSFEs for one-month-ahead and one-year-ahead forecasts are given in Appendix G.2.
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Table 4: Out-of-sample performance

RMSFE Maturities (in months)

3 6 12 24 36 60 84 120
Panel A: One-month-ahead forecasts (h = 1)
RW 20.5 19.3 194 22.7 24.7 26.3 26.4 25.5
DNS 24.9 18.7 19.9 23.7 25.6 27.3 27.2 26.9
DNS-TVL 25.0 19.3 18.6 23.2 26.2 27.2 27.4 26.6
B-DNS 254 19.1 19.8 23.7 25.7 274 27.2 26.9
SB-DNS 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0
SB-DNS-TVL 241 19.1 18.8 23.3 25.9 26.9 27.2 26.1
AFNS 34.5 29.9 29.3 29.7 29.0 26.6 28.1 27.0
B-AFNS 21.1 21.7 22.4 24.2 25.3 26.0 26.8 26.1
Panel B: Siz-month-ahead forecasts (h = 6)
RwW 66.8 66.7 65.3 66.1 67.3 65.8 63.5 60.0
DNS 69.6 68.1 68.6 73.1 75.9 75.1 T71.7 68.3
DNS-TVL 74.5 71.5 71.7 76.1 79.7 78.7 75.2 71.5
B-DNS 70.8 68.9 68.7 72.4 74.8 74.0 70.7 67.4
SB-DNS 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0
SB-DNS-TVL 70.7 69.5 70.3 74.3 76.7 74.5 70.7 66.1
AFNS 1234 118.0  113.7  106.5 97.5 79.4 72.6 62.9
B-AFNS 72.8 74.9 73.8 72.3 70.2 64.6 62.0 57.6
Panel C: One-year-ahead forecasts (h = 12)
RW 116.5 115.1 109.6 101.4 95.9 86.8 81.4 75.5
DNS 118.2  116.7  116.0 116.5 1159  109.6  103.3 97.6
DNS-TVL 121.7 1193 1193 1206 121.0 1146 107.7 101.6
B-DNS 117.0 1151 113.2 1122 111.1 105.0 99.2 94.1
SB-DNS 107.1 109.4 109.2 107.8 105.8 98.7 924 84.8
SB-DNS-TVL 116.9 116.0 1158 1156 113.9  105.0 97.6 90.7
AFNS 187.8 182.2 1779 166.3 150.3 1179 1025 85.0
B-AFNS 110.6  112.0 109.9 104.7 98.0 84.6 79.9 73.7
Panel D: Two-year-ahead forecasts (h = 24)
RW 1914 1909 181.1 161.6  146.8 1244 110.4 97.5
DNS 201.2  199.1 194.6  186.6  180.0  165.5  152.9  141.5
DNS-TVL 193.2 190.7  189.1 185.5 1819  169.2  156.8  146.1
B-DNS 189.0 186.5 180.7  171.0 163.8 149.8 138.2  128.7
SB-DNS 170.1 170.3 165.2 155.8 1499 137.7 125.8 1115
SB-DNS-TVL 185.1 183.4  181.1 1755  170.0  155.0 141.7  129.8
AFNS 264.3 2577 2513 2322 2076 159.7 132.6  104.5
B-AFNS 176.6  175.7 170.3  158.2 145.8 123.5 111.2 97.3

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons. We consider expanding-window estimation with the initial sample from
September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-ahead forecasts, 225 six-
month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts to compute the
RMSFEs. The shadow-rate models are all estimated with a fixed lower bound specification of rp5 = 0%,
while the smooth shadow-rate model has a fixed smoothness parameter v = 1. The bold numbers indicate
the lowest RMSFE for that particular maturity and horizon.
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ZLB period. Hence, imposing the smooth shadow-rate restriction, and thereby allowing
for a smooth transition into the ZLB state, substantially improves the out-of-sample
performance, especially compared to the baseline DNS and B-DNS models.

Moving to the time-varying loading models, we find that these generally do not out-
perform their constant loading counterparts. More specifically, the DNS model often
performs better than the DNS-TVL model, while the SB-DNS model performs better
than the SB-DNS-TVL model. So, despite that allowing for time-varying loadings seems
to improve the in-sample fit, this comes at the cost of poorer forecasting performance.
This result could be due to additional forecasting uncertainty as the TVL models also
need to predict the time-varying loadings, but it might also indicate that the TVL models
are prone to overfitting. By looking at subperiods in Appendix G.3, though, we find that
during non-ZLB periods the (SB-)DNS-TVL model performs somewhat better for several
maturities and horizons.

Next, the out-of-sample performance of the SB-DNS model is compared to the AFNS
and B-AFNS models. We find that the SB-DNS model performs better than the AFNS
and B-AFNS models for longer horizons and short-term yields. Yet, the B-AFNS model
performs substantially better for long-term yields, which could be due to the yield adjust-
ment term of the (B-)AFNS expression (Christensen et al., 2011). The B-AFNS model,
in turn, outperforms the AFNS model across all horizons and maturities, which is con-
sistent with the results of Christensen and Rudebusch (2016). Also, the AFNS is able
to outperform the DNS model for long-term yields and long forecast horizons, although
the AFNS performance quickly deteriorates for short-term yields, which becomes also
clear from Figures 11 and 12. To summarize, we conclude that the SB-DNS model is
competitive with the B-AFNS model for short- and medium term yield forecasts, but is
lacking for longer maturities.

Lastly, we test the significance of the forecasting accuracy of the SB-DNS model
against its competitors by means of Diebold and Mariano (1995) (DM) tests. The null
hypothesis is that the two competing forecasts are equally accurate, while the alternative
hypothesis states that the forecast with a lower RMSFE is significantly more accurate.
The test statistic is obtained as the average difference between the RMSFE of the SB-DNS
and its competitor, divided by the square of the long-run variance of these differentials,

based on the Bartlett kernel with automatic bandwidth selection as in Newey and West

27



Table 5: Significance of SB-DNS forecasting performance over alternatives

DM stat. Maturities (in months)

3 6 12 24 36 60 84 120
Panel A: One-month-ahead forecasts (h = 1)
RW 0.92 -0.89 0.11 1.25 2.76"" 157 1.727 1.74”
DNS -4.1177"  -0.59 -0.51 -0.27 0.05 -1.14 -0.10 -2.217
DNS-TVL -4.727"  -1.26 1.02 0.41 -0.99 -0.81 -0.73 -0.87
B-DNS -3.95"" -1.15 -0.44 -0.24 -0.09 -1.18 -0.24 -2.197
SB-DNS-TVL -2.90"" -1.03 0.83 0.32 -0.58 0.27 -0.14 -0.04
AFNS -4.98"" -4.02"" -3.21"7 -3.0177 -3.15"7 1.20 -1.897  -2.44™
B-AFNS 0.74 -2.02"7  -2.147 -0.65 0.73 1.37 1.05 -0.21
Panel B: Siz-month-ahead forecasts (h = 6)
RW -0.91 -0.27 0.39 1.28 1.72" 2.04"” 1.73"7 1.30"
DNS -1.43" -0.58 -0.28 -0.53 -0.81 -1.14 -1.16 -1.657
DNS-TVL -1.877  -0.94 -0.68 -0.93 -1.49 -1.84"  -1.797 -1.98"
B-DNS -1.52 -0.71 -0.30 -0.33 -0.52 -0.79 -0.81 -1.26
SB-DNS-TVL -1.38" -0.71 -0.52 -0.67 -0.94 -0.91 -0.79 -0.79
AFNS -4.71"7  -4.04"" -3.76"7 -3.5777 -3.39"7 -2.06" -1.38 0.05
B-AFNS -1.717 -1.827 -1.43 -0.47 1.18 3.2177  2.6277 2.287
Panel C: One-year-ahead forecasts (h = 12)
RW -1.02 -0.56 -0.05 0.83 1.50 2.197 2.18" 1.96"
DNS -1.09 -0.73 -0.68 -0.91 -1.09 -1.31" -1.39 -1.74”
DNS-TVL -1.317 -0.84 -0.89 -1.28 -1.717  -1.98" -1.927 -2.08"
B-DNS -1.02 -0.60 -0.43 -0.50 -0.62 -0.78 -0.87 -1.21
SB-DNS-TVL -0.97 -0.63 -0.65 -0.86 -0.97 -0.79 -0.63 -0.68
AFNS -4.277"  -3.73"" -3.64"7 -3.637° -3.46"" -2.307 -1.50 -0.05
B-AFNS -0.44 -0.35 -0.10 0.61 2.17" 4.03™  3.197  2.7577
Panel D: Two-year-ahead forecasts (h = 24)
RW -1.51" -1.40° -1.15 -0.47 0.26 1.27 1.60" 1.62"
DNS -1.64" -1.55" -1.57 -1.677  -1.707 -1.727 -1.78" -2.097
DNS-TVL -1.43° -1.23 -1.48" -1.99" -2.317 -2.54"7 -2.667" -3.1277
B-DNS -1.25 -1.07 -1.01 -1.00 -0.94 -0.86 -0.90 -1.27
SB-DNS-TVL -1.10 -0.95 -1.16 -1.51° -1.57 -1.36" -1.25 -1.45"
AFNS -4.08"" -3.68"" -3.76"" -3.8277 -3.42"7 -1.84" -0.70 1.13
B-AFNS -0.85 -0.74 -0.72 -0.36 0.63 2.217 2.327 2.45""

Notes: This table contains the Diebold and Mariano (1995) (DM) test statistics of the SB-DNS model against its com-
petitors. The null hypothesis of the test is that the two competing forecasts are equally accurate, while the alternative
hypothesis states that the forecast with a lower RMSFE is significantly more accurate. A negative value indicates that
the RMSFE of the SB-DNS model is lower than the one of its competitor. The test statistic is obtained as the average
difference between the RMSFE of the SB-DNS and its competitor, divided by the square of the long-run variance of these
differentials, based on the Bartlett kernel with automatic bandwidth selection as in Newey and West (1994). The asterisks
#,%%, and * * * indicate significance at the 10%, 5% and 1% level, respectively. A bold number indicates significance at the

5% level.
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(1994). Table 5 presents the DM statistics and the corresponding significance at the
1%, 5% and 10% levels. We find a large number of negative values, which indicate that
the SB-DNS model outperforms its competitors. The outperformance over the DNS and
DNS-TVL models is mostly significant for longer horizons and maturities, but also for
the three-month yield at shorter horizons. In addition, the AFNS model is significantly
outperformed at almost all maturities and horizons, while the B-AFNS is outperformed
at the short-end of the yield curve for short horizons. Still, the B-AFNS significantly out-
performs the SB-DNS model for longer horizons and maturities, whereas the random walk
generally outperforms for short horizons. Hence, it ultimately depends on the horizon

and maturity which model performs best.

5 Conclusion

In this paper we develop a smooth shadow-rate version of the dynamic Nelson-Siegel
(DNS) model to analyze and forecast U.S. government bond yields during the recent
zero lower bound (ZLB) periods. Our smooth shadow-rate DNS model has a closed-form
yield curve expression and hence can be easily put into a nonlinear state-space form to
facilitate tractable estimation. Consequently, it is straightforward to extend our model
with time-varying parameters, macroeconomic variable integration or other variations of
interest, which are not always possible in the more rigorous and less tractable class of
shadow-rate affine term structure models.

Our results show that the smooth shadow-rate DNS (SB-DNS) model dominates the
original DNS model in terms of fitting and forecasting the yield curve with better out-of-
sample performance for all yield maturities and forecast horizons. The SB-DNS model
is also competitive with the shadow-rate affine term structure models in fitting and fore-
casting the yield curve for short- and medium-term maturities, particularly for longer
horizons. Furthermore, we provide evidence of a smooth transition of the term structure
of interest rates entering and leaving the ZLB state, indicated by a highly significant
smoothness parameter and improved in- and out-of-sample performance of the smooth
shadow-rate model over a non-smooth version. Finally, we show that the DNS model
lacks in generating plausible future yield curve paths, which can be resolved with the
smooth shadow-rate augmentation, and we illustrate how the smooth shadow-rate model

can be used to shape future policy expectations at the ZLB.
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A Arbitrage-free models

Here we discuss the specification and estimation of the arbitrage-free Nelson-Siegel (AFNS)
model proposed by Christensen et al. (2011). Moreover, we consider the specification
and estimation of the shadow-rate AFNS (B-AFNS) model proposed by Christensen and
Rudebusch (2015). Both these models are used as benchmarks throughout the empirical

results section.

A.1 Arbitrage-free Nelson-Siegel model

Based on the general framework of Duffie and Kan (1996), Christensen et al. (2011) show
that the arbitrage-free bond yield with time to maturity 7 at time ¢ can be described as

the well-known Nelson and Siegel (1987) factor loading structure given by

1—e ™M 1—e ™M B AT
w(t) =X} + (—AT >X3+ (—AT —e ”)Xf _Al ), (A1)

T

where the latent factors X}, X? and X} have the interpretation of level, slope and cur-

vature, respectively, and follow the continuous-time process

dX} 00 0 be, o 0 0 dw
dXtQ =—10 A =X th dt + 091 0929 0 thZ’@ (Az)
dXt?’ 00 X XE 031 O3 033 th?”Q

under the risk-neutral Q-measure where A > 0 and dWZ’@ is a standard Brownian motion
for ¢ = 1,2,3. Note that this specification already includes the identification that the
mean levels of the factors under the Q-measure are zero and that the volatility matrix is
lower triangular. The corresponding short rate is defined as r, = X! + X7.

The yield-adjustment term, —A(7)/7, is given in Christensen et al. (2011) and is a
function of the volatility matrix parameters, the loading parameter A\, and the time-to-
maturity 7. This term is also the key difference between the yield curve expression of
the DNS and AFNS model, that is, setting this term equal to zero in the AFNS model
returns the yield curve expression of the DNS model.

The relation between the real-world dynamics under the P-measure and the risk-



neutral dynamics under the Q-measure is given by
dW2 = daWF + Ldt, (A.3)

where dW* = (AW, dW", dW") for u € {P,Q} and I} is a 3 x 1 vector representing
the risk premium. Christensen et al. (2011) assume the essentially affine risk premium

specification of Duffee (2002), that is,

V? 7111 7112 ’7/113 th
I = ”Yg + 7211 7212 7213 Xt2 ) (A-4)
”Yg 7%1 7%2 7§3 X?

such that the real-world dynamics of the latent factors under the P-measure are given by

dx} K11 Ki2 K13 0, X} cn1 0 0 thI’P
dX? | = | ko1 Koo Koz O | — | X2 || dt+ oy 092 O dwt |,
dXt?’ K31 K32 K33 03 XE 031 032 033 thg’P

(A.5)

where the parameters are allowed to vary freely due to the flexible specification of Iy,
while at the same time preserving the Q-dynamics and thus the arbitrage-free yield curve
expression.

We follow the estimation procedure of Christensen et al. (2011) where the AFNS
model is put in a linear Gaussian state space form such that it can be estimated with
the Kalman filter, see subsection C.1. Note that F' and @, in the notation of subsection
C.1, are obtained via eigensystem decomposition (see Fisher and Gilles, 1996; Caldeira
et al., 2016, for further details) and that the constant ¢ in the measurement equation is
equal to the yield-adjustment term. Moreover, we assume that the real component of the
eigenvalues of the matrix with kappa elements in equation (A.5) are positive to ensure
covariance stationarity. The starting values for the maximization of the log-likelihood
are based on the two-step approach for the DNS model, but transformed such that they
correspond to the AFNS model parameters, after which we initially optimize the log-
likelihood using a gradient-based optimization method. Then, based on these parameter

values as starting values, the final maximization of the log-likelihood is done using the



Nelder-Mead simplex algorithm, which is also used by Christensen et al. (2011).!

A.2 Shadow-rate arbitrage-free Nelson-Siegel model

The three-factor shadow-rate arbitrage-free Nelson-Siegel (B-AFNS) model of Christensen
and Rudebusch (2015) defines the short rate as proposed by Black (1995), that is,

r, = max(rrg, S¢), (A.6)
where r1p is the lower bound value and the shadow short rate is given by
St — th + Xt27 (A7)

where the latent factors (X}, X2, X}}) again follow the continues-time process under the
risk-neutral Q-measure given in equation (A.2).

Under this specification, Krippner (2012) derives based on a bond option price ap-
proach that, for any shadow-rate Gaussian affine term structure model, the zero lower

bound (ZLB) forward rate approximation is given by

w(T) w(

L(T) =r; + (ft(T) - TL)@ (M) + w(T)gb(L?) , (A.8)

where f;(7) is called the shadow forward rate and f () the ZLB forward rate, and ()
and ¢(-) are the cumulative and probability density functions of a standard normal dis-
tribution, respectively. Moreover, w(7) is related to the risk-neutral conditional variance
of the shadow short rate. In particular, Christensen and Rudebusch (2015) show that for
a shadow-rate AFNS model

2 2 2 2 1—e 7

2 2 2 L—e7 1 ISV S gy

1— 67)\7' 1— 67)\7'
+ 20'210'22 (T) + 20’110’31 (T — TGAT>

'In the expanding-window forecasting exercise, we only do the two consecutive numerical optimization
steps for the first estimation round, after which we only consider the optimization based on the Nelder-
Mead simplex algorithm with as starting values the optimized parameters of the previous round.




1—e 7 —2ar
+ (021031 + 022032) T —TE€ )

and that the shadow forward rate is equal to
d
filr) = E(Tyt(’?')) = X! +eMX2 F Are XD — Al (7). (A.9)

The forward rate adjustment term, —A/(7), is given in Christensen and Rudebusch (2015)
and is also a function of the volatility matrix parameters, the loading parameter A, and
the time-to-maturity 7. Finally, by using this approximation and the standard yield-

forward relation, the arbitrage-free ZLB yield with 7 time to maturity at time ¢ is given

by

gt(ﬂzi/;

Again, the essentially affine risk premium specification of Duffee (2002) given in equation

rr+ (fi(s) —rp)® (%) +w(s)op (%)] ds.  (A.10)

W

(A.4) is assumed such that the factors have the P-dynamics given in equation (A.5).
We follow the estimation procedure of Christensen and Rudebusch (2015) where the
B-AFNS model is put in nonlinear Gaussian state space form such that it can be estimated
with the extended Kalman filter (EKF), see subsection C.2. The matrices F' and Q, in
the notation of subsection C.2, can be obtained in similar fashion as for the AFNS model.
Furthermore, the derivatives needed for the EKF are given in Krippner (2015), who also
proposes to approximate the integral with rectangular increments. We again restrict the
real part of the eigenvalues of the matrix with kappa elements given in equation (A.5) to
be positive. Lastly, we use similar starting values for the optimization as for the AFNS

model and follow the same optimization routine.



B Parameter estimates

Table B.1: Parameter estimates of the DNS model

r ).y o
1.003*** 0.009 -0.008 0.114* -0.002
(0.004)  (0.008)  (0.011) (0.009) (0.033)
-0.039™*  0.918™* 0.071** -0.055™  0.142*** 0.133*
(0.008)  (0.013)  (0.011) (0.007)  (0.010) (0.051)
0.056™*  0.061*** 0.895*** -0.015  -0.041*** 0.574*** -0.336™**
(0.014)  (0.029)  (0.024) (0.016)  (0.015)  (0.050) (0.102)
diag(X,) A
0.036™* 0.000  0.008** 0.005*** 0.000 0.003**  0.002*** 0.007*** 0.051*
(0.002)  (0.001) (0.001) (0.000)  (0.000)  (0.000)  (0.000) (0.001) (0.001)

Notes: This table contains the parameter estimates of the DNS model. The asterisks *, #*, and *x*x* indicate significance
at the 10%, 5% and 1% level, respectively. The standard errors are given in parentheses.

Table B.2: Parameter estimates of the SB-DNS model

r D «

0.999**  -0.004  -0.003* 0.108*** -0.010
(0.001)  (0.007)  (0.002) (0.008) (0.032)
-0.025"**  0.969"*  0.053*** -0.046***  0.198*** 0.103*
(0.007)  (0.005)  (0.009) (0.008)  (0.016) (0.058)
0.045*** 0.007  0.916*** 0.036**  -0.112** 0.763*** -0.405%**

(0.015)  (0.010)  (0.018) (0.016)  (0.023)  (0.072) (0.089)

diag(X;) gl A

0.032°*  0.000% 0.006** 0.003** 0.000°* 0.003** 0.002** 0.003**  2.679**  0.062***
(0.002)  (0.000)  (0.000) (0.000)  (0.000)  (0.000) (0.000) (0.001)  (0.206) (0.001)

Notes: This table contains the parameter estimates of the SB-DNS model. The asterisks #, **, and * % x indicate significance
at the 10%, 5% and 1% level, respectively. The standard errors are given in parentheses.

Table B.3: Smoothness parameter estimates based on subsets of yield observations

Short-term yields Medium-term yields Long-term yields

3 41247 2,182+ 2.015"
(0.527) (0.216) (0.106)

Notes: This table shows the smoothness parameter estimates based on a subset of
yields observations, that is, short-term yields are 3-month to 2-year yields, medium-
term yields are 1-year to 5-year yields, and long-term yields are 3-month to 10-year
yields. The asterisks #, **, and * * * indicate significance at the 10%, 5% and 1% level,

respectively. The standard errors are given in parentheses.




C Estimation framework

C.1 Kalman filter based estimation

The general linear Gaussian state space model (see Durbin and Koopman, 2012) can be

written as

yr=c+Z& +e, e ~N(0 H), (C.1)

£t+1:d+F€t+77t7 ntNN(O7Q)7 tzla"‘aT7 (CQ)

where equations (C.1) and (C.2) are the measurement and state equation, respectively,
y; is the N x 1 observation vector and &; is the K x 1 state vector with some unobserved
factors. Also, some elements of ¢ (N x1), Z (NxK), H (NxN),d (Kx1), F (K xK)
and @ (K x K) are known, while the others are unknown parameters that need to be
estimated. Both the DNS and AFNS model fit this representation, see Christensen et al.
(2011) for further details.

Given the unknown parameter set O, the latent factors in the state vector & can be
recursively obtained via the Kalman filter (KF) (see Durbin and Koopman, 2012). We
define the predicted state and its covariance matrix at time ¢ as é&|t—1 = E(&|Z;-1) and
P, = var(&|Zi—1), respectively, where Z;_; = (y1,...,y;_;)’ denotes the information
set available at time t — 1. Moreover, we define the updated state and its covariance
matrix at time ¢ as é\ﬂt = E(&|Z;) and P,; = var(&:|Z;), respectively. For given values
of the predicted state and its uncertainty at time ¢, we conduct the updating step of the

KF to obtain the updated state and its uncertainty, that is,

€ = Epr + Py 1 Z'V, My, (C.3)
Py =Py — Py Z'V, ' ZPy, 4, (CA4)

where vy =y, —c — Z§t|t,1 is the prediction error vector and V; = ZP,,_1Z' + H is the
prediction error covariance matrix. Next, for given values of the updated state and its
uncertainty at time ¢, we conduct the prediction step of the KF to obtain the predicted

state and its uncertainty, that is,

gt+1\t =d+ Fé\t\ta (C.5)



P = FP,F' +Q. (C.6)

A formal derivation of the KF can be found in Durbin and Koopman (2012). We as-
sume that & ~ N(u, W) such that Eom = p and Pyg = W, where p = (I, — F)"'d
is the unconditional mean and W is the unconditional covariance matrix for which it
holds that W — FW F' = Q, see Hamilton (1994, section 2.2). Finally, based on the
initialization and the recursions of the KF in equations (C.3)-(C.6) we are able to obtain
the latent factor estimates é‘t_l and the covariance matrices P;_; of these estimates for
t=1,...,T.

Given the latent factor estimates, we can evaluate the log-likelihood function based
on the prediction error decomposition given by

nT a

|
Uy, yri©) = ——log2m — =3 <log|Vt| +U;Vt—1fvt>, (C.7)

t=1

where v; and V; are the prediction error vector and covariance matrix, respectively, and
are given by the KF. We numerically maximize the log-likelihood with respect to @ to

obtain the maximum likelihood parameter estimates.

C.2 Extended Kalman filter based estimation

The general nonlinear Gaussian state space model (see Durbin and Koopman, 2012) can

be written as

Y = Z (&) + &, e~ N(0,H), (C.8)
£t+1:d+F£t+nt7 ntNN(()?Q)? t:17"‘7T7 (Cg)

where equations (C.8) and (C.9) are the nonlinear measurement and linear state equation,
respectively, and Z(&;) is a differentiable function of &. Both the (smooth) shadow-rate
models as well as the models with time-varying factor loadings fit this nonlinear state
space representation. The expressions of & and Z(&;) for each specific model are given
in subsection C.3. The parameter set © is the same as for the linear Gaussian state space
model, except that we could also include the lower bound r;p and/or the smoothness

parameter v as additional unknown parameters in case we do not prefix them.



Given the parameter set ©, the latent factors in the state vector & can be recursively
obtained via the extended Kalman filter (EKF). In order to implement the EKF, we
first need to linearize the nonlinear meausrement equation (C.8) by applying a first-order

Taylor series expansion of Z(§&;) at &, = é‘t_l, that is,

Y= Z(&) + e
= Z(&pr) + Zi(& — &) + & (C.10)

=c + tht + &y,
where

0Z (&)

%= "¢

and C; = Z(gﬂt—l) — Ztéﬂt—l- (C]_l)

€t:€t|t—l

The expression of Z, for each specific model is given in Appendix C.3. For given values
of the predicted state and its uncertainty at time ¢, we are able to conduct the updating

step of the EKF to obtain the updated state and its uncertainty, that is,

§t|t = é\t\t—l + ‘Pt|t71Z‘£‘/t_1'Ut> (C.12)

Py =Py — R:\t—th/‘/t_IZtR:\t—la (C.13)

where v; = y; — Z(gﬂt_l) is the prediction error vector and V; = Zt-ow\t—l Z{ + H is the
prediction error covariance matrix. Next, for given values of the updated state and its
uncertainty at time t, we conduct the prediction step of the EKF, which is in this case
the same as for the KF given by equations (C.5)-(C.6), to obtain the predicted state and
its uncertainty. A formal derivation of the EKF can be found in Durbin and Koopman
(2012). We again assume the initialization & ~ N (u, W) such that the recursions of
the EKF in equations (C.12)-(C.13) and (C.5)-(C.6) provide us with the latent factor
estimates é‘t_l and the covariance matrix Pj,_; of these estimates for t =1,...,T.
Similarly as for the KF based estimation of the linear Gaussian state space model, we
estimate the unknown parameters in & by means of maximizing the log-likelihood given
by equation (C.7) with numerical optimization, where v, and V; are now obtained via

the EKF.



C.3 Derivatives for extended Kalman filter
C.3.1 DNS-TVL

In the context of the DNS-TVL model, we have

Z(&) = A(\)By, (C.14)

where & = (3, \¢)’. The derivative of Z(&;) with respect to & is given by

e = (M oaaan) — (40n) U(BL) (©15)
where
0 wi(m,A\)  us(m1, )
U = | : : , (C.16)
0 wup(tw, Ae) ua(7n, M)
with
(i, A) = a% (1 _A‘f:m> _ U+ ”;);T_A -1 (C.17)
and
fori=1,...,N.

C.3.2 B-DNS

In the context of the B-DNS model, we have

Z(&) =ript + (AN)By — L) © Ly, (C.19)

where & = (3;, ® is the Hadamard product, ¢ denotes an N x 1 vector with ones,
L, = (Ly,...,Ln¢)" and Ly = I(y(73) — rpp > 0) with I(A) being an indicator function

that is equal to 1 if event A is true and zero otherwise. The derivative of Z(&;) with



respect to & is given by

0Z (&)
9&;

=L, o A(N). (C.20)
C.3.3 SB-DNS
In the context of the SB-DNS model, we have

Z(gt) =rrpt + (A()\),Bt —T'LBL) @E—f‘”)/ft, (C.Ql)

where & = B, Fy = (Fiy, ..., Fint)' with F; = q’((yt(Ti)—TLB)/’Y) and fy = (fie, -5 fve)'
with fi = ¢((ye(;) — rL5)/7). The derivative of Z(&,) with respect to & is given by

0Z (&)
9&;

—F,0 A, (C.22)

C.3.4 SB-DNS-TVL

In the context of the SB-DNS-TVL model, we have

Z (&) =rrpt + (A(N)Br —rpt) © Fy + 7 fi, (C.23)

where & = (3, \t)’. The derivative of Z(&;) with respect to & is given by

0Z(&:)
0&;

—Fo (AN) UNB) - (C.24)
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D Nonzero lower bound analysis

D.1 In-sample fit

Table D.1: Lower bound estimate, log-likelihood
rate models

and information criteria of shadow

TLB 0% Log-likelihood #6 AIC BIC LR-test
Statistic  p-value
SB-DNS 0.044 2.532 3091.3 29 -13.0 -12.8 21.3 0.000
(0.008) (0.183)
SB-DNS-TVL  0.011 4.296 3251.7 40 -13.7 -13.3 1.4 0.230
(0.018) (0.836)
B-AFNS (00.90772) 2632.1 28 -11.1 -10.8 77.8 0.000

Notes: This table contains the lower bound estimates, log-likelihood values, Akaike information criteria (AIC), Bayesian
information criteria (BIC) and the likelihood ratio (LR) test statistics and corresponding p-values across shadow-rate models.
The LR tests consider the models with fixed lower bound specification of 0% given in Table 2 as null model.

Table D.2: Relative in-sample fit of shadow-rate models with estimated lower bound

Rel. RMSE Maturities (in months) Total
3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

SB-DNS 1.00 1.10 0.99 1.00 0.99 1.00 1.01 0.94 1.00

SB-DNS-TVL 1.00 1.01 1.00 1.00 0.99 1.00 1.00 0.98 1.00

B-AFNS 1.01 1.07 1.00 0.97 1.12 0.98 0.99 0.98 1.00

Panel B: Pre-ZLB period (December 1981 - October 2008)

SB-DNS 1.00 1.07 1.00 1.01 0.97 1.00 1.02 0.96 1.00

SB-DNS-TVL 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00

B-AFNS 1.01 0.90 1.00 0.97 1.10 0.99 0.98 1.00 1.00

Panel C: ZLB period (November 2008 - December 2015)

SB-DNS 1.12 2.19 0.85 1.00 1.00 1.26 0.80 1.23 1.05

SB-DNS-TVL 0.98 1.28 0.82 0.73 1.16 0.73 1.03 0.69 0.91

B-AFNS 1.11 1.13 0.95 0.87 1.12 0.82 1.01 0.90 0.99

Notes: This table contains the relative Root Mean Squared Errors (RMSE) across maturities of shadow-rate models
with a fixed lower bound specification of 0% compared to an estimated lower bound over three sample periods. We
discard the first three observations from this calculation to make the results robust to the unconditional initialization.
The shaded cells indicate a relative RMSE that is smaller than 1, which implies a better fit of the shadow-rate model
with an estimated lower bound relative to the fixed lower bound specification of 0% given in Tables 3.
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Table D.3: In-sample fit of SB-DNS models with various lower bound values

RMSE rip Maturities (in months) Total
3 6 12 24 36 60 84 120
Panel A: Total period (December 1981 - October 2020)
0.00% 17.7 1.1 8.0 5.8 0.8 5.3 4.1 4.0 7.7
0.05% 17.6 1.5 7.9 5.7 0.9 5.3 4.2 3.7 7.6
SB-DNS  .10% 175 2.7 7.4 5.5 1.0 5.2 4.2 3.4 7.6
0.15% 17.8 4.5 6.9 5.2 14 5.2 4.2 3.2 7.7
0.20% 18.4 6.3 7.0 5.0 1.9 5.1 4.2 2.9 8.0
Panel B: Pre-ZLB period (December 1981 - October 2008)
0.00% 20.5 0.3 9.0 6.4 0.4 5.5 4.3 4.0 8.7
0.05% 20.3 0.6 8.9 6.4 0.5 5.5 4.4 3.8 8.6
SB-DNS o10% 198 19 83 61 07 55 45 36 8.4
0.15% 19.6 3.5 7.6 5.8 1.1 5.4 4.5 3.4 8.3
0.20% 19.7 4.7 7.1 9.5 1.6 5.4 4.5 B2 8.3
Panel C: ZLB period (November 2008 - December 2015)
0.00% 8.3 1.3 4.8 4.2 1.1 5.2 4.4 4.6 4.7
0.05% 8.7 2.1 4.5 4.1 1.3 5.3 4.4 4.1 4.8
SB-DNS o10% 107 43 42 37 13 52 43 35 5.3
0.15% 13.5 7.3 5.1 32 1.5 5.0 4.1 3.0 6.4
0.20% 16.8 10.7 7.1 3.0 1.8 4.8 3.9 2.7 7.9

Notes: This table contains the Root Mean Squared Errors (RMSE) across maturities of shadow-rate models with a fixed
lower bound specification of 0% and smoothness parameter v = 1 compared to various nonzero lower bound values over
three sample periods. We discard the first three observations from this calculation to make the results robust to the initial
conditions. The shaded cells indicate a RMSE that is smaller than the SB-DNS model with a lower bound of 0%, which
implies a better fit of the shadow-rate model with a nonzero lower bound value relative to a fixed lower bound specification
of 0%.
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D.2 Forecasting results

Table D.4: Forecasting performance of SB-DNS models with various lower bound values

RMSFE rpp Maturities (in months)
3 6 12 24 36 60 84 120
Panel A: One-month-ahead forecasts (h = 1)
0.00% 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0

0.05% 23.3 184 192 235 257 270 272  26.0
SB-DNS  (.10% 23.9 185 191 235 257 270 271 259
0.15% 245 188 190 234 257 271 272  25.8
0.20% 25,7 195 192 232 256 272 271 259

Panel B: Siz-month-ahead forecasts (h = 6)
0.00% 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0

0.05% 647 660 680 723 743 728  69.1  63.8
SB-DNS  (.10% 66.5 672  69.0 732 751 729  69.0 635
0.15% 66.6 669 685  T27 746 724 684  62.6
0.20% 67.2 668  67.8  TL7 737 725  69.0  64.2

Panel C: One-year-ahead forecasts (h = 12)
0.00% 107.1 109.4  109.2 107.8  105.8 98.7 92.4 84.8

0.05% 1129 1140 1137 113.0 111.2 1032 960  87.2
SB-DNS 4 10% 1175 117.9 1175 116.6 1143 1052 97.5 884
015% 1175 117.5 1171  116.3 113.8 1039 956  85.9
020% 1163 1158 1148 1134 111.2 1035 969  89.6

Panel D: Two-year-ahead forecasts (h = 24)
0.00% 170.1 170.3 165.2 155.8 1499 137.7  125.8 111.5

0.05% 1889 188.0 183.1 1740 1674 152.2 1382 122.3
SB-DNS  (.10% 202.1 200.8 1958 1859 177.9 160.7 1455  128.6
0.15% 2045 203.0 1980 188.0 179.1 159.5 1433  126.7
0.20% 1981 1962 190.6 180.0 172.0 156.7 144.1  132.2

Notes: This table contains the Root Mean Squared Forecast Errors (RMSFE) across maturities and horizons
of SB-DNS models with a fixed lower bound specification of 0% and smoothness parameter v = 1 compared
to various nonzero lower bound values over three sample periods. We consider expanding-window estimation
with the initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-
ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts
to compute the RMSFEs. The shaded cells indicate a RMSFE that is smaller than the one of the SB-DNS
model with a lower bound of 0%, which a better out-of-sample performance of the shadow-rate model with a
nonzero lower bound value relative to a fixed lower bound specification.
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E Alternative shadow short rate estimates

6l ——3m yield ——3m yield

SSR SB-DNS(rzp = 0%) 6 L|——SSR SB-DNS(y = 0.5)
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(a) Lower bound analysis with 7 =1 (b) Smoothness analysis with 77,5 = 0%

Figure E.1: Robustness analysis of shadow short rate estimates towards lower bound
value and smoothness parameter
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Figure E.2: Shadow short rate estimates based on two-factor models with v =1
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F Smoothness analysis

F.1 In-sample fit

Table F.1: In-sample fit of SB-DNS models with various smoothness parameter values

RMSE ~ Maturities (in months) Total
3 6 12 24 36 60 84 120

Panel A: Total period (December 1981 - October 2020)

B-DNS 18.1 0.0 8.7 6.8 0.0 5.6 3.0 7.0 8.2
0.5 17.9 0.8 8.3 6.1 0.4 9.5 3.6 5.6 7.9
1.0 17.7 1.1 8.0 5.8 0.8 5.3 4.1 4.0 7.7
1.5 17.6 1.4 7.8 9.5 1.1 9.1 4.1 3.7 7.6
2.0 17.4 1.6 7.6 5.3 1.4 5.0 4.1 3.7 7.5

SBDNS 95 174 17 75 52 16 50 41 38 5
3.0 17.4 1.8 7.5 5.0 1.7 5.0 4.1 3.9 7.5
3.5 17.3 1.9 7.4 4.9 1.9 5.0 4.0 4.0 7.5
4.0 17.3 2.0 7.4 4.9 2.0 5.0 4.0 4.1 7.5

Panel B: Pre-ZLB period (December 1981 - October 2008)

B-DNS 20.7 0.0 9.2 6.8 0.0 0.8 3.1 6.3 9.0
0.5 20.6 0.0 9.2 6.7 0.2 5.7 3.7 5.2 8.9
1.0 20.5 0.3 9.0 6.4 0.4 5.5 4.3 4.0 8.7
1.5 20.2 0.6 8.7 6.1 0.8 5.3 4.4 3.8 8.6
2.0 20.1 0.8 8.5 9.9 1.1 5.2 4.4 3.8 8.5

SBDNS 95 200 09 84 57 13 52 43 39 8.4
3.0 19.9 1.1 8.3 5.6 1.5 5.2 4.2 3.9 8.4
3.5 19.9 1.2 8.2 9.4 1.7 5.2 4.2 4.0 8.4
4.0 19.9 1.3 8.2 5.3 1.8 9.2 4.1 4.1 8.3

Panel C: ZLB period (November 2008 - December 2015)

B-DNS 10.9 0.0 8.6 7.9 0.0 5.9 3.4 10.7 7.2
0.5 8.9 1.3 5.5 9.3 0.6 5.9 4.2 7.8 5.6
1.0 8.3 1.3 4.8 4.2 1.1 5.2 4.4 4.6 4.7
1.5 8.2 1.6 4.6 3.7 1.5 4.9 4.3 4.0 4.5
2.0 8.2 1.9 4.5 3.5 1.7 4.7 4.2 4.0 4.5

SBDNS 95 81 20 44 34 19 A7 44 40 45
3.0 8.1 2.2 4.4 3.4 2.1 4.6 4.4 4.2 4.5
3.5 8.1 2.3 4.4 3.4 2.3 4.6 4.4 4.4 4.6
4.0 8.2 2.4 4.4 3.4 2.4 4.6 4.4 4.5 4.6

Notes: This table contains the Root Mean Squared Errors (RMSE) across maturities of the B-DNS model with a fixed

lower bound specification of 0% compared to SB-DNS models with various nonzero smoothness parameters over three
sample periods. We discard the first three observations from this calculation to make the results robust to the initial
conditions. The shaded cells indicate a RMSE that is smaller than the one of the B-DNS, which implies a better fit of
the SB-DNS model with v > 0 relative to a B-DNS model.
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F.2 Forecasting results

Table F.2: Forecasting performance of SB-DNS models with various smoothness pa-
rameter values

RMSFE ~ Maturities (in months)

3 6 12 24 36 60 84 120
Panel A: One-month-ahead forecasts (h = 1)
B-DNS 254 19.1 19.8 23.7 25.7 274 27.2 26.9

0.5 23.2 18.3 19.6 24.0 25.8 27.2 27.2 26.5
1.0 22.6 18.4 19.5 23.6 25.6 26.9 27.1 26.0
1.5 23.7 18.5 19.1 23.5 25.7 27.0 27.1 25.8
2.0 23.9 18.7 19.1 234 25.8 27.2 27.3 26.0
2.5 24.0 18.8 19.1 234 25.9 27.3 274 26.1
3.0 23.7 19.0 19.2 234 25.8 27.2 27.3 26.2
3.5 23.9 19.1 19.1 23.3 25.9 274 27.3 26.3
4.0 24.1 19.2 19.2 23.3 26.0 274 27.3 26.5

Panel B: Siz-month-ahead forecasts (h = 6)
B-DNS 70.8 68.9 68.7 72.4 74.8 74.0 70.7 674

0.5 66.7 68.2 70.7 75.3 76.9 74.2 70.3 65.5
1.0 62.7 65.3 67.2 70.8 72.6 71.1 67.7 63.0
1.5 66.8 67.5 69.4 3.7 75.4 72.9 68.9 63.4
2.0 67.1 67.7 69.4 73.6 75.4 3.7 70.1 64.7
2.5 66.9 67.5 69.0 73.1 75.2 74.0 70.7 65.9
3.0 65.2 66.3 67.5 71.2 73.4 2.7 69.7 65.4
3.5 66.1 66.9 67.8 71.5 73.9 73.5 70.5 66.5
4.0 66.5 67.0 67.7 71.1 73.5 73.4 70.6 67.7

Panel C: One-year-ahead forecasts (h = 12)
B-DNS 117.0 115.1 113.2 112.2 111.1 105.0 99.2 94.1

05 1196 1206 121.1 1208 1181 107.7 994 906
1.0 1071 1094 1092 107.8 1058 98.7 924 848
15 1182 1185 1182 1175 1148 1050 972 883
20 1181 1184 1179 1169 1146 1059 986  89.9
SB-DNS 95 1170 1172 1167 1159 1141 1068 100.3 925
30 1107 1115 1107 109.7 1086 103.0 97.6  91.3
35 1116 1121 1110 1102 1094 1046 995 940

4.0 111.7 111.8 110.3 109.0 108.3 104.5 100.5 97.1
Panel D: Two-year-ahead forecasts (h = 24)
B-DNS 189.0 186.5 180.7 171.0 163.8 1498 138.2  128.7

05 2033 2022 1978 189.2 1817 163.6 1475 130.8
1.0 1701 1703 1652 1558 149.9 137.7 1258 11L5
15 2046 2035 1987 189.0 1807 163.3 1485  132.0
2.0 2011 1999 1951 1853 1770 159.8 1455  130.5
SB-DNS 95 1966 1957 1912 1826 1759 1616 1492 136.0
30 1759 1756 1714 1641 1597 1497 1401 1295
35 1750 1747 1706 1639 1604 1522 1435 1342
40 1722 1712 1661 1585 1554 1500 1441 1389

SB-DNS

SB-DNS

Notes: This table contains the Root Mean Squared Forecast Errors (RMSFE) across maturities and horizons
of the B-DNS model with a fixed lower bound specification of 0% compared to SB-DNS models with various
nonzero smoothness parameters over three sample periods. We consider expanding-window estimation
with the initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-
month-ahead forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead
forecasts to compute the RMSFEs. The shaded cells indicate a RMSFE that is smaller than the one of the
B-DNS model, which implies a better out-of-sample performance of the SB-DNS model with v > 0 relative
to the B-DNS model.
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G Additional forecasting results

G.1 Forecasting results for rolling-window estimation

Table G.1: Out-of-sample performance based on rolling-window estimation

RMSFE Maturities (in months)

3 6 12 24 36 60 84 120
Panel A: One-month-ahead forecasts (h = 1)
RW 20.5 19.3 19.4 22.7 24.7 26.3 26.4 25.5
DNS 25.5 19.0 19.0 23.6 26.5 28.0 27.7 28.1
DNS-TVL 23.8 18.6 18.7 23.5 26.9 27.7 27.5 26.5
B-DNS 244 18.6 19.0 23.6 26.3 27.6 27.5 27.9
SB-DNS 24.2 18.8 18.7 23.3 26.1 274 27.5 26.4
SB-DNS-TVL 23.8 18.9 19.0 23.9 27.3 284 28.1 27.1
AFNS 32.4 31.3 31.7 31.2 30.2 28.0 28.0 28.3
B-AFNS 24.2 21.9 23.0 25.4 26.4 26.5 27.0 26.6
Panel B: Siz-month-ahead forecasts (h = 6)
RW 66.8 66.7 65.3 66.1 67.3 65.8 63.5 60.0
DNS 71.3 69.5 70.5 76.3 80.3 79.7 75.9 73.1
DNS-TVL 714 70.3 3.7 80.6 85.2 83.0 77.6 72.8
B-DNS 65.7 65.2 66.6 72.5 76.3 5.7 72.5 69.4
SB-DNS 65.9 65.7 66.8 T1.7 74.8 3.7 70.2 65.4
SB-DNS-TVL 70.2 70.0 73.5 80.9 85.8 84.1 78.9 73.3
AFNS 111.0  109.9  106.5 99.1 914 76.9 69.8 63.4
B-AFNS 79.9 80.5 81.1 80.5 77.6 69.9 65.7 61.0
Panel C: One-year-ahead forecasts (h = 12)
RW 116.5 1151 109.6 101.4 95.9 86.8 81.4 75.5
DNS 121.6 119.9 119.7  121.7 122.5 117.2 110.9 106.4
DNS-TVL 123.6 123.2 127.1 131.8 133.6 126.2 116.6 108.5
B-DNS 111.5 110.9 110.9 112.4 113.0 107.6 101.9 96.8
SB-DNS 1142 1139 1132 113.0 112.0 1049 98.4 91.5
SB-DNS-TVL 120.5 121.2 1254 1305 1325 1253 1159 107.1
AFNS 146.0 1439 139.7 1292 1176 96.1 86.2 7.7
B-AFNS 123.8 123.2 122.2 116.3 107.8 90.3 82.6 75.0
Panel D: Two-year-ahead forecasts (h = 24)
RW 191.4 190.9 181.1 161.6 146.8 124.4 110.4 97.5
DNS 1984 1952 1914 1855 1814 169.8 159.0 151.0
DNS-TVL 205.2  203.3 2033 2015 1983 1839 1689  155.7
B-DNS 1785 1759 1714 164.5 160.3 1493 1389 1294
SB-DNS 188.9 186.7 181.8 173.1 166.8 152.6 140.5 129.2
SB-DNS-TVL 198.3  198.3  200.1 1994  197.0 183.8 169.6  156.5
AFNS 176.2 172.6 166.8 154.0 142.1 120.5 108.7 97.7
B-AFNS 185.1 181.4 176.0 163.1 149.5 123.6 108.4 93.8

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons. We consider rolling-window estimation with a 240-month window and an
initial sample from September 1981 to Augustus 2001 (240 observations) resulting in 230 one-month-ahead
forecasts, 225 six-month-ahead forecasts, 219 one-year-ahead forecasts and 207 two-year-ahead forecasts to
compute the RMSFEs. The shadow-rate models are all estimated with a fixed lower bound specification
of rpg = 0%, while the smooth shadow-rate model has a fixed smoothness parameter v = 1. The bold
numbers indicate the lowest RMSFE for that particular maturity and horizon.
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G.2 Additional CSSFE plots
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Figure G.1: Cumulative sum of squared forecast errors for one-month ahead forecasts
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Figure G.2: Cumulative sum of squared forecast errors for one-year ahead forecasts
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G.3 Forecasting results for subperiods

Table G.2: Forecasting performance over the pre-ZLB period (September 2001 - October
2008)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RwW 29.3 27.3 27.0 31.6 33.2 31.7 29.6 26.9
DNS 33.5 25.8 26.8 32.6 34.1 32.2 30.2 274
DNS-TVL 33.5 26.6 25.8 31.9 34.3 32.1 30.3 274
SB-DNS 31.7 25.7 26.9 324 33.7 31.7 29.7 27.2
SB-DNS-TVL 33.1 26.4 25.8 31.9 34.2 32.0 30.2 27.3
AFNS 43.9 39.3 38.2 38.9 37.6 314 31.1 27.6
B-AFNS 28.7 30.3 31.0 33.1 33.6 31.4 29.5 27.0
Panel B: Siz-month-ahead forecasts (h = 6)

RW 90.4 89.4 85.9 86.2 85.1 73.1 64.3 55.3
DNS 87.4 89.3 91.5 96.2 94.8 82.7 73.1 63.1
DNS-TVL 84.0 82.5 82.8 88.0 90.1 81.4 74.0 65.6
SB-DNS 80.4 85.5 87.2 89.4 86.7 74.1 64.6 55.9
SB-DNS-TVL 84.0 83.5 84.3 90.1 91.8 82.5 74.6 65.9
AFNS 144.3  139.0 1334 1237 110.9 82.0 70.0 53.6
B-AFNS 94.5 99.9 97.9 94.4 88.2 70.5 59.6 48.9
Panel C: One-year-ahead forecasts (h = 12)

RW 162.4 1587 148.7 136.7 126.0 100.4 84.7 68.5
DNS 163.0 162.8 159.9 156.0 147.4 123.7 108.3 92.1
DNS-TVL 140.0 1374 134.9 1344 131.5 1154 104.7 92.6
SB-DNS 144.9 148.1 144.2 136.5 125.9 101.9 87.0 73.7
SB-DNS-TVL 143.9 142.6 140.5 140.5 136.6 118.3 106.1 92.3
AFNS 212.8  206.1 200.5 187.2 166.3 120.6 98.3 71.2
B-AFNS 154.8 157.6 152.6 143.1 128.9 96.7 79.5 60.7
Panel D: Two-year-ahead forecasts (h = 2/)

RwW 242.4  239.9  223.1 195.3  169.2  120.2 924 65.0
DNS 235.9  233.7 2204 197.2 176.9 142.3 125.0 106.6
DNS-TVL 184.2 180.3 171.7 160.1 151.3  131.9 122.6 1104
SB-DNS 2134 214.0 198.2 1674 141.6 103.8 86.4 72.6
SB-DNS-TVL 196.8 1939 185.6 173.7 163.8 141.7 129.7 1149
AFNS 2514 240.0 230.0 2074 1787 121.6 93.8 65.5
B-AFNS 231.2  229.5 214.8 187.2 160.5 114.1 89.4 68.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the pre-ZLB period from September 2001 to October 2008. The
shadow-rate models are all estimated with a fixed lower bound specification of r;, 5 = 0%, while the smooth
shadow-rate model has a fixed smoothness parameter v = 1. The bold numbers indicate the lowest RMSFE
for that particular maturity and horizon.
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Table G.3: Forecasting performance over the ZLB period (November 2008 - December
2015)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RwW 6.3 7.7 9.7 13.2 17.3 23.9 26.5 27.3
DNS 14.1 9.2 12.6 15.0 18.6 25.6 27.6 30.0
DNS-TVL 16.0 10.4 9.6 15.0 20.9 25.8 28.0 29.1
SB-DNS 12.9 7.9 7.2 13.4 19.0 25.4 28.0 28.3
SB-DNS-TVL 154 10.7 9.6 14.5 19.6 24.6 274 27.7
AFNS 29.0 24.1 24.5 24.1 24.0 25.1 29.0 30.1
B-AFNS 13.0 10.2 11.9 15.8 18.6 23.2 27.2 28.2
Panel B: Siz-month-ahead forecasts (h = 6)

RwW 37.2 39.3 40.5 43.1 49.0 61.3 65.4 65.8
DNS 52.3 47.2 45.4 51.8 61.8 73.2 74.9 75.8
DNS-TVL 74.8 70.8 71.0 75.3 81.1 85.4 83.9 82.3
SB-DNS 46.3 42.2 41.4 49.7 60.7 2.7 74.6 73.0
SB-DNS-TVL 68.3 65.0 64.2 66.0 69.6 72.6 71.2 68.1
AFNS 126.0  120.2  116.5 108.7  100.5 86.1 81.7 74.4
B-AFNS 54.8 52.1 52.5 54.8 57.1 61.8 66.0 65.4
Panel C: One-year-ahead forecasts (h = 12)

RW 68.9 70.0 66.5 58.4 58.2 69.3 75.4 76.6
DNS 80.2 75.8 76.0 82.5 92,5 101.9 102.0 101.7
DNS-TVL 126.9 1239 125.0 126.5 1289 126.2 119.6 115.1
SB-DNS 68.1 64.4 64.1 71.3 83.3 95.7 97.2 94.9
SB-DNS-TVL 111.0  10v.7  106.7  103.8  102.9 97.7 91.1 86.5
AFNS 201.6 196.3 1921 1785 1620 1305 1159 99.5
B-AFNS 70.8 68.8 69.4 68.4 68.5 70.6 77.5 79.5
Panel D: Two-year-ahead forecasts (h = 2/)

RW 1849 1846 1743 152.6 140.8 129.1 119.0 1074
DNS 216.5 2123 2108 209.0 2076 196.1 179.3 1624
DNS-TVL 2395  236.2 2364 2343 231.0 2151 196.0  179.9
SB-DNS 152.6 148.0 1459 147.3 153.0 153.8 143.6 129.1
SB-DNS-TVL 2124 2089 2078 203.7 1989 1819 1625 1455
AFNS 320.1 3153 3099 2877 2584 2004 1645 1252
B-AFNS 158.2  155.6  155.6  152.6 146.6 131.6  122.6 107.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the ZLB period from November 2008 to December 2015. The shadow-
rate models are all estimated with a fixed lower bound specification of r;, 5 = 0%, while the smooth shadow-
rate model has a fixed smoothness parameter v = 1. The bold numbers indicate the lowest RMSFE for
that particular maturity and horizon.
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Table G.4: Forecasting performance over the most recent period (January 2016 - Octo-

ber 2020)

Maturities (in months)

3 6 12 24 36 60 84 120

Panel A: One-month-ahead forecasts (h = 1)

RwW 18.5 16.9 16.4 17.7 18.7 20.0 20.5 20.1
DNS 22.1 16.7 16.4 18.0 18.9 21.2 21.0 20.8
DNS-TVL 20.8 16.2 15.9 17.4 18.4 20.5 21.0 20.7
SB-DNS 16.7 16.6 19.0 19.8 19.6 20.8 21.2 20.1
SB-DNS-TVL 17.8 15.6 16.8 18.3 19.1 21.0 214 21.2
AFNS 24.7 20.0 18.5 19.5 19.6 20.0 21.1 20.5
B-AFNS 16.8 18.6 19.0 17.9 18.4 20.5 21.3 21.1
Panel B: Siz-month-ahead forecasts (h = 6)

RwW 62.0 61.7 61.5 61.7 62.4 61.2 59.2 57.3
DNS 63.9 59.5 59.2 62.1 64.1 66.3 64.4 63.3
DNS-TVL 57.9 53.8 53.8 57.0 59.7 62.9 62.2 61.4
SB-DNS 55.3 60.7 66.3 68.1 66.9 64.0 61.0 55.8
SB-DNS-TVL 51.1 52.5 56.1 60.0 62.2 64.8 64.1 63.5
AFNS 80.1 4.7 72.0 71.2 68.9 63.7 60.9 55.6
B-AFNS 60.4 61.5 60.3 58.3 58.8 60.0 58.9 56.4
Panel C: One-year-ahead forecasts (h = 12)

RW 1004  101.0 101.1 97.9 95.9 90.9 85.6 82.4
DNS 93.9 93.1 95.7 98.6 99.8  100.9 98.6 98.3
DNS-TVL 81.8 80.9 84.2 88.8 91.3 93.5 91.8 90.8
SB-DNS 96.3 103.4 109.7 1105 107.2 98.9 91.8 82.2
SB-DNS-TVL 80.8 85.2 90.8 94.4 95.6 96.8 95.2 94.5
AFNS 119.9 1152  112.8 1089  103.0 91.8 85.3 7.7
B-AFNS 88.1 90.5 91.2 89.2 88.5 86.9 83.7 79.7
Panel D: Two-year-ahead forecasts (h = 2/)

RW 1274 130.2 1340 131.3 1281 121.7  115.1 110.5
DNS 120.7 1237 1283 1314 1333 136.7 1372 1414
DNS-TVL 106.6 108.5 112.9 116.7 118.8 121.0 1200 122.0
SB-DNS 138.8  146.0 152.3 1549 154.0 1445 1335 118.1
SB-DNS-TVL 115.2 1204 1248 1251 123.8  121.8 119.5 119.8
AFNS 169.8 164.6  160.0 151.6  141.8 1242 114.2 105.3
B-AFNS 1272 130.8 1323 129.3 126.7 120.9 114.6 108.2

Notes: This table contains the Root Mean Squared Forecasts Errors (RMSFE) in basis points across
maturities and forecast horizons over the most recent period from January 2016 to October 2020. The
shadow-rate models are all estimated with a fixed lower bound specification of r;, 5 = 0%, while the smooth
shadow-rate model has a fixed smoothness parameter v = 1. The bold numbers indicate the lowest RMSFE
for that particular maturity and horizon.
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