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Solving penalised American options for jump

diffusions using the POST algorithm ?

Jean-Claude Hessing a, Rutger-Jan Lange a, Daniel Ralph b

aEconometric Institute, Erasmus School of Economics, Rotterdam, Netherlands

bJudge Business School, University of Cambridge, Cambridge, UK

Abstract

This article establishes the Poisson optional stopping times (POST) method by [22]

as a near-universal method for solving liquidity-constrained American options, or,

equivalently, penalised optimal-stopping problems. In this setup, the decision maker

is permitted to “stop”, i.e. exercise the option, only at a set of Poisson arrival times;

this can be viewed as a liquidity constraint or “penalty” that limits access to op-

tionality. We use monotonicity arguments in function space to establish that the

POST algorithm either (i) finds the solution or (ii) demonstrates that no solution

exists. The monotonicity of POST carries over to the discretised setting, where

we additionally show geometric convergence and provide convergence bounds. For

jump-diffusion processes, dense matrix factorisation may be avoided by using a suit-

able operator-splitting method for which we prove convergence. We also highlight a

connection with linear complementarity problems (LCPs). We use the POST algo-

rithm to value American options and compute early-exercise boundaries for Kou’s

jump-diffusion model [20] and Heston’s stochastic volatility model [14], illustrating

the breadth of application and numerical reliability of the method.

Key words: Optimal stopping; Penalty method; HJB equation; Contraction; Fixed

Point; Operator Splitting; Implicit Explicit; Linear Complementarity Problem.



1 Introduction

Black and Scholes [5] laid down in their seminal work the fundamentals of

option pricing, leading to a Hamilton-Jacobi-Bellman (HJB) equation in the

form of a partial differential equation (PDE), which can be analytically solved.

Limiting ourselves to problems with analytic solutions — the “analytic strait-

jacket” [1] — is both unfortunate and, given the many available numerical

methods, unnecessary. Yet, such methods tend to be bespoke and “there is a

limit to the amount of time one wants to spend on one example” [33, p. 115-

6]. This article demonstrates the universality of a recently proposed method

for solving multidimensional American options in function spaces, dubbed the

Poisson optional stopping times (POST) method [22], which leads to an effi-

cient numerical implementation for the pricing of American options on jump-

diffusion processes.

The POST method restricts opportunities to exercise the option to a se-

quence of times generated by an independent Poisson process with intensity

λ > 0. In financial terms, this can be seen as imposing a “liquidity constraint”

on the available exercise times. Other papers using Poisson-generated stop-

ping times, though not the POST algorithm, include, in chronological order,

[32,11,8,24,25,27,16,17]. In fact, the POST algorithm is used in [15, eq. 5], in

the context of liquidity-constrained stopping, for one-dimensional diffusions.

As noted in [22], the parameter λ can also be interpreted as a “penalty pa-

rameter” in the penalty formulation of optimal-stopping problems, which dates

back to at least [31] and [4]. This and related approaches have been used in nu-

merical studies by many authors, e.g. chronologically, [44,12,40,41,39,42]. The
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POST algorithm offers a monotonic approach in function spaces to solving

penalised (or finite-liquidity) options or stopping problems.

We present notation and formulation of penalised (or finite-liquidity) options

or stopping problems in Section 2, where, given λ > 0, the value function is

denoted by Vλ. Section 3 shows that the POST algorithm in function space

is perfectly adapted (Theorem 1) to finite-liquidity optimal stopping: Broadly

speaking, if there is a solution Vλ, the algorithm will find it. This robust

function-space result underlies the numerical implementation of the algorithm,

for which we discretise. In section 4 we show that the discretised version of the

POST algorithm is geometrically convergent (Proposition 2) to the unique dis-

cretised solution. Section 5 tackles jump-diffusion processes, which are ubiq-

uitous in finance. We propose an operator-splitting method (Proposition 3)

that allows POST to be implemented using sparse linear solvers. In section 6

we note that the discretised finite-liquidity optimal-stopping problem can be

equivalently written as a linear complementarity problem (LCP), and we ob-

serve (Proposition 4) that the POST algorithm is a new, provably convergent

method for the corresponding class of LCPs.

Section 7, on numerical application, opens with a five-step “POST recipe”

to implement the discretised POST algorithm. This makes numerical imple-

mentation straightforward, and easy to modify to account for different model

features. To demonstrate the validity of POST, we use this recipe to solve the

jump-diffusion model of [20,21] and compare it against the well-known ana-

lytic solution. We then change the distribution of the jumps, thereby ruling

out an analytic solution. Our numerical treatment is accomplished by chang-

ing a single line of code in the discretised POST implementation. Finally, we

consider the valuation of a finite-maturity American option under Heston’s

stochastic volatility model [14], as considered in e.g. [6], demonstrating that a

plain-vanilla application of POST can solve options with three state variables.
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2 Liquidity-constrained American options or penalised optimal-

stopping problems

Liquidity-constrained American options are optimal-stopping problems in which

the decision maker is prohibited from stopping except at Poisson arrival times.

Such problems are also known as “penalty formulations” of stopping problems

and were initially described in [31] and [4]. As is standard, the stochastic pro-

cess {Xt}t≥0 takes values in the state space X , which we think of as a nonempty

and closed set in a finite-dimensional Euclidean space Rd, but which in prin-

ciple could be any locally compact, separable and topological space. We also

assume that {Xt}t≥0 satisfies the strong Markov property, and has paths that

are right continuous and allow limits from the left (càdlàg). This makes {Xt}

a Hunt process, prominent examples of which include jump diffusions and

Lévy-type processes. The decision maker is permitted to “stop”, i.e. exercise

the option, only at a set of independently generated Poisson arrival times

with intensity λ > 0. She is forced to continue prior to the first Poisson arrival

time and in between any two Poisson arrival times. Classic stopping problems,

where stopping is permissible at any time, form a limiting case where λ→∞.

As is standard in this setting, the following Hamilton-Jacobi-Bellman (HJB)

equation should be satisfied for all x ∈ X :

r Vλ(x) = LVλ(x) + f(x) + λ [g(x)− Vλ(x)]+, (1)

where [·]+ = max{·, 0}. The infinitesimal generator L is defined via its opera-

tion on a test function h : X → R as (Lh)(x) := limt↓0(Ex[h(Xt)] − h(x))/t,

assuming this limit exists for each x. HJB Eq. (1) further features the discount

rate r > 0; the Poisson arrival rate λ > 0; the flow gain, stopping gain and

value function denoted by f, g, Vλ : X → R, where f, g represent the prob-

lem data, while the dependence of the solution Vλ on the Poisson intensity λ

is indicated by the subscript. In financial terms, HJB Eq. (1) indicates that
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the return, r Vλ, is the sum of three terms: the expected change in the value

function as measured by LVλ, the flow gain f , and the additional value of

exchanging Vλ for g whenever the latter exceeds the former and a Poisson

arrival time is generated. The term λ[g − Vλ]
+ is also known as a “penalty

term”, as it takes strictly positive values only in the interior of the “stopping

set” {g ≥ Vλ}, where the decision maker wants to stop but is prohibited from

doing so except at Poisson arrival times. As this penalty term illustrates, it is

optimal to stop at the first Poisson arrival time t for which g(Xt) ≥ Vλ(Xt).

In our applications, we consider the case where {Xt} is a jump-diffusion pro-

cess on X = Rd. The generator L, operating on the test function h, then has

the following explicit representation (see [19, p. 360] or [3, p. 158]):

Lh = Dh+ Jh, (2)

(Dh)(x) =
1

2

d∑
i=1

d∑
j=1

σij(x)
d2h(x)

dxi dxj
+

d∑
i=1

µi(x)
dh(x)

dxi
,

(Jh)(x) =
∫

Rd\{x}

h(y) ν(x, dy).

This illustrates that for jump-diffusion processes on X = Rd, the generator L is

a linear but unbounded (in the supremum norm) integro-differential operator.

The generator L consists of a “diffusive” part D and a “jump” part J. The

diffusive part D contains the d × 1 drift vector µi(x) for i = 1, . . . , d and the

symmetric nonnegative definite d×d diffusion matrix σij(x) for i, j = 1, . . . , d.

The jump part J contains the nonnegative Borel jump measure B 7→ ν(x,B),

where B can be any Borel subset of the space Rd \ {x}.

As representation (2) illustrates, HJB Eq. (1) is typically a partial integro-

differential equation (PIDE), which cannot be solved analytically except in

special cases. The unavailability of closed-form solutions calls for the devel-

opment of approximation methods, ideally in function space, i.e. prior to dis-

cretising; the next section describes such a method.
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3 POST dichotomy: Using the POST algorithm to characterise the

existence of Vλ

HJB Eq. (1) can be solved in function space using the POST algorithm intro-

duced in [22], which can be motivated by adding (λ − L)Vλ to both sides to

obtain

(r + λ− L)Vλ = f + λmax{g, Vλ}, (3)

where for notational simplicity we omit the argument x ∈ X for functions

f, g, Vλ. By attaching the superscripts n and n − 1 to the value functions

appearing on the left and right-hand sides, we obtain the POST algorithm:

(r + λ− L)V
(n)
λ = f + λmax{g, V (n−1)

λ }, (4)

for n = 1, 2, . . . and some initialisation V
(0)
λ .

It is easy to see [22] that if V
(0)
λ ≤ V

(1)
λ (pointwise) then the entire POST se-

quence is pointwise non-decreasing. Moreover V
(0)
λ ≤ V

(1)
λ follows immediately

[22,15] if we take V
(0)
λ to be a solution of

(r + λ− L)V
(0)
λ = f + λg, (5)

which corresponds to the (suboptimal) policy of stopping at the first Poisson

arrival time. We use this starting point in numerical experiments in section 7.

For this initialisation, monotonicity of the POST iterates can be understood

by noting that V
(n)
λ represents the value when n (Poisson-generated) optional

stopping times remain, after which the decision maker receives V
(0)
λ if she has

not stopped already. That is, each iteration permits one more opportunity to

exercise.

A convergence analysis of the POST algorithm (4) is given in [22, Eq. B1]

under a somewhat restrictive technical condition on the data functions f, g.

Here, we give a more fundamental result that is simpler to derive and involves
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almost no assumptions, indicating that convergence of the POST algorithm (4)

is equivalent to well posedness of the penalised HJB Eq. (1).

Theorem 1 (POST dichotomy in function space) Fix r, λ > 0, and let

f, g : X → R be such that V
(0)
λ can be computed, as a finite-valued function,

from (5). Then {V (n)
λ } defined by algorithm (4) is pointwise non-decreasing

and, as n→∞, one of two mutually exclusive statements holds:

(1) {V (n)
λ } converges, pointwise, to a (finite-valued) solution Vλ of HJB equa-

tions (1).

(2) HJB (1) does not have finite-valued solution.

The POST dichotomy implies that the POST algorithm (4) is perfectly adapted

to solving HJB Eq. (1). The proof, which follows by a direct application of

Lebesgue’s monotone convergence theorem, is presented in Appendix A; it

shows that for any initialisation with V
(0)
λ ≤ V

(1)
λ , the POST sequence either

converges to a (finite-valued) solution Vλ or diverges to ∞ at some x. In fact

the theorem can be slightly extended to the situation when the suboptimal

policy of stopping at the first Poisson arrival time takes the value +∞ at some

x. Clearly then, the optimal value Vλ also takes an infinite value there, and

we are in case 2 of the POST dichotomy.

Interestingly, Theorem 1 requires neither bounded nor smooth problem data

f, g. This contrasts with the majority of the vast literature on solutions to

penalised HJB equations, which typically assumes bounded if not smooth

problem data, c.f., in chronological order, [31, p. 9], [36, p. 180], [37, p. 274],

[43, p. 921], [28, p. 3785], [18, p. 106], [29, p. 2365], [38, p. 1084], [13, p. 272],

[35, p. 319], [27, p. 2661], [26, p. 434], [10, p. 38], and [9, p. 23]. Our extension

to unbounded data is important in fields as diverse as finance, economics and

operations, where problems with unbounded problem data are the norm rather

than the exception. The conditions of Theorem 1 are mild; we are unaware of

other results proving existence in this general setting.
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4 Discretised POST algorithm

While the POST algorithm (4) operates in function space, for computation

we work in a bounded domain of some finite-dimensional (vector) space. This

approach, also used in [22] and [23], involves fixing a natural number N to dis-

cretise the computational domain within the state space X , using grid points

{xi : i = 1, . . . , N}. Discretising the problem data f, g yields two vectors

f ,g ∈ R
N . For example, f could be defined by setting its i-th component

to be the function value f(xi). Discretising the operator L yields an N × N

matrix L, described below (vectors and matrices are given in bold font). The

discretised version of the POST fixed-point Eq. (3) reads

[
(r + λ) I − L

]
Vλ = f + λmax {g,Vλ} , (6)

where I is an identity matrix of appropriate size, the max operator is applied

elementwise to a pair of vectors, and Vλ denotes the discretised solution. The

discretised POST algorithm reads

[
(r + λ) I − L

]
V

(0)
λ = f + λg, (7)[

(r + λ) I − L
]
V

(n)
λ = f + λmax

{
g,V

(n−1)
λ

}
, (8)

for n = 1, 2, . . .. where we take the same initialisation as in [22] and V
(n)
λ ∈ RN

is the discretised version of the approximate solution V
(n)
λ in Eq. (4). The

monotonicity of Theorem 1 carries over to the discretised setting if L is ap-

propriately discretised to give L.

For a diffusion process, both L and the matrix (r + λ) I − L are sparse. It

is thus computationally efficient to solve (8) using sparse factorisation of that

matrix, rather than forming its (dense) inverse. The next result characterises

the theoretical properties of discretised POST.

Proposition 2 (Convergence of Discretised POST) Let r, λ > 0, f ,g ∈

R
N and L ∈ RN×N be weakly diagonally dominant with nonpositive diagonal
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elements and nonnegative off-diagonal elements. Then:

(1) Discretised POST, (8) initialised via (7), generates a sequence {V(n)
λ }n∈N

that is monotonically non-decreasing, i.e. V
(n)
λ ≥ V

(n−1)
λ for all n, and

converges geometrically, at rate λ/(λ+r) in the max-norm, to the unique

fixed point of Eq. (6).

(2) We arrive at the following online computable bound at iteration n ≥ 1:

∥∥∥Vλ −V
(n)
λ

∥∥∥
∞
≤ λ

r

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞
. (9)

The convergence proof appears in Appendix B. Geometric convergence in

part 1 and the bound in part 2 rely on the classic bound on the inverse of a

diagonally dominant matrix [2], which we apply to a matrix of the form µI−L

where µ > 0 and L is itself diagonally dominant with nonpositive diagonal en-

tries, giving ‖[µI−L]−1‖∞ ≤ 1/µ. Monotonicity, in part 1, uses an additional

sign property which is that off diagonal elements of L are nonpositive. This

ensures for any µ > 0 that the Z matrix µI − L is an M matrix, such that

[µI− L]−1 consists of nonnegative entries; see [30].

5 Discretised POST with operator splitting for jump diffusions

For jump diffusions, in which case L = D + J as in the representation (2), we

must construct the discretisation L = D + J ∈ RN×N . Although D is sparse,

J and hence L will be dense due to the integral nature of the jump operator

J. The integral part of J can be discretised using a straightforward Riemann

approximation. We take a simple view of jump diffusions, given by the second

part of (2), in supposing that ν(x, dy) = ν(x) p(x, dy). That is, we suppose

that for each x ∈ X there exists a bounded jump intensity 0 ≤ ν(x) < ∞,

such that the probability of a jump in a short time interval equals ν(x) dt.

The (marginal) density conditional on the presence of a jump originating from

X0 = x and ending up at some y ∈ X is given by p(x, y) dy, where p(x, ·) is
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a probability density over X . For a pure jump process, J can be derived by

considering

(Jh)(x) =
E
xh(Xdt)− h(x)

dt
,

=
ν(x) dt

∫
X p(x, y)h(y) dy + (1− ν(x) dt)h(x)− h(x)

dt
,

= ν(x)
∫
X
p(x, y)h(y) dy − ν(x)h(x), (10)

which is well-defined for any test function h : X → R such that the integral

exists for all x. The function-space action of the integral operator J in Eq. (10)

allows a straightforward Riemann discretisation as diag(ν) P where ν ∈ RN is

a (nonnegative) discretisation of the jump intensity ν : X → R, the diag oper-

ator takes a vector and puts it on the diagonal of a matrix that contains zeros

elsewhere, while P is the N ×N matrix whose (i, j)th entry is βi p(xi, xj)αj,

given a measure αj ≥ 0 of the area of X associated with the grid point xj and

a scaling βi := (
∑
j p(xi, xj)αj)

−1. It follows that P is a stochastic matrix: It

is nonnegative and every row sums to 1, which is consistent with p(x, ·) being

a density. In summary, the matrix discretisation J ∈ RN×N is

J := diag(ν) P − diag(ν). (11)

We observe that J in Eq. (11) satisfies the sign requirements and weak diagonal

dominance requirements as required by Proposition 2. The discretised POST

method, (7)–(8), will therefore solve the optimal-stopping problem for a pure

jump process. However, J, L and (r + λ)I − L are dense, and iterating the

purely implicit scheme (8) would require a costly dense matrix factorisation.

To alleviate this computational burden, it is attractive to decompose L into a

sparse part Lim := D− diag(ν) and a dense part Lex := diag(ν) P,

L = Lim + Lex. (12)
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Then we convert equations (7) and (8) to an implicit-explicit format as follows:

[
(r + λ) I − Lim

]
V

(0)
λ = Lex g + f + λg, (13)[

(r + λ) I − Lim

]
V

(n)
λ = Lex V

(n−1)
λ + f + λmax

{
g,V

(n−1)
λ

}
, (14)

for n = 1, 2, . . .. That is, we place the known quantity Lex V
(n−1)
λ on the right to

compensate for omitting the unknown quantity Lim V
(n)
λ that would otherwise

have appeared on the left. In terms of numerical linear algebra, each iteration

requires a dense matrix-vector multiplication and a sparse linear-system solve,

the latter similar to POST under a pure diffusion operator [22].

Next we check that the linear system (14) can be solved stably. Since Lim has

a more negative diagonal than D, the intuition is that (r+ λ−Lim)−1 will be

more contractive than (r + λ−D)−1. To explore this, let

δ := min
i
νi ≥ 0, (15)

where νi denotes the i-th element of the vector ν ∈ RN . Next, we observe

that δI + D has nonnegative off-diagonal elements, nonpositive diagonals and

is weakly diagonally dominant. Proposition 2 applied to (r + λ)I − Lim =

(δ+r+λ)I−(δ+Lim) therefore says that ‖((r+λ)I−Lim)−1‖∞ ≤ 1/(δ+r+λ).

This is the basis for Proposition 3 below, which shows that if ‖Lex‖∞ < δ+ r,

then (14) defines a contraction that converges to a solution of the discretised

PIDE (6). Of course, if ‖Lex‖∞ is too large, we can decrease it without affecting

δ by shifting any of the upper or lower off-diagonal elements of Lex to Lim at

the expense of increasing the density of the latter.

Proposition 3 (POST with operator splitting) Take λ, r > 0, f ,g ∈

R
N , and Lim,Lex ∈ R

N×N . Assume that Lim has positive off-diagonal ele-

ments and there exists δ > ‖Lex‖∞−r such that δI+Lim has negative diagonal

elements and is weakly diagonally dominant. For any initial point V
(0)
λ ∈ RN ,

the iterative scheme (14) then generates a sequence {V(n)
λ } that converges ge-

ometrically at rate (‖Lex‖∞ + λ)/(δ + r + λ) to a solution of the fixed point
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(6).

The convergence proof appears in Appendix C. When the jump intensity ν(x)

is constant on the state space, i.e. when ν(x) = ν0 > 0 for all x ∈ X , as is

often the case in practice, then convergence is guaranteed. To see why, note

that δ := ν0 and ‖J‖∞ = ν0 maxi
∑
j Pij = ν0. Thus ‖J‖∞ = δ < δ + r,

which guarantees convergence.

6 Discretised POST for solving a class of LCPs

The discretised problem (6) can be reformulated as an equivalent linear com-

plementarity problem (LCP). While classic LCP methods feature decreasing

monotonicity [7, Theorem 5.3.17], our algorithm features increasing mono-

tonicity. Moreover, finding an initial feasible point requires no work. The

POST algorithm can thus be used to solve LCPs; to the best of our knowledge,

this method for solving LCPs is new.

To transform (6) to LCP format, start by subtracting g from both sides;

rewrite the left-hand side Vλ− g as the difference between its positive part x

and negative part w, i.e.

Vλ − g = x−w, x := (Vλ − g)+, w := (Vλ − g)−. (16)

After some rearrangements with K := λ
(
(r+λ)I−L

)−1
and q :=

(
(r+λ)I−

L
)−1

c + (I − K)g, we see that (6) is equivalent to the following LCP with

variables x,w ∈ RN ,

0 ≤ w = (I−K)x + q ⊥ x ≥ 0, (17)

where ⊥ denotes orthogonality or complementarity. That is, a solution Vλ to

(6) generates a solution x = (Vλ − g)+ and w = (I −K)x + q of (17); and,

conversely, if (x,w) solves the LCP then Vλ − g = x−w solves (6).
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We note that the iterative method (8) is viewed in the literature on LCPs [7,

Section 5.2] as a projective splitting or projective Jacobi method. Consider

the projective splitting scheme initialised with x(0) = 0 ∈ RN , such that

x(1) = (−q)+ and, in general, for n = 1, 2, . . .

x(n) := (Kx(n−1) − q)+, (18)

w(n) := x(n) − (Kx(n−1) − q). (19)

This corresponds to (8) starting from n = 1, because

V
(1)
λ = −q + g = x(1) −w(1) + g

and, for n ≥ 2, we can see that V
(n)
λ = x(n) − w(n) + g. This leads to a new

LCP splitting convergence result, which is a corollary of Proposition 2.

Proposition 4 (Discretised POST solves a class of LCPs) Let q ∈ RN

and K ∈ RN×N be such that K has nonnegative entries and ‖K‖∞ < 1. If

x(0) = 0 then (18) generates a non-decreasing sequence {x(n)}, i.e. x(n) ≥

x(n−1), such that {(x(n),w(n))} converges to a solution of (17).

Monotonicity can be seen directly given that x(1) ≥ 0 = x(0). Thus, for n ≥ 2,

induction on x(n−1) ≥ x(n−2) gives Kx(n−1) − q ≥ Kx(n−2) − q, hence x(n) ≥

x(n−1).

In an interesting contrast, applying LCP theory [7, Theorem 5.3.17] in the

context of the previous result shows that the projective splitting method is

guaranteed to generate a non-increasing sequence {x(n)} that converges to

a solution of the LCP if the initial point is feasible, i.e. x(1) ≥ 0 and (I −

K)x(1) + q ≥ 0. We do not use this result, however, as obtaining an initial

feasible point requires considerable effort.
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7 Numerical applications

To solve optimal-stopping problems in practice, we provide the following five-

step recipe:

(1) Localise: Decide on a bounded domain of interest.

(2) Discretise: Fix N grid points and construct discretised problem data

f ,g ∈ RN and jump-diffusion matrix L ∈ RN×N to satisfy the conditions

of Proposition 2 or 3.

(3) Impose boundary conditions: Adjust f ,g and L to incorporate rele-

vant boundary conditions on the edge of the grid.

(4) Run discretised POST algorithm: Initialise via (7). Iterate via (8),

i.e. without operator splitting, or (14), i.e. with operator splitting, until

some convergence criterion is satisfied.

(5) Perform robustness checks: Repeat steps (1)–(4) after changing the

bounded domain, refining the grid, and increasing the Poisson intensity

λ > 0. Stop if the previous and current discretised solutions are “close”.

Below, we apply this approach to valuing American options under Kou’s jump-

diffusion model and Heston’s stochastic volatility model and compare with

results available in the literature.

7.1 Application 1: Kou’s jump-diffusion model

To demonstrate the accuracy of POST, we consider an American put option

for a jump-diffusion process for which an analytic solution is available in [20].

The stock price {St} is a geometric Brownian motion started at S0 = 100, with

volatility σ = 0.2, risk-neutral drift, and a sequence of independent identically

distributed shocks that arrive at the constant jump intensity ν > 0. Jumps

are doubly exponentially distributed, where p = 0.6 and q = 1 − p = 0.4 are
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the probabilities of upward and downward jumps. Upward (downward) jumps

are exponentially distributed with parameter η1 = 25 (η2 = 25). We take

the state variables to be Xt = log(St/S0) ∈ R and t ≤ T , where T = 0.25

is the option’s maturity date in years. The stopping gain equals g(Xt, t) =

[K−St]+1t≤T , where K = 100 is the strike price. Time to maturity is denoted

by τ = T − t. There are no dividends, hence the flow gain f equals zero. All

gains are discounted using r = 0.05.

The five-step POST recipe is implemented constructing 250 equally spaced

gridpoints relating to time, 1,100 gridpoints relating to the stock price, which

range from S = 10−6 to S = 10K and have a higher density around the strike

price S = K. In total, N = 250 × 1,100 = 275,000. We use standard finite-

difference stencils to discretise the diffusive part of L ∈ RN×N . The jump part

is discretised by utilising the cumulative distribution function of the double

exponential distribution, which is known in closed form. Jumps that move

the stochastic process outside the discretised domain are disallowed and reas-

signed to the boundary of the domain. We truncate the state space at t = T

and impose the terminal boundary condition g(X,T ) = [K − S0 exp(X)]+.

On the edge of the grid where S = 10K, the option value is set to zero.

Operator-splitting algorithm (14) is run until a convergence criterion is satis-

fied, ensuring that the change in the value function and exercise boundary are

sufficiently small. We refine and extend the grid, noting that these changes do

not noticeably change the value function or the corresponding policy. We take

λ = 210 = 1024, which corresponds to ∼4 exercise opportunities per day, and

note that this value is large enough to closely approximate the case λ = ∞.

This was verified numerically: Beyond λ = 28 = 128, the policy and value

function are insensitive to changes in λ.

The results shown in Table 1 demonstrate that POST closely approximates the

true option value in most scenarios. The difference with the analytic solution

by Kou [20] is under 0.5% in most cases, while the exercise boundary typically
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Table 1

American put value for jump-diffusion model with strike price K = 100

Parameters Value at S0 = 100 Boundary at S0 = 100

σ ν p η1 η2 POST Kou ∆ ∆% POST Kou ∆ ∆%

0.01 3 0.6 25 25 0.906 0.949 -0.043 -4.48 97.43 97.19 0.25 0.25

0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66

0.5 3 0.6 25 25 9.567 9.545 0.021 0.22 62.50 65.06 -2.56 -3.93

0.7 3 0.6 25 25 13.439 13.410 0.028 0.21 50.16 53.11 -2.95 -5.55

0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66

0.2 7 0.6 25 25 4.386 4.368 0.018 0.41 82.94 83.77 -0.83 -0.99

0.2 3 0.1 25 25 3.870 3.884 -0.014 -0.37 85.98 86.30 -0.32 -0.37

0.2 3 0.3 25 25 3.862 3.878 -0.016 -0.40 85.81 86.13 -0.32 -0.37

0.2 3 0.5 25 25 3.882 3.873 0.009 0.23 85.38 85.96 -0.57 -0.67

0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66

0.2 3 0.9 25 25 3.874 3.868 0.006 0.15 84.96 85.59 -0.63 -0.74

0.2 3 0.6 5 25 7.627 7.612 0.016 0.21 54.88 57.15 -2.27 -3.97

0.2 3 0.6 15 25 4.206 4.209 -0.003 -0.07 83.03 83.60 -0.57 -0.68

0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66

0.2 3 0.6 50 25 3.720 3.705 0.015 0.39 86.16 86.78 -0.63 -0.72

stays within a 1% margin. This demonstrates the validity of POST for a

model that permits an analytic solution; next, we consider the more general

case when a closed-form solution is unavailable.

Fig. 1. Exercise boundaries comparing normal jumps with double exponential jumps;

the cases for η2 = 25 are indistinguishable
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7.2 Application 2: Variation on Kou’s model with no analytic solution

Kou’s [20] double exponential jump density was selected to facilitate the ana-

lytic solution. The POST method allows us to explore alternative jump distri-

butions with minimal user effort by changing one line of code. To investigate

the sensitivity of Kou’s results to the jump density, we consider a log-normal

jump density, with mean and volatility parameters µn and σn, such that the

expected effect on the stock price is a multiplicative factor exp(µn+0.5σn). We

vary the jump frequency ν along with the parameters of the jump density (e.g.

η1 and η2) to ensure that the risk-neutral drift remains constant; otherwise, any

differences in the solution could be due to variation in the drift rather than

the jump process. When comparing normally and exponentially distributed

jumps, we match the mean and variance of jumps in Xt = log(St/S0). Fig-

ure 1 shows the exercise boundaries obtained for the double exponential (DE)

distribution and its “normal equivalent”, abbreviated as “Normal eq.”. When

η2 = 25, such that the DE distribution is symmetric, the exercise boundaries

corresponding to the DE distribution and its normal equivalent are practically

indistinguishable. When η2 = 5, however, the boundary corresponding to the

DE distribution lies substantially below that corresponding to the normal dis-

tribution. When downward jumps are more likely, and have heavier tails than

the equivalent normal distribution, it is optimal to wait longer before exercis-

ing the option. In sum, negative skew and tail thickness of the jump density

have a sizeable effect on the optimal policy.

7.3 Application 3: Heston’s stochastic volatility model

We price a finite-maturity American put option using Heston’s stochastic

volatility model [14]. The stock price follows a geometric Brownian motion,

in which the volatility parameter σt is mean reverting. There are three state
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variables: time t, stock price St, and volatility σt. Our three-dimensional grid

consists of 50 gridpoints for t, 300 gridpoints for St, and 30 gridpoints for

σt, such that N = 50 × 300 × 30 = 450,000. We take the parameter values

as in [6, sec. 3.1]. The resulting exercise boundary is shown in Figure 2. The

key finding here is that a plain-vanilla application of the POST method can

replicate, with minimal user effort, the output of specialised methods such as

[6] for solving American options with stochastic volatility.

Fig. 2. Exercise boundary (i.e. surface) for an American put option with three state

variables as in Heston’s stochastic volatility model

8 Conclusion

We have extended the applicability of the POST method by [22] to virtually

all problems of interest and established it as a rigorous method for solving

liquidity-constrained American options with multiple state variables. We have

shown by monotonicity arguments in function space that the POST algorithm

either finds the solution or demonstrates that no solution exists. This extends

the scope of the method relative to [22], who rely on a technical condition

that may be hard to verify in practice. Theorem 1 is unlike most results in the

literature in that it requires neither bounded nor smooth problem data. The

monotonicity of POST carries over to the discretised setting, in which case
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we additionally show geometric convergence and provide associated conver-

gence bounds. For jump-diffusion processes, dense matrix factorisation may

be avoided by an operator-splitting method for which we prove convergence.

Finally, we note that the POST method is a workhorse, not a racehorse, in the

sense that for individual problems it is almost certainly possible to develop

faster, specialised algorithms. While such algorithms may require less CPU

time, they typically require more researcher time, and it is the latter we wish to

minimise. In the class of stopping problems that are amenable to discretisation,

POST is a near-universal solution method built on rigorous function-space

results.
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A Proof of Theorem 1

Take the initialisation V
(0)
λ from (5), which satisfies V

(0)
λ ≤ V

(1)
λ , [22,15].

We rewrite the POST algorithm (4) as

V
(n)
λ (x) = (r + λ− L)−1 (f + λmax{g, V (n−1)

λ })(x).

for n = 1, 2, . . .. The inverse (r + λ − L)−1 can be defined via the resolvent

formalism, see e.g. [34, pp. 234–238]. This allows the POST algorithm to be

written in terms of an expectation operator:

V
(n)
λ (x) =

∫ ∞
0

e−(λ+r)t
E
x[f(Xt) + λmax{g(Xt), V

(n−1)
λ (Xt)}]dt, (A.1)

where Ex is an expectation conditional on X0 = x. Here, the probability den-

sity λ exp(−λ t)dt is recognised as the probability density of the first Poisson

arrival time. To simplify the notation, we define the POST operator Tλ oper-

ating on a test function h : X → R as

(Tλh)(x)
∫ ∞

0
e−(λ+r)t

E
x[f(Xt) + λmax{g(Xt), h(Xt)}]dt. (A.2)

The POST operator Tλ is pointwise monotonic (h1 ≤ h2 implies Tλh1 ≤ Tλh2,

both pointwise) so that if V
(0)
λ ≤ V

(1)
λ , then the entire POST sequence is

pointwise non-decreasing [22].
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The POST algorithm (A.1) can now be written as

V
(n)
λ (x) = (TλV (n−1)

λ )(x), n = 1, 2, . . . . (A.3)

If statement 2 in Theorem 1 holds then statement 1 cannot. The contraposi-

tive is that if statement 2 fails then, by monotonicity of {V (n)
λ }, there exists

the pointwise (real-valued) limit V̂ = limn→∞(Tλ)nV (0)
λ . In the latter case,

Lebesgue monotone convergence theory applies to the monotonic sequence

{(Tλ)nV (0)
λ } giving, for each x, a limit “under the integral”:

lim
n→∞

(Tλ)n+1(V
(0)
λ

)
(x) = lim

n→∞
Tλ
(
Tλ)nV (0)

λ

)
(x)

= Tλ
(

lim
n→∞

(Tλ)n
(
V

(0)
λ

)
(x) = Tλ(V̂ )(x).

Thus V̂ = Tλ(V̂ ), giving statement 1 with Vλ = V̂ .

B Proof of Proposition 2

Linear convergence boils down to the classic bound on the inverse of a diag-

onally dominant matrix [2, p. 96]. Suppose L is weakly diagonally dominant:

for each row, the sum of the absolute values of the off-diagonal elements does

not exceed the absolute value of the diagonal. Suppose further that L has with

nonpositive diagonal elements. Then for any µ > 0, µI − L is invertible and

the norm of [µI − L]−1, induced by the max-norm on RN , is bounded above

by µ−1. Discretised POST corresponds to µ = λ+ r, which combines with the

factor λ on the right hand side of (8) to give a contraction of λ/(λ+ r).

Nonnegative off-diagonal elements of L ensure for any µ > 0 that the Z-

matrix µI−L is an M -matrix, see [30], thus [µI−L]−1 consists of nonnegative

entries. As in the continuous case, it is now straightforward to show that

the initialisation in Eq. (7) yields, first, V
(1)
λ ≥ V

(0)
λ , hence, by induction,

V
(n)
λ ≥ V

(n−1)
λ for all n. Part 2 relies entirely on the nonnegativity of the

operator ((r+λ)I−L)−1, which is contractive having norm bounded above by
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(r + λ)−1, to construct a non-decreasing, geometrically convergent sequence

as follows:

∥∥∥Vλ −V
(n)
λ

∥∥∥
∞
≤
∑
k≥n

∥∥∥V(k+1)
λ −V

(k)
λ

∥∥∥
∞
≤
∥∥∥V(n+1)

λ −V
(n)
λ

∥∥∥
∞

∑
k≥0

(
λ

λ+ r

)k

≤ λ

r + λ

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞

λ+ r

r
=

λ

r

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞
.

C Proof of Proposition 3

We prove Proposition 3 by letting r + λ → r + λ + δ and L → Lim + δ in

Proposition 2 to show that the inverse [(r+λ)I−Lim]−1 exists and has a norm

bounded above by (r + λ+ δ)−1. Successive iterates of (14) give

V
(n+1)
λ −V

(n)
λ =

[
(r + λ)I− Lim

]−1
×(

Lex(V
(n)
λ −V

(n−1)
λ ) + λmax

{
g,V

(n)
λ

}
− λmax

{
g,V

(n−1)
λ

})
,

such that

∥∥∥V(n+1)
λ −V

(n)
λ

∥∥∥
∞
≤ ‖Lex‖∞
r + λ+ δ

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞

+
λ

δ + r + λ

∥∥∥max
{
g,V

(n)
λ

}
−max

{
g,V

(n−1)
λ

}∥∥∥
∞
,

≤ ‖Lex‖∞
r + λ+ δ

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞

+
λ

δ + r + λ

∥∥∥V(n)
λ −V

(n−1)
λ

∥∥∥
∞
.

The first inequality uses the fact that the norm is sub-additive as well as

sub-multiplicative. where the last term uses monotonicity of ‖ · ‖∞. Hence

contractivity, and geometric convergence at rate ‖Lex‖∞+λ
δ+r+λ

, follows if ‖Lex‖∞ <

δ + r.
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