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Abstract: Gauss’ 1809 discussion of least squares, which can be viewed as
the beginning of mathematical statistics, is reviewed. The general consensus
seems to be that Gauss’ arguments are at fault, but we show that his rea-
soning is in fact correct, given his self-imposed restrictions, and persuasive
without these restrictions.
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An old question in probability theory is the following: suppose we throw with
two fair dice, how many times do we need to throw so that the probability of
at least one double-6 is at least 1/2. In the first half of the seventeenth cen-
tury, the Chevalier de Méré, a well-known gambler, thought that he needed
24 throws. This problem has become famous because it intrigued Pascal and
Fermat, and the solution is contained in a letter of Pascal to Fermat dated
July 29, 1654.2 With some caution we can take 1654 as the birth year of prob-
ability theory. It took a while to understand the basic rules of probability
and sixty years later, in a letter to the Swiss philosopher and mathematician
Louis Bourguet dated March 22, 1714, Leibniz still maintained that is was
equally likely to throw twelve with two dice than to throw eleven, because
“l’un et l’autre ne ce peut faire que d’une seule manière” (one or the other
can be done in only one way).

Mathematical statistics is much younger and, with similar caution, we
select as its beginning the publication of Gauss’ famous 1809 monograph.3

Legendre (1805) had published his method of least squares four years earlier,

1I am grateful to Franco Peracchi and Steven Tijms for useful comments.
2The correct answer is 25 and is obtained by showing that the equation 1− (35/36)n =

1/2 has the solution n ≈ 24.6.
3Others would choose Laplace (1774) as the beginning of statistics, which is equally

reasonable.

1



but he developed his method as an approximation tool and no randomness is
assumed. Gauss (1809), in contrast, works in the context of random variables
and distributions; see e.g. Pearson (1978), Stigler (1986), and Gorroochurn
(2016) for historical details.

Some satisfaction seems to be derived in finding mistakes in the writings of
great minds, and Leibniz’ error is quoted frequently. Rather than laughing
at Leibniz’ mistake, we should realize just how difficult the beginnings of
probability theory were, and that things that we now consider easy are not
easy because we are so clever but because they have sunk into common
knowledge.

Similarly, most Gauss commentators have found his 1809 treatment of
least squares at fault. For example, Stigler (1986, pp. 141–143) considers
it a “logical aberration . . . essentially both circular and non sequitur” and
Gorroochurn (2016, p. 163) writes that “his reasoning contains an inherent
circularity because the normal distribution emerges as a consequence of the
postulate of the arithmetic mean, which is in fact a consequence of the nor-
mality assumption!” The purpose of this note is to demonstrate that it is
not Gauss who is at fault but his commentators.

In modern notation, Gauss starts with the linear model

y = Xβ + u, (1)

where he assumes that the errors ui are independent and identically dis-
tributed (iid) with mean zero and common variance σ2, which we set equal
to one without loss of generality. Since the ui are iid, they have a common
density function, say ϕ(ui), and the logarithm of the joint density becomes∑n

i=1 log ϕ(ui). Gauss wishes to estimate β by maximizing the joint density.
In other words, he wants to derive the maximum-likelihood estimator for β.

Gauss is aware of the fact that if he assumes normality of the errors, then
the joint density will be of the form

n∑
i=1

log ϕ(ui) = a− b

n∑
i=1

u2
i , (2)

so that (under normality) maximizing the likelihood is the same as minimiz-
ing the sum of squared deviations. Gauss makes life unnecessarily difficult
for himself by working in a Bayesian framework, assuming a flat bounded
prior for each of the βj, so that the posterior also has bounded support.
But in essence, Gauss showed (for the first time) that in the standard lin-
ear model under normality the maximum-likelihood estimator is equal to the
least-squares formula.
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This is an important result in itself and Gauss could have stopped there.
But he did not want to assume at the outset that the errors are normally
distributed. Instead he wants to show that normality of the errors is not
only sufficient but also necessary for the maximum-likelihood estimator to
be equal to the least-squares formula. In this attempt he fails, not because
his argument is wrong (as most Gauss scholars seem to believe), but because
his (correct) argument is not general, which he fully realizes.

Let us reexamine his argument. Gauss (1809, book II, section III, §177)
proves the following result (in modern notation).

Proposition (Gauss, 1809): Let y1, y2, . . . , yn (n ≥ 3) be a sequence
of independent and identically distributed observations from an absolutely-
continuous distribution with E(yi) = µ and var(yi) = 1. Assume that the n
realizations of yi take only two values with frequencies n1 and n2, respectively
(n1 ≥ 1, n2 ≥ 1, n1 ̸= n2). Then, the average ȳ is the maximum-likelihood
estimator of µ if and only if the yi are normally distributed.

Before we prove the proposition, some comment is in order on Gauss’ as-
sumption that the n realizations of yi take only two values. This seems to
contradict the fact that the yi follow an absolutely-continuous distribution.
Of course, there is a difference between observations (random variables) from
an absolutely-continuous distribution and observations (the realized values).
Some statistical concepts have two terms (estimator, estimate; predictor,
prediction) to emphasize this difference, but most (like observation) don’t.
The random variables follow an absolutely-continuous distribution, but the
realizations take on specific values, and Gauss assumes that they take one
or the other of two values. This is a rather heroic assumption, but it is
not inconsistent or wrong. Gauss himself simply says supponendo itaque (by
supposing therefore) as if this were a logical continuation of his argument,
and provides no further comment.

To prove the proposition, Gauss argues as follows. Let ui = yi −µ. Since
the ui are iid, they have a common density function, say ϕ(ui). First assume
that ϕ is the standard-normal density. Then the loglikelihood L(µ) can be
written as in (2). This is maximized if and only if the sum of squares is
minimized, which occurs when

∑
i(yi − µ) = 0, that is when µ̂ = ȳ. Note

that the additional assumption on the realizations of yi is not required.
Now assume that µ̂ = ȳ. Gauss needs to show that this implies that ϕ is

the standard-normal density. As assumed, the yi can only take two distinct
values, say z1 (n1 times) and z2 (n2 times), where n = n1+n2. Then, letting

d = z1 − z2, r = n1/n, (3)
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he obtains

yi − ȳ =

{
d(1− r) if yi = z1,

−dr if yi = z2.
(4)

Setting L′(µ) = 0 then gives

L′(µ) =
n∑

i=1

ϕ′(ui)

ϕ(ui)
=

n1ϕ
′[d(1− r)]

ϕ[d(1− r)]
+

n2ϕ
′(−dr)

ϕ(−dr)
= 0, (5)

which can be rewritten as

f [d(1− r)] = f [−dr], f(x) =
ϕ′(x)

xϕ(x)
. (6)

For each given value of r (0 < r < 1, r ̸= 1/2), this has to hold for every
value of d, and it is easy to see (unde facile colligitur in Gauss’ words) that
this implies that f is a constant. (We have to exclude r = 1/2 because this
would only imply that f is symmetric around zero.) Hence, we must solve
the equation ϕ′(x) = −k xϕ(x), where k is a constant. The solution to this
differential equation was known to be

ϕ(x) = A exp(−kx2/2) (7)

for some constant A. Since ϕ represents a distribution it must integrate to
one which implies that the constant A takes the value A =

√
k/(2π), as

proved a few decades earlier by Laplace (1774) in a theorema elegans, a fact
gracefully acknowledged by Gauss.4 In our case, σ = 1 and hence k = 1.
Hence ϕ is the standard-normal distribution, and the proof is complete.

The presented proof follows Gauss’ argument closely except that he sets
n1 = 1 and n2 = n − 1 (and tacitly assumes that n ≥ 3). The proposition
tells us how far Gauss came into proving the necessity of the normality as-
sumption. The answer is: not very far, because his conditions are rather
restrictive. Two centuries later we can get a little further. In particular, Ka-
gan et al. (1973, Theorem 7.4.1), building on an earlier result in Kagan et al.
(1965), established that, in general, linear estimators of location parameters
are admissible if and only if the random variables are normally distributed;
and they applied the approach through admissibility to the linear model in
Kagan et al. (1973, Section 7.7).

To link the linear model y = Xβ+u to the proposition, Gauss thus makes
three simplifying assumptions:

4Gauss often uses epithets for his colleagues, typically clarissimus. Laplace is illustris-
simus (Gauss abbreviates ill.). Only Newton is summus.
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1. The design matrix X has only one column, namely the vector of ones,
so that we only have a constant term in the model, there is only one β
to estimate, and ui = yi − β.

2. The realizations of yi only take two distinct values, say z1 (n1 times)
and z2 (n2 times), where n = n1 + n2 and n1 ̸= n2.

3. The optimum is attained at β̂ = ȳ.

The third assumption is a perfectly reasonable assumption as we are consid-
ering iid random variables yi with common mean β and common variance.
So, unless we expect Gauss to discuss shrinkage estimators, what alternative
is there to estimate β? Under these three assumptions, Gauss shows that
the yi must be normally distributed.

After establishing the proposition, Gauss argues that it is thus reasonable
to assume normality. This is a qualitative statement which can be challenged,
but it is not incorrect. Gauss was primarily interested in the justification of
least squares, not in pushing the normal distribution, and he fully realized
that his qualitative jump from the special to the general case was not math-
ematically solid. Not completely happy with his restrictive assumptions,
Gauss (1823) considered the same model again. This time he asked a dif-
ferent question, namely: which linear unbiased estimator has the smallest
variance? This resulted in what we now call the Gauss–Markov theorem and
it does not rely on normality of the errors.
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