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Abstract

We introduce conditional score residuals and provide a general framework for the diagnostic

analysis of time series models. A key feature of conditional score residuals is that they account for

the shape of the conditional distribution. These residuals offer reliable and powerful diagnostic

tools for testing residual autocorrelation. Furthermore, they can be employed in models of which

it is not clear how to define residuals. The asymptotic properties of the empirical autocorrelation

function for conditional score residuals are formally derived. The results yield a unified theory

for the diagnostic analysis of a wide class of time series models. The practical relevance of the

proposed framework is illustrated for heavy-tailed GARCH models. Monte Carlo and empirical

results support the finding that conditional score residuals are more reliable in testing residual

autocorrelation, when compared to squared GARCH residuals. We finally show how a diagnostic

analysis can be designed for dynamic copula models.
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1 Introduction

Model specification, estimation and diagnostic analysis are three of the main building

blocks of statistical modeling. The latter plays a key role in evaluating the appropriateness

of the model specification. A standard approach to detect misspecification is to analyze

the residuals of the model. In time series analysis, residuals are widely used to assess the

dynamic specification of a model by means of the empirical autocorrelation function. After

parameter estimation, patterns of serial dependence that are not properly explained by the

model, such as neglected lags and seasonal components, are typically detected by residual

autocorrelations. Early developments on residuals analysis of regression and time series

models date back to the seminal work of Durbin and Watson (1950, 1951), Durbin (1970),

Box and Pierce (1970) and Ljung and Box (1978). There is much literature on testing

residual autocorrelation, providing diagnostic tools for different econometric models. The

definition of residuals varies with the class of time series models. In case of autoregressive

moving average (ARMA) models, the residuals are defined as the predictive estimates of

the error terms. The properties of their empirical autocorrelations have been extensively

studied (McLeod, 1978; Francq et al., 2005). In case of generalized autoregressive con-

ditional heteroskedasticity (GARCH) models, residual analysis is based on the so-called

squared residuals, which are a quadratic transformation of the estimate of the standardized

error term (Li and Mak, 1994; Horváth et al., 2001; Berkes et al., 2003). More generally,

in models with non-continuous response variables, diagnostic analysis typically relies on

Pearson residuals. For example, Pearson residuals are a standard diagnostic tool for integer-

valued time series models, such as Poisson autoregressive models (Jung et al., 2006; Davis

et al., 2016).

In this study, we introduce a general framework for diagnostic analysis of time series

models based on conditional score residuals. We define conditional score residuals through

the score of the conditional probability distribution of the time series process, re-scaled

by the square root of the conditional Fisher information. We illustrate how conditional

score residuals encompass standard definitions of residuals. It follows that ARMA residu-

als, squared residuals and Pearson residuals are special cases of conditional score residuals

when the conditional distribution of the model belongs to the exponential family. More

generally, conditional score residuals provide an alternative definition of residuals when

the distribution does not belong to the exponential family. The key advantage of con-
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ditional score residuals is that they account for the form of the conditional distribution.

For instance, conditional score residuals are robust to extreme observations in heavy-tailed

models and they produce more reliable and powerful diagnostic tests. Moreover, condi-

tional score residuals can be employed to test residual autocorrelation for classes of models

where otherwise it may not even be clear how the residuals should be defined.

We formally derive the asymptotic properties of empirical autocorrelations of condi-

tional score residuals for a general class of parametric time series models, which includes

ARMA, GARCH and integer-valued auto-regressive models as special cases. We propose

a consistent estimator of the asymptotic covariance matrix that provides positive definite

estimates in small samples under mild conditions. The results deliver a unified theory

for diagnostic analysis of observation-driven time series models. We consider two ex-

amples as illustrations to validate the finite sample properties of the proposed diagnostic

tools and to show the practical relevance of the proposed framework. The first study fea-

tures GARCH models with Student’s t errors. It shows the robustness of conditional score

residuals against extreme observations on the basis of a Monte Carlo experiment and an

empirical illustration to the modeling of daily returns of the S&P500 index. The over-

all conclusion is that our framework provides more powerful and reliable diagnostic tests

when compared to those based on squared residuals, which are highly unreliable in the

presence of extreme observations. The second study considers a bivariate copula model

with a dynamic correlation coefficient. It shows the flexibility of the proposed approach

and the reliability of the asymptotic results in finite samples on the basis of a Monte Carlo

experiment and an empirical application to the modeling of the dependence between oil

prices and exchange rates.

The diagnostic analysis of conditional score residuals differs from the specification

analysis based on the score of the log-likelihood function. In the latter approach, speci-

fication tests rely on the gradient of the log-likelihood function of the model; see White

(1994) and Ling and Tong (2011). By contrast, conditional score residuals are defined as

the score of the conditional probability density function and they provide a general def-

inition of residuals that includes existing types of residuals as special cases. In the time

series literature, conditional scores have been employed for purposes other than diagnostic

analysis. Creal et al. (2013) and Harvey (2013) introduce the class of score-driven models

where the dynamics of the process is driven by conditional score functions. Harvey and
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Thiele (2016) and Calvori et al. (2017) propose the use of score-driven models to test for

the presence of time-varying parameters using Lagrange multiplier tests. In the current

study, we consider conditional scores only to provide a definition of model-based residuals

and we develop a general theoretical framework for testing residual autocorrelation.

The remainder of this paper is structured as follows. Section 2 introduces conditional

score residuals and discusses their relationship with Pearson residuals. Section 3 studies

the asymptotic properties of empirical autocorrelation vectors of conditional score residuals

and derives diagnostic tests for residual autocorrelation. Section 4 presents a Monte Carlo

study and an empirical application for the GARCH model with Student’s t errors. Section

5 provides a Monte Carlo study and an empirical application for the dynamic bivariate

Gaussian copula model. Section 6 concludes.

2 Conditional score residuals

2.1 Definition of conditional score residuals

Let {yt}t∈Z be a time series process with elements taking values in a sample space Y.

Assume that the process has the following conditional distribution

yt|Ft−1 ∼ p(yt|ft;λλλ), (1)

where Ft is the sigma field generated by {yt, yt−1, yt−2, . . . }, p(·|ft;λλλ) is a conditional

probability density function, λλλ ∈ Λ ⊆ Rr is a parameter vector, and ft is a scalar time-

varying parameter that takes values in F ⊆ R. The time-varying parameter ft is specified

through the following observation-driven stochastic recurrence equation

ft = gθθθ(ft−1, . . . , ft−q, yt−1, . . . , yt−p), t ∈ Z, (2)

where gθθθ is a parametric updating function that maps Fq×Yp into F. The updating function

gθθθ is indexed by the parameter vector θθθ = (ξξξ>,λλλ>)>, where ξξξ ∈ Ξ ⊆ Rs is a vector of

parameters that are specific to the updating function gθθθ. The size of the parameter vector of

the model θθθ ∈ Θ = Ξ×Λ is n = s+r. We note that this general formulation allows the up-

dating function gθθθ to depend on the parameter vector of the conditional density λλλ. Models

where the updating function does not depend on λλλ are special cases where the function λλλ is

constant with respect to λλλ. The class of parametric observation-driven models specified in
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(1) and (2) is very general and it covers a wide range of time series models. For instance,

it includes linear and nonlinear ARMA models (Box and Pierce, 1970), GARCH models

(Engle, 1982; Bollerslev, 1986), score-driven models (Creal et al., 2013; Harvey, 2013), au-

toregressive conditional duration models (Engle and Russell, 1998), autoregressive Poisson

models (Davis et al., 2003; Fokianos et al., 2009), and autoregressive conditional copula

models (Patton, 2006).

Before introducing conditional score residuals, we define the conditional score errors

{st}t∈Z of the observation-driven model in (1) and (2) as

st =
ut√
It
, (3)

with

ut =
∂ log p(yt|f ;λλλ)

∂f

∣∣∣
f=ft

, and It = E
(
u2
t |Ft−1

)
= I(ft,λλλ),

where I(·, ·) is a known function. The error ut is the first derivative of the conditional

log-density with respect to the time varying parameter ft and It is the conditional Fisher

information, which can be expressed as a function of ft and the parameter vectorλλλ, i.e. It =

I(ft,λλλ). Under standard regularity conditions on the conditional density function, the se-

quence of conditional score errors {st}t∈Z is a martingale difference sequence, E(st|Ft−1) =

0, with conditional variance equal to one, Var(st|Ft−1) = 1. In practice, the parameter

vector of the model θθθ is unknown and it needs to be estimated from the observed data.

Therefore, the conditional score errors defined in (3) are not observable since they depend

on θθθ.

We define conditional score residuals as plug-in estimates of the conditional score er-

rors. More specifically, assume we observe a realized path of size T , {yt}Tt=1, from the time

series process in (1) and (2) with true parameter value θθθ = θθθ0. Based on the observed data,

the parameter vector θθθ is estimated by the method of Maximum Likelihood (ML), which is

a standard approach for the estimation of parametric time series models. The ML estimator

θ̂θθT = (ξ̂ξξ
>
T , λ̂λλ

>
T )> is defined as the maximizer of the log-likelihood function

θ̂θθT = arg max
θθθ∈Θ

T∑
t=1

lt(θθθ), lt(θθθ) = log p(yt|ft(θθθ);λλλ),

where ft(θθθ) is the filtered time-varying parameter obtained form equation (2) using the ob-

served data. From the ML estimate θ̂θθT , the plug-in estimate of the time-varying parameter
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f̂t = ft(θ̂θθT ) is obtained. Conditional score residuals are defined as

ŝt =
ût√
Ît
, (4)

where

ût =
∂ log p(yt|f, λ̂λλT )

∂f

∣∣∣
f=f̂t

, and Ît = I(f̂t, λ̂λλT ).

Throughout the paper, for ease of notation, we consider the convention that any function

of θθθ is evaluated at θθθ = θθθ0 when there is no explicit dependence on θθθ and it is evaluated

at θθθ = θ̂θθT when the hat symbol is present on the function. For example, st(θθθ) denotes the

score evaluated at a general θθθ ∈ Θ, st denotes the score evaluated at θθθ = θθθ0, i.e. st = st(θθθ0),

and ŝt denotes the score evaluated at θθθ = θ̂θθT , i.e. ŝt = st(θ̂θθT ). Furthermore, for simplicity

of exposition, we shall sometimes refer to conditional score errors as conditional score

residuals. A clear distinction between errors and residuals shall be made when needed.

2.2 Relationship with Pearson residuals and examples

In this section, we illustrate how conditional score residuals encompass standard defini-

tions of residuals that are typically employed in time series analysis. More specifically,

conditional score residuals are equivalent to Pearson residuals when the conditional density

belongs to the exponential family of distributions and they provide an alternative definition

of residuals when the distribution is not a member of the exponential family.

Assume that the conditional density function in (1) belongs to the one-parameter expo-

nential family of distributions with respect to the time-varying parameter ft

p(yt|ft;λλλ) = exp{η(ft)T (yt)− A(η(ft))}h(yt), (5)

where η(·), T (·), A(·) and h(·) are known functions, which may depend on the parameter

vector λλλ. The parameter η(ft) is often referred to as the canonical parameter of the expo-

nential family. The conditional expectation of T (yt) is E(T (yt)|Ft−1) = A′(η(ft)) and the

conditional variance is Var(T (yt)|Ft−1) = A′′(η(ft)). The definition of conditional score

residuals entails that

st =
T (yt)− A′(η(ft))√

A′′(η(ft))
, (6)

since

ut = η′(ft){T (yt)− A′(η(ft))}, and It = η′(ft)
2A′′(η(ft)).
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Therefore, from equation (6), we can see that conditional score residuals coincide with

Pearson residuals when T (·) is the identity and the conditional density function belongs

to the exponential family in (5). Furthermore, when T (·) is not the identity, conditional

score residuals can be interpreted as Pearson residuals with respect to transformed variable

T (yt) since st is simply obtained by standardizing T (yt) with its conditional mean and

variance. For instance, as we shall see below, squared residuals of GARCH models may be

interpreted as Pearson residuals based on the transformed variable y2
t . Some examples for

specific classes of models are provided below.

Examples 2.1-2.3 feature three classes of time series models where the conditional

distribution is a member of the exponential family and therefore conditional score residuals

are equivalent to Pearson residuals. In particular, Example 2.1 considers ARMA models

with Gaussian errors, Example 2.2 GARCH models with Gaussian errors, and Example 2.3

Poisson autoregressive models, which are also known as Poisson INGARCH models.

Example 2.1 (Gaussian ARMA models). Consider Gaussian ARMA-type processes, spec-

ified as

yt = µt + σεt, εt ∼ N(0, 1), t ∈ Z,

where µt = gθθθ(µt−1, . . . , µt−q, yt−1, . . . , yt−p) and σ > 0. Note that the linear ARMA

model is a special case of this model formulation when gθθθ is a linear function. Conditional

score residuals are given by

st =
yt − µt
σ

.

These residuals are equivalent to standard ARMA residuals, which are also equal to Pear-

son residuals.

Example 2.2 (Gaussian GARCH models). Consider Gaussian GARCH-type models, spec-

ified as

yt =
√
htεt, εt ∼ N(0, 1), t ∈ Z,

where ht = gθθθ(ht−1, . . . , ht−q, yt−1, . . . , yt−p). Note that the standard GARCH model is a

special case when gθθθ is a linear function of lagged ht and lagged y2
t . Conditional score

residuals are given by

st =
1√
2

(
y2
t

ht
− 1

)
.

These residuals coincide with squared residuals from GARCH models, which can be inter-

preted as Pearson residuals with respect to the statistic y2
t .
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Example 2.3 (Poisson INGARCH models). Consider Poisson autoregressive models, spec-

ified as

yt|Ft−1 ∼ P(µt), t ∈ Z,

where µt = gθθθ(µt−1, . . . , µt−q, yt−1, . . . , yt−p) and P(µt) denotes a Poisson with mean µt.

Conditional score residuals are

st =
yt√
µt
−√µt.

These residuals coincide with standard Pearson residuals for Poisson models.

Examples 2.4 and 2.5 illustrate how conditional score residuals differ from ARMA

residuals and squared residuals of GARCH models when the conditional distribution of the

error is not normal. Example 2.4 considers the ARMA model with the Student’s t error

distribution. The resulting conditional score residuals are robust to extreme observations.

Example 2.5 features GARCH models with a Student’s t distribution of the error term.

Also in this case, conditional score residuals are robust to extreme observations. Example

2.5 shall be discussed in detail in Section 4 through a simulation study and an empirical

application. As we shall see, conditional score residuals deliver more powerful tests for

residual autocorrelation and they allows us to conduct inference even when the error term

has only two finite moments. Instead, squared residuals require four finite moments and

they are unreliable in the presence of extreme observations.

Example 2.4 (Student’s t-ARMA models). Consider ARMA models with Student’s t errors,

specified as

yt = µt + σεt, εt ∼ tv(0, 1), t ∈ Z,

where µt = gθθθ(µt−1, . . . , µt−q, yt−1, . . . , yt−p) and tv(0, 1) is the Student’s t distribution

with mean 0, variance 1 and degrees of freedom v > 2. Conditional score residuals are

given by

st =

√
(v + 3)(v − 2)

v(v + 1)

(
σ(v + 1)(yt − µt)

(v − 2)σ2 + (yt − µt)2

)
.

Example 2.5 (Student’s t-GARCH models). Consider GARCH models with Student’s t

errors, specified as

yt =
√
htεt, εt ∼ tv(0, 1), t ∈ Z,
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where ht = gθθθ(ht−1, . . . , ht−q, yt−1, . . . , yt−p). Conditional score residuals are given by

st =

√
v + 3

2v

(
(v + 1)y2

t

(v − 2)ht + y2
t

− 1

)
.

Finally, Examples 2.6 and 2.7 illustrate how conditional score residuals are useful to de-

fine residuals in general classes of observation-driven time series models. Example 2.6 fea-

tures a bivariate Gaussian copula model with dynamic correlation coefficient. This example

shall be discussed in more detail in Section 5. Example 2.7 features a dynamic ordered pro-

bit model where the observable variable is not numerical but only ordinal. An example of

ordinal time series where dynamic ordered probit/logit models are used is given by credit

ratings (Creal et al., 2014). Given the non-numerical nature of the observable variable, it

may not be clear how to define Pearson-type residuals in this setting. Instead, conditional

score residuals provide a natural way of defining the model’s residuals and inference on

residual autocorrelation can be carried out within the general theoretical framework that

shall be discussed in Section 3.

Example 2.6 (Dynamic copula models). Consider Gaussian copula models for a bivariate

vector yt = (y1t, y2t)
>, specified as

yt|Ft−1 ∼ CG(pt), t ∈ Z,

where CG is a bivariate Gaussian copula with time-varying correlation parameter pt =

gθθθ(pt−1, . . . , pt−q, yt−1, . . . , yt−p). Conditional score residuals are given by

st =
pt + x1tx2t − pt(x2

1t + x2
2t) + p2

t (x1tx2t − pt)√
1 + p2

t (1− p2
t )

,

where x1t = Φ−1(y1t) and x2t = Φ−1(y2t), and Φ(·) denotes the cumulative distribution

function of the standard normal distribution.

Example 2.7 (Dynamic ordered probit). Consider dynamic ordered probit models, speci-

fied as

yt =


0 if −∞ < y∗t ≤ λ1,

1 if λ1 < y∗t ≤ λ2,
...

m if λm < y∗t <∞,

y∗t = µt + εt, εt ∼ N(0, 1), t ∈ Z,
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where yt takes values in the set {0, 1, . . . ,m} and µt = gθθθ(µt−1, . . . , µt−q, yt−1, . . . , yt−p).

Conditional score residuals are given by

st =
m∑
j=0

Ij(yt)
dj,t − dj+1,t

gj+1,t − gj,t

(
m∑
j=0

(dj,t − dj+1,t)
2

gj+1,t − gj,t

)− 1
2

,

where gj,t = Φ(λj − µt), dj,t = Φ′(λj − µt), λ0 = −∞, λm+1 = ∞ and Ij(yt) is an

indicator function such that Ij(yt) = 1, if yt = j, and Ij(yt) = 0, otherwise.

3 Testing residual autocorrelation

3.1 The empirical autocorrelation function

Residuals of time series models are routinely used to detect the presence of residual auto-

correlation that remains unexplained by the model. Autocorrelation functions are a useful

diagnostic tool to asses whether the specification of the time varying parameter needs to

be extended by, for instance, adding more lags of the observable variable or including sea-

sonal components in the dynamic equation of the model. In this section, we discuss the

derivation of empirical autocorrelation functions of conditional score residuals and their

asymptotic properties.

The kth lag empirical autocorrelations of conditional score errors ρT,k and of condi-

tional score residuals ρ̂T,k are given by

ρT,k =

∑T
t=1 stst−k∑T
t=1 s

2
t

, and ρ̂T,k =

∑T
t=1 ŝtŝt−k∑T
t=1 ŝ

2
t

, (7)

for k ∈ {1, 2, 3, . . . }. As noted before, conditional score errors st are not observable

and therefore only the empirical autocorrelation function of conditional score residuals is

feasible. The asymptotic properties of the residual autocorrelations ρ̂T,k are different from

the asymptotic properties of the autocorrelations of the errors ρT,k. It can be easily shown

that, under the null hypothesis of correct specification of the model and hence no residual

autocorrelation, the asymptotic distribution of
√
TρT,k is standard normal. However, this

is not the case for
√
T ρ̂T,k as its distribution depends on the asymptotic distribution of the

ML estimator θ̂θθT . This fact is well-known in the literature; see, for instance, Li and Mak

(1994) for a discussion on the distribution of squared residuals of GARCH models. For
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notational convenience, we stack the firstK empirical autocorrelations of conditional score

errors and residuals into vectors, which are denoted as ρρρT = (ρT,1, . . . , ρT,K)> and ρ̂ρρT =

(ρ̂T,1, . . . , ρ̂T,K)>, respectively. In the next section, we derive the asymptotic properties of

the empirical autocorrelation vector ρ̂ρρT .

3.2 Asymptotic distribution of empirical autocorrelations

We formally derive the asymptotic distribution of empirical autocorrelations of conditional

score residuals. We start by introducing a set of regularity assumptions on the class of

observation-driven models defined in (1) and (2). The first assumption imposes some reg-

ularity conditions on the conditional probability density function p(y|f ;λλλ). More specifi-

cally, Assumption 3.1 ensures that the conditional probability density function is such that

its expected score is equal to zero and the Fisher information equality holds. In addition, it

imposes some smoothness assumptions on the probability density function.

Assumption 3.1. The conditional density function p(y|f ;λλλ) satisfies the following regu-

larity conditions:

(i) The function (f,λλλ) 7→ log p(y|f ;λλλ) is twice continuously differentiable in F × Λ for

any y ∈ Y.

(ii) The expected score is zero ∫
Y

d1(y, f,λλλ)p(y|f ;λλλ)dy = 000r,

and the Fisher information equality holds

ΩΩΩ(f,λλλ) =

∫
Y

d1(y, f,λλλ)d1(y, f,λλλ)>p(y|f ;λλλ)dy = −
∫

Y

d2(y, f,λλλ)p(y|f ;λλλ)dy,

for any (f,λλλ) ∈ F× Λ, where

d1(y, f,λλλ) =
∂ log p(y|f ;λλλ)

∂(f,λλλ>)>
and d2(y, f,λλλ) =

∂2 log p(y|f ;λλλ)

∂(f,λλλ>)>∂(f,λλλ>)
.

(iii) The information matrix ΩΩΩ(f,λλλ) is positive definite for any (f,λλλ) ∈ F × Λ, and the

function (f,λλλ) 7→ ΩΩΩ(f,λλλ) is continuously differentiable.
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The conditions in Assumption 3.1 are standard regularity conditions which are satisfied

for most parametric probability density functions of practical interest. Assumption 3.2

imposes some regularity conditions on the time series process and the filtered time-varying

parameter ft(θθθ).

Assumption 3.2. The sequence {(yt, ft(θθθ))}t∈Z is stationary and ergodic and ft(θθθ) isFt−1-

measurable for any θθθ ∈ Θ. Furthermore, θθθ 7→ ft(θθθ) is twice continuously differentiable in

Θ with probability one. The parameter set Θ is compact.

The stationarity and ergodicity of the time series process is a standard condition. The

Ft−1-measurability and stationarity and ergodicity of the filtered parameter ft(θθθ) follows

from the so-called invertibility of the model (Straumann and Mikosch, 2006; Blasques

et al., 2018). These conditions are typically required for time-varying parameter models in

order to ensure consistent estimation of the parameters.

Assumption 3.3 requires some uniform moment conditions on the conditional score

errors. The norm ‖ · ‖ denotes the L1 norm when applied to a vector and the operator

norm induced by the L1 norm when applied to a matrix. Furthermore, ‖ · ‖Θ denotes the

supremum norm. Given a function g : Θ 7→ Ra×b, a, b ∈ N, the supremum norm is

‖g‖Θ = supθ∈Θ ‖g(θ)‖.

Assumption 3.3. The following uniform moment conditions are satisfied

E
∥∥∥∥∂st∂θθθ ∂st

∂θθθ>

∥∥∥∥
Θ

<∞, and E‖s2
t‖Θ <∞.

Assumption 3.4 imposes conditions on the asymptotic behavior of the ML estimator

θ̂θθT .

Assumption 3.4. The ML estimator θ̂θθT satisfies

√
T (θ̂θθT − θθθ0) = ΣΣΣ

1√
T

T∑
t=1

∂lt
∂θθθ

+ op(1), (8)

where

ΣΣΣ = −E
[
∂2lt
∂θθθ∂θθθ>

]−1

= E
[
∂lt
∂θθθ

∂lt
∂θθθ>

]−1

(9)

is positive definite.
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The conditions in (8) and (9) follow under standard regularity assumptions that are typ-

ically needed to ensure the asymptotic normality of the ML estimator. In fact, Assumption

3.4 ensures that the ML estimator is asymptotically normal with asymptotic covariance

matrix given by the inverse of the Fisher information.

Assumption 3.5 imposes a linear independence condition to ensure that the asymptotic

covariance matrix of the autocorellation vector ρ̂ρρT is positive definite. We denote with

sssK,t the vector that contains the first K lags of the conditional score errors, i.e. sssK,t =

(st−1, . . . , st−K)>.

Assumption 3.5. The following inequality holds with positive probability:

z>sssK,t + x>
√
It
∂ft
∂ξξξ
6= 0,

for any x ∈ Rs, z ∈ RK , z 6= 000K .

Theorem 3.1 delivers the main result on the asymptotic distribution of the empirical

autocorrelation vector ρ̂ρρT for the general class of time series models in (1) and (2) under

Assumptions 3.1-3.5.

Theorem 3.1. Let Assumptions 3.1-3.5 hold. Then, the empirical autocorrelation vector

ρ̂ρρT has the following asymptotic distribution

√
Tρ̂ρρT

d−→ N(000K ,VVV ), VVV = IIIK −ΦΦΦΣΣΣΦΦΦ>,

where ΣΣΣ is defined in (9) and

ΦΦΦ = E(sssK,tnnn
>
t ), with nnnt =

√
It
∂ft
∂θθθ

+
1√
It
kkkt, (10)

kkkt =

[
000s

jjjλλλf,t

]
, jjjλλλf,t = E(utuuuλλλ,t|Ft−1), uuuλλλ,t =

∂ log p(yt|f ;λλλ)

∂λλλ

∣∣∣
f=ft

.

Furthermore, the covariance matrix VVV is positive definite.

The proof of the theorem is given in Appendix A.1. Theorem 3.1 provides the form

of the asymptotic covariance matrix VVV of empirical autocorrelations of conditional score

residuals. This poses the basis for statistical inference on residual autocorrelations. Some

special cases of this general result can be found in existing literature. For instance, for

13



the ARMA model with a Gaussian error term, conditional score residuals are equivalent

to standard ARMA residuals as discussed in Example 2.1 and the asymptotic distribution

in Theorem 3.1 coincides with the result in McLeod (1978). Similarly, for the GARCH

model with Gaussian errors, conditional score residuals are equivalent to squared residuals

as discussed in Example 2.2 and the asymptotic distribution in Theorem 3.1 coincides with

the result in Li and Mak (1994). In the next section, we propose a reliable estimator for VVV

and formally discuss its properties.

3.3 Estimation of the asymptotic covariance matrix

In order to conduct inference on residual autocorrelations, we need a consistent estimate

of the asymptotic covariance matrix VVV . Under some regularity conditions, the covariance

matrix VVV may be consistently estimated by means of a plug-in estimator, where the matri-

ces ΣΣΣ and ΦΦΦ are replaced by their sample equivalent with the ML estimate θ̂θθT plugged-in in

place of the true parameter value. However, the use of a plug-in estimator does not ensure

that the estimated covariance matrix is positive definite in finite samples. This is a relevant

problem in practical applications since a positive definite covariance is needed to derive

confidence intervals and to test for residual autocorrelation. We propose a consistent esti-

mator that ensures positive definiteness in small samples under mild conditions. Consider

the covariance matrix estimate V̂VV given by

V̂VV =
1

T

T∑
t=1

ŝssK,tŝss
>
K,t −

1

T

T∑
t=1

ŝssK,tn̂nn
>
t

(
1

T

T∑
t=1

(n̂nntn̂nn
>
t + ĤHH t)

)−1

1

T

T∑
t=1

n̂nntŝss
>
K,t, (11)

with

ĤHH t = ĴJJ t −
1

Ît
k̂kktk̂kk

>
t ,

where ŝssK,t, n̂nnt and k̂kkt are plug-in estimates of sssK,t, nnnt and kkkt, respectively, and ĴJJ t is the

plug-in estimate of JJJ t, which is defined as

JJJ t =

[
000s×s 000s×r

000r×s jjjλλλλλλ,t

]
, jjjλλλλλλ,t = E(uuuλλλ,tuuu

>
λλλ,t|Ft−1).

From the expression of V̂VV , we can see that if
∑T

t=1 ĤHH t is equal to zero, then V̂VV is the

sample covariance matrix of the residuals of the regression of ŝssK,t on n̂nnt. Furthermore, the

matrix
∑T

t=1 ĤHH t is positive semidefinite since Ît ĵjjλλλλλλ,t − ĵjjλλλf,tĵjj
>
λλλf,t is positive definite for

14



any t under the positive definiteness of the conditional Fisher information in Assumption

3.1. Therefore, it is immediate to see that V̂VV is positive definite if the columns of the ma-

trices [ŝssK,1, . . . , ŝssK,T ]> and [n̂nn1, . . . , n̂nnT ]> are linearly independent. Furthermore, given the

positive definiteness of Ît ĵjjλλλλλλ,t− ĵjjλλλf,tĵjj
>
λλλf,t, it can be shown that the linear independence be-

tween the columns of [ŝssK,1, . . . , ŝssK,T ]> and the first s columns of [n̂nn1, . . . , n̂nnT ]> is actually

sufficient for the positive definiteness of V̂VV . This weaker condition is, in fact, the sample

equivalent of Assumption 3.5.

Next, we focus on the consistency of the covariance matrix estimator V̂VV . We impose

some additional uniform moment conditions to ensure the convergence of the sample aver-

ages in (11) to the corresponding population quantities.

Assumption 3.6. The following uniform moment conditions are satisfied

E ‖nnnt‖2
Θ <∞, and E ‖HHH t‖Θ <∞.

Theorem 3.2 delivers the consistency of the covariance matrix estimator V̂VV .

Theorem 3.2. Let Assumptions 3.1-3.6 hold. Then, the estimator V̂VV defined in (11) is

consistent,

V̂VV
p−→ VVV as T →∞.

The asymptotic results provided by Theorems 3.1 and 3.2 can be employed to test

the null hypothesis of no residual autocorrelation. In particular, under the null hypothesis

of correct specification, the autocorrellation of conditional score errors is equal to zero,

i.e. ρk = 0 for any k ≥ 1 where ρk = E(stst−k)/E(s2
t ). An element-wise test for ρk = 0

can be implemented based on the standardized empirical autocorrelation

r̂k =
√
T
ρ̂T,k√
v̂kk

,

where v̂kk denotes the kth diagonal element of V̂VV . From Theorems 3.1 and 3.2, it follows

immediately that r̂k
d−→ N(0, 1). This result can be used to test for residual autocorrelation

at a given lag k and also to derive a graphical representation of the autocorrelation function

together with 95%-level confidence intervals, which is a standard diagnostic tool that is

typically implemented in statistical software packages.

A Portmanteau test for the null hypothesis that the first K autocorrelations are equal to

zero ρk = 0, k = 1, . . . , K, can be constructed based on the test statistic

QK = Tρ̂ρρ>T V̂VV
−1
ρ̂ρρT .
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Theorems 3.1 and 3.2 entail that, under the null hypothesis, QK has an asymptotic chi-

squared distribution with K degrees of freedom, that is QK
d−→ χ2

K . Therefore, the test

rejects the hypothesis of no residual autocorellation for large values of the test statistic

according to the critical values of χ2
K . Sections 5 and 4 provide two examples that validate

the use of the asymptotic results in small samples.

4 Residuals for GARCH models with heavy-tailed errors

4.1 Conditional score residuals for t-GARCH models

Time series datasets with extreme observations are often encountered in empirical applica-

tions. GARCH models are typically embedded with heavy-tailed distributions to describe

extreme events in conditionally heteroskedastic time series data. The Student’s t distribu-

tion is widely used for this purpose and statistical software packages have default imple-

mentations of such models. For instance, heavy-tailed GARCH models are employed to

model price changes of financial assets, which are well-known to display volatility cluster-

ing as well as extreme observations. In this section, we illustrate the appealing properties

of conditional score residuals for diagnostic analysis of GARCH models with Student’s t

errors, which are typically referred to as t-GARCH models in the literature. Consider the

general class of t-GARCH models as given by

yt =
√
htεt, ht = gθθθ(ht−1, . . . , ht−q, yt−1, . . . , yt−p), (12)

where εt has a standardized Student’s t distribution, εt ∼ tv(0, 1), with zero mean, unit

variance, and degrees of freedom parameter v. The specification of the conditional variance

is such that ht > 0 with probability one. We refer the reader to Straumann (2005) for a

formal discussion on the stochastic properties and the ML estimation theory of the general

class of t-GARCH models in (12).

For this class of models, conditional score residuals are given by

st =

√
v + 3

2v

(
(v + 1)y2

t

(v − 2)ht + y2
t

− 1

)
.

From the expression of st, we notice that conditional score residuals converge to standard

squared residuals as v →∞. This result follows intuitively from the fact that the Student’s
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t distribution approaches the Gaussian distribution as v → ∞. A key advantage of con-

ditional score residuals compared to squared residuals is that they are robust to extreme

observations. In particular, |st| is bounded by a constant with probability one and therefore

st has finite moments of any order irrespective of the moments of the error term εt. On the

other hand, squared residuals require a finite fourth moment for the error term, E(ε4
t ) <∞,

in order to ensure that squared residuals have a finite second moment. We note that a finite

second moment for the residuals is necessary for the autocorrelation function to be well

defined. Furthermore, as we shall illustrate below, squared residuals perform poorly for

diagnostic analysis in time series datasets with extreme observations even when the fourth

moment is finite. Instead, conditional score residuals deliver more reliable and powerful

diagnostic tools.

4.2 Monte Carlo study

We perform a simulation study to evaluate the size and power of diagnostic tests based on

conditional score residuals in comparison with squared residuals. We start by focusing on

the size of tests for the null hypothesis of no residual autocorrelation. For this purpose, we

consider the following t-GARCH(1,1) model

yt =
√
htεt, ht = α0 + β1ht−1 + α1y

2
t−1, (13)

where εt ∼ tv(0, 1). For this model, the unknown parameter vector θθθ = (α0, β1, α1, v)> is

estimated by ML. We consider the diagnostic tests presented in Section 3 for the first five

lags of the autocorrelation function. More specifically, we test the null hypothesizes of no

residual autocorrelation based on the test statistics, r̂k for k = 1, . . . , 5, and QK for K = 5.

Table 1 reports the empirical size of the tests for conditional score residuals and squared

residuals. Different sample sizes and different values of the degrees of freedom parameter

v are considered. The results show that tests based on squared residuals are highly over-

sized when v = 5. As the sample size T increases, the empirical size seems to approach the

nominal level, however, the tests are still significantly oversized even for relatively large

sample sizes (T = 2500). This indicates that tests based on squared residuals are not reli-

able when extreme observations are present. For v = 10, we can see that the performance

of squared residuals improves as the tests are oversized in small samples (T = 500) but

they are properly sized in larger samples. When looking at conditional score residuals, the
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results indicate that the empirical size is close to the nominal one irrespective of the value

of the tail parameter v. The results are consistent across the different sample sizes consid-

ered in the study. This indicates that the presence of extreme observations in the data have

no relevant effect on the empirical size of tests based on conditional score residuals and the

asymptotic distribution of the test statistics can be regarded as an accurate approximation

to the finite sample distribution even for relatively small sample sizes.

Table 1: Empirical size of autocorrelation tests for conditional score residuals. The results

are obtained from 5000 Monte Carlo replications. The nominal sizes considered are α =

0.05 and α = 0.10. The true parameter vector is θθθ = (1.0, 0.60, 0.20, v)> for v = 5 and

v = 10.

score residuals squared residuals

T = 500 T = 1000 T = 2500 T = 500 T = 1000 T = 2500

r̂1 0.053 0.050 0.047 0.083 0.075 0.067
r̂2 0.053 0.049 0.048 0.109 0.095 0.080

v = 5 r̂3 0.051 0.047 0.045 0.104 0.093 0.081
r̂4 0.053 0.049 0.049 0.111 0.098 0.080
r̂5 0.056 0.052 0.049 0.120 0.104 0.081

α = 0.05 Q5 0.056 0.050 0.053 0.209 0.187 0.157

r̂1 0.059 0.054 0.052 0.046 0.045 0.046
r̂2 0.053 0.051 0.048 0.055 0.050 0.049

v = 10 r̂3 0.046 0.051 0.046 0.052 0.058 0.049
r̂4 0.052 0.049 0.049 0.059 0.053 0.052
r̂5 0.058 0.058 0.049 0.060 0.055 0.047
Q5 0.057 0.052 0.052 0.075 0.064 0.056

r̂1 0.105 0.105 0.101 0.118 0.114 0.111
r̂2 0.102 0.100 0.094 0.152 0.139 0.118

v = 5 r̂3 0.103 0.096 0.095 0.159 0.144 0.130
r̂4 0.101 0.105 0.101 0.159 0.144 0.130
r̂5 0.108 0.095 0.098 0.163 0.154 0.122

α = 0.10 Q5 0.113 0.102 0.105 0.256 0.238 0.207

r̂1 0.111 0.105 0.104 0.086 0.083 0.091
r̂2 0.107 0.102 0.100 0.101 0.090 0.094

v = 10 r̂3 0.100 0.102 0.093 0.095 0.102 0.090
r̂4 0.099 0.096 0.097 0.102 0.094 0.093
r̂5 0.117 0.107 0.103 0.111 0.103 0.096
Q5 0.108 0.095 0.097 0.123 0.104 0.103
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We investigate next the power of the diagnostic autocorrelation tests based on the score

residuals in comparison with the power of the same tests based on squared residuals. In our

simulation study, we consider the following t-GARCH(1,2) model as the data generating

process

ht = 1.0 + 0.6ht−1 + 0.15y2
t−1 + α2y

2
t−2.

On the other hand, the misspecified t-GARCH(1,1) model in (13) is considered for esti-

mation and analysis, that is α2 = 0. A grid of values of α2, ranging from 0 to 0.20, is

considered. This provides different levels of misspecification where α2 = 0 represents the

case of no misspecifcation and α2 = 0.20 can be regarded as the more severe misspeci-

fication. For all considered values of α2, the simulation study is conducted for different

sample sizes (T = 500, 1000, 2500) and for two different values of the degrees of freedom

parameter (v = 5, 10).

Figure 1 displays the size-adjusted power of the test statistics QK , K = 5, for condi-

tional score residuals and for squared residuals. The results show that conditional score

residuals outperform squared residuals in terms of power in all configurations of the simu-

lations. For small values of the tail parameter, v = 5, squared residuals have low power in

detecting the misspecification of the conditional variance ht. Even for the largest sample

size, T = 2500, and highest degree of misspecification, α2 = 0.20, the power remains

below 0.3. On the other hand, conditional score residuals have a much higher power and

they do not suffer from the presence of extreme observations. In particular, we find that

the test power from conditional score residuals does not decline for the lower value of v.

Overall, the results indicate that squared residuals are not well suited for diagnostic anal-

ysis of time series with extreme observations. On the contrary, conditional score residuals

provide robust diagnostic tools to detect residual autocorrelation. The low values of the

degrees of freedom parameter v considered in this simulation study are commonly encoun-

tered in empirical applications. For example, financial time series typically exhibit extreme

observations that require such low degree of freedom values v for their treatment.

4.3 Empirical illustration for US stock returns

In this section, we present an empirical application that illustrates the robustness of con-

ditional score residuals compared to squared residuals. The dataset consists of 20 years

of daily log-returns of the S&P500 stock index from January 2000 to December 2019.
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Figure 1: Size-adjusted power of the test statistic Q5, using 5000 Monte Carlo replications.

The dashed and solid lines represent the power of the test for conditional score residuals

and squared residuals, respectively. Panels (a),(b) show the power for v = 5, 10.

The sample size is 5030 observations. The idea is to estimate the t-GARCH(1,1) model

in (13) and perform diagnostic analysis based on both conditional score residuals and

squared residuals. Table 2 reports the ML estimates of the t-GARCH(1,1) as well as the

t-GARCH(1,2). The tail parameter v is estimated to be around 6.5. This indicates the pres-

ence of heavy tails in the error term of the model. The information criteria suggest that

the t-GARCH(1,2) fits the data better than the t-GARCH(1,1), which can be noted as the

t-GARCH(1,2) has lower AIC and BIC. Therefore, we may expect the presence of residual

autocorrelation when analyzing the residuals of the t-GARCH(1,1) .
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Table 2: Maximum likelihood estimates of t-GARCH(1,1) and t-GARCH(1,2) models,

the standard errors are in brackets. The last three columns contain the maximized log-

likelihood value (log-lik), the Akaike information criterion (AIC) and the Bayesian infor-

mation criterion (BIC).

α0 β1 α1 α2 v log-lik AIC BIC

GARCH(1,1) 2.723 0.891 0.105 - 6.713 -6730.8 13469.6 13495.7
(0.996) (0.010) (0.010) (0.590)

GARCH(1,2) 3.029 0.859 0.048 0.087 6.470 -6723.3 13456.6 13489.2
(1.253) (0.015) (0.015) (0.021) (0.547)

Figure 2 displays conditional score residuals and squared residuals together with their

standardized empirical autocorrelation function for the t-GARCH(1,1) model. The stan-

dardized empirical autocorrelations are plotted together with 95%-level asymptotic con-

fidence intervals under the null hypothesis of no residual autocorrelation, as described in

Section 3.3. Form the plots of the residuals, we can see the robustness of conditional score

residuals to extreme observations. Instead, squared residuals present several extreme val-

ues. Conditional score residuals show significant autocorrelation in the first and second

lags, providing evidence of misspecification of the t-GARCH(1,1) model. In particular,

the first lag shows significant negative autocorrelation and the second lag positive auto-

correlation. This autocorreation structure in the residuals is coherent with the estimation

results that suggest a better fit of the t-GARCH(1,2) compared to the t-GARCH(1,1). On

the contrary, squared residuals show no evidence of significant residual autocorrelation.

This may be explained by the low power of tests based on squared residuals in the presence

of extreme observations as illustrated in the simulation study.

Table 3: Test statistic QK and corresponding p-values for conditional score residuals and

squared residuals of the t-GARCH(1,1) model.

K = 5 K = 10 K = 15 K = 20

Conditional score residuals QK 21.49 32.95 40.30 46.21

p-value < 0.001 < 0.001 < 0.001 < 0.001

Squared residuals QK 5.45 12.8 21.07 25.86
p-value 0.363 0.235 0.135 0.170
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Figure 2: Panel (a) displays the conditional score residuals of the GARCH(1,1) and their

standardized empirical autocorrelation function with 95%-level confidence intervals under

the null hypothesis of no residual autocorrelation. Panel (b) displays squared residuals of

the GARCH(1,1) and their standardized empirical autocorrelation function with 95%-level

confidence intervals.

Finally, Table 3 reports the test statistic QK for conditional score residuals and squared

residuals for different values of K. The results show that the null hypothesis of no residual

autocorrelation is strongly rejected for conditional score residuals. Instead, the null hypoth-

esis is not rejected for squared residuals. These findings are coherent with the empirical

autocorellation functions reported in Figure 2.

5 Residuals for dynamic Gaussian copula models

5.1 Conditional score residuals for a bivariate Gaussian copula model

Dynamic copula models are widely used in financial econometrics to model the dependence

between time series processes in settings where the multivariate Gaussian density is not ap-

propriate; see the discussions in Patton (2006) and Salvatierra and Patton (2015). Although

the literature on the dynamic modeling with copulas has been growing over the years, see

Patton (2012) for an overview, a formally defined residual for testing residual dependence
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in dynamic copula models is not available. Conditional score residuals can be employed

for this purpose. Here, we define conditional score residual for a specific Gaussian copula

model, however, our framework can be applied to all other forms of copula functions that

are typically used in the literature. Consider the observable bivariate vector yt = (y1t, y2t)
>

and specify the bivariate Gaussian copula model as

yt|Ft−1 ∼ CG(pt), pt = gθθθ(pt−1, . . . , pt−q, yt−1, . . . , yt−p), (14)

where CG(pt) denotes a bivariate Gaussian copula distribution with dynamic correlation

parameter pt. The updating function gθθθ is a parametric function such that pt ∈ [−1, 1] with

probability one. For this class of dynamic copula models, conditional score residuals are

given by

st =
pt + x1tx2t − pt(x2

1t + x2
2t) + p2

t (x1tx2t − pt)√
1 + p2

t (1− p2
t )

,

where x1t = Φ−1(y1t) and x2t = Φ−1(y2t). Next, we present a simulation study and an

empirical illustration on testing residual autrocorrelation for a dynamic copula model using

conditional score residuals. In this case, there is not an alternative definition of residuals

that can be used as a benchmark.

5.2 Monte Carlo study

We study the small sample properties of the autocorrelation tests presented in Section 3 for

the conditional score residuals in terms of size and power. We start by investigating the size

of the tests. The design of the Monte Carlo experiment is equivalent to the one in Section 4.

For the specification of the conditional correlation coefficient pt in (14), we follow Patton

(2006) and consider the following link function and dynamic equation,

pt =
exp(gt)− 1

exp(gt) + 1
, gt+1 = α0 + β1gt + α1Φ−1(y1t)Φ

−1(y2t). (15)

Table 4 reports the empirical size of the tests based on the statistics r̂k, for k = 1, . . . , 5, and

QK , with K = 5, for different sample sizes. The reported results show that the empirical

size is close to its corresponding nominal value for all sample sizes. We therefore conclude

that the asymptotic results can be used as a reliable approximation for the distribution of

the test statistics in relatively small samples.
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Table 4: Empirical size of autocorrelation tests for conditional score residuals. The results

are obtained from 5000 Monte Carlo replications. The nominal sizes considered are α =

0.05 and α = 0.10. The true parameter vector is θθθ = (0.2, 0.60, 0.20)>.

α = 0.10 α = 0.05

T = 500 T = 1000 T = 2500 T = 500 T = 1000 T = 2500

r̂1 0.103 0.100 0.097 0.051 0.052 0.048
r̂2 0.113 0.096 0.106 0.057 0.051 0.049
r̂3 0.101 0.097 0.105 0.050 0.048 0.056
r̂4 0.102 0.098 0.099 0.047 0.047 0.050
r̂5 0.107 0.096 0.098 0.052 0.046 0.054
Q5 0.107 0.103 0.105 0.058 0.056 0.049

Next, our focus is on assessing the power of the autocorrelation test based on the statis-

tic QK , with K = 5. The data generating process in our simulation study is based on

model (14) with the dynamic correlation coefficient pt given by equation (15) and the dy-

namic process for gt given by

gt+1 = 0.2 + 0.6gt + 0.15Φ−1(y1t)Φ
−1(y2t) + α2Φ−1(y1t−1)Φ−1(y2t−1).

The estimation of the model is for the misspecified dynamic copula model in (15). The

model is correctly specified when α2 = 0. We consider different values for α2, ranging

from 0 to 0.2. Figure 3 displays the power of the test as a function of α2, for different

sample sizes T . We see that the power increases as α2 increases. This first finding indicates

that the test rejects the null hypothesis with higher likelihood when a more severe form of

misspecification is present. Furthermore, the power function of the test increases as the

sample size increases. This second finding suggests that the test is consistent in detecting

the dynamic misspecification of the model.

5.3 Empirical illustration

We employ the bivariate dynamic copula model in (15) to model dependence between

oil prices and exchange rates. The dataset consists of daily log-differences of WTI oil

prices and EU/USD exchange rates from January 2000 to December 2019. The sample

size is 4975 observations. The series are obtained form FRED dataset and days where

the price of one of the two time series is not available are removed form the sample. We
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Figure 3: Empirical power of the test statistic QK , K = 5, for different sample sizes. The

results are based on 5000 Monte Carlo replications.

model the marginal distribution of each series using the t-GARCH(1,1) model and obtain

the probability integral transform from the original data. We estimate the dynamic copula

model in (15) of order (1,1) and of order (0,0). The latter corresponds to a static dynamic

copula model where the correlation parameter pt is assumed to be constant over time. We

then evaluate residual dependence using conditional score residuals.

Table 5 reports the estimation results of the two models. The AIC and BIC indicate

that the model of order (1,1) fits the data better than the model of order (0,0). Figure 4

displays the conditional score residuals and their standardized autocorrelaion function with

95%-level confidence intervals. The autocorrelation function of the model of order (0,0)

suggests that there is significant autocorrelation in conditional score residuals, indicating

that a dynamic specification of the correlation parameter pt is needed to properly describe

the relationship between oil prices and exchange rates. The autocorelation function of

the model of order (1,1) suggests that there is no evidence of residual autocorrelation and

therefore the bivariate dynamic copula of order (1,1) seems to be able to properly describe

the time-variation in the dependence parameter between the two series. These findings are

confirmed by the results in Table 6, which reports the results of the test QK for different

values of K. There is strong evidence of residual autocorrelation for the copula model of

order (0,0) while there is none for the copula model of order (1,1).
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Table 5: Maximum likelihood estimates of dynamic copula models of order (0,0) and

(1,1). Standard errors are in brackets. The last three columns contain the maximized

log-likelihood, the AIC and the BIC.

α0 β1 α1 log-lik AIC BIC

Copula of order (0,0) 0.321 - - 63.8 -125.6 -119.1
(0.028)

Copula of order (1,1) 0.060 0.990 0.016 120.2 -234.4 -214.8
(0.039) (0.003) (0.004)
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Figure 4: Panel (a) displays the conditional score residuals of the dynamic copula model

of order (0,0) and their standardized empirical autocorrelation function with 95%-level

confidence intervals. Panel (b) displays the conditional score residuals of the dynamic

copula model of order (1,1) and their standardized empirical autocorrelation function with

95%-level confidence intervals.

6 Conclusion

We have introduced a general framework for the diagnostic analysis of parametric time

series models based on conditional score residuals. The asymptotic properties of empirical

autocorrelations of conditional score residuals are derived under general conditions and a

consistent and positive definite estimator of the asymptotic covariance matrix is proposed.
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Table 6: Test statistic QK and corresponding p-values for conditional score residuals of

dynamic coupla models of order (0,0) and (1,1).

K = 5 K = 10 K = 15 K = 20

Copula of order (0,0) QK 49.47 32.95 82.70 99.41

p-value < 0.001 < 0.001 < 0.001 < 0.001

Copula of order (1,1) QK 3.96 6.53 13.18 15.48
p-value 0.555 0.769 0.588 0.748

These results provide a unified theory for testing residual autocorrelation in time series

models. The practical relevance of the proposed framework is discussed through several

examples and illustrated in two empirical applications and Monte Carlo studies. Future

research may concern the use of the conditional score residuals for Student’s t GARCH

models as quasi residuals. Conditional score residuals are robust to extreme observations

and they have clear benefits compared to squared residuals as illustrated in the paper. There-

fore, they may also be interpreted as quasi residuals and employed in semiparametric model

settings where the conditional variance is estimated via quasi ML.

A Appendix

A.1 Proofs of the results

Proof of Theorem 3.1. Assumptions 3.1 and 3.2 imply that ρρρT (θθθ) is continuously differen-

tiable in Θ. An application of the mean value theorem about θθθ0 yields

√
Tρ̂ρρT =

√
TρρρT +

√
T
∂ρρρT (θ̃θθT )

∂θθθ>
(θ̂θθT − θθθ0), (16)

where θ̃θθT is a point between θθθ0 and θ̂θθT . Next, we notice that {∂lt/∂θθθ} is a stationary and

ergodic martingale difference sequence by Assumptions 3.1 and 3.2, and E‖∂lt
∂θθθ
‖2 < ∞

by Assumption 3.4. An application of the central limit theorem for stationary and ergodic

martingale difference sequences, as in Billingsley (2013), yields

1√
T

T∑
t=1

∂lt
∂θθθ

d−→ N(000n,ΣΣΣ
−1).
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This, together with (8) in Assumption 3.4, immediately implies that
√
T (θ̂θθT − θθθ0)

d−→
N(000n,ΣΣΣ). As a result, θ̃θθT

p−→ θθθ0 since θ̂θθT
p−→ θθθ0 and hence we obtain that ∂ρρρT (θ̃θθT )

∂θθθ>
p−→ −ΦΦΦ by

an application of Lemma A.1. Therefore, an application Slutsky’s theorem together with

equation (16) yields

√
Tρ̂ρρT =

√
TρρρT −ΦΦΦ

√
T (θ̂θθT − θθθ0) + op(1). (17)

Furthermore, from the expression of ρρρT , we obtain that

√
TρρρT =

1√
T

T∑
t=k+1

stsssK,t + op(1) (18)

since 1
T

∑T
t=1 s

2
t

p−→ 1 and 1√
T

∑T
t=1 stsssK,t converges in distribution to a normal, as {stsssK,t}

is a stationary and ergodic martingale difference sequence with a finite second moment by

Assumptions 3.1 and 3.2. Therefore, combining (17) with (18) and (8), we obtain that

√
Tρ̂ρρT =

1√
T

T∑
t=k+1

gggt + op(1), (19)

where

gggt = stsssK,t −ΦΦΦΣΣΣ
∂lt
∂θθθ
.

Next, we notice that {gggt} is a stationary and ergodic martingale difference sequence with a

finite second moment by Assumptions 3.1, 3.2 and 3.4. An application of the central limit

theorem yields
1√
T

T∑
t=k+1

gggt
d−→ N (000K ,VVV ) , (20)

where VVV = E(gggtggg
>
t ). The matrix VVV is positive definite by Lemma A.2 as it ensures that the

elements of the vector gggt are linearly independent random variables. Finally, we show that

VVV = IIIK −ΦΦΦΣΣΣΦΦΦ>. The matrix VVV can be expressed as

VVV = IIIK + (ΓΓΓ−ΦΦΦ)ΣΣΣ(ΓΓΓ> −ΦΦΦ>)−ΓΓΓΣΣΣΓΓΓ>,

where

ΓΓΓ = E
(
stsssK,t

∂lt
∂θθθ>

)
,

since E(s2
tsssK,tsss

>
K,t) = IIIK and E

(
∂lt
∂θθθ

∂lt
∂θθθ>

)
= ΣΣΣ−1. Lemma A.3 ensures that ΓΓΓ = ΦΦΦ. There-

fore, we immediately obtain VVV = IIIK − ΦΦΦΣΣΣΦΦΦ>. The final result
√
Tρ̂ρρT

d−→ N (000K ,VVV )
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follows from the convergence results in equations (19) and (20) by an application of Slut-

sky’s theorem.

Proof of Theorem 3.2. The consistency result V̂VV
p−→ VVV follows immediately by showing

that

(a) 1
T

∑T
t=1 ŝssK,tŝss

>
K,t

p−→ IIIK ;

(b) 1
T

∑T
t=1(n̂nntn̂nn

>
t + ĤHH t)

p−→ ΣΣΣ−1;

(c) 1
T

∑T
t=1 ŝssK,tn̂nn

>
t

p−→ ΦΦΦ.

(a) First, we obtain that 1
T

∑T
t=1 sssK,t(θθθ)sssK,t(θθθ)

> converges almost surely and uniformly in

Θ to the limit E(sssK,t(θθθ)sssK,t(θθθ)
>). This result follows by an application of the ergodic theo-

rem of Rao (1962) for stationary and ergodic sequences of continuous functions on a com-

pact domain with a finite uniform moment. In particular, we have that {sssK,t(θθθ)sssK,t(θθθ)>}
is a stationary and ergodic sequence of continuous functions, Θ is a compact set and

E‖sssK,t‖2
Θ < ∞ holds by Assumption 3.3. Therefore, the conditions of the ergodic the-

orem of Rao (1962) are satisfied. Finally, given the uniform convergence result and the

consistency of the ML estimator θ̂θθT , an application of the continuous mapping theorem

yields
1

T

T∑
t=1

ŝssK,tŝss
>
K,t

p−→ E(sssK,tsss
>
K,t) = IIIK .

(b) As discussed in (a), we obtain that 1
T

∑T
t=1nnnt(θθθ)nnnt(θθθ)

>+HHH t(θθθ) converges almost surely

and uniformly in Θ to E(nnnt(θθθ)nnnt(θθθ)
>+HHH t(θθθ)) by the ergodic theorem of Rao (1962) since

{nnnt(θθθ)nnnt(θθθ)> +HHH t(θθθ)} is a stationary and ergodic sequence of continuous functions, and

E‖nnnt‖2
Θ <∞ and E‖HHH t‖Θ <∞ hold by Assumption 3.6. Therefore, from the consistency

of the ML estimator, together with an application of the continuous mapping theorem, we

obtain that
1

T

T∑
t=1

(n̂nntn̂nn
>
t + ĤHH t)

p−→ E(nnntnnn
>
t +HHH t)

Finally, we notice that

E
(
∂lt
∂θθθ

∂lt
∂θθθ>

∣∣∣Ft−1

)
= nnntnnn

>
t +HHH t,

and therefore E(nnntnnn
>
t +HHH t) = ΣΣΣ−1 follows by the law of total expectation.
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(c) Once again, we obtain that 1
T

∑T
t=1 sssK,t(θθθ)nnnt(θθθ)

> converges almost surely and uni-

formly in Θ to E(sssK,t(θθθ)nnnt(θθθ)
>) by an application of the ergodic theorem of Rao (1962).

The conditions of the theorem are satisfied since {sssK,t(θθθ)nnnt(θθθ)>} is a stationary and ergodic

sequence of continuous functions with a finite uniform moment. In particular, E(‖sssK,t‖Θ‖nnnt‖Θ) <

∞ follows by the Cauchy Schwarz inequality together with Assumptions 3.3 and 3.6, which

ensure that ‖sssK,t‖Θ and ‖nnnt‖Θ have a finite second moment. Finally, the consistency of the

ML estimator and an application of the continuous mapping theorem yield

1

T

T∑
t=1

ŝssK,tn̂nn
>
t

p−→ E(sssK,tnnn
>
t ) = ΦΦΦ.

A.2 Lemmas

Lemma A.1. Assume that θ̃θθT = θθθ0 + op(1) and let the assumptions of Theorem 3.1 hold.

Then,

∂ρρρT (θ̃θθT )

∂θθθ>
p−→ −ΦΦΦ, T →∞.

Proof of Lemma A.1. First, we note that

∂ρρρT (θθθ)

∂θθθ>
=


∂ρ1,T (θθθ)

∂θθθ>

...
∂ρK,T (θθθ)

∂θθθ>

 , where

∂ρk,T (θθθ)

∂θθθ
=

1
T

∑T
t=1

∂st(θθθ)
∂θθθ

st−k(θθθ) + st(θθθ)
∂st−k(θθθ)

∂θθθ
1
T

∑T
t=1 s

2
t (θθθ)

− 2

(
1
T

∑T
t=1 st(θθθ)st−k(θθθ)

)(
1
T

∑T
t=1

∂st(θθθ)
∂θθθ

)
(

1
T

∑T
t=1 s

2
t (θθθ)

)2 , (21)

for k = 1, . . . , K. The uniform moment conditions in Assumption 3.3 ensure that each of

the averages in (21) converges almost surely and uniformly in Θ to a deterministic contin-

uous function. This follows by an application of the ergodic theorem of Rao (1962) since
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{st(θθθ)} and {∂st(θθθ)/∂θθθ} are stationary and ergodic sequences of continuous functions and

all the terms of the averages in (21) have finite uniform moments. Therefore, given the con-

tinuity of the limit function of each of the sample averages in (21) together with θ̃θθT
p−→ θθθ0,

we can apply the continuous mapping theorem and obtain

∂ρk,T (θ̃θθT )

∂θθθ

p−→
E
(
∂st
∂θθθ
st−k + st

∂st−k

∂θθθ

)
E(s2

t )
− 2

E(stst−k)E
(
∂st
∂θθθ

)
E(s2

t )
2

.

From the above expression, we notice that E(s2
t ) = 1, E(stst−k) = 0 and E

(
∂st
∂θθθ

)
< ∞.

Therefore, we have that

∂ρT (θ̃θθT )

∂θθθ>
p−→ E

(
sssK,t

∂st
∂θθθ>

+ st
∂sssK,t
∂θθθ>

)
. (22)

We conclude the proof by showing that the expectation in (22) is equal to −ΦΦΦ. Applying

basic calculus together with the fact that E(st|Ft−1) = 0, we obtain

E
(
sssK,t

∂st
∂θθθ>

+ st
∂sssK,t
∂θθθ>

)
= E

(
sssK,t

∂st
∂θθθ>

)
+ E

(
E (st|Ft−1)

∂sssK,t
∂θθθ>

)
= E

(
−sssK,t

∂It
∂θθθ>

st
2It

+
1√
It
sssK,t

∂ut
∂θθθ>

)
= E

(
− ∂It
∂θθθ>

sssK,t
1

2It
E(st|Ft−1)

)
+ E

(
1√
It
sssK,t

∂ut
∂θθθ>

)
= E

(
1√
It
sssK,t

∂ut
∂ft

∂ft
∂θθθ>

)
+ E

(
1√
It
sssK,tvvv

>
t

)
, (23)

where

vvvt =

[
000s

uuuλλλf,t

]
, uuuλλλf,t =

∂2 log p(yt|f ;λλλ)

∂f∂λλλ

∣∣∣
f=ft

.

The first expectation in (23) is equal to

E
(

1√
It
sssK,t

∂ut
∂ft

∂ft
∂θθθ>

)
= E

(
1√
It
sssK,t

∂ft
∂θθθ>

E
(
∂ut
∂ft

∣∣∣Ft−1

))
= −E

(√
ItsssK,t

∂ft
∂θθθ>

)
,

where the first equality follows by the law of total expectation and the second equality

follows by (ii) in Assumption 3.1, which entails E(∂ut
∂ft
|Ft−1) = −E(u2

t |Ft−1) = −It.
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Next, we obtain that the second expectation in (23) is equal to

E
(

1√
It
sssK,tvvv

>
t

)
= E

(
1√
It
sssK,tE

(
vvv>t

∣∣∣Ft−1

))
= −E

(
1√
It
sssK,tkkk

>
t

)
,

where the first equality follows by the law of total expectation, the second equality follows

by (ii) in Assumption 3.1, which implies E(uuuλλλf,t|Ft−1) = −E(utuuuλλλ,t|Ft−1) = −jjjλλλf,t and

hence E(vvvt|Ft−1) = −kkkt. Therefore, we conclude that ∂ρT (θ̃θθT )
∂θθθ>

p−→ −ΦΦΦ.

Lemma A.2. Let the assumptions of Theorem 3.1 hold. Then, the elements of the vector

gggt = stsssK,t −ΦΦΦΣΣΣ
∂lt
∂θθθ

are linearly independent random variables.

Proof. First, we note that ∂lt
∂θθθ

can be expressed as

∂lt
∂θθθ

= ut

[
∂ft
∂ξξξ
∂ft
∂λλλ

]
+

[
000s

uuuλλλ,t

]
. (24)

Next, for any z ∈ RK , we obtain

z>gggt = utz
>
(

1√
It
sssK,t −AAA1

∂ft
∂ξξξ
−AAA2

∂ft
∂λλλ

)
− z>AAA2uuuλλλ,t, (25)

where AAA1 is a K × s matrix that contains the first s columns of the matrix ΦΦΦΣΣΣ and AAA2

is a K × r matrix that contains the last r columns of the matrix ΦΦΦΣΣΣ, such that ΦΦΦΣΣΣ =

[AAA1,AAA2]. Assumption 3.1 ensures that the Fisher information matrix of the conditional

density function p(y|f ;λλλ) is positive definite for any f ∈ F. Therefore, the elements of

the vector (ut,uuu
>
λλλ,t)
> are linearly independent random variables conditional on Ft−1. This

implies that z>gggt = 0 with probability 1 only if z>AAA2 = 000r. As a result, from equation

(25), we have that z>gggt = 0 with probability 1 only if

z>
(

1√
It
sssK,t −AAA1

∂ft
∂ξξξ

)
= 0 with probability 1.

However, this can be true only if z = 000K by Assumption 3.5. This concludes the proof of

the lemma.
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Lemma A.3. Let the assumptions of Theorem 3.1 hold. Then,

E
(
stsssK,t

∂lt
∂θθθ>

)
= ΦΦΦ.

Proof of Lemma A.3. From the expression of ∂lt/∂θθθ in (24), we obtain

E
(
stsssK,t

∂lt
∂θθθ>

)
= E

(
s2
t

√
ItsssK,t

∂ft
∂θθθ>

)
+ E

(
stsssK,t

[
000>s uuu>λλλ,t

])
= E

(√
ItsssK,t

∂ft
∂θθθ>

E(s2
t |Ft−1)

)
+ E

(
1√
It
sssK,t

[
000>s E(utuuu

>
λλλ,t|Ft−1)

])
= E

(√
ItsssK,t

∂ft
∂θθθ>

+
1√
It
sssK,tkkk

>
t

)
= ΦΦΦ,

where the second equality follows by the law of total expectation since sssK,t, It and ∂ft
∂θθθ

are

Ft−1-measurable, and the third equality follows since E(s2
t |Ft−1) = 1 and E(utuuuλλλ,t|Ft−1) =

jjjλλλf,t.
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