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Abstract: The econometrics literature proposed several new causal machine learning

methods (CML) in the past few years. These methods harness the strength of machine

learning methods to flexibly model the relationship between the treatment, outcome and

confounders, while providing valid inferential statements. Whereas numerous options are

available now to the applied economics researcher, there is limited guidance on the most

useful methodology for a particular applied setting. In this paper, we perform a compre-

hensive evaluation of the finite sample performance of recently introduced CML methods

from the econometrics literature, under a wide range of data generating processes. We

focus our analysis on data features that are relevant for causal inference such as varying

degrees of: nonlinearity in the outcome and treatment equations, overlap, percentage of

treated, alignment and heterogeneity in the treatment effect. We evaluate the methods

that have received the most attention so far from the empirical economics literature: dou-

ble machine learning, causal forest and the generic machine learning methods. Results

on the bias, root mean squared error, coverage rates and interval lengths for the average

treatment effect, group average treatment effects and individual treatment effects reveal

information on the characteristics of the methods and the data features that affect their

performance the most.
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1 Introduction

The burgeoning econometrics literature on causal machine learning methods (CML) from

the last few years provides some promising new tools for causal analysis. These techniques

combine machine learning (ML) methods with causal inference questions, while establish-

ing theoretical results on the consistency, asymptotic normality and validity of confidence

intervals of the causal parameters of interest (see, e.g., Chernozhukov et al. 2018a, Wager

and Athey 2018, Athey et al. 2019, Chernozhukov et al. 2018b; and some of the first empir-

ical studies using these methods: Bertrand et al. 2017, Davis and Heller 2017, Deryugina

et al. 2019, Knaus et al. 2017, Strittmatter 2019). Causal machine learning methods

prove to be especially useful when the researcher needs to control for many covariates

(raw or technical controls) and thus requires a more flexible approach to fit the model.

Baiardi and Naghi (2021) highlight through revisited studies the added value of these

new techniques relative to traditional causal inference methods. While a large number

of ML methods for causal inference have recently become available in the econometrics

literature, there is no comprehensive Monte Carlo study to evaluate and compare their

performance. This naturally leads to harder decisions from the empirical researcher’s

perspective regarding the method to be employed and defended in a particular applied

setting.

The purpose of this paper is to evaluate the finite sample performance of recently de-

veloped causal machine learning methods from the econometrics literature across a wide

range of data features relevant for causal estimation, and thus to provide guidelines for

the applied researcher on the use of these methods. A well suited vehicle for our aim is the

“2016 Atlantic Causal Inference Conference Competition” initiated by Dorie et al. (2019),

where authors of 30 different causal inference methods from the machine learning and

statistics literature submitted their method for evaluation. This competition has several

attractive features that we exploit. First, it provides a comprehensive framework to evalu-

ate the causal effect in observational studies across a much broader set of data generating

processes (DGPs) than what is commonly performed in a typical methodological paper

that introduces a CML method, i.e., 77 different simulation scenarios. Second, the com-

petition calibrates the simulations to real-life scenarios in the sense that it accounts for

different covariate types encountered in practice (continuous, categorical, binary), with a

joint distribution coming from real data, instead of generating them from a multivariate
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normal distribution, for example. To this end, the covariates are selected from a real

study, the Collaborative Perinatal Project (Niswander and Gordon, 1972), a large panel

data on women and their children, the aim of which is to examine the causal factors of

different development disorders. Consequently, the simulation design can mimic natural

associations that could arise between the covarites. On the other hand, the outcome and

treatment variables are simulated, in order to be able to manipulate and measure the

different empirically relevant data features on which the methods are evaluated. Third,

the data generating processes are constructed such that they exhibit a range of data

complications commonly encountered in practice and relevant for causal inference. Thus,

they present a varying degree of: nonlinearity in the outcome and treatment equations,

overlap, percentage of treated, alignment and heterogeneity of the treatment effect.

In this paper, we focus on recently developed causal machine learning methods from

the econometrics literature, with well established theoretical properties, which have not

been directly compared. We evaluate the following approaches: the Double/Debiased Ma-

chine Learning (DML) method (Chernozhukov et al. 2017, Chernozhukov et al. 2018a)

combined with Lasso, Trees, Neural Net, Random Forest and Boosting; the Causal Forest

(CF) (Wager and Athey (2018), Athey et al. 2019); the Generic Machine Learning Method

(GML) (Chernozhukov et al. 2018b) combined with Lasso, Trees, Neural Net, Random

Forest and Boosting; the Doubly Robust Modified Outcome Method (DR MOM)1 (Knaus

et al., 2018) combined with Lasso, Trees, Neural Net, Random Forest and Boosting. On

top of these main methods, we are interested in also adding one of the best perform-

ing methods from the Atlantic Causal Inference Competition, the BART MChains (uses

several chains with distinct starting points, see Dorie et al. 2019), to compare the per-

formance of the newly developed econometric causal machine learning methods with this

top performing method. To make comparisons with traditional econometric approaches

used for causal inference, we also add the linear model with interactions, estimated by

the ordinary least squares (OLS) to our pool of methods. Finally, we propose new CML

methods that we add to our list of competitors by combining BART with the DML, with

the GML and with the DR MOM methods.

In our evaluation, we are targeting the average treatment effect (ATE), as well as

heterogeneous treatment effects in the form of group average treatment effects (GATEs)

1Note that theoretical properties are not established for the DR MOM method, but it is one of the few
methods that allows the computation of individual treatment effects; thus we include it in our analysis.
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and individual treatment effects (ITEs). Specifically, we estimate the ATE with DML,

CF, GML, BART MChains and OLS; the GATEs with CF, GML and BART MChains;

and the ITEs with CF, DR MOM and BART MChains. For a complete picture on the

methods’ performance, for the ATE and GATEs, we provide results on the bias, root mean

squared error (RMSE), confidence interval coverage rate and confidence interval length.

For the ITEs, we compute the precision in estimating heterogeneous effects (PEHE).

Our analysis looks at both overall performance and performance by different criteria -

the criteria being the data features mentioned above: nonlinearity in the outcome and

treatment equations, overlap, percentage of treated, alignment and heterogeneity of the

treatment effect. For the overall performance, the results of each method are aggregated

over all 77 simulation scenarios. In the analysis by the different criteria, we study the

impact of varying each of these data characteristics on the competing methods.

When looking at the overall performance across all 77 DGPs, our results indicate

that the best performing method for both average treatment effect and heterogeneous

treatment effects is BART MChains, followed by our newly introduced methods, DML

BART and GML BART, and then by the Boosting and Random Forest combinations of

DML, GML and DR MOM. Further, we conclude that when the overlap assumption is

violated or treatment effect heterogeneity is higher, all methods perform worse, some of

them being more affected than others. Increasing the percentage of treated observations

does not lead to notable changes in the performance of the methods. Increasing the

level of alignment2 leads to a mixed performance, with the BART-based methods being

relatively more robust. Step functions in the DGP, tend to be more suited for Tree-based

CML methods, while Lasso-based CML methods perform worse in this case. Completely

linear DGPs, negatively affect the performance of Tree-based methods. The OLS, one of

the most used estimators (for causal inference) in economics is consistently outperformed

by the causal machine learning methods under the different data complications under

consideration. Sensitivity analyses show that our results are robust to tuning parameter

choices in the causal machine learning methods.

While we base our simulation study on the setup of the Atlantic Causal Inference

Competition, our paper differs from Dorie et al. (2019) in several aspects. First, we

focus on newly developed causal machine learning methods from the econometrics lit-

2Alignment refers to the degree to which the treatment and outcome equations share the same con-
founding terms. See section 2.2 for more details.
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erature, which were not evaluated in the actual competition and which, to the best of

our knowledge, have not yet been directly compared. Second, our target treatment effect

parameters are different, as Dorie et al. (2019) focuses on the average treatment effect

on the treated. Third, while the competition focuses on the overall performance of the

methods across all simulation scenarios, we provide more information for the applied re-

searcher by disentangling the effect of the various empirically relevant data features under

consideration, on the performance of the methods. Another recent simulation paper on

causal machine learning methods is Knaus et al. (2018). The methods evaluated in Knaus

et al. (2018) and in this paper are in general different. Our study overlaps with theirs

only in terms of the Causal Forest, and the DR MOM method with Lasso and Random

Forest. However, in this paper, we extend their DR MOM approach with ML meth-

ods not considered in their analysis, i.e., with BART, Boosting, Neural Net and Trees.

Furthermore, while Knaus et al. (2018) consider DGPs with and without selection into

treatment and different sample sizes, our focus is on data features such as: nonlinearity,

overlap, percentage of treated, alignment and heterogeneity. Finally, Knaus et al. (2018)

are interested in the finite sample performance of point estimates and report results on

the mean squared error, absolute bias and standard deviation. In contrast, we provide

more information on the performance of the methods by also computing the confidence

interval coverage rates and interval lengths. Other notable simulation analyses containing

some of the methods under consideration in this paper but with a smaller set of DGPs

than in this study can be found in: Carvalho et al. (2019), Hahn et al. (2019), Jacob

(2021), McConnell and Lindner (2019), Wendling et al. (2018).

Other causal machine learning methods with established theoretical properties re-

cently developed in the econometrics literature include: Athey and Imbens (2016), Athey

et al. (2018), Colangelo and Lee (2020), Farrell et al. (2021), Semenova et al. (2018).

Some of these extend the main methods that we are focusing on. Given the computa-

tional costs, we do not include these methods in our analysis, but choose to focus on the

ones that received the most attention so far from the empirical economics literature.

The next section presents our simulation framework with the data features relevant

for causal inference present in the DGPs, and the calibration of simulations to real data.

Section 3 describes the methods used in our evaluation, as well as our newly introduced

methods. Section 4 summarizes the performance results on the ATE, while Section 5
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presents the performance results on heterogeneous treatment effects: the GATEs and the

ITEs. Section 6 performs a sensitivity analysis of the main results to tuning parameter

choices. Finally Section 7 concludes.

2 Simulation Framework

We revisit the setup of the 2016 Atlantic Causal Inference Competition by Dorie et al.

(2019). The competition was specifically designed for a fair comparison of various causal

machine learning methods from the statistics and machine learning literature. The re-

searchers who designed the data generating processes on which the methods were evalu-

ated, were different from the researchers who submitted the competing methods, which

ensured a more equitable comparison of methods. Competitors were informed about the

following: the data is an observational study with a continuous outcome, a binary treat-

ment indicator, 58 covariates but not all covariates are confounders; the observations are

identically and independently distributed; the methods are tested on 77 different sim-

ulation settings, with 100 independent replications for each scenario, resulting in 7700

different data realizations; the causal estimand of interest is the effect of the treatment

on the treated; the data presents a varying degree of: nonlinearity, percentage of treated,

overlap, alignment, treatment effect heterogeneity, and magnitude of the treatment effect.

In total, 30 different methods entered the competition.3

2.1 Calibration to Real Data

We base our simulation study on the data set used in the 2016 Atlantic Causal Infer-

ence Competition. This is a publicly available data set from the Collaborative Perinatal

Project (Niswander and Gordon (1972)) on pregnant women and their children between

1959 and 1974. It contains data on 55,000 pregnancies each with over 6,500 variables.

The purpose is to study the causal factors of developmental disorders.

Similarly to Dorie et al. (2019), we aim to calibrate our simulations to a real-world

data set, with a research question and a list of covariates close to what could be analyzed

by an empirical researcher. Choosing the covariates from a real data set has the advantage

that it allows the incorporation of plausible types of variables and a natural association

3See Dorie et al. (2019) for a description of these methods.
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between the covariates. The outcome and the treatment variables are however simulated,

to enable modifications of different data features of interest in a measurable way. The

relationship between these data features and the performance of the methods can then

be analyzed.

We consider covariates that could have been plausibly selected for a twin study on

the impact of birth weight on the child’s IQ. This leads to 4802 observations and 58

covariates, out of which 23 are continuous, three are categorical, five are binary and 27

are non-negative integer. An overview of the covariates is provided in Table 5 in the

Appendix.

2.2 Data Generating Processes and Data Features

The methods are compared under 77 simulation settings designed to capture various

complex scenarios. These are the same 77 data generating processes used in Dorie et al.

(2019) and represent types of data features typically encountered in real-data applications.

The reason we use the same simulation scenarios as in Dorie et al. (2019) is twofold.

First, it is a well-known and comprehensive simulation paper on which a variety of causal

machine learning methods from the statistics and machine learning literature have been

already evaluated. Second, it captures well-thought ”data complications” commonly

encountered and important for causal inference. Each setting consists thus of a unique

combination of the following criteria (or knobs), relevant for causal inference questions:

1) degree of non-linearity in the outcome and treatment models, 2) degree of percentage

of treated, 3) degree of overlap, 4) degree of alignment and 5) degree of treatment effect

heterogeneity. We give a full overview of the 77 scenarios and the considered knobs in

Table 6 in the Appendix.4 In what follows we describe the considered DGP knobs.

Degree of nonlinearity. Nonlinearities are included in both the outcome and the

treatment models. The outcome equation specifies the relationship between the out-

come (or response) variable of interest and the controls, while the treatment equa-

tion keeps track of confounding and models the relationship between the treatment

variable and controls. The covariates are first passed through a transformation func-

tion, and then added or multiplied. For example, with two covariates one can have:

4Note that as in Dorie et al. (2019), we do not address issues related to: non-binary treatment, non-
continuous outcome, non-iid data, varying data sizes or number of covariates, covariates with measurment
erros. These are left for future research.
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f(xi) = f1(xi1) + f2(xi2) + f3(xi1)f4(xi2), where xik represents the kth covariate for the

ith individual. The functions fj(·) can consist of up to third-order polynomial terms, up

to three-way interactions between covariates, indicator or step functions, or can be sim-

ple linear functions. We consider additive models for the treatment equation, however,

when simulating the outcome, we also allow that the sum of fj(·) be passed through a

link function, such as h(xi) = exp(f1(xi1) + f2(xi2) + f3(xi1)f4(xi2)), leading to highly

nonlinear outputs. To measure the degree of non-linearity for a specific data set, we can

compute Pearson’s R2 from regressing the outcome variables Y on the non-transformed

covariates X. In our 7700 different data sets, Pearson’s R2 is between 0.02 and 0.93, with

quartiles of 0.26, 0.37, and 0.48.

Percentage of treated. This knob indicates the share of observations receiving the

treatment. It ranges from 35% (low setting) to 65% (high setting).

Overlap. We want to analyze the impact of having control observations that are dis-

similar from the treated observations in terms of their confounders. We have again two

settings: full overlap and penalized overlap. Full overlap indicates that the propensity

score is bounded away from zero and one. In the penalized overlap setting, a penalty

term is added to the treatment assignment mechanism which forces observations from a

particular area of the covariate space to have a propensity score of zero (i.e., these obser-

vations are excluded from the treated population regardless of having a high propensity

score). The penalization is done using indicator functions that prevent observations with

extreme values on several randomly chosen covariates to receive the treatment, see Dorie

et al. (2019).

Alignment. Alignment refers to the degree to which the treatment and outcome

equations share the same confounding terms. Only those confounding terms that appear

in the DGPs of both models are able to cause bias, if they are omitted from the estimation

procedure. In general, lack of alignment can create difficulties for methods that favour

confounding terms that appear in either the treatment or outcome equations, but not

both. The variation of alignment is achieved by specifying a marginal probability that a

term in the treatment equation is also in the outcome equation. We have a probability

of 0.25 and 0.75 for the low alignment and the high alignment case, respectively.

Heterogeneity. The knob heterogeneity controls the number of terms interacting

with the treatment. None implies that the treatment effect is constant conditional on
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the covariates; low means that the treatment is interacted with three of the terms in the

response model; and high signifies six interactions.

2.3 Performance Measures

We perform 100 simulation repetitions for each of the 77 different scenarios, leading to

7700 data realisations.5 In our simulation study, the estimands of interest are the average

treatment effect (ATE), the group average treatment effects (GATEs) - the most affected

and least affected 20%, and the individual treatment effects (ITEs).

As global summaries of performance, we report the bias, the root mean squared

error (RMSE), the interval coverage, the average interval length and the precision in

estimation of heterogeneous effects (PEHE). Interval coverage indicates the percentage

over all data sets that the reported interval covers the true estimand. Considering the

trade-off that can exist between interval coverage and interval length, we also report the

average interval length. For the individual treatment effects we compute the PEHE (Hill,

2011). This is basically the average across all data sets of the root-mean-squared error

between individual level treatment effect estimates and their true values.

3 Causal Machine Learning Methods

In this section, we provide a brief description of the causal machine learning methods used

in our simulation study. We then describe our newly constructed causal machine learning

methods, based on BART. The aim is to familiarize the reader with these methods without

going into technical details.

3.1 Double/Debiased Machine Learning (DML)

The Double/Debiased Machine Learning (DML) introduced in Chernozhukov et al. (2017)

and Chernozhukov et al. (2018a) provides consistent estimation and valid inference for

causal effects of interest, such as the average treatment effect (ATE), the average treat-

ment effect on the treated (ATTE) and the local average treatment effect (LATE), in

the presence of high-dimensional nuisance parameters estimated with machine learning

5Note that for the analysis by knobs, the performance will not be assessed across all 77 scenarios, but
fewer, depending on how many simulation scenarios contain a certain knob; see Sections 4 and 5.
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methods.

In this paper, we consider the estimation of the ATE from the following model

Y = g0(D,X) + U (1)

D = m0(X) + V (2)

with E[U |X,D] = 0 and E[V |X] = 0. The function g0(X) relates the high-dimensional

vector of covariates X and the binary treatment D ∈ {0, 1} to the outcome Y , while the

function m0(X) relates X to the treatment D. Note that D is not additively separable.

The disturbances of the two equations are denoted by U and V . The first equation is

the main equation of interest. In the second equation, the propensity score m0(X) is

zero, in the case of randomized control trials, but it is different from zero in observational

studies. Both nuisance functions g0(X) and m0(X) are unknown, high-dimensional and

are estimated with ML methods.

The ATE parameter of this model θ0 is expressed as

θ0 = E[g0(1, X)− g0(0, X)].

In order to estimate θ0, the DML method employs moment condition of the type

Eψ(W ; θ0, η0) = 0 (3)

where W = (Y,X,D), and η is a nuisance function consisting of g and m, with η0 the

true value of η. The score function ψ(W ; θ, η) has to be chosen such that it satisfies the

so called Neyman orthogonality introduced in the contributions of Neyman (1959) and

Neyman (1979). The estimation of θ0 is based on the empirical analogue of (3) where

η0 is replaced by η̂0. The Neyman orthogonality property ensures that the moment

conditions used to identify θ0 are locally insensitive to this replacement so that one can

use noisy estimates of the nuisance parameter η, without strongly violating the moment

conditions.6

When estimating the ATE, one can use the scores of Robins and Rotnitzky (1995),

which possess the property of Neyman orthogonality and satisfy the identification condi-

6See e.g., Chernozhukov et al. (2018a) for the formal condition of Neyman orthogonality.
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tion in (3),

ψ(W ; θ, η) = (g(1, X)− g(0, X)) +
D(Y − g(1, X))

m(X)
− (1−D)(Y − g(0, X))

1−m(X)
− θ,

where η(X) = (g(0, X), g(1, X),m(X)) and the true value of η is η0 = (g0(0, X), g0(1, X),

m0(X)). Employing Neyman orthogonality conditions is key in overcoming regularization

bias and developing valid inference procedures for θ0. Bias due to regularization naturally

arises when trying to estimate the nuisance parameter η0 with some ML method followed

by estimation of θ0 with OLS. The bias induced by regularization and shrinkage of the less

important coefficients to zero when estimating η0, transfers to the parameter of interest

θ0. The issue is very similar to the omitted variable bias problem. Neyman orthogonal

scores are not sensitive to biased estimation of η0, and thus do not violate the moment

conditions.

The second bias that the DML method overcomes is bias due to overfitting. Bias due

to overfitting can arise for instance when ĝ0 is overfit, and thus it will mistakenly pick up

some of the noise U . Consequently, if U and V are correlated, the estimation error in ĝ0

will be correlated with V . In order to break this correlation, and overcome bias due to

overfitting, Chernozhukov et al. (2018a) propose sample splitting. This means that the

data is split in a main and an auxiliary subsample. The nuisance functions m0 and g0 are

estimated on the auxiliary sample, while θ0 is obtained based on the main sample. For

more efficiency, one can switch the role of the main and auxiliary samples and average

the results. Moreover, one can also partition the full sample n into k-folds, where n/k

is the size of a fold. Each fold is then successively taken as the main sample, while its

complement is the auxiliary sample. Finally, the estimates are averaged over the k folds.

The splitting in folds procedure can be performed say, s times, so that the results are

robust to the k-fold partitioning. The final DML estimator is the mean or median over

the s splits. In this paper, we work with the median estimates. Given that we consider

77 different simulation scenarios, each over 100 replications, we choose to use 2 folds and

10 splits for the DML method.

3.2 Doubly Robust Modified Outcome Method (DR MOM)

Knaus et al. (2018) describes a generic machine learning approach to estimate conditional
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average treatment effects (CATEs) up until the individual level based on the doubly

robust estimator of Robins and Rotnitzky (1995),

YDR = (g(1, X)− g(0, X)) +
D(Y − g(1, X))

m(X)
− (1−D)(Y − g(0, X))

1−m(X)
. (4)

Since the conditional average treatment effect τ(x) = E[YDR|X = x], one can estimate

the CATEs from the regression of the modified outcome YDR on the covariates X. In

practice, the researcher starts by estimating g(1, X), g(0, X) and m(X) by a machine

learning method of choice, estimates of which are then plugged in into (4). Similarly to

the DML, we use the plug-ins of the cross-fitted estimated nuisance parameters, however

the method is not repeated over s splits. While the asymptotic properties of E[YDR] as

estimator of ATE are well understood, there is no asymptotic theory currently available

for for more granular heterogenous effects using this approach.

3.3 Causal Forest (CF)

Wager and Athey (2018) extend the random forest algorithm used for prediction to the

problem of treatment effects estimation for different subgroups. Their method, called

the causal forest, uncovers heterogeneity in treatment effects by searching over a high-

dimensional function of covariates rather than a few interaction terms. Wager and Athey

(2018) establish asymptotic normality and consistency results for random forests which

are then extended to the causal setting. For valid inference, a consistent estimator of the

asymptotic variance is also proposed.

We now describe the general idea of the causal forest. The algorithm starts with

drawing a sub-sample from the full sample of observations, without replacement. This

whole sub-sample constitutes the root node. The default fraction of the sub-sample is half

from the whole sample, but one can change this value: a smaller size for the sub-sample

will decrease dependence across trees, but will increase variance. The sub-sample is then

further split in half to form a training sample and an estimation sample. The role of the

training sample is to define the structure of the tree, while the estimation sample is used

to estimate treatment effects in each node of the tree. Using these different samples for

different purposes helps with reducing bias from overfitting. Athey and Imbens (2016)

and Wager and Athey (2018) call this property ”honesty”.
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Next, a number of covariates are randomly selected to split on, at each split. Using the

training sample, for each value of each selected covariate, candidates splits are formed

based on the current value of the covariate. In the case of the causal random forest,

the goodness of split is given by the amount it increases heterogeneity in a quantity

of interest. Instead of minimizing the usual MSE, as in the case of the random forest,

Wager and Athey (2018) propose minimizing an objective function that penalizes splits

which increase within-node variance but rewards splits which increase the variance of

treatment effects across nodes. This criterion function is one of the main differences

between the causal forest used for treatment effect estimation and the random forest

used for prediction. When computing treatment effects, minimizing a criterion function

based on the MSE (obtained as the sum of the squared differences between the outcomes

of each observation from a node and the mean of these observation in that node) is not

possible, as any individual observation is either treated or not. For each of the new child

nodes, the algorithm repeats the splitting procedure until the number of observations in a

node continues to be larger than a minimum number of control and treated units. When

no more splits can be performed the structure of the tree is defined.

In the next step, the observations from the estimation sample are sorted in the same

tree structure as the one obtained from the training sample, based on the values of their

covariates. Then, the treatment effect in each node is computed as the mean outcome

difference between treated and control units in a node. Finally, going back to the full

sample, one examines in which node each unit belongs (again based on the values of their

covariates) and the predicted treatment effect assigned to each unit will be the treatment

effect of the node where the unit belongs. Estimates obtained in this way, from a single

tree, can have a high variance. Thus, the whole procedure is repeated a number of times,

say B, leading to B sub-sample and B trees which will form a causal forest. The final

predicted treatment effect of each observation will be obtained as the average of predicted

treatment effects of that observation across the B trees. To compute the ATE we use

the overlap-weighted estimator proposed by Li et al. (2018) which performs better in the

case of limited overlap. The GATEs for the least affected and most affected groups can

be computed as averages7 of the top and bottom 20% of individual treatment effects,

averaged over the trees. One should be cautious though with the interpretations of the

7These averages are computed again with the estimator proposed in Li et al. (2018).
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results on GATEs as computed here, because valid statistical inference for GATEs via

the Causal Forest is not yet available.

The researcher needs to specify values for the number of trees, the number of covariates

considered when splitting, and the minimum number of control and treated units in

each nodes. A higher number of trees makes the treatment effect predictions vary less

across the trees but increases computation time. The number of trees should be grown in

proportion to the number of observations. The number of covariates considered for a split

is typically set to bP/3c, for regression problems and to
√
P for classification problems,

where P is the total number of covariates. A smaller number of minimum treatment

and control units in a node increases the variance as the treatment effect in a node is

estimated with fewer observations. A higher number will produce less heterogeneity as

the nodes are larger and the tree is less deep. The optimal values for these parameters,

as well as for some other parameters, (see the documentation of the grf package in R for

details on other parameters) can be tuned by cross-validation. In this paper, the number

of trees is set to 2000, while all other parameters are tuned within the grf package.

3.4 Generic Machine Learning (GML)

The generic machine learning method (GML) is useful for uncovering heterogeneity in

the treatment effect, computing the treatment effects in different subgroups such as the

most or the least affected groups, and giving indications about the covariates that are

correlated the most with this heterogeneity.

Consider an outcome variable Y , a binary treatment D and a vector of covariates

X. Let b0(X) = E[Y (0)|X], and s0(X) = E[Y (1)|X] − E[Y (0)|X] where b0(X) is the

baseline conditional average function and s0(X) is the conditional average treatment effect

(CATE). The GML method randomly splits the data into an auxiliary subsample and

a main subsample. Using the auxiliary sample, a ML estimator (called proxy predictor

in Chernozhukov et al., 2018b) is computed for the baseline conditional average and the

conditional average treatment effect. The ML estimator can use any of the standard ML

methods: Lasso, Elastic Net, Random Forest, Neural Network, thus the name generic.

These ML estimators are possibly biased, however, they are only used as approximations

to make inference on features of the CATE and not the CATE itself. These features of

interest are: 1) the best linear predictor of the heterogeneous effects (BLP), 2) the group
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average treatment effects (GATEs), and 3) the average characteristics of the units in the

most and least affected groups, or classification analysis (CLAN).

In the next step, for each observation from the main subsample we compute the

predicted baseline effects, B(X) and the predicted treatment effects, S(X), the latter

being computed as the difference between the predictions of the treatment group model

and predictions of the control group model. Then, using the main sample, the so called

BLP parameters (β1 and β2) are obtained from the following weighted OLS regression,

with weights 1/(p(Z)(1− p(Z)):

Y = α′Z + β1(D − p(X)) + β2(D − p(X))(S(X)− S(X)) + ε. (5)

In equation (5), p(X) = P [D = 1|X] is the propensity score8, S(X) is the average

of the predicted treatment effect estimates on the main sample, and Z = [1, B(X)],

the control B(X) being included to improve efficiency. Note that the interaction term

(D − p(X))(S(X)− S(X)) is orthogonal to (D − p(X)) and to all other regressors that

are functions of X. The parameter β1 quantifies the average treatment effect, while β2

measures how well the proxy predictor approximates heterogeneity. One can test for

heterogeneous treatment effects by testing H0 : β2 = 0.

Subsequently, to compute the group average treatment effects (GATEs), we sort the

observations from the main sample in groups: G1, G2, . . . , GL. For example, G1 can

contain the units with the lowest 20% treatment effects, while G5 can contain the units

with the highest 20% treatment effects. Then, the group average treatment effects are

given by the coefficients γl in the weighted regression run on the main sample

Y = α′X1 +
L∑
l=1

γl(D − p(Z)) · 1(Gl) + ν. (6)

The weights in (6) are the same as in (5). The indicator function 1(Gl) takes values of one

when a unit is in the group l. Note that when γL−γ1 is significantly different from zero, it

indicates that there is treatment effect heterogeneity between the most and least affected

groups. Finally, one can also compute average characteristics of the most affected and

least affected groups, i.e., δ1 = E[n(Y,X)|G1] and δL = E[n(Y,X)|GL], where n(Y,X) is

8Note that, since our simulation design is based on an observational study, we also estimate the
propensity score with ML methods.
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a vector of characteristics of an observation.

In order to account for the uncertainty introduced by the random partitioning of data,

the final estimates of the GML method are obtained as the median estimates over the

different data splits. Similarly to DML, given that we already have 77 different simulation

scenarios, each with 100 replications, we set the number of splits to 10. The confidence

intervals are constructed as the medians of the lower and upper bounds over the splits.

The price of splitting uncertainty is that the nominal level of confidence intervals as well

as of p-values (computed as median over splits) are adjusted from 1−α to 1− 2α, where

α is the nominal level.

3.5 BART and BART MChains for Treatment Effects

The Bayesian Additive Regression Trees (BART) method developed in Chipman et al.

(2010) for prediction purposes and popularized in Hill (2011) for treatment effect es-

timation, is a sum-of-trees method which estimates a model for the outcome Y as

Y = g(d, x) + ε, where d is the treatment, x are the confounding covariates and ε are iid

N(0, σ2). When the purpose is treatment effect estimation, the treatment variable d is

considered a splitting variables as all the other covariates.

Intuitively, the BART method consists of a sum-of-trees model and a regularization

prior on the parameters of the model. Similarly to Boosting, the method computes the fit

based on the first tree and then subtract it off from the outcome, forming the residuals.

The next tree is then fitted on these residuals. The process is repeated a number of B

times. The regularization prior avoids overfitting, by constraining the fit of each tree,

such that each tree explains a different minor portion of g(·). Without this regularization,

individual tree components would become too influential, limiting the advantages of the

additive representation in terms of functional approximation.

Formally, we have

g(d, x) + ε =
B∑
j=1

h(d, x;Tj,Mj) + ε

where B is the number of trees, Tj is one of the binary trees and Mj = (µ1, µ2, . . . , µb) is

the set of parameters of the b terminal nodes in each tree – the parameter of a terminal

node being the mean response of the subgroup of observations that fall in that node. The

function h(d, x;Tj,Mj) gives then the µ associated with a particular terminal node in a
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particular tree.

BART treats (Tj,Mj) and σ as parameters and sets a prior on them, the posterior be-

ing computed with Markov chain Monte Carlo (MCMC). The prior has three components:

1) a prior on the tree structure – preference is given for trees with only a few terminal

nodes; 2) a prior for the values in the terminal nodes – which shrinks each Mj towards

zero (note that the response variables is centered) limiting the effects of the individual

trees by keeping them small; and 3) a prior for σ chosen based on the residual standard

deviation from a simple least squares regression.9 In this paper, we use the default prior

settings provided by Chipman et al. (2010), as well as the recommended value of 200 for

the number of trees, B.

At each iteration of the MCMC algorithm, the pair (Tj,Mj) and σ are redrawn. Let

T(j) be the set of all trees in the sum-of-trees except Tj. Similarly define M(j). The

algorithm involves B successive draws of (Tj,Mj) conditional on (T(j),M(j), σ), followed

by a draw of σ from the full conditional (T1, . . . , TB,M1, . . . ,MB). Note that the B draws

of (Tj,Mj) given (T(j),M(j), σ) are equivalent to B draws of (Tj,Mj) given (Rj, σ), where

Rj are the residuals resulted after fitting tree Tj. At each iteration, each Tj can grow

or become smaller. The contribution of one particular tree is not identified, as one can

switch the pair (T,M) with another, without changing g(·). This lack of identification

gives flexibility to the method to reallocate the local fit from one tree to another. Only the

parameter σ is identified. Thus, one can check the convergence of the chain by plotting

draws of σ. In this paper, to ensure convergence we adopt the default recommendations

in Chipman et al. (2010) of 100 burn-ins and 1000 MCMC iterations.

The MCMC algorithm induces a sequence of sum-of-tree functions

g∗(·) =
B∑
j=1

h(·;T ∗j ,M∗
j ),

for the sequence of draws (T ∗1 ,M
∗
1 ), . . . , (T ∗B,M

∗
B), which converges to the posterior dis-

tribution of the true g(·). Bayesian inferential quantities can then be approximated

based on the sequence of draws, say g∗1, . . . , g
∗
K . When interested in treatment effects

estimation, one can compute the ITE - at draw k as τ ki = g∗k(1, xi) − g∗k(0, xi), for all

observation i = 1, . . . , N . Then, the average treatment effect at draw k is computed as

9See Chipman et al. (2010) for further detail on the priors and the hyper-parameters.
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βk
ate = 1

N

∑N
i=1 τ

k
i . Iterating over all k = 1, . . . , K draws, yields the posterior distribution.

The ATE can be computed as βate = 1
K

∑K
k=1 β

k
ate, while the GATEs can be obtained as

βg = 1
K

∑K
k=1 β

k
g , where βk

g = 1
Ng

∑Ng

i∈G τ
k
i , with Ng being the number of observations in a

group, and G a group set such as the most affected or the least affected group. Posterior

intervals at (1− α)% can then be obtained based on the upper and lower α/2 quantiles,

of the set of draws, for the treatment parameter of interest.

The BART method discussed so far usually runs with a single chain. Dorie et al.

(2019) propose to combine the results from several chains with distinct starting points,

calling it BART MChains. This method ends up to be one of the top performing methods

in the Atlantic Causal Inference Conference Competition. In this paper, we choose to

implement BART MChains with ten chains as in Dorie et al. (2019).

3.6 Newly Constructed Causal Machine Learning Methods

Given the promising results obtained by BART based causal machine learning methods

in the Atlantic Causal Inference Conference Competition (Dorie et al. 2019), we extend

the Double Machine Learning method, the Generic Machine Learning method and the

Doubly Robust Modified Outcome method with BART. The nuisance function are thus

estimated in each case with BART. The Double Machine Learning, the Generic Machine

Learning and the Doubly Robust Modified Outcome method combined with BART turn

out to be among the top performing methods in our analysis surpassing the other ML

combinations in most of the cases. 10

4 Results on Average Treatment Effect

We start by analyzing the overall performance of the methods, in terms of the average

treatment effect, with respect to all criteria/data features described in Section 2. Then,

we analyze the impact of varying each criteria (degree of nonlinearity, percentage of

treated, overlap, alignment and heterogeneity), separately.

10The R code for these new methods is available online on GitHub under
https://github.com/cpwirths/CML ATE HTE. We also provide here the replication code for this
paper.
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4.1 ATE: Overall Performance

Figure 1 presents the overall performance of the methods. It displays the bias and

RMSE in Panel A, and coverage and interval length in Panel B, across all 7700 data

realisations. The horizontal lines reflect the desired theoretical value for the bias, RMSE

and the coverage. Several points are worth noting. First, the method that has the

best overall performance in terms of all evaluation criteria (bias, RMSE, coverage and

interval length) is BART MChains. The bias is -0.001, the RMSE is 0.02, the coverage is

89% and the interval length is 0.04. Second, the newly introduced methods, DML BART

and GML BART tend to outperform the other ML techniques within the DML and GML

frameworks, respectively. In terms of RMSE and coverage, DML BART and GML BART

come second to BART MChains, while in terms of bias and interval length, they are also

within the very top performing methods. Third, the performance of DML and GML is

similar when compared along the same individual ML method. In terms of the original

ML methods used within DML and GML (i.e., not combinations with BART), Boosting

and Random Forest seem to give the best performance, while Lasso and Neural Net lead

to the worst performance. Lastly, the Causal Forest method presents a particularly low

coverage (51%), while the OLS method clearly has the overall worst performance.

Notice further that the average bias is negative for most methods, indicating that the

treatment effect had a positive effect and most methods shrink their estimates towards

zero. While most CML methods perform well in terms of bias and RMSE, only BART

MChains, DML BART and GML BART have a coverage above 80%, see Table 7 in the

Appendix for exact values. Also, none of the methods reaches nominal coverage. BART

MChains uses several Markov Chains with distinct starting points and performs better

than the simple BART used within the DML and GML frameworks.

To gain deeper insights into the performance of the individual ML methods within the

DML and GML frameworks, we have a closer look at their performance in predicting the

nuisance functions. Figure 2, plots the RMSE of the response functions E[Y |D = 1, X]

and E[Y |D = 0, X] and the Brier score11 of the treatment function E[D|X]. The ML

methods present substantial differences when predicting the response functions compared

to when predicting the treatment function. In the case of the response model, DML BART

11Here, the Brier score is mean square error between the predicted propensity score and the observed
binary treatment variable, where values of zero are the best score achievable.
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and GML BART perform the best, followed by DML Boosting and GML Boosting - these

all grow a sequence of trees using a weak learner approach. The next best performing

method is the DML Forest and GML Forest which grow a multitude of trees to avoid

overfitting and to lower the variance compared to the single tree approach. In general,

Tree-based structures appear to be more appropriate, given that even a single tree ap-

proach performs better than the Lasso or the Neural Net.12. In the case of the treatment

function, the ML methods perform similarly, although the differences between them are

less pronounced. The superior performance of the BART and Boosting methods observed

in Figure 1 seems to be explained by the ability of these methods to more flexibly model

the response surface compared to the other methods (see Dorie et al. 2019 for a similar

observation on the methods that performed the best in the Atlantic Causal Inference

Competition).

Figure 1: Overall performance: ATE, averaged across all 77 simulation scenarios
(a) Bias/RMSE

(b) Coverage/Interval Length

Note: The figure display the performance of all methods in estimating the ATE, with results averaged across all k = 77
simulation settings, with r = 100 replications per setting. Thus, in total we consider 7700 data sets. In Panel A, squares
reflect bias, diamonds Root Mean Square Errors, while in Panel B, triangles reflect coverage and circles interval lengths.

12Note that we keep the Neural Net with one hidden layer and two neurons, while the Lasso includes
polynomial terms up to third order, as it has been originally implemented in Chernozhukov et al. (2018a).
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Figure 2: Performance nuisance parameters

(a) RMSE response functions
(b) Brier score treatment

function

Note: The figure displays the performance of all methods in predicting the nuisance parameters with results averaged
across all k = 77 simulation settings, with r = 100 replications per setting. Panel A gives the RMSEs of the response
functions (E[Y |D = 1, X] and E[Y |D = 0, X]), while Panel B shows the Brier score of the treatment function (E[D|X]).

4.2 ATE: Performance by Different Criteria

Besides studying the overall performance of the methods, we are now interested to analyze

the impact of each criteria/data feature separately. To this end, we select simulation

scenario number 27 from Table 6 in the Appendix as the benchmark. This setting has

a polynomial treatment model, low percentage of treated, full overlap, step response

model, low alignment and low heterogeneity. Then, we alter each knob one at a time,

as displayed in Table 1 to study the impact of the various data features on the causal

machine learning methods.

Our benchmark, scenario number 27, is one of the simplest available scenarios that

permits to alter each criteria/knob one at a time, and still be able to find the altered

scenario within the possible settings of Table 6 in the Appendix. Note for example, that

by choosing scenario number three as the benchmark (which has linear functions for both

the treatment and outcome functions), we are not able to perform a similar change for

each criteria as in Table 1. For further insights, we also make comparisons by aggregating

all simulation results from high versus low percentage of treated, full versus penalized

overlap, high versus low alignment, high versus low heterogeneity, polynomial versus step

treatment model and step versus exponential response model.
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Table 1: Simulation settings used for ATE performance analysis by different criteria

scenario treatment model percent treated overlap response model alignment heterogeneity

27 polynomial low full step low low
55 step low full step low low
40 polynomial high full step low low
21 polynomial low penalize step low low
31 polynomial low full exponential low low
29 polynomial low full step high low
28 polynomial low full step low high

Notes: The table displays the simulation scenarios chosen to analyze the performance of the methods under different
data features. Simulation scenario number 27 is our benchmark. We then alter each criteria one at a time.

When we change the functional form of the treatment model from polynomial to

step, but keep all the other data features as in our benchmark scenario, the Lasso based

methods perform worse. This can be seen in Table 2, as we move from the benchmark

setting to setting number 55, or even more clearly from Figure 5 in the Appendix. In

Figure 5, we compute the evaluation measures over all k = 39 scenarios from Table 6

in the Appendix that have a polynomial treatment function and all k = 32 scenarios

with a step function for the treatment equation. In contrast, the Tree-based methods

show improvements when we move from a polynomial to a step function. These results

are intuitive as Lasso is well suited to capture polynomial terms, but cannot incorporate

step functions. On the other hand, Tree-based methods, employ splitting rules based

on cutoff points that divide the covariate space, in order to minimize a certain criterion

function. Since different values are predicted in the sub-regions of the covariate space,

discontinuous functional forms, such as step functions, are easier captured by Tree-based

methods. Altering the functional form of the response model from step to exponential

(scenario 31) does not result in notable changes, except in slightly larger interval lengths.

Notice further that OLS is consistently outperformed by the causal machine learning

methods under polynomial/step functions of the treatment model, or step/exponential

functions of the response model, in terms of bias, RMSE and coverage. This highlights the

usefulness and higher flexibility of modern causal machine learning methods in empirical

applications where non-linearities are expected.

For further analysis we also add the case of Figure 7 in the Appendix, where we

aggregate the results on all linear versus nonlinear DGPs. When both response and

treatment models are nonlinear the OLS presents larger bias, RMSE and interval lengths

compared to the case when both response and treatment models are linear. In addition,

we notice that the performance of Tree-based methods is negatively affected in the purely
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linear case as they are not designed to capture linear effects, see also Friedberg et al.

(2020).

When we change the percentage of treated from low to high (scenario 40), it does not

lead to changes in the performance of most methods relative to the benchmark (notably,

only the RMSE of the Causal Forest increases from 0.02 to 0.03 and its coverage decreases

from 0.87 to 0.80). Figure 8 in the Appendix, where we compare the performance of the

methods over all scenarios with low percentage of treated versus all scenarios with high

percentage of treated, confirms this remark.

As we move from full to penalized overlap and violate the common support assump-

tion (scenario 21), the RMSE increases for all methods, while the coverage rates drop

for almost all methods. Figure 9 in the Appendix confirms this result. Figure 9 also

shows that with full overlap, besides BART MChains, the newly proposed DML BART

reaches nominal coverage. Under penalized overlap, BART MChains is overall the best

performing method, closely followed by DML BART and GML BART. Notice that al-

though DML Neural Net and GML Random Forest also seem to have a good performance

in terms of coverage, this comes at a cost of an increased confidence interval length.

Crump et al. (2006) point out that violations of the overlap assumption can lead

to substantial bias and larger variance of conventional estimators of average treatment

effects. Moreover, limited overlap can also cause problems for inference due to its detri-

mental effect on the coverage probability of standard confidence intervals, see for example

Rothe (2017). We observe similar effects in the case of causal machine learning meth-

ods. Note that when implementing the methods, we already employ versions that try

to address the lack of common support problem. In the case of the DML and the GML

methods, we trim the observations with predicted propensity scores below 0.01 and above

0.99, at each split. In the case of the CF, we use the weighted estimator introduced by

Li et al. (2018), recommended in the case of poor overlap. Finally, in the case of BART

MChains, DML BART and GML BART, we can identify areas with penalized overlap,

since the standard deviation of the posterior distribution increases in the regions with

lack of common support (Dorie et al. 2019). Based on this information we omit observa-

tions using a discarding rule suggested in Hill and Su (2013)13 which has been shown to

be robust across various simulation settings.

13We used the so-called 1-sd-rule from Hill and Su (2013).
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Increasing the level of alignment from low to high (scenario 29) leads to a mixed

performance with respect to the coverage rates of average treatment effects. While BART

MChains, DML BART, GML BART and GML Random Forest are relatively robust, the

coverage rates for the Causal Forest, DML Lasso, DML NNet, DML Trees and GML

Lasso decrease substantially (see Table 2). A similar pattern is observed in terms of

increased bias, as shown in Figure 10 in the Appendix. Note that in the simulation

design, high alignment is achieved by specifying a higher marginal probability that a

term in the treatment assignment mechanism is copied to the response function. This

inevitably leads to a higher dimension of the confounder space and possibly increased

nonlinearity/complexity in the DGP which decreases the coverage rates and increased

the bias for some of the CML methods. Furthermore, a high alignment deteriorates the

performance of the OLS in terms of bias, RMSE and coverage rates, since the response,

the treatment and control variables are modeled in one regression equation, without

data-driven variable selection and estimation of the propensity score.

When we increase the level of heterogeneity from low to high (scenario 28) most

methods perform worse. This is expected as we increase the complexity/nonlinearity of

the model. Some methods are more impacted than others. BART MChains, DML BART,

DML Boosting, GML BART, GML Boosting, GML Random Forest are more stable in

terms of RMSE and coverage rates, while DML Lasso, DML Neural Net, GML Lasso

and GML Neural Net are the most affected causal machine leaning methods. In general,

when heterogeneity increases, Tree-based methods have a superior performance as they

pick up complex interactions by constructions. As expected, OLS is severely affected, as

it does not include any interactions with the treatment. Figure 11 in the Appendix which

presents results by grouping all scenarios with low and high heterogeneity confirms these

remarks.

5 Results on Heterogeneous Treatment Effects

In this section, we analyze the performance of the causal machine learning methods when

estimating heterogeneous treatment effects. First, we focus on group average treatment

effects (GATEs), in particular on the 20% most and 20% least affected groups, oftentimes

of interest in policy evaluation. Here we focus on the methods that allow the computation
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of GATES, i.e., BART MChains, Causal Forest and the GML methods. Then, we assess

the performance of the methods when computing individual treatment effects (ITEs). In

this case, we work with the methods that allow the computation of ITEs, i.e., BART

MChains, Causal Forest and the DR MOM methods.

5.1 GATEs: Overall Performance

We provide an overview of the bias, RMSE, coverage rates and interval lengths across all

77 simulation scenarios, of the most and the least affected group effects in Figure 3 below

and in Table 8 in the Appendix.

Figure 3: Overall performance: GATEs, averaged across all 77 simulation scenarios
(a) Bias/RMSE

(b) Coverage/Interval Length

Note: The figure displays the performance of all methods in estimating the GATEs, with results averaged across all k = 77
simulation settings, with r = 100 replications per setting. Thus, in total we consider 7700 data sets. In Panel A, squares
reflect bias, diamonds Root Mean Square Errors, while in Panel B, triangles reflect coverage and circles interval lengths.

The results on GATEs present higher biases, higher RMSEs, lower coverages and wider

confident intervals when compared to the overall ATE results. In terms of overall GATEs

performance, we distinguish two groups. Ensemble methods that grow a sequence of trees,

i.e., BART MChains, Causal Forest, GML BART, GML Boosting and GML Random

Forest are the best performing methods. Within this group, the ensemble methods which

grow a sequence of trees based on a weak learner approach, i.e., BART and Boosting,

perform best. BART MChains has the lowest RMSE and the shortest interval length,
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while GML Boosting achieves the lowest bias and the highest coverage rate. Furthermore,

notice that the Causal Forest ranks among the top performing methods, which was not

the case in the ATE analysis. The second group made up of GML Lasso, GML Neural

Net and GML Trees performs notably worse. Finally, the advantage of growing multiple

trees becomes more evident when estimating heterogeneous treatment effects, since when

comparing the scales of the RMSEs in Figure 1 (ATE analysis) and 3 (GATE analysis),

it becomes clear that the Generic Tree-based ensemble methods considerably outperform

the Generic (single) Tree.

5.2 GATEs: Performance by Different Criteria

We turn now to the analysis of each criteria, separately. For the GATEs analysis we

select simulation scenario number 28 from Table 6 in the Appendix as the benchmark.

This is similar to the previous benchmark (scenario number 27), with the exception that

the level of heterogeneity is set to high, since our main focus here is to evaluate how

well the methods are capturing heterogeneity. As previously, we alter each knob one at a

time, as displayed in Table 3, to evaluate the performance of the different causal machine

learning methods under various data features. For further analysis, we also aggregate

all simulation results from high versus low percentage of treated, full versus penalized

overlap, high versus low alignment, high versus low heterogeneity, polynomial versus step

treatment model and step versus exponential response model.

scenario treatment model percent treated overlap response model alignment heterogeneity

28 polynomial low full step low high
56 step low full step low high
41 polynomial high full step low high
22 polynomial low penalize step low high
32 polynomial low full exponential low high
30 polynomial low full step high high
27 polynomial low full step low low

Table 3: Simulation settings used for GATEs performance analysis by different criteria

Notes: The table displays the simulation scenarios chosen to analyze the performance of the methods
under different data features. Simulation scenario number 28 is our benchmark. We then alter each
criteria one at a time.

As we alter the treatment model from polynomial to a step function (scenario 56),

Table 4 and Figure 12 in the Appendix reveal that GML Lasso performs worse, while

the Tree-based methods perform better, especially in terms of coverage rates. This is
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consistent with the results on the ATE. When the response model changes from a step

function to an exponential function (scenario 32), the methods perform overall slightly

worse.

As we increase the percentage of treated from low to high (scenario 41), Figure 14 in

the Appendix shows no notable changes. There is only a small performance gap increase

(in the RMSE and coverage) between the treatment effect of the most affected group and

the least affected group, in the case of Causal Forest.

When moving from full to penalised overlap (scenario 22), the RMSE of all methods

increases. We observe however mixed results when looking at the coverage rates. There

are some methods for which the coverage rates actually increase (Causal Forest, GML

BART, GML Neural Net, GML RF), but when looking at the interval lengths we observe

that these also increase. Overall, taking into account all evaluation criteria, it seems

that BART MChains and Causal Forest are the most stable to violations of the overlap

assumption.

When changing the level of alignment from low to high (scenario 30), the changes in

the performance measures are smaller compared to the ATE case, although the general

pattern remains the same.

We also make the change from high to low heterogeneity (scenario 27). As expected,

the RMSEs and biases become overall smaller, while the coverage rates increase and

interval lengths decrease. When heterogeneity is high in the data, Tree-based ensemble

methods (BART MChains, Causal Forest, GML BART, BML Boosting) perform overall

the best.

5.3 ITEs: Overall Performance and Performance by Different

Criteria

Individual treatment effects (ITEs) are especially useful, for example, in the fields of

personalized marketing or personalized medicine. In this section, we focus on the causal

machine learning methods which provide ITEs estimates. Figure 4 presents the perfor-

mance of the methods in terms of the PEHE when computing the ITEs. The results

are averaged across all 77 simulation scenarios with 100 replications per scenario. The

best performing method for ITEs estimation is BART MChains, followed by DR MOM

Boosting, DR MOM BART and Causal Forest. DR MOM Lasso and DR MOM Neural
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Net are at the other end of the performance rank. Notice that the order of performance of

the ML methods within the DR MOM approach is similar to the one observed in Figure

2 when estimating the response function.

Figure 4: Overall performance: PEHE for ITEs

Note: The figure displays the Overview of the Precision in Estimating Heterogeneous Effects (PEHE) for the ITEs. The
results are averaged across all k = 77 simulation settings, with r = 100 replications per setting. Thus, in total we consider
7700 data sets.

As in the case of ATE and GATEs, we perform next an analysis by the different

data features. For the ITEs, we report the aggregated overview from Figure 18 in the

Appendix. We notice that when the overlap assumption is violated or when we increase

the level of heterogeneity in the data, the PEHE increases for all methods. In terms of

percentage of treated or alignment, the changes in PEHE are very small. Moving from a

step function to a polynomial treatment model, or from a step function to an exponential

response model, increases the PEHE for most methods. BART MChains remains the

best method regardless of which criteria we change.

6 Sensitivity Analysis

The results of Sections 4 and 5 are obtained with the tuning parameters of the individual

ML methods taking the values specified in Table 9 in the Appendix. Some of these

parameters take default values while other parameters are already tuned with built-in

tuning functions available in the R-package of the ML method. The results presented

in the previous sections might be subject to some of the default values used. In this

section we perform a sensitivity analysis to default values. To this end, the parameters

which are additionally available for tuning within the caret R-package are varied over

different parameter combinations. The caret package is a general package that among
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other functionalities can streamline the training process of the different ML methods,

permitting the tuning of additional parameters that are not tuned in the ML package.

Since tuning the ML input parameters over a set of varying parameter combinations is

computationally intensive, we implement the sensitivity analysis for the main simulation

scenarios from Table 1 and Table 3 and not for all 77 simulation settings. Thus, we

replicate the results of Table 2, and Table 4 when the values of the tuning parameters

(the ones which are available for tuning in caret) for Boosting, Random Forest and Neural

Net, used within the DML and GML frameworks, are chosen over a set of different values.

We omit the DML and GML methods with Lasso and Trees as well as the Causal Forest,

since the parameters for these methods were already tuned in Section 4 and 5.14 We

also omit the BART-based methods given that most papers do not tune BART, as cross-

validating the prior is hard to justify. In addition, as noted by Chipman et al. (2010) the

default BART performs only slightly worse than the tuned BART, but the execution time

is much faster. See Table 10 in the Appendix for an overview of the tuning parameters

of all methods from the main and the sensitivity analysis.

For each simulation scenario we need to tune over all 100 simulation replications.

We do not tune however over each sample splitting step within the DML and the GML

methods15 due to computational costs. For each method, we consider a number of tuning

parameter combinations as shown in Tables 11-13 in the Appendix. The optimal values of

the tuning parameter are chosen by minimising the aggregated RMSE over the hold-out

sample sets via repeated cross-validations. These optimal values are then used as inputs

for the ML methods at each simulation replication. The results revisited with the optimal

tuning values are given in Table 14 and Table 4.

Comparing the results of Table 14 and Table 2, on the ATE, we notice that the

coverage rates improve slightly when the input parameters are tuned. However, our main

points on the ATE results continue to hold. On the other hand, the RMSEs, biases and

interval lengths are not sensitive to the values of the tuning parameters. When looking at

the GATEs analysis and comparing Tables 15 and 4, we notice again that the results are

not sensitive to the choice of the tuning parameters and our main points on the GATEs

results continue to hold. Given that our results on the ATE and GATEs are not sensitive

14Note that for the Trees method some of the tuning parameter stay at their default values as the
caret package currently does not support their tuning. The same is happening for the minimum node
size parameter in the Causal Forest.

15Similarly to Sections 4 and 5, we perform 10 sample splits for both DML and GML.
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to the tuning parameter choices, we do not consider further sensitivity checks on the ITE

necessary.

7 Conclusion

This paper investigates the performance of causal machine learning methods, newly in-

troduced in the economics literature, by revisiting the 2016 Atlantic Causal Inference

Competition. The analysis calibrates the simulations to a real-life data set and provides

a comprehensive framework to evaluate the estimation of treatment effects with different

granularities, across 77 different data generating processes. The focus is on data com-

plications of interest in causal inference such as varying degrees of: nonlinearity in the

outcome and treatment equations, overlap, percentage of treated, alignment and hetero-

geneity of the treatment effect.

When estimating the ATE, the top performing method, overall, is the BART MChains

followed by DML BART. After DML BART, the best performing ML methods used

within the DML framework, in decreasing order, are Boosting, Random Forest, Trees,

Neural Net and Lasso. Although the DML has marginally better results, the performance

of the GML is similar. The Causal Forest is not among the best performing methods,

especially with respect to coverage rates. All CML methods outperform the OLS esti-

mator, demonstrating their strength in settings characterized by nonlinear response and

treatment functions, high-dimensional confounding effects and high heterogeneity.

In terms of heterogeneous treatment effects, when estimating the GATEs, we find

that all methods perform worse than in the ATE estimation, as the RMSEs of the best

performing methods are higher and the coverage rates are more below the nominal cov-

erage. In the overall analysis, among all methods, the Generic Boosting has the lowest

bias and highest coverage, while BART MChains shows the lowest RMSE and interval

length – it seems that ensemble methods based on a weak learner approach seem most

suitable here. Finally, we notice that the Causal Forest performs better for GATEs es-

timation than for ATE estimation. When estimating ITEs, we find that, overall, BART

MChains outperforms all methods, followed by DR MOM Boosting, DR MOM BART,

Causal Forest and DR MOM Random Forest.
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A Supplementary Material to: ”Finite Sample Eval-

uation of Causal Machine Learning Methods: Guide-

lines for the Applied Researcher”

A.1 Control variables selected from the Collaborative Perinatal

Project

Table 5: Overview of control variables

variable description variable description
x1 mom age x30 num premes
x2 mar status x31 num abortions
x3 mom cigs per day x32 num prior pregs
x4 mom years smoked x33 num stillbirths
x5 mom height x34 bayley mental
x6 mom weight prior x35 bayley motor
x7 mom num cardio cond x36 placental weight
x8 mom num pulm cond x37 cord length
x9 mom num hema cond x38 sex
x10 mom num endocrine cond x39 apgar 1m total
x11 mom num veneral cond x40 apgar 5m total
x12 mom num urin cond x41 bottle feed days
x13 mom num gyne cond x42 breast feed days
x14 mom num neur cond x43 child bilirubin
x15 mom num obst compl x44 child hematocrit
x16 mom num infect dis x45 child hemoglobin
x17 mom work status x46 child num neur abn
x18 mom years educ x47 child num cns cond
x19 family income x48 child num muscoskel
x20 housing density x49 child num resp abn
x21 mom birth place x50 child num cardio abn
x22 consanguinity x51 child num liver abn
x23 socio eco x52 child num hemo cond
x24 mom race x53 child num infect
x25 age menarche x54 child num synd
x26 dias blood pres x55 child num endo dis
x27 mom weight birth x56 child num proc
x28 dad age x57 head size 1yr
x29 dad years educ x58 gest delivery

Notes: The table gives an overview of the 58 control variables selected from the
Collaborative Perinatal Project to capture confounding effects.
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A.2 Overview of simulation scenarios in Dorie et al. (2019)

Table 6: Overview of all 77 simulation scenarios

Scen. Treatment

Model

Percent

Treated

Overlap Response

Model

Alignment Hetero-

geneity
1 linear low penalize linear high high
2 polynomial low penalize exponential high none
3 linear low penalize linear high none
4 polynomial low full exponential high high
5 linear low penalize exponential high high
6 polynomial low penalize linear high high
7 polynomial low penalize exponential high high
8 polynomial low penalize exponential none high
9 step low penalize step high high
10 linear low penalize exponential low high
11 polynomial low penalize linear low high
12 polynomial low penalize exponential low high
13 linear high penalize exponential high high
14 polynomial high penalize linear high high
15 polynomial high penalize exponential high high
16 polynomial high penalize exponential none high
17 step high penalize step high high
18 linear high penalize exponential low high
19 polynomial high penalize linear low high
20 polynomial high penalize exponential low high
21 polynomial low penalize step low low
22 polynomial low penalize step low high
23 polynomial low penalize step high low
24 polynomial low penalize step high high
25 polynomial low penalize exponential low low
26 polynomial low penalize exponential high low
27 polynomial low full step low low
28 polynomial low full step low high
29 polynomial low full step high low
30 polynomial low full step high high
31 polynomial low full exponential low low
32 polynomial low full exponential low high
33 polynomial low full exponential high low
34 polynomial high penalize step low low
35 polynomial high penalize step low high
36 polynomial high penalize step high low
37 polynomial high penalize step high high
38 polynomial high penalize exponential low low
39 polynomial high penalize exponential high low
40 polynomial high full step low low
41 polynomial high full step low high
42 polynomial high full step high low
43 polynomial high full step high high
44 polynomial high full exponential low low
45 polynomial high full exponential low high
46 polynomial high full exponential high low
47 polynomial high full exponential high high
48 step low penalize step low low

37



49 step low penalize step low high
50 step low penalize step high low
51 step low penalize exponential low low
52 step low penalize exponential low high
53 step low penalize exponential high low
54 step low penalize exponential high high
55 step low full step low low
56 step low full step low high
57 step low full step high low
58 step low full step high high
59 step low full exponential low low
60 step low full exponential low high
61 step low full exponential high low
62 step low full exponential high high
63 step high penalize step low low
64 step high penalize step low high
65 step high penalize step high low
66 step high penalize exponential low low
67 step high penalize exponential low high
68 step high penalize exponential high low
69 step high penalize exponential high high
70 step high full step low low
71 step high full step low high
72 step high full step high low
73 step high full step high high
74 step high full exponential low low
75 step high full exponential low high
76 step high full exponential high low
77 step high full exponential high high

Notes: The table shows the 77 simulations scenarios from the causal inference data

competition by Dorie et al. (2019).

A.3 Additional results: overall performance

Table 7: Overall performance: ATE, averaged across all 77 simulation scenarios

BART
MC

Causal
Forest

DML
BART

DML
Boost

DML
Lasso

DML
Nnet

DML
RF

DML
Trees

GML
BART

GML
Boost

GML
Lasso

GML
Nnet

GML
RF

GML
Trees

OLS

bias -0.001 -0.01 -0.004 -0.01 -0.03 -0.02 -0.01 -0.01 -0.01 -0.02 -0.03 0.02 -0.003 -0.01 -0.04
rmse 0.02 0.07 0.04 0.04 0.09 0.07 0.04 0.06 0.04 0.05 0.08 0.06 0.04 0.06 0.10
cov. 0.89 0.51 0.83 0.73 0.44 0.63 0.67 0.62 0.81 0.71 0.52 0.57 0.79 0.69 0.34
int. 0.04 0.07 0.06 0.06 0.09 0.11 0.07 0.08 0.07 0.07 0.10 0.09 0.09 0.08 0.09

Notes: The table displays the bias, RMSE, coverage rates, and interval lengths for the ATEs, where the
results are averaged across all k = 77.
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Table 8: Overall performance: GATEs, averaged across all 77 simulation scenarios

BART MC Causal Forest GML BART GML Boost GML Lasso GML Nnet GML RF GML Trees
most least most least most least most least most least most least most least most least

bias 0.04 -0.05 0.05 -0.09 0.03 -0.05 0.00 -0.04 0.10 -0.18 0.21 -0.19 0.07 -0.08 0.18 -0.20
rmse 0.07 0.07 0.11 0.13 0.11 0.10 0.10 0.10 0.22 0.27 0.26 0.24 0.12 0.12 0.22 0.24
cov. 0.62 0.57 0.62 0.42 0.61 0.67 0.75 0.75 0.48 0.34 0.17 0.23 0.53 0.59 0.25 0.18
int. 0.10 0.10 0.15 0.14 0.17 0.17 0.17 0.17 0.23 0.23 0.21 0.20 0.21 0.20 0.19 0.19

Notes: The table displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the
results are averaged across all k = 77.

A.4 Additional results: analysis by criteria

Figure 5: Treatment model: polynomial and step, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 39 scenarios with a polynomial treatment model versus all k = 32 scenarios with a step treatment model.
The number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values
for the bias, RMSE and coverage rate.
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Figure 6: Response model: step and exponential, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 32 scenarios with step response model versus all k = 39 scenarios with exponential response model. The
number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the
bias, RMSE and coverage rate.

Figure 7: Treatment and Response model: linear and non-linear, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 2 scenarios where both models are linear versus all k = 67 scenarios where both models are non-linear. The
number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the
bias, RMSE and coverage rate.
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Figure 8: Percentage of treated: low and high, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 40 scenarios with a low percentage of treated versus all k = 37 scenarios with a high percentage of treated.
The number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values
for the bias, RMSE and coverage rate.

Figure 9: Overlap: full and penalized, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 32 scenarios with full overlap versus all k = 45 scenarios with penalized overlap. The number of replications
per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias, RMSE and
coverage rate.
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Figure 10: Alignment: low and high, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 36 scenarios with low alignment versus all k = 39 scenarios with high alignment. The number of replications
per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias, RMSE and
coverage rate.

Figure 11: Heterogeneity: low and high, ATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the ATE, where the results are averaged
across all k = 32 scenarios with low heterogeneity versus all k = 43 scenarios with high heterogeneity. The number of
replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias,
RMSE and coverage rate.
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Figure 12: Treatment model: polynomial and step, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 39 scenarios with a polynomial treatment model versus all k = 32 scenarios with a step treatment
model. The number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical
values for the bias, RMSE and coverage rate.

Figure 13: Response model: step and exponential, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 32 scenarios with full overlap versus all k = 45 scenarios with penalized overlap. The number
of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias,
RMSE and coverage rate.
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Figure 14: Percentage of treated: low and high, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 40 scenarios with a low percentage of treated versus all k = 37 scenarios with a high percentage of
treated. The number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical
values for the bias, RMSE and coverage rate.

Figure 15: Overlap: full and penalized, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 32 scenarios with full overlap versus all k = 45 scenarios with penalized overlap. The number
of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias,
RMSE and coverage rate.
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Figure 16: Alignment: low and high, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 36 scenarios with low alignment versus all k = 39 scenarios with high alignment. The number
of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the bias,
RMSE and coverage rate.

Figure 17: Heterogeneity: low and high, GATE
(a) RMSE (b) Coverage

(c) Bias (d) Interval Length

Note: The figure displays the bias, RMSE, coverage rates, and interval lengths for the GATEs, where the results are
averaged across all k = 32 scenarios with low heterogeneity versus all k = 43 scenarios with high heterogeneity. The
number of replications per simulation scenario is r = 100. The horizontal lines reflect the desired theoretical values for the
bias, RMSE and coverage rate.

45



Figure 18: PEHE by Different Criteria, ITE
(a) Treatment model: polynomial and step (b) Percentage of treated: low and high

(c) Overlap: full and penalized (d) Response model: step and exponential

(e) Alignment: low and high (f) Heterogeneity: low and high

Note: This figure displays the Precision in Estimating Heterogeneous Effects (PEHE) for the ITEs, by different criteria.
The results are averaged across all k simulation scenarios. The number of replications per simulation scenario is r = 100.
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A.5 Tuning parameters and Sensitivity Analysis

Table 9: Tuning parameters of the ML algorithms in the main analysis

Lasso (cv.glmnet)

λ, regularization parameter, controls the Lasso penalty. If λ increases the penalty
shrinks more variables in the model fit which increases the bias but decreases the variance.
It is chosen by minimizing the cross-validation error with 10-folds within the cv.glmnet
package. In the Lasso we include polynomial terms up to the third order.

Trees (rpart)

cp, complexity parameter, controls the size of the decision tree by evaluating the
complexity of the tree versus the goodness of fit to the data to avoid overfitting. The
parameter is chosen by 10-fold cross validation within the rpart package.
minsplit, the minimum number of observations required in a node to consider a split in
the tree. It is set to the default value of 20.
minbucket, the minimum size of the terminal nodes. It is set by default to the rounded
value of minsplit/3.
maxdepth, the maximum depth of the final tree. It is set to the default value of 30.

Boosting (gbm)

n.trees, the number of trees that are sequentially grown within the Boosting algorithm.
In the main analysis (Sections 4 and 5) 1000 trees are chosen. For the sensitivity analysis
(Section 6) we also consider other values as specified in Table 11.
interaction.depth, specifies the maximum depth of each tree and it is set to 2 in the
main analysis. In the sensitivity analysis we also consider other values as specified in
Table 11.
n.minobsinnode, specifies the minimum amount of observations in the terminal node
and it is set to 1 in the main analysis. For the sensitivity analysis we also consider the
values specified in Table 11.
shrinkage, shrinkage parameter (also known as learning rate), controls the rate at which
the boosting algorithm learns and guarantees that the update rule of each sequential tree
leads to an overall improvement. The parameter is set by default to 0.1.
bag.fraction, the fraction of randomly selected training observations proposed for the
next tree build, introducing randomness in the model fit. The parameter is set by default
to 0.5.

Random Forest (randomForest)

ntrees, number of decorrelated trees to grow. In the main analysis 250 trees are chosen.
For the sensitivity analysis we also consider other values as specified in Table 12.
mtry, number of variables randomly sampled as candidates at each split. The default
values of P

3
for regression problems (response model) and

√
P for classification prob-

lems (treatment model) are chosen, where P is the number of control variables. For the
sensitivity analysis we also consider other values as specified in Table 12.
nodesize, the minimum size of the terminal nodes in each tree. It is set to the default
values of 5 for regression problems (response model) and 1 for classification problems
(treatment model).

Neural Net (nnet)

size, the number of neurons in the hidden layer. It is set to 2 in the main analysis. For
the sensitivity analysis we also consider other values as specified in Table 13.
number hidden layers, it is set to the basic value of 1, as proposed in the implementation
of the DML method.
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decay, regularization term to avoid overfitting. If the decay increases, the bias on the
training data increases but the variance on the test data decreases. It is set to 0.1 in the
main analysis. For the sensitivity analysis we also consider other values as specified in
Table 13.
maxit, the maximum number of iterations within the Neural Net. It is set to 1000.

Causal Forest (grf)

num.trees, the number of trees grown in the forest. It is set to the default value of 2000.
mtry, the number of variables randomly sampled as candidates at each split. It is tuned
within the grf package.
min.node.size, minimum number of observations in each tree’s leaf. It is set to the
default value of 5.
sample.fraction, fraction of data used for the sub-sample (see Section 3.3). It is tuned
within the grf package.
honesty.fraction, fraction of data used as training sample (see Section 3.3). It is tuned
within the grf package.
alpha, regularizes the maximum imbalance possible at each split. It is tuned within the
grf package.

BART (BART)

ntrees, the number of trees in the sum which are grown in the BART algorithm. It is
set to the default of 200.
ndpost, the number of posterior draws returned (iterations in the MCMC). It is set to
the default of 1000.
nskip, the number of burn-ins in the MCMC iterations. It is set to the default of 100.

BART MC (bartCause)

n.chains, number of combined chains. It is set to the default of 10.
commonSup.rule, a rule defining which data points to exclude in case of poor overlap.
Rule ”sd” is chosen, which excludes observations whose predicted counterfactual standard
deviation is extreme.

Notes: The table gives information on the tuning parameters used for the Machine Learning methods
in the main analysis. The name in parentheses next to the ML methods denotes the corresponding
R-package used.
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Table 10: Overview of fixed and tuned parameters

(1) (2) (3)
Parameter Fixed Tuned within package Tuned with caret package

Lasso

λ, regularization parameter X

Trees

cp, complexity parameter X
minsplit X
minbucket X
maxdepth X

Boosting

n.trees X X
interaction.depth X X
n.minobsinnode X X
shrinkage X
bag.fraction X

Random Forest

ntrees X X
mtry X X
nodesize X

Neural Net

size X X
number hidden layers X
decay X X
maxit X

Causal Forest

num.trees X
mtry X
min.node.size X
sample.fraction X
honesty.fraction X
alpha X

BART

ntrees X
ndpost X
nskip X

BART MC

n.chains X

Notes: The table gives an overview of fixed and tuned parameters. Columns (1) and (2) are the
parameter setting in Sections 4 and 5. Column (3) shows which parameters have been additionally
varied in the sensitivity analysis in Section 6.
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Table 11: Tuning parameter combinations, Boosting

Parameter Combination 1 2 3 4 5 6 7 8 9 10 11 12

n.trees 600 600 600 1000 1000 1000 600 600 600 1000 1000 1000
interaction.depth 2 3 4 2 3 4 2 3 4 2 3 4
n.minobsinnode 1 1 1 1 1 1 5 5 5 5 5 5

Notes: The table specifies the different parameter combinations in the sensitivity analysis. Each column
represents a possible combination of the numbers of trees, the interaction depth and the minimum number
of observations in the terminal node, as inputs for the Boosting method. The parameter values are manually
predefined.

Table 12: Tuning parameter combinations, Random Forest

Parameter Combination 1 2 3

ntrees 500 500 500
mtry 22 27 32

The table specifies the different parameter combinations in the sensitivity
analysis. Each column represents a possible combination of the numbers of
trees and the numbers of variables randomly sampled to be used for splits, as
inputs for the Random Forest method. The parameter values are manually
predefined.

Table 13: Tuning parameter combinations, Neural Net

Parameter Combination 1 2 3 4 5 6

size 2 4 8 2 4 8
decay 0.01 0.01 0.01 0.02 0.02 0.02

The table specifies the different parameter combinations in the
sensitivity analysis. Each column represents a possible combi-
nation of the size and decay parameter as inputs for the Neural
Net method. The parameter values are manually predefined.
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Table 14: Sensitivity Check: ATE performance analysis by different criteria/data features

Scenario DML Boost DML Nnet DML RF GML Boost GML Nnet GML RF

Panel A: Bias

27 -0.00 -0.01 -0.01 -0.00 0.02 0.01
55 -0.00 -0.01 -0.00 -0.00 0.02 0.01
40 -0.00 -0.01 -0.00 -0.00 0.03 0.01
21 -0.00 -0.01 -0.00 -0.01 0.03 0.00
31 -0.00 -0.01 -0.00 0.00 0.03 0.01
29 -0.01 -0.03 -0.02 -0.00 0.01 0.00
28 -0.01 -0.03 -0.01 -0.01 0.01 0.01

Panel B: RMSE

27 0.01 0.03 0.02 0.01 0.04 0.02
55 0.01 0.04 0.01 0.01 0.05 0.02
40 0.01 0.03 0.02 0.01 0.04 0.02
21 0.03 0.04 0.03 0.03 0.05 0.03
31 0.01 0.03 0.02 0.01 0.04 0.02
29 0.01 0.06 0.03 0.01 0.04 0.02
28 0.02 0.06 0.03 0.01 0.05 0.02

Panel C: Coverage

27 0.96 0.83 0.90 0.97 0.74 0.85
55 0.96 0.85 0.97 0.98 0.66 0.76
40 0.96 0.84 0.87 0.96 0.63 0.86
21 0.75 0.87 0.74 0.76 0.65 0.86
31 0.99 0.91 0.96 0.93 0.56 0.86
29 0.82 0.59 0.65 0.92 0.62 0.90
28 0.93 0.54 0.71 0.91 0.54 0.83

Panel D: Interval Length

27 0.05 0.10 0.05 0.04 0.09 0.05
55 0.05 0.09 0.05 0.04 0.08 0.05
40 0.05 0.09 0.05 0.04 0.08 0.05
21 0.05 0.12 0.05 0.06 0.10 0.07
31 0.06 0.10 0.07 0.05 0.08 0.06
29 0.04 0.09 0.06 0.04 0.07 0.06
28 0.06 0.10 0.07 0.04 0.08 0.06

Notes: The table reports the results on the ATE sensitivity checks of the ML input parameters.
The input parameters have been chosen by the best combination resulting from the values
defined in Tables 11-13. The best combination has been chosen separately for each nuisance
function E[Y |D = 1, X], E[Y |D = 0, X] and E[D|X] and for each of the r = 100 simulation
replications.
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Table 15: Sensitivity Check: GATE performance analysis by different criteria/data features

Scenario GML Boost GML Nnet GML RF
most affect. least affect. most affect. least affect. most affect. least affect.

Panel A: Bias

28 0.03 -0.04 0.22 -0.20 0.09 -0.08
56 0.03 -0.03 0.21 -0.22 0.09 -0.06
41 0.04 -0.04 0.22 -0.20 0.09 -0.07
22 0.01 -0.03 0.26 -0.20 0.08 -0.08
32 0.04 -0.05 0.26 -0.23 0.11 -0.11
30 0.04 -0.05 0.20 -0.21 0.09 -0.10
27 0.03 -0.04 0.20 -0.16 0.08 -0.06

Panel B: RMSE

28 0.06 0.07 0.28 0.24 0.11 0.10
56 0.07 0.07 0.28 0.29 0.10 0.08
41 0.07 0.07 0.26 0.26 0.11 0.10
22 0.14 0.10 0.31 0.26 0.17 0.12
32 0.06 0.08 0.30 0.26 0.13 0.13
30 0.10 0.08 0.28 0.25 0.13 0.12
27 0.04 0.05 0.24 0.20 0.09 0.07

Panel C: Coverage

28 0.84 0.76 0.14 0.16 0.48 0.51
56 0.78 0.82 0.20 0.24 0.30 0.54
41 0.75 0.74 0.14 0.13 0.43 0.52
22 0.63 0.76 0.21 0.26 0.66 0.75
32 0.77 0.73 0.12 0.12 0.35 0.42
30 0.74 0.69 0.22 0.12 0.40 0.35
27 0.72 0.71 0.13 0.26 0.40 0.64

Panel D: Interval Length

28 0.12 0.12 0.20 0.19 0.15 0.14
56 0.11 0.11 0.21 0.21 0.13 0.13
41 0.12 0.12 0.19 0.19 0.14 0.14
22 0.18 0.18 0.25 0.24 0.27 0.25
32 0.14 0.14 0.20 0.20 0.16 0.16
30 0.12 0.12 0.19 0.18 0.15 0.15
27 0.11 0.11 0.20 0.19 0.13 0.13

Notes: The table reports the results on the GATEs sensitivity checks of the ML input parameters. The
input parameters have been chosen by the best combination resulting from the values defined in Tables
11-13. The best combination has been chosen separately for each nuisance function E[Y |D = 1, X],
E[Y |D = 0, X] and E[D|X] and for each of the r = 100 simulation replications.
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