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Abstract

We propose an empirical spatial modeling framework that allows for both heterogene-
ity and time-variation in economic network connections and spillovers. We establish
the model’s stationarity and ergodicity properties and also show that the model-
implied filter is invertible. While highly flexible, the model is straightforward to es-
timate. We apply the model to several datasets related to Eurozone sovereign credit
risk over the period December 2009 to July 2020. Accounting for both heterogeneity
and time-variation turns out to be empirically highly important: the new model un-
covers intuitive patterns that would go unnoticed in either homogeneous and/or static
spatial network models.
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1 Introduction
In this paper we study the spatial network dynamics of Eurozone sovereigns. Spatial models have
recently attracted quite some attention to describe networks of markets and market participants.
For instance, spatial models have been used to study international stock market linkages (Fer-
nandez, 2011; Fernández-Avilés et al., 2012; Asgharian et al., 2013), asset pricing implications of
network connections (Kou et al., 2018), cross-sectional market volatility patterns as related to firm
connections (Herskovic et al., 2020), financial markets and banking sector stability (Tonzer, 2015;
Milcheva and Zhu, 2016; Pino and Sharma, 2019), contagion across energy markets (Demirer et al.,
2020), credit rating contagion (Asgharian et al., 2013), and pricing and portfolio implications in
real estate markets (Zhu and Lizieri, 2021; Zhu and Milcheva, 2020).

In all these models, the linkages between network players are typically captured by a (possibly
time-varying) matrix of observable variables that measures the connection strengths. For instance,
in our application we use quarterly cross-border banking claims in the Eurozone as in Tonzer
(2015) and Blasques et al. (2016) for this purpose. On top of this observable matrix of network
connections, the relative connection strengths in the network are generally captured by a single,
static parameter, also known as the spatial correlation. This is quite restrictive. In dynamic and
possibly stressed markets different network players can have a time-varying sensitivity to other
players in the network. Moreover, this player-specific sensitivity may also increase or decrease
disproportionately in a player-specific way during stressed periods. This heterogeneity may not
be captured by only the observable variables that are typically used to describe the network
connections. This poses two main challenges.

First, as indicated by Aquaro et al. (2021), there is a need to allow for more heterogeneity in
the spatial model parameters that describe the sensitivities of network players to shocks elsewhere
in the network. Aquaro et al. (2021) show that standard scalar spatial models are typically
inadequate and may obscure and bias important patterns in the data. More heterogeneity in the
spillover parameters is called for to capture the network structure correctly. This finding is also in
line with Herskovic et al. (2020), who allow for different network sensitivities of firms in a network
setting. Both Aquaro et al. (2021) and Herskovic et al. (2020) use heterogeneous extensions of the
baseline spatial model for financial networks. These extensions, however, are all static.

This brings us to the second challenge: time-variation in network connections. Blasques et al.
(2016), Catania and Billé (2017), and Billé et al. (2019) show that the overall strength of network
connections can change substantially over time in stock markets, debt markets, and real estate
markets. These papers introduce dynamic extensions of the baseline spatial model that allow
for additional dynamics in network propagation strength on top of what is captured by simple
observables. All three papers do so with one or two dynamic parameters. This allows one to
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obtain additional measures of systemic stress and network fragility that exhibit more dynamics
during turbulent times compared to commonly used static models. Still, these models allow for
only a limited amount of (dynamic) heterogeneity across the network players; compare Aquaro
et al. (2021). This may severely bias the results against time-variation in network propagation
strength and hide important features of the network and its dynamics. For example, Blasques
et al. (2016) find evidence of time-varying spillover strength for European sovereign debt, but
the time-variation is surprisingly modest given the variety of countries included in their analysis.
From our empirical application in this paper, we show this is likely due to over-restrictive pooling
assumptions in the original model specification.

This paper develops a new spatial dependence model for dynamic networks with heterogeneous,
dynamic spatial spillover parameters, thus filling an important gap in the empirical literature.
On top of time-variation in network connections via observed variables, we introduce separate
time-varying spatial dependence parameters. This enables each network player to have its own
time-varying sensitivity to what happens elsewhere in the network. The dynamics in our model
are based on the score-driven dynamics of Creal et al. (2013) and Harvey (2013). We show that
the model has a stationary and ergodic solution, and that the model-implied filter is invertible,
such that asymptotically we can correctly recover the paths of the time-varying spatial correlations
from the data.

Compared to earlier score-driven correlation-type models we introduce three innovations to the
score-driven specification. First, we allow for a vector of time-varying correlations. Second, we
do not force the spatial correlations to remain in the [0,1] interval. This is empirically important,
as several spatial correlations lie empirically outside this range. Third, we introduce time-varying
step lengths for the scaled score steps to ensure the spatial stability of the model at all times.
This approach also facilitates some of the theoretical derivations for the statistical properties of
the model. Though the proposed mechanism is not called upon in our empirical application, it
may provide useful in other settings to ensure the model remains spatially stable at all times by
construction.

Empirically and in simulations, we find that it is important to allow for both heterogeneity
and time-variation. If the dynamics are omitted, differences in network fragility over time are not
captured well. Conversely, if heterogeneity is omitted, a scalar dynamic spatial parameter only
provides a very blurred picture of the positions of the different network players over time. For
instance, if the network importance of some countries increases precisely at the moment where that
of others wanes, the overall scalar summary measure might incorrectly signal nothing is happening
in the network at all. Again, this may lead to flawed inference and to an incorrect assessment
of the true underlying economic mechanisms. Our new model avoids these pitfalls and allows
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one to capture the heterogeneity, dynamics, and asymmetric risk propagation between network
players more accurately. Despite all this added flexibility, the new model is still straightforward
to estimate.

We apply our model to three different datasets related to European sovereign credit risk. Our
baseline analysis uses weekly changes in 5-year government bond spreads over the OIS EONIA
rate for 7 European countries over the period 2009-2020. We find that allowing for heterogeneous
dependence parameters improves the statistical fit compared to the scalar spatial model of Blasques
et al. (2016), as well as compared to static heterogeneous models or static scalar models, like the
original model of Anselin (2009). Important features characterizing the dynamics of the European
sovereign debt crisis only become clear in the new heterogeneous dynamic model. This includes the
anchoring role of Germany as well as the risk sensitivities of countries like Spain, Portugal, Ireland,
and particularly Italy. Allowing for heterogeneous, time-varying spatial dependence parameters
also leads to an increase in both short- and long-run spillover risk measures, sometimes by a
factor of more than three or four. Again, we stress that all such features would go unnoticed in
homogeneous or static versions of the model such that it is empirically important to allow for both
heterogeneity and time-variation in financial networks.

Our study contributes to several lines of literature. On the one hand, it opens an new avenue to
investigate network properties in a much more flexible way than with the static models used in for
instance Asgharian et al. (2013), Kou et al. (2018), Herskovic et al. (2020), and other references
mentioned earlier. Given the empirical relevance of both heterogeneity and time-variation, it
may also call for further theoretical advances of baseline frameworks such as in Denbee et al.
(2021) to explain such time-variation. Our paper also links to the extant literature on modeling
financial networks to study risk propagation and financial stability, such as for instance Acharya
et al. (2014), Williamson (2003), Elliott et al. (2014), and Fernandes and Artes (2016). Recent
literature on systemic risk highlights the importance of spatial dependence and network spillovers
(e.g., Asgharian et al., 2013; Babii et al., 2019). Finally, methodologically our work relates to
the literature on score-driven time-varying parameter models as in Creal et al. (2013). A similar
score-driven approach is found in Blasques et al. (2016), Catania and Billé (2017), and Billé et al.
(2019). Our work differs from theirs in that we allow for more dynamic heterogeneity across
network players, which proves empirically highly important. As such, our new spatial specification
could also be used to measure contagion effects and systemic risk; see Franklin and Douglas (2000);
Billio et al. (2012); Acemoglu et al. (2015). In addition, our score mechanism is adapted to ensure
spatial stability by construction. We are also aware of a parallel line of literature that measures
network effects via vector autoregressive models and a variance decomposition; see Diebold and
Yılmaz (2014). In contrast to this approach, the spatial approach allows one to include prior
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information on connection strenghts and can, therefore, be more parsimonious.
The remainder of this paper is organized as follows. Section 2 discusses the new model and

establishes its statistical properties. The data are discussed in Section 3, followed by the empirical
results in Section 4. Section 5 presents robustness checks. Section 6 concludes.

2 The model

2.1 Modeling time-variation in heterogeneous spatial dynamics

Rather then building the model step-by-step, we provide the most general model specification first
and then highlight how earlier models fit in as special. We gather the relevant measurements of a
network into the vector yt. For instance, in our setting yt contains spread changes of sovereigns
in the Eurozone, but the measurements might similarly relate to for instance trade data, social
network data, or firm relationships. We use the following vector-valued time-varying parameter
spatial autoregressive (SAR) model for yt,

yt = RtWt yt +Xtβ + εt, εt
iid∼ pε(εt;Σ, ν), (1)

where yt = (y1,t, . . . , yN,t)
⊤ ∈ RN×1 denotes the vector of cross sectional measurements for time t =

1, . . . , T , where the cross-section dimension i relates to the network players, εt ∈ RN×1 is a serially
independently and identically distributed error term or vector of ‘structural’ shocks with a density
pε(εt;Σ, ν) such as the normal distribution or alternatively a fat-tailed Student’s t distribution.
The density is characterized by a diagonal covariance matrix Σ and a static shape parameter ν. For
now, we keep Σ fixed, but in Section 4 we also consider specifications with time-varying volatility.
The matrix Xt ∈ RN×K denotes a matrix holding exogenous regressors with corresponding static
parameter vector β ∈ RK×1, Wt ∈ RN×N is an observable matrix containing the spatial weights,
and Rt ∈ RN×N is a diagonal matrix containing the unobserved time-varying heterogeneous spatial
spillover parameters, also called spatial autoregressive coefficients. The spatial spillover parameters
in Rt play a major role in the subsequent analysis. The model in equation (1) is already dynamic
via the observed Wt matrix that measures the time-varying connections in the network in the
standard way. On top of this, (1) also allows for further unobserved heterogeneity via the matrix
Rt.

Model (1) nests several models from the literature. For example, if Rt ≡ ρ · IN for a scalar ρ

with IN ∈ RN×N the identity matrix, then (1) collapses to the standard spatial regression model;
see for instance Anselin (2009), Asgharian et al. (2013), Kou et al. (2018), Denbee et al. (2021). For
a static Rt = R, we obtain the model with static heterogeneous spillover strengths as in Aquaro
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et al. (2021) and Herskovic et al. (2020). The static model Rt = ρ · IN was generalized to a setting
with a time-varying spatial autoregressive parameter ρt by Blasques et al. (2016) and Catania and
Billé (2017). We also obtain this scalar dynamic model as a special case by setting Rt = ρt · IN .
However, our new model provides a much richer description of the spatial dynamics by allowing
Rt to be a non-scalar matrix. In particular, some network units may be important contributors
to systemic risk at some times, whereas other units may take over this role at other times. This is
captured by the different diagonal elements of Rt, the ith element measuring the spatial sensitivity
of unit i to the other units. The model can easily be extended further to include, for instance, a
spatial lag structure for the error term, a non-diagonal covariance structure for εt, or as mentioned
earlier a time-varying covariance matrix Σt to allow for periods where the flow of information is
high compared to other periods.

To model the time variation in Rt, we endow Rt with score-driven dynamics as proposed
in Creal et al. (2011, 2013) and Harvey (2013). The model can then be easily estimated via
standard maximum likelihood methods. Score-driven models also possess information theoretic
optimality properties and yield updates of the parameters that improve the expected Kullback-
Leibler divergence; see Blasques et al. (2015) and Creal et al. (2020).

We assume that the errors εt follow a fat-tailed Student’s t distribution with zero mean,
covariance matrix Σ, and ν degrees of freedom,

pε (εt ;Σ, ν) =
Γ
(
1
2(ν +N)

)
Γ
(
1
2ν
)
|(ν − 2)πΣ|1/2

(
1 + ε⊤t Σ

−1εt/(ν − 2)
)−0.5(ν+N)

. (2)

The normal distribution is recovered as a special case for ν → ∞. The problem with the normal
distribution, however, is that it does not allow for incidentally large observations and fat tails in
the data, which can be particularly problematic for financial economic data as used for instance
in our application in Section 4.

We gather all time-varying spatial parameters into the vector ft, i.e.,

ft = diag(Rt) = (R11,t, . . . ,RNN,t)
⊤ . (3)

Note that unlike for instance Creal et al. (2013) or Blasques et al. (2016), we do not force the
spatial correlation parameters Ri,i,t to be in the unit interval using for instance a logistic or tanh
transformation. Though intuitive, such reparameterizations may come at a considerable cost. In
fact, we show in the empirical application that such transforms can actually be a bad idea if there
is heterogeneity in spillover sensitivity: it unnecessarily restricts the model’s ability to capture the
dynamics in the data and leads to biased estimates, as some Ri,i,t may go outside the 0–1 range
without jeopardizing the spatial stability of the model as a whole. This is evident if one realizes
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that for spatial stability we only require all eigenvalues of RtWt to lie inside the unit circle. This
still allows for Ri,i,t > 1 for specific network players i, as long as the maximum eigenvalue of RtWt

remains below one. The latter depends on all elements of Rt and Wt, and not on one specific Ri,i,t

only. The fact that we allow Ri,i,t to move outside the unit interval therefore provides substantial
flexibility to the model. This comes on top of the flexibility provided by allowing the diagonal
elements of Rt to be different in the first place compared to the scalar model Rt = ρt · IN of
Blasques et al. (2016).

The score-driven dynamics are given by

ft+1 = ω +Bft +At st, (4)

st =
∣∣IN −RtWt

∣∣ · ∂ log py (yt | ft,Σ, ν)

∂ft

=
∣∣Zt

∣∣ · (wt diag
(
Σ−1ei,ty

⋆⊤
t

)
− diag

(
Wt (IN −RtWt)

−1
))

,

=
∣∣IN −RtWt

∣∣ · wt diag
(
Σ−1ei,ty

⋆⊤
t

)
− diag (WtZ

⋆
t ) , (5)

y⋆
t = Wtyt, et = yt −RtWtyt −Xtβ, wt =

(
1 +

N + 2

ν − 2

)/(
1 +

e⊤t Σ
−1et

ν − 2

)
,

Zt = IN −RtWt, Z⋆
t = |Zt| ·Z−1

t ,

such that Z⋆
t is the adjoint of Zt. Derivations and proofs can be found in the Appendix A.

The score is scaled in the sense of Creal et al. (2013) by |IN −RtWt|. This helps the spatial
stability of the model by automatically reducing the step size when the maximum eigenvalue of
RtWt approaches one. Also note that we introduced a time-varying parameter At as a variation
to the original score model of Creal et al. (2013). The parameter At = vt ·A equals a fixed A times
a weight vt. The default value of the weight is vt = 1, in which case the dynamics reduce to the
standard score-driven dynamics. If however R(ω+Bft +Ast) ·Wt+1 has a maximum eigenvalue
outside the unit circle, the weight (and thus the step size) is reduced towards 0 until the moment
that the maximum eigenvalue of R(ω + Bft + vtAst) · Wt+1 is ϵ inside the unit circle, where ϵ

is set by the user. Starting from an initial R(f1) such that R(f1)W1 has all eigenvalues inside
the unit circle, these modified score dynamics ensure that the spatial stability of the model is (by
design) never violated. This mechanism also in the theoretical derivations later on, as we can now
directly exclude situations of spatial instability. In a way, it generalizes the univariate stability
device ρt = ϵ · tanh(ft) of Blasques et al. (2016) to the current heterogeneous spatial spillover
context, without being overly restrictive.
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The score in equation (5) consists of two terms that have an intuitive interpretation. The first
term is the regressor y⋆

t weighted standardized error term Σ−1ei,t. It captures the score-driven
dynamics for a standard regression model with a time-varying regression parameter and follows
from the specification in (1), where the elements of Rt act as regression coefficients. This part of
the score adjusts the parameters upwards or downwards depending on whether the most recent
observations lie below or above the estimated regression line at the previous point in time. The
second term in (5) corrects for the simultaneity bias in the regression specification, which is due
to the endogeneity of yt as a regressor. The endogeneity correction naturally becomes smaller if
either Rt or Wt lie closer to zero, i.e., if the endogeneity problem is less. For ν < ∞, the weight
wt provides a robustness feature to the time-varying parameter dynamics: if an observation yt is
an incidental outlier or influential observation with a large et, the weight wt tends to zero. Such
observations thus receive less impact on the spatial correlation dynamics; see also similar features
for other location and scale models in for instance Creal et al. (2013) and Harvey and Luati (2014).
For the normal distribution, we have wt = 1 and this robustness feature disappears.

2.2 Stationarity, ergodicity, and filter invertibility

In this section we study the asymptotic properties of the model as a data generating process (dgp)
and as a filter. Compared to earlier work such as Blasques et al. (2016) or Blasques et al. (2022),
we have two complications. These are the eigenvalue condition on RtWt and the time-variation in
At. Regarding the latter, we note that the design of the weighted steps using At only enhances the
stability of the model further. In particular, the stability of the unweighted version of the model
(using A) implies stability of the original model (using At) as ∥At∥ ≤ ∥A∥ due to the weighting
mechanism.

We make the following assumptions.

Assumption 1. The distribution of the i.i.d. errors {εt}t∈Z is a standardized multivariate Stu-
dent t distribution with ν > 2 degrees of freedom and diagonal variance-covariance matrix Σ =

diag(Σ1,1, . . . ,ΣN,N ), with inf iΣi,i ≥ k and supiΣi,i ≤ K, with 0 < k < K < ∞ and i = 1, . . . , N .

Assumption 2. The exogenous regressors {Xt}t∈Z are stationary and ergodic with E[∥Xt∥2+δ] ≤

K < ∞.

Assumption 3. The time-varying spatial weight matrices Wt are observable, stationary and
ergodic, and satisfy

lim sup
t→∞

max {∥Wt∥1, ∥Wt∥∞} ≤ K < ∞.
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Assumption 4. Define F t = {f | ϱ(R(f)Wt) ≤ 1− ϵ}, for some ϵ > 0, where ϱ( · ) denotes the
spectral radius of a matrix and let

E
[
log sup

f∈Ft

∥B +Aṡεt (f)∥∞

]
< 0,

where

ṡεt (f) = −S⊤
N

((
wε
tΣ

−1εt(Xtβ + εt)
⊤ ⊗ IN

)
− (IN ⊗Wt)

)
Ż⋆

t (f)
(
W⊤

t ⊗ IN
)
SN ,

wε
t =

(
1 +

N + 2

ν − 2

)/(
1 +

ε⊤t Σ
−1εt

ν − 2

)
, Ż⋆(ft) =

∂vec (Z⋆(f))

∂vec (Z(f))⊤
,

Ż⋆(f)ij = −(1)i+jtrace
(

I−i,N

(
I⊤−j,N Z(f) I−i,N

)⋆
I⊤−j,N

)
, i, j = 1, . . . , N,

with SN a selection matrix that selects the main diagonal from the vectorized matrix diag(Wt) =

S⊤
Nvec(Wt), and I−i,N is an N × (N − 1) matrix obtained by deleting the ith-column from IN .

Assumptions 1–3 are rather standard. They ensure the regressors, weight matrices, and re-
gression errors are well-behaved, with non-degenerate errors that have a finite covariance matrix.
Assumption 4 is key to our result and ensures that the recursion for ft under the dgp is contracting.
It is important to note that the condition in Assumption 4 results in a non-degenerate region, as
the supremum of ṡεt over f is never degenerate: the derivative of the adjoint never explodes for
any value of f as the adjoint is a simple sum of products of elements of Zt(f) = IN −R(f)Wt,
and all elements of Zt(f) are well-behaved given the supremum is taken over the set where all
eigenvalues of Zt(f)Wt remain inside the unit circle. This is also clear from the explicit expression
for Ż⋆(ft)ij .

Using these assumptions, we can prove strict stationarity and ergodicity of the stochastic
matrix process {R(ft)}t∈Z that solves (4)–(5). We note that this result also implies that {yt}t∈Z
generated by (1) is stationary and ergodic. The proof can be found in Appendix B. It is important
to note here again that the elements of R(ft) may easily move outside the unit circle without
jeopardizing the stability of the model, as long as ϱ(R(ft)Wt) remains strictly smaller than one,
which is ensured by design by the weighted score step mechanism involving At. The empirical
relevance of this flexibility is shown in Section 4.

Theorem 2.1. Consider the model defined by (1) and (4)–(5) for a given i.i.d. sequence {εt}t∈Z
and let Assumptions 1–4 hold true. If (4)–(5) are initialized at f1 with ϱ(R(f1)W1) ≤ 1 − ϵ,
then the (initialized) solution {f̂t}t∈N to (1) and (4)–(5) converges exponentially fast almost surely
(e.a.s.) to a unique (unititialized) strictly stationary and ergodic process {ft}t∈Z. As a result,
{yt}t∈Z is also stationary and ergodic with a finite 2 + δ moment for some δ > 0.
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Theorem 2.1 establishes the statistical properties of yt and ft if the model is correctly specified.
When estimating the model, it is also important to establish the properties of the model when used
as a filter rather than a dgp. In particular, we want to prove that the recursions (4)–(5) converge
to a stationary and ergodic solution for stationary and ergodic inputs yt. This property is known
as filter invertibility; see for instance Wintenberger (2013) and Blasques et al. (2022). It allows
us to (asymptotically) recover the spatial correlation parameters consistently from the data even
if the filter is initialized incorrectly. As the initial true value of f1 is never known with certainty,
filter invertibility is an important property. To establish filter invertibility, we make the following
additional assumption.

Assumption 5. The parameter space Θ ⊂ Rdim(θ) is compact and satisfies ν ≥ 2+ δ and |A| ̸= 0

for some δ > 0 and all θ ∈ Θ. It also holds that

E
[
log sup

θ∈Θ
sup
f∈Ft

∥B +A ṡt(f)∥∞

]
< 0

where

ṡt(f) = −ẇt(f) |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

)
diag

(
Σ−1ety

⋆⊤
t

)⊤
− wt(f) diag

(
Σ−1ety

⋆⊤
t

)
diag (WtZ

⋆
t (f))

⊤

− wt(f) |Zt(f)|
(
Σ−1y⋆

t y
⋆⊤
t ⊙ IN

)
+ S⊤

N (IN ⊗Wt) Ż
⋆(ft)

(
W⊤

t ⊗ IN
)
SN ,

ẇt(f) = −
(
1 +

N + 2

ν − 2

)/(
1 +

e⊤t Σ
−1et

ν − 2

)2

,

and Ż⋆
t = ∂vec(Z⋆)/∂vec(Z)⊤ is defined in Assumption 4.

We again note that there are no explosive elements in the definition of ṡt(f) for f ∈ F t. This
provides a non-trivial region over which the filter is contracting. We can now prove the following
result.

Theorem 2.2. Let {yt}t∈Z be generated by (1) and (4)–(5) for some θ0 ∈ Θ. Consider the filtering
equations defined by (4)–(5) at some arbitrary θ ∈ Θ and let Assumptions 1–5 hold true. If the
filter is initialized at f1 with ϱ(R(f1)W1) ≤ 1−ϵ, then the (initialized) solution {f̂t(θ)}t∈N to these
filtering equations converges exponentially fast almost surely (e.a.s.) to a unique (uninitialized)
strictly stationary and ergodic process {ft(θ)}t∈Z, uniformly over the compact parameter space Θ,
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i.e.,

sup
θ∈Θ

∥∥∥f̂t(θ)− ft(θ)
∥∥∥
∞

e.a.s.−−−→ 0.

The effect of a fixed initialization of the filter at f1 thus wears of exponentially fast. This
allows us to recover the true ft from the data yt and the true parameter value θ0. The next
section explains how to estimate θ0 by maximum likelihood.

2.3 Estimation

Score-driven models can easily be estimated by maximum likelihood methods via a standard predic-
tion error decomposition. Gathering all static parameters in the vector θ, we obtain the objective
function

LT (θ) =
T∑
t=1

log py(yt | ft,θ) ≡
T∑
t=1

log py(yt | Rt,Σ, ν). (6)

To compute the likelihood, one proceeds as follows. Given a value of θ and an initial value f1,
one obtains the time-varying parameter values ft for all times t = 1, . . . , T using the recursion (4).
With these values of ft, we obtain the values of Rt = R(ft). These can then directly be plugged
into (6) to obtain the value of the log-likelihood function. The initial f1 is obtained by estimating
a static version of the model on the initial 2 years of observations.

We obtain the maximum likelihood estimator as θ̂T = argmaxθ LT (θ). Given stationarity and
ergodicity and filter invertibility as established in the previous section, consistency and asymptotic
normality of the maximum likelihood estimator can be obtained along the lines of for instance
Blasques et al. (2022). We omit such a proof, as it contains no novel arguments when applied to
the model studies in this paper.

We estimate covariance matrix of θ̂T in the usual way as

V̂T = Ĥ−1
T · ĴT · Ĥ−1

T , ĴT =

T∑
t=1

d log py(yt | ft, θ̂T )
dθ

d log py(yt | ft, θ̂T )
dθ⊤ , ĤT = −∂2LT (θ̂T )

∂θ∂θ⊤ ,

(7)

where the computation of the outer-product-of-gradients ĴT uses the total rather than the partial
derivatives. If the model is correctly specified, ĤT − ĴT converges to zero and the covariance
matrix can be estimated by V̂T = Ĥ−1

T .
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Figure 1: Simulated true and fitted spatial dependence parameters
Each panel shows the simulated and estimated paths of one out of N = 4 spatial autoregressive parameters.
The true data generating process has heterogeneous time varying spatial parameters with unconditional
means equal to 0.45 (top-left), 0.65 (top-right), 0.90 (bottom-left), and 0.35 (bottom right), respectively.
The four models estimated are the static scalar spatial autoregression (Rt = ρ · IN ), the static diagonal
model (Rt = R), the dynamic scalar model of Blasques et al. (2016) (Rt = ρt · IN ), and the new diagonal
spatial model (diagonal Rt).

2.4 Simulation evidence

To investigate the properties of the new model and the effects of heterogeneity in the spatial au-
toregressive parameters, we report the results of a small simulation experiment. The experiment is
set up as follows. We consider a data generating process (dgp) with dynamic, heterogeneous spatial
parameters Rt. We use a setting with fat-tailed structural shocks (ν = 5), no regressors (β = 0),
and N = 4. We simulate around 600 observations, similar in magnitude to the number of time
series observations in the application. For Wt, we use the row-normalized empirical spatial weight
matrices Wt for Germany, France, Italy, and the Netherlands from Section 4. For concreteness,
we set A = 0.07 · IN , B = 0.9 · IN , and (IN − B)−1ω = (0.45, 0.65, 0.90, 0.35)⊤. Qualitatively
similar results are obtained for other parameter settings.

We estimate four different models: a static scalar model (ρ), a dynamic scalar model (ρt), a
static diagonal model (R), and a dynamic diagonal model (Rt). This allows us to clearly see the
separate contributions of dynamics and heterogeneity. Figure 1 reports the results for a typical
simulation. The simulated time-variation and heterogeneity are actually quite modest compared
to the empirical patterns found in the data in Section 4, where heterogeneity and dynamics are
even more prevalent.

Figure 1 shows that the correctly specified model (solid blue curve) captures the movements in
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the dgp (solid red) highly accurately for sample sizes similar to those in the empirical application.1

The static version of the model Rt = R (dashed blue) with heterogeneity but without dynamics
still captures the unconditional level of the true time-varying spatial correlations, but misses all
of the dynamics which can be up to a magnitude of 0.4, which is sizeable for a spatial correlation
parameter. The standard static scalar spatial autoregression of Anselin (2009) with Rt = ρ · IN
fares even worse. It has to balance the different levels of the spatial autocorrelations both in the
cross section and over time and therefore lands at some sort of average spatial autocorrelation of
ρ around 0.55 to 0.6 (dashed black).

We see a similar bias for the dynamic scalar spatial regression model (solid black) of Blasques
et al. (2016). The true spatial correlations (in red) are below the black solid curve for the top-
left and bottom-right panels, whereas it is above and on top of the black curve in the other two
panels. Again, given the heterogeneity in the true spatial correlations, the scalar model can only
take some kind of average of these, both in terms of the overall level and in terms of the specific
dynamics over time. For the latter, we note for instance the peaks of similar magnitude in the
black curve in the bottom-left graph around observations 230 and 260, respectively. The true (in
red) dynamics of Ri,i,t for this cross-sectional unit, however, only have a peak around observation
260, and not around time 230. The latter peak in the black curve appears to be attributable to
the bottom-right cross-sectional unit, which clearly peaks around observation 260, but not around
the earlier observation 230. As the heterogeneous dynamics of all series have to be captured by
one single ρt for the scalar dynamic model, a mixed-up message emerges about what is actually
happening in the data. Our new model with heterogeneous, diagonal Rt avoids all these issues
and captures the cross-sectional and time-series heterogeneity in the dynamics much better.

3 Data
We illustrate the model by applying it to analyze the network dynamics of sovereign systemic
risk in the Eurozone. We consider seven countries: Germany, France, Ireland, Italy, Netherlands,
Portugal, and Spain. Our sample period spans from December 10, 2009 until July 2, 2020. As
our dependent variable yt we consider the changes of 5-year government yield spreads, defined as
the difference between the euro-denominated 5-year government bond yield and the 5-year EONIA
OIS rate. This allows us to concentrate fully on the credit risk component of sovereign bonds. We
also provide a robustness analysis using a 1-year rather than 5-year maturity, as well as using CDS
spreads rather than bond yield spreads; see Section 5. Results are qualitatively similar. Data are

1Additional unreported simulations show that the new model can also adequately track the true model
parameters even in cases where the statistical model is misspecified. This is in line with the theoretical
results in Blasques et al. (2015) and Creal et al. (2020).
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Figure 2: Government bond yield spreads of seven Eurozone sovereigns and the U.S.
Weekly euro-denominated 5-year government yield spreads of seven European countries and the United
States from December 2009 - July 2020.

taken from Datastream and Bloomberg, and the sample contains 543 weekly observations for each
country.

We base our main analysis on changes rather than log changes in 5-year government yield
spreads. Log changes can lead to non-intuitive results if spreads hover near zero, which is the case
in our sample where central banks have kept key rates artificially low for a long period. In such
cases, taking the logarithmic change of near-zero spreads can result in large numbers, which would
for instance lead to Germany becoming the most volatile country in the sample. Taking normal
changes instead, this problem is avoided and results in Germany being one of the least volatile
economies in the Eurozone, a result that is much more intuitive.

We base our main analysis on 5-year maturity bond yields rather than CDS spreads as in
Blasques et al. (2016). Particularly during the later years in the sample, sovereign CDSs are less
liquidly traded compared to their underlying bonds. As a result, all CDS spreads hover more
closely to zero with little variation in the estimates of the spatial correlation parameters. Section 5
provides two robustness checks of the main analysis: one using 5-year maturity CDS spreads, and
one using 1-year maturity bond yields.

Figure 2 presents the 5-year government bond yield spreads. All countries in our sample tend
to co-move, especially during the 2010–2012 European sovereign debt crisis, with the exception
of Germany and to some extent the Netherlands. Whereas most yields go up during the crisis,
those of Germany go down, Germany acting as an anchor and safe-haven for the euro during that
time. Note that the right-hand panel has a different vertical scale, indicating that the countries in
that panel have much higher government bond yield spread levels compared to the countries in the
left-hand panel. This makes sense, as these were precisely the countries that were at the center of
the crisis.

Table 1 reports summary statistics. We see high volatilities for countries such as Portugal,
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Table 1: Summary statistics 5-year government bonds
This table lists descriptive statistics of changes of 5-year government bond yield spreads of seven European
countries and the United States. The yield spread is defined as the difference between the 5-year government
bond yield and the 5-year EONIA OIS rate. In addition, we list summary statistics of stock returns and
changes in the VSTOXX index and term spread. The term spread is computed as the absolute change
between the 10-year and 1-year government bond yield. All variables are weekly from December 10, 2009
until July 2, 2020.

mean s.d. med min max skew kurt
5 year gov bond spread changes
Germany 0.000 0.052 0.001 -0.20 0.33 0.30 7.38
Spain 0.000 0.180 -0.003 -1.07 0.82 -0.22 8.64
France 0.000 0.069 -0.001 -0.64 0.35 -0.95 19.94
Ireland -0.002 0.361 0.001 -3.07 2.76 -0.90 29.65
Italy 0.001 0.196 -0.001 -0.93 0.99 0.52 8.29
Netherland -0.001 0.062 0.000 -0.27 0.41 0.72 10.90
Portugal 0.000 0.505 -0.004 -3.31 3.95 0.30 21.44
U.S. 0.002 0.088 0.004 -0.40 0.27 -0.43 4.50
Stock index returns
Germany 0.001 0.029 0.004 -0.22 0.10 -1.31 11.62
Spain -0.001 0.032 0.002 -0.23 0.10 -0.92 8.54
France 0.000 0.028 0.003 -0.22 0.10 -1.28 11.24
Ireland 0.001 0.026 0.003 -0.20 0.08 -1.47 11.18
Italy 0.000 0.033 0.002 -0.26 0.10 -1.34 11.20
Netherlands 0.001 0.026 0.003 -0.20 0.09 -1.50 12.59
Portugal -0.001 0.029 0.001 -0.20 0.07 -1.11 7.92
Gov. yield spread changes (10-year - 1-year)
Germany -0.004 0.081 -0.011 -0.278 0.523 0.994 7.44
Spain -0.005 0.224 0.000 -3.732 1.175 -8.107 144.5
France -0.004 0.083 -0.007 -0.335 0.578 0.838 8.11
Ireland -0.005 0.279 -0.012 -2.283 2.628 0.790 30.65
Italy -0.002 0.154 -0.008 -0.855 1.125 1.022 14.74
Netherlands -0.006 0.108 -0.009 -0.890 0.828 -0.112 22.57
Portugal -0.003 0.431 -0.007 -2.475 2.536 -0.035 13.00
Control variable
∆ VSTOXX -0.001 3.906 -0.150 -16.98 31.31 1.68 16.81

Ireland, Italy and Spain compared to Germany. The kurtosis is high for all series, indicating
that the data are (unconditionally) peaked and that a combination of volatility clustering and
conditional non-normality may be called for. Our model used in Section 4 will account for both.

We use three control variables from the literature; see Blasques et al. (2016). To control for
economic conditions, we include the (log) returns in each country’s main stock index as well as
the slope of the term structure (government bond yield 10-year minus 1-year) for each country.
We also control for market stress by including the changes in the VSTOXX index. The VSTOXX
index measures volatility in options markets and is therefore a forward looking measure of market
stress and investor sentiment. Being a European index, it directly relates to the local Eurozone
market developments and its risk perception and appetite.
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For the spatial weight matrices Wt, we choose domestic banks cross-border exposures as in
Tonzer (2015) using data extracted from the BIS website.2 A small number of missing values
are back-filled by the last available observations. The consolidated statistics in the BIS database
cover the positions of international bank cross border holdings and thus provide a measure of
interconnectedness of the financial system in the Eurozone. Financial system interconnectedness
can be regarded as one of the prominent determinants for sovereign credit risk spillovers given
the bail-out incentive of governments for their local banking sector, and its potential effect on
government creditworthiness. The quarterly data on cross-exposures are converted to weekly values
by taking the latest value of the BIS data available in that week. We lag the entries by two quarters
to prevent endogeneity concerns and the use of contemporaneous or future information in Wt. The
spatial weight matrices are row-normalized.3

4 Empirical application
In this section we discuss the empirical results. Section 4.1 discusses the parameter estimates and
the filtered correlations for the different models. Section 4.2 presents their implications for the risk
spillovers between countries.

4.1 Spatial dependence dynamics in the Eurozone

Table 2 presents the parameter estimates for four alternative model specifications. Given that
the data exhibits volatility clustering, we augment the original model from Section 2 with a score-
driven dynamic covariance matrix Σt as explained in Appendix A. The first two columns in Table 2
relate to the static and dynamic model with homogeneous spatial dependence parameter ρt. The
last two columns correspond to the models with heterogeneous spatial autoregressive parameters
Rt. For parsimony, the dynamic version of the model with Rt uses a pooled common persistence
parameter B = βρ · IN and heterogeneous adjustment speeds, A = diag(α1, . . . , αN ), with αi the
adjustment speed of Ri,i,t. For the variances in Σt, we use a common persistence parameter βvol

and adjustment speed αvol. This specification is supported by the data. Allowing for different
volatility adjustment parameters αvol or persistence parameters βρ or βvol does not impact the
main results in any substantial way.

2https://stats.bis.org/, retreived July 17, 2020. Like Blasques et al. (2016), we use the immediate
counterparty risk measure of banking groups’ country risk exposures.

3In the empirical application we have also considered alternative ways of scaling Wt. Examples include
the sample maximum (over all t) of the maximum eigenvalue of Wt to account for any possible time-variation
in Wt spilling over into Rt. The effects are limited. Though the level of the Ri,i,t changes (as expected),
their heterogeneity and dynamic behavior remain largely unaffected. In particular, the risk measures as
presented in Section 4.2 remain highly similar.

16

https://stats.bis.org/


Spatial heterogeneity turns out to be empirically important: allowing for heterogeneous spatial
spillover parameters Rt compared to a single ρt considerably improves the fit of the model. The
log-likelihood increases by roughly 195 points in the static case, and by around 214 points for the
dynamic case. Allowing for dynamic (ρt or Rt) rather than static (ρ or R) spatial dependence
also increases the fit of the model. The log-likelihood increases by 42 points in the scalar case,
and by 61 points for the heterogeneous model. The value-added of the dynamic specification thus
comes out more clearly in the heterogeneous case. This is in line with the simulation results from
Section 2.4: not only the levels, but also the dynamic patters are corrupted if we incorrectly pool
spillover parameters across countries.

The importance of the combination of both heterogeneity and dynamics clearly shows in the
plots of the filtered estimates of ρt and Ri,i,t in Figure 3. These filtered estimates are easily obtained
by evaluating ft for t = 1, . . . , T at the maximum likelihood estimate θ̂, and then inserting ft(θ̂)

into equation (3). The left-hand panel in Figure 3 shows the results for the scalar model. The
static estimate of ρ of slightly below 0.5 corresponds to the long-run average of the dynamic scalar
ρt. The variation of ρt over time is quite modest between roughly ρt = 0.2 and ρt = 0.7.

The picture changes dramatically if we consider the heterogeneous spatial spillover parameters
Ri,i,t in the right-hand panel of Figure 3. Note that the left and right panel in the figure have the
same vertical scale. Whereas for the static scalar model the single value of ρ is about 0.5, for the
static heterogeneous model the Ri,i range between a low value around 0 for Germany, to a high
value of 1.1 for Italy.

If we also allow for dynamics in the heterogeneous spillover parameters Ri,i,t, the differences
become even clearer. Whereas the scalar dynamic model shows a modest variation from about
0.2 to 0.7, the dynamic heterogeneous spillover parameters exhibit a much larger variation. For
instance, for Italy Ri,i,t ranges from a low 0.25 at the start of the sample, to a high 1.5 in the
midst of the European sovereign debt crisis.

We also see that allowing for heterogeneity substantially impacts the dynamics of Ri,i,t com-
pared to the scalar ρt case and makes them much more varied. Some countries exhibit a large
time-variation, with quite different timing of the peaks and troughs. Other countries appear much
more stable over time, despite the crisis years. For instance, the Ri,i,t for Germany tightly hovers
between −0.1 and 0.25. The fact that its Ri,i,t becomes slightly negative at times corroborates
Germany’s role as an anchor and stabilizer for the Eurozone, a feature that would be completely
hidden in a scalar homogeneous model. For the dynamic scalar model, ρt remains rather stable
until mid-2011: it averages the highly opposite upward movements of Italy and to a lesser extent
Ireland and the Netherlands, versus the downward movements of Spain, Portugal, France, and
Germany. Only around the time that Italy also starts its descent, the scalar ρt starts to react and
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Table 2: Parameter estimates: 5-year bond yields
This table reports the estimated parameters of four spatial dependence models, applied
to weekly first differences in the spread between 5-year government bond yields and the
5-year EONIA. Results are for seven Eurozone countries. Robust (Huber sandwich)
standard errors are reported in parentheses. The models are based on Student’s t
distributed disturbances with time-varying heteroscedasticity as in model (1)–(5). For
the diagonal models, we have B = β · IN and A = diag(α1, . . . , αN , αvol, . . . , αvol)
We report the maximum log-likelihood value (LogLike) and AIC(Akaike information
criterion). The sample runs from December 2009 - July 2020. The table is continued
on the next page.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.463 0.009 0.074 0.001

(0.022) (0.005) (0.031) (0.002)
ωSP 0.628 0.011

(0.060) (0.006)
ωFR 0.341 0.006

(0.026) (0.003)
ωIR 0.819 0.014

(0.043) (0.006)
ωIT 1.111 0.028

(0.108) (0.011)
ωNE 0.682 0.013

(0.038) (0.005)
ωPO 0.898 0.015

(0.069) (0.007)
α/αGE 0.005 0.010

(0.001) (0.004)
αSP 0.049

(0.017)
αFR 0.011

(0.004)
αIR 0.009

(0.012)
αIT 0.099

(0.044)
αNE 0.020

(0.010)
αPO 0.020

(0.018)
βρ 0.982 0.984

(0.010) (0.007)

Panel B: Volatility and control parameters
(see next page)

go down mildly.
One of the striking patterns in Figure 3b is the repeated exceedance of Ri,i,t above the threshold

1 for countries like Italy, Portugal, and Spain. We stress that the model remains spatially stable
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(Table 2 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.276 0.271 0.289 0.278

(0.026) (0.026) (0.027) (0.029)
βvol 0.998 0.998 0.998 0.998

(0.002) (0.002) (0.002) (0.003)
ν 3.483 3.540 4.015 4.099

(0.326) (0.334) (0.412) (0.429)
∆ VSTOXX 0.004 0.010 -0.001 0.004

(0.032) (0.029) (0.030) (0.026)
∆ term spread 0.058 0.057 0.037 0.041

(0.049) (0.045) (0.046) (0.041)
local stock -0.022 -0.021 -0.019 -0.019

(0.011) (0.010) (0.010) (0.009)

logLik 4454 4496 4649 4710
AIC -8865 -8946 -9244 -9350

(a) (b)

Figure 3: Filtered spatial autoregressive parameters
This figure plots the filtered spatial spillover parameters for four different models, applied to euro-
denominated 5-year government bond yield spreads of seven European countries. The left figure shows
the results for the static and time-varying scalar spillover model, whereas the right figure shows the results
for the static and dynamic heterogeneous spillover models. The sample runs from December 2009 - July
2020.

in all these cases given that the maximum eigenvalue of RtWt always remains far below 1.
Figure 3b as well as Table 2 also underline the importance of allowing for differences in adjust-

ment speeds αi on top of the differences in the long-run levels of Ri,i,t. Countries like Germany,
France, and Ireland have a low αi, indicating that time-variation in Ri,i,t for those countries is
modest in size and rather gradual. By contrast, other countries such as Spain and particularly
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Italy require a much larger value of αi as their spatial spillover changed much more rapidly during
the periods of stress in the sample. Not allowing for this type of heterogeneity would again sub-
stantially distort the empirical patterns in the data and result in too much stability of Rt as the
model would have to average the different adjustment speeds.4

Some final highlights can be found in Panel B of Table 2. We see that none of the control vari-
ables are statistically significant, a feature that we further corroborate in our robustness analyses
in Section 5. We also see that it is important to allow for fat tails and volatility clustering. The
persistence of volatility is high with a βvol close to one, whereas αvol is also strongly significant.5

The degrees of freedom parameter ν lies between 3.5 and 4, which is quite low given that we also
control for volatility clustering: it indicates that changes in bond yield spreads have fat tails and
that 4th order (conditional) moments may not exist. Again, this does not result in problems for
our score-driven model, unlike for a standard GARCH model where typically 4th order moments
are needed for consistency; see Blasques et al. (2022) for details on the asymptotics of score-driven
models.

Summarizing, the statistical improvements by allowing for heterogeneous and time-varying
spatial spillovers in European sovereign credit risk changes are statistically important. The new
model also results in more details on the empirical patterns and better insight in the spatial
spillover dynamics compared to models that either lack time-varying parameters or models that
impose homogeneity. One should, however, be cautious in over-interpreting the dynamics of ρt

or Ri,i,t on their own: in terms of systemic risk implications, the Ri,i,t mix with the spatial
weight matrix Wt and the time-varying volatilities Σt to form spatial risk spillovers. In the next
subsection, we therefore put all these components together and consider them jointly to study the
models’ systemic risk measurement implications.

4.2 Heterogeneity in Eurozone systemic risk spillovers

To study the risk implications of our model, we consider the effect of a one-standard-deviation
shock εt = Σ

1/2
t ej to the system, where ei (i = 1, . . . N) denotes the i-th column of the identity

matrix IN . The effect is given by

yt = RtWtyt +Xtβ +Σ
1/2
t ej ⇔ (IN −RtWt)yt = Xtβ +Σ

1/2
t ej ⇔

yt = (IN −RtWt)
−1
(
Xtβ +Σ

1/2
t ej

)
4Note that the persistence parameters β are the same for all Ri,i,t. Unlike the case for αi, allowing for

different βi does not increase the likelihood by much. Also, all βi remain close to one in that case, such
that little is lost by pooling these parameters as opposed to the result for the αis.

5Note that in a score-driven model we need not have αvol + βvol < 1 for stationarity as in a GARCH
context, but rather βvol < 1 only; see for instance Blasques et al. (2022).
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=
(
IN +RtWt + (RtWt)

2 + (RtWt)
3 + . . .

) (
Xtβ +Σ

1/2
t ej

)
, (8)

as long as the largest absolute eigenvalue of RtWt is smaller than one. It is clear that not only Rt,
but also Wt and Σt play a key role in this transmission mechanism. To summarize the impact,
we construct two different spatial impulse response based risk measures: a short-run (SR) and a
long-run (LR) risk spillover measure, defined as

SRi,j,t = e⊤i Rt Wt Σ
1/2
t ej = Σ

1/2
j,j,t Ri,i,t Wi,j,t (9)

LRi,j,t = e⊤i (IN −Rt Wt)
−1 Σ

1/2
t ej = Σ

1/2
j,j,t (IN −Rt Wt)

−1
i,j , (10)

respectively. The first measure computes the first-order spatial spillover effect of a one-standard-
deviation structural shock to country j on country i. The second measure calculates the compound
or reduced form effect of such a structural shock. As there are 7 × 7 possible combinations of
countries and two risk measures, we only report a subset of the results to highlight the rich empirical
patterns that can be obtained by allowing for both heterogeneous and dynamic spatial spillover
parameters Ri,i,t. We focus on structural shocks to three large Eurozone countries: Germany,
Spain, and Italy. To save space, we only consider the dynamic versions of all models. Results are
presented in Figures 4 and 5 for SRi,j,t and LRi,j,t, respectively.

The left and right panels in Figures 4 and 5 relate to the scalar (ρt) and heterogeneous (Rt)
model, respectively. All figures reflect a clear decrease in volatility (Σj,j,t) towards the end of
the sample for all countries considered, which results in smaller (one-standard-deviation) shocks.
Looking at Figure 4a, we note that the impact of a one-standard-deviation shock to Germany in the
scalar model erroneously appear modest and comparable across all other countries. Allowing for
heterogeneous spillovers in Figure 4b changes this picture dramatically. It now becomes clear that
particularly Italy has a sizeable reaction to German shocks during the crisis. All other sensitivities
are an order of magnitude smaller compared to Italy, with the exception of Ireland during 2011.
This is intuitive, Italy at the time being one of the largest European economies in potential distress
(Romano, 2021), and Germany being the stable anchor economy. Also note that the effect on Italy
is up to three times as large as for the scalar model.

We see a similar effect in Figures 4c and 4d. For the pooled, scalar ρt model the effects on
all other countries erroneously appear modest and comparable. If we allow for heterogeneity via
Rt, however, Spanish shocks mainly reflect on Portugal and are up to triple the size of the scalar
model’s effects. This again makes intuitive sense given the close connection of these economies.
Second in line are Ireland and Italy, which were also at the center of the European sovereign debt
crisis. The other countries only follow at a larger distance. Also note that Germany reacts very
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(a) German shock; ρt model (b) German shock; Rt model

(c) Spanish shock; ρt model (d) Spanish shock; Rt model

(e) Italian shock; ρt model (f) Italian shock; Rt model

Figure 4: First-order spillover effects
This figure gives the first-order effect SRi,j,t of a one-standard-deviation shock to the government bond
yield spread change of country j on country i for j equal to Germany (top panels), Spain (middle panels),
or Italy (lower panels). The left and right panels relate to the dynamic scalar and diagonal spatial model,
respectively. Spreads are denoted in basis points (bp). The sample ranges from December 2009 - July 2020.

22



(a) German shock; ρt model (b) German shock; Rt model

(c) Spanish shock; ρt model (d) Spanish shock; Rt model

(e) Italian shock; ρt model (f) Italian shock; Rt model

Figure 5: Long-term spillover effects
This figure gives the compound reduced-form effect LRi,j,t of a one-standard-deviation shock of the gov-
ernment bond yield spread of country j on country i for j equal to Germany (top panels), Spain (middle
panels), or Italy (lower panels). The left and right panels relate to the dynamic and diagonal spatial model,
respectively. The sample ranges from December 2009 - July 2020.
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differently to Italian shocks in the scalar versus the diagonal model. In the scalar model in Figure 4e
the impact on Germany directly follows that of France in magnitude. In the heterogeneous model
in Figure 4f, by contrast, Germany reflects a much more stabilizing role in the Eurozone during
the crisis and even reacts negatively to Italian structural shocks, something that is not possible in
the scalar homogeneous model.

We also see that during the onset of the pandemic Germany is affected much more in the
heterogeneous model than in the scalar model. This again makes sense as the pandemic was
detached from economic fundamentals, and particularly Italy was severely affected as one of the
first European countries at the start of the pandemic. The dynamics of the heterogeneous model
thus appear to follow the dynamics of the different crises much more closely and provide a more
intuitive economic description of the data. It also allows the spillovers to peak at different moments
for the different countries in the sample, which is clearly relevant as some countries peak at the
moment where other countries exhibit a trough in Ri,i,t.

Compounding the first-order spillover effects from equation (9) into their reduced from effects,
we obtain the patterns in Figure 5. We can now also see the reduced form effect of a shock to
a country on itself.6 For the homogeneous scalar models, a one-standard-deviation shock only
appears to have a sizeable reduced form effect on the country itself. This holds for all countries
considered, though the effect in basis points (vertical axes) differs, the effect being understandably
higher for Spain and Italy than for Germany. However, allowing for heterogeneous spillovers again
changes the story considerably. Figure 5a shows that a one-standard-deviation shock to Germany
not only has an effect on Germany, but that the effect is similarly sized for Italy up to almost the
end of the sample. The countries thus are much more connected than in it would appear in the
homogeneous scalar case.

A similar effect is seen for Spain in Figure 5d: whereas the scalar model only really shows a
reduced form effect of Spain on Spain and no substantial country connections, the heterogeneous
model reveals much more interconnections, with sizeable effects of Spain on both Portugal and
Ireland during the sovereign debt crisis. For instance, the reduced-form effect of Spain on Portugal
is only 0.05 bp in July 2012 in the scalar model, whereas it is fivefold (0.25 bp) if we allow for
heterogeneity and dynamics in spillover. Figure C.1 of Appendix C shows the effects of Germany
on Italy and Spain on Portugal accompanied by 95% confidence bounds as in Blasques et al. (2016)
to account for parameter uncertainty. The figure again clearly shows that the differences between
the scalar and heterogeneous model is substantial and highly significant.

For Italy, the homogeneous and heterogeneous reduced form model outcomes are much more
comparable: the structural shocks to Italy appear to spill over less into the other Eurozone countries

6The SRi,i,t is always zero in our setting where the diagonal of Wt equals zero.
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during the sovereign debt crisis. However, towards the end of the sample during the onset of the
pandemic, we see Italian shocks having sizeable effect on particularly Spain and Portugal. All of
the above differences between countries and the timing in terms of the connections in the network
are obscured if one assumes homogeneous and/or static behavior of the spillover parameters. Only
when allowing for both effects as is done with the model proposed in this paper, one uncovers the
much richer empirical historical developments in the data.

5 Robustness checks
In this section, we present two robustness checks to the main analysis. First, we show that the main
results persist if we correct European yield changes for U.S. yield changes as a possibly omitted
common factor. Second, we show that results do not hinge on the use of the 5-year government
bond yields. Results remain similar if we use 1-year bond yields as well 5-year CDS spreads.

5.1 Accounting for a common global (U.S.) factor

In spatial regression models, there is a concern (Hale and Lopez, 2019) that the network effects
may in part be confounded by a missing common factor. In our current context of spillover effects
in Eurozone countries, network effects could mix in with an omitted global common government
credit risk factor. As a robustness check, we therefore introduce the U.S. government bond yield
spread as an observed common factor. In a first step, we regress all Eurozone yield changes on the
U.S. yield changes to take out this common factor. Subsequently, we redo our analysis using the
residuals of these regressions as our dependent variables.

Figure 6 reports the new filtered heterogeneous spatial dependence parameters. Though some
of the patterns change slightly when taking out the common U.S. component, the overall picture in
Figure 6 remains similar compared to that in Figure 3. In particular, the spatial spillover strengths
remain remarkably heterogeneous across countries: countries like Italy, Spain, and Portugal still
exhibit high spatial dependence strength during the crisis, whereas a country like Germany has
low and sometimes even negative spatial dependence.

5.2 Alternative dependent variables

As a second robustness check, we confirm that the importance of time-variation and heterogeneity
in dynamic networks for the Eurozone is not confined to the use of 5-year government bond yields.
In particular, we perform the analysis also for two alternative datasets: euro-denominated 5-year
CDS (credit default swap) spread changes and 1-year government yields over the 1-year EONIA
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(a) (b)

Figure 6: Filtered spatial autoregressive parameters after U.S. correction
This figure shows fitted spillover parameters for four different models, applied to changes of government
bond yield spreads of seven European countries after taking out the effect of U.S. yield spread changes
over EONIA. The left and right panels show results for the (static and dynamic) scalar homogeneous and
diagonal heterogeneous model, respectively. The sample spans the period December 2009 - July 2020.

Table 3: Log-likelihood AIC values for models based on 1-year government bond yield
spreads and 5-year CDS spread data.

Set-up is similar as in Table 2.
Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: 1y bond yields over EONIA
logLik 4733 4764 4778 4813
AIC -9424 -9482 -9503 -9555

Panel B: 5y euro-denominated CDS
logLik -10562 -10540 -10284 -10228
AIC 21167 21126 20622 20526

OIS rate. Summary statistics are provided in the Appendix C. Like the 5-year bond yield data,
both the 1-year bond yields and the 5-year CDS rates exhibit clear signs of fat tails and outliers,
such that our use of the fat-tailed Student t distribution and the time-variation in Σt seems
warranted.

Table 3 and Figure 7 summarize the main results. Full estimation results including all pa-
rameters and standard errors are provided in the Appendix C. For the 1-year spreads, we confirm
the value-added of both the heterogeneity (45 likelihood points increase) and the time-variation
(another 35 likelihood points increase). A similar result holds for the 5 year CDS spreads, with an
increase of 278 likelihood points for adding heterogeneity, and a further 56 points for the time vari-
ation. When accounting for the number of parameters using the AIC, these results are confirmed:
the AIC is lowest for the model with both heterogeneity and dynamics.
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(a) ρt for 1yr yield spreads (b) Rt for 1yr yield spreads

(c) ρt for 5yr CDS spreads (d) Rt for 5yr CDS spreads

Figure 7: Filtered spatial autoregressive parameters for 1-year bond yield EONIA spread
changes and 5 year CDS spread changes
This figure shows filtered spillover parameters for the four different models, applied to changes in 1-year
government bond yield spreads of seven European countries, or to their 5-year CDS spread changes. The
left and right panels are for the homogeneous and heterogeneous model, respectively. The sample ranges
from December 2009 - July 2020.

Figure 7 also confirms our previous findings. As in our baseline analysis, we see that the
magnitude as well as the dynamics of the scalar ρt are heavily limited due to the cross-sectional
heterogeneity and time-series variation in the Ri,i,t for the different countries. As a result, if all of
this information is pooled and only a scalar ρt is estimated, hardly any interesting signal is left. By
contrast, for instance for the 1-year government bond yield spreads, we again see the dominance in
spatial sensitivity of countries like Italy and Portugal, as well as the opposite movements of Italy
versus most other countries during the first years of the sample.

CDS markets do not move in full lock-step with bond markets over the sample period. Despite
this fact, the importance of both network dynamics and network heterogeneity are also evident
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from 5-year CDS spread results. The cross-sectional variation in Ri,i,t for the CDS spreads is even
larger than for bond spreads, ranging from slightly below zero for Germany to a high value of 3.5
for Italy. Again, Italy and Portugal have the highest Ri,i,t, followed by Spain and Ireland. As
before, the size of Ri,i,t is substantially above 1 for both Italy and Portugal without jeopardizing
the stability of the model, i.e., RtWt still has all eigenvalues well inside the unit circle at all times.
Also the CDS data show the importance of heterogeneity in time-variation: we identify an increase
in Ri,i,t for Italy during the first years of the sample, whereas countries like Spain and Portugal
show a downward trend during that same period. Similarly, Ireland and Portugal exhibit troughs
that are not matched by any of the other series. As a result, hardly any pattern is left in the
scalar ρt (lower-left panel). Pooling of Ri,i,t is therefore not a good idea: it obscures the empirical
patterns and impedes a good empirical interpretation of the dynamics of network connections.

Finally, Figure 8 gives an example of the robustness of the risk measure results. We concentrate
on the CDS spread data models and the total, reduced form risk spillover LRi,j,t measure for a
one-standard-deviation shock to Germany. We see an even more pronounced effect of heterogeneity
and dynamics than in Figure 5. In the scalar model, the effect of a German shock erroneously
mainly affects Germany and none of the other economies. However, if we allow for heterogeneity,
the picture changes dramatically. Particularly during the sovereign debt crisis, German shocks
also heavily affect Spain, Portugal, Ireland, and Italy. This is fully in line with the story of the
European sovereign debt crises, and not recovered by the simpler, pooled standard model. The
effect on Italy even turns out to be higher than on Germany itself. All of this is missed by the
scalar model.

6 Conclusion
In this paper, we proposed a new model for dynamic risk networks with heterogeneous and dynamic
spatial spillover coefficients. We proved that such models are much more effective in describing
dynamic risk networks than standard, homogeneous static spatial models. Discarding heterogene-
ity or time-variation of the network connections can lead to flawed conclusions about the major
players in the network and their position over time. By contrast, the new model was successful
in uncovering such patterns. Though flexible, the model remains tractable and straightforward to
estimate using maximum likelihood methods, and we proved that the model has a stationary and
ergodic solution and that its filter is invertible.

We applied the new model to three different datasets related to Europe perceived sovereign
credit risk over the period 2009-2020. Using pooled spatial dynamics as in standard network models
failed dramatically in uncovering the importance of the different players over time. In particular,
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(a) (b)

Figure 8: Reduced-form risk spillovers (LRi,j,t) for a one-standard-deviation German shock
based on 5-year CDS spread data (left homogeneous, right heterogeneous model)
This figure shows the compound reduced-form effect LRi,j,t of a one-standard-deviation shock of the gov-
ernment bond yield spread of Germany to other Eurozone countries based on models estimated with 5 year
CDS spread changes as the dependent variable. The left-hand panels relate to the dynamic scalar spatial
model. The right-hand panels correspond tot he dynamic diagonal spatial model. The sample ranges from
December 2009 - July 2020.

the anchoring role of Germany for the Eurozone only became clear after sufficient heterogeneity
was allowed for. Similarly, risk connections between players like Spain and Portugal, and the
special behavior of Italy during the crisis only emerged upon allowing for heterogeneity as well as
time-variation, irrespective of which of the three datasets was used. Empirical models for network
dynamics should thus carefully account for such differences in spillover strength and their time-
variation if they are to help the researcher in uncovering the true story in the data and a correct
assessment of risk.
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A Score-driven time-varying parameters

A.1 Time varying spatial correlations

The score updates in our model drive the diagonal time-varying matrix Rt = R(ft), where we
gathered the time-varying parameters in a vector ft as

f⊤
t = (R1,1,t, . . . ,RN,N,t, ) .

The log predictive density is given by

log py (yt;R(ft),Σ, ν) = log Γ

(
ν +N
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)
− log Γ
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2

)
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2
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2
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−1et
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)
, (A.1)

with et = yt −RtWtyt −Xtβ. Let Ei be an N ×N matrix of zeros, with a a single 1 on the ith
diagonal element. Scaling the score by |IN −RtWt| · IN , we obtain the unscaled score as

∇i,t =
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,

such that for the scaled score we obtain
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For ν → +∞, we see wt → 1 and the score function vector collapses to that of multivariate normal
distribution.

A.2 Extension: time varying log error variances

We can generalize the set-up to also allow for a time varying diagonal covariance matrix Σt = Σ(ft)

if we set

f⊤
t = (R1,1,t, . . . ,RN,N,t, logΣ1,1,t, . . . , logΣN,N,t) .

The log predictive density is given by
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For the scores with respect to fi+N,t = logΣi,i,t, using the diagonality of Σt, we have

si+N,t = ∇i+N,t
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B Statistical properties of the model

Proof of Theorem 2.1

We first prove stationarity and ergodicity of the matrix process {R(ft)}t∈Z by checking the con-
ditions C1 and C2 of Theorem 3.1 of Bougerol (1993). We note that if the model is the dgp, the
process can be embedded in a stochastic recurrence equation of the type

ϕt(ft) = ω +Bft +Asεt , (B.1)

sεt = |IN −R(ft) Wt| · wε
t · diag
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,

where we put the steplength weigth vt of At = vt ·A directly to its maximum value vt = 1, which
provides the most conservative bound later on. From equation (B.1) it is clear that the sequence
{ϕt( · )}t∈Z is stationary and ergodic, since under Assumptions 1–3 {εt}t∈Z is i.i.d., and {Xt}t∈N
and {Wt}t∈N are stationary and ergodic. Then, in order check condition C1 of Theorem 3.1 of
Bougerol (1993), we consider

E
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]
, (B.2)

where f is fixed at a value such that ϱ(R(f)Wt) ≤ 1− ϵ lie at least ϵ inside the unit circle. The
first four terms in (B.2) on the right-hand side are immediately finite.
The fifth term in (B.2) is finite because

E
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]
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]
The first term is finite due to the non-singularity of Σ from Assumption 1. The last term is finite
due to the eigenvalues of R(f)Wt always lying ϵ inside the unit circle, and thus the adjoint of
IN −R(f)Wt being finite by a standard spectral decomposition. The middle term is finite by a
Hölder inequality, the uniform boundedness of wε

t · εt, and the existence of a second moment of
Xt from Assumption 2.
The sixth term in (B.2) is finite because
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,

where the first term is finite due to Assumption 3, and the second term is finite using the same
argument as before.

Define the commutation matrix KN with vec(Wt) = KN vec(W⊤
t ) and the selection matrix

SN with diag(Wt) = S⊤
Nvec(Wt) and vec(Wt) = SN diag(Wt). Also define the restricted set

F t = {f | |ϱ(R(f)Wt)| ≤ 1 − ϵ}, where ϱ( · ) denotes the spectral radius of a matrix. To prove
that condition C2 of Bougerol (1993) is satisfied, we only need to show that our contraction
condition in Assumption 4 implies condition C2 of Bougerol. To see this, we take the derivative
of ϕt( · ) and obtain
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∥B +A · ṡεt (f)∥∞ ,
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Therefore, we can conclude that, under maintained Assumptions, the diagonal matrix process
{R(f̂t)}t∈N initialized at f1 converges e.a.s. to a unique stationary ergodic process {R(ft)}t∈Z.
This clearly implies the stationarity of the sequence {R(ft)Wt}t∈Z, since Wt is stationary and
ergodic and has a log moment by Assumption 3.

To prove that the vector process {yt}t∈Z is stationary and ergodic, we note that Zt(ft) is never
singular because supt ϱ(R(ft)Wt)) ≤ 1− ϵ. This allows us to write

yt = Z−1
t (Xtβ + εt) = (IN −R(ft)Wt)

−1 (Xtβ + εt) ,

which is stationary as εt is assumed i.i.d. in Assumption 1, and Xt and Wt are assumed stationary
and ergodic in Assumptions 2–3, and all of these have at least a log moment. We can apply
Theorem 1.1 of Bougerol and Picard (1992) and conclude that {yt}t∈Z is stationary and ergodic.
The existence of the second moment of yt follows immediately from ν ≥ 2+ δ for some positive δ,
and the uniform boundedness of R(ft).

Proof of Theorem 2.2

Filter invertibility can be proved by using similar arguments as in the proof of Theorem 2.1 by
checking if the conditions C1 and C2 of Theorem 3.1 of Bougerol (1993) hold for our (initialized)
filtered process {f̂t(θ)}t∈N. As the filtering equations are now used as a filter rather than as a dgp,
the stochastic recurrence equation for a given parameter vector θ ∈ Θ takes the form

ϕt(f) = ω +Bf +As(f),

where s(f) is defined in (5). Note that ϕt(f) takes the observed data {yt}t∈N rather than the
innovations {εt}t∈Z as inputs.

To verify the log-moment condition C1 in Theorem 3.1 of Bougerol (1993), note that yt has
at least two bounded moments given Theorem 2.1, and that Wt has a uniform bound given
Assumption 3. Also note that supf∈Ft

|Zt(f)| < ∞ given the constraint on the spectral radius of
R(f)Wt over F t and Assumption 3. We then have

E
[
log+ sup

θ∈Θ
∥ϕt(f(θ))− f(θ)∥∞

]
≤ 2 log 2 + log+ sup

θ∈Θ
∥ω∥∞ + log+ sup

θ∈Θ
∥(B − ι)f(θ)∥∞ + log+ sup

θ∈Θ
∥A∥∞

+ E
[
log+ sup

θ∈Θ

∥∥∥wt(f(θ)) |Zt(f(θ))| diag
(
Σ−1ety

⋆⊤
t

)∥∥∥
∞

]
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+ E
[
log+ sup

θ∈Θ
∥diag (WtZ

⋆
t (f(θ)))∥∞

]
.

The first four terms are finite due to the compactness of Θ.
For the fifth term, note

E
[
log+ sup

θ∈Θ

∥∥∥wt(f(θ)) |Zt(f(θ))| diag
(
Σ−1ety

⋆⊤
t

)∥∥∥
∞

]
≤ C + E

[
log+ sup

θ∈Θ

∥∥∥|Zt(f(θ))| diag
(
Σ−1ety

⋆⊤
t

)∥∥∥
∞

]
≤ C + log+(1− ϵ)N + E

[
log+ sup

θ∈Θ

∥∥∥diag
(
Σ−1ety

⋆⊤
t

)∥∥∥
∞

]
≤ C ′ + E

[
log+ sup

θ∈Θ

∥∥∥(Σ−1ety
⋆⊤
t

)∥∥∥
∞

]
≤ C ′′ + E

[
log+ sup

θ∈Θ

∥∥∥(ety⋆⊤
t

)∥∥∥
∞

]
≤ C ′′′ < ∞,

where the last inequality follows from a standard Hölder inequality given the existence of a second
moment for both yt (from Theorem 2.1) and Xt (from Assumption 2), and the uniform bounded-
ness of Wt from Assumption 3.
For the sixth term, we note

E
[
log+ sup

θ∈Θ
∥diag (WtZ

⋆
t (f(θ)))∥∞

]
≤ C + E

[
log+ sup

θ∈Θ
∥Z⋆

t (f(θ))∥∞
]
< ∞,

where the first inequality follows from Assumption 3, and the second inequality follows from the
fact that the adjoint is a sum of products of elements of Zt(f(θ)) = IN − R(f(θ))Wt, whose
elements are bounded given the bound supf∈Ft

ϱ(R(f)Wt) ≤ 1− ϵ.
Having proved the existence of the bounded log-moment of the stochastic recurrence equation,

the proof follows immediately from Theorem 3.1 in Bougerol (1993) by noting that our contraction
condition in Assumption 5 imply conditions C2 in his Theorem. To see the latter, note that the
contraction condition is obtained by taking the derivative of ϕt(f) which takes the observed data
{yt}t∈N as inputs, that is

sup
θ∈Θ

sup
f∈Ft

∥∥∥ϕ̇t(f)
∥∥∥
∞

≤ sup
θ∈Θ

sup
f∈Ft

∥B +A · ṡt(f)∥∞ ,

ṡt(f) =
∂

∂f⊤

(
wt(f) |Zt(f)| diag

(
Σ−1ety

⋆⊤
t

))
− ∂diag (WtZ

⋆
t (f))

∂f⊤
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= |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

) ∂ (wt(f) )

∂f⊤ + wt(f) diag
(
Σ−1ety

⋆⊤
t

) ∂ (|Zt(f)|)
∂f⊤

+ wt(f) |Zt(f)| S⊤
N

∂
(
vec
(
Σ−1ety

⋆⊤
t

))
∂f⊤ − S⊤

N

∂vec (WtZ
⋆
t (f))

∂f⊤

= −ẇt(f) |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

)
diag

(
Σ−1ety

⋆⊤
t

)⊤
− wt(f) diag

(
Σ−1ety

⋆⊤
t

)
|Zt(f)| vec

(
Zt(f)

⊤−1
)⊤ (

W⊤
t ⊗ IN

)
SN

− wt(f) |Zt(f)|
(
Σ−1y⋆

t y
⋆⊤
t ⊙ IN

)
+ S⊤

N (IN ⊗Wt) Ż
⋆(ft)

(
W⊤

t ⊗ IN
)
SN

= −ẇt(f) |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

)
diag

(
Σ−1ety

⋆⊤
t

)⊤
− wt(f) diag

(
Σ−1ety

⋆⊤
t

) (
(Wt ⊗ IN ) vec

(
Z⋆

t (f)
⊤
))⊤

SN

− wt(f) |Zt(f)|
(
Σ−1y⋆

t y
⋆⊤
t ⊙ IN

)
+ S⊤

N (IN ⊗Wt) Ż
⋆(ft)

(
W⊤

t ⊗ IN
)
SN

= −ẇt(f) |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

)
diag

(
Σ−1ety

⋆⊤
t

)⊤
− wt(f) diag

(
Σ−1ety

⋆⊤
t

)
vec
(
Z⋆

t (f)
⊤W⊤

t

)⊤
SN

− wt(f) |Zt(f)|
(
Σ−1y⋆

t y
⋆⊤
t ⊙ IN

)
+ S⊤

N (IN ⊗Wt) Ż
⋆(ft)

(
W⊤

t ⊗ IN
)
SN

= −ẇt(f) |Zt(f)| diag
(
Σ−1ety

⋆⊤
t

)
diag

(
Σ−1ety

⋆⊤
t

)⊤
− wt(f) diag

(
Σ−1ety

⋆⊤
t

)
diag (WtZ

⋆
t (f))

⊤

− wt(f) |Zt(f)|
(
Σ−1y⋆

t y
⋆⊤
t ⊙ IN

)
+ S⊤

N (IN ⊗Wt) Ż
⋆(ft)

(
W⊤

t ⊗ IN
)
SN

ẇt(f) = −
(
1 +

N + 2

ν − 2

)/(
1 +

e⊤t Σ
−1et

ν − 2

)2

.

This proves the result.
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C Extra empirical results
This appendix presents additional empirical results. Parameter estimates are given for 1-year
government bond yield spread changes (over EONIA) and for 5-year CDS spread changes. In
addition, long term risk spillovers are plotted with a 95% confidence bound for 5-year government
bond yield spread changes (over EONIA).

Table C.1: Summary statistics 1-year Government Yield spread and CDS spreads
This table lists descriptive statistics of absolute changes of euro-denominated CDS spreads and 1-year
government bond yield spreads of seven European countries and the United States. The 1-year government
bond yield spread is defined as the difference between the 1-year government bond yield and the 1-year
EONIA OIS rate. All variables are weekly from December 10, 2009 until July 2, 2020.

mean s.d. med min max skew kurt
1-year gov bond spread changes (percentage points)
Germany -0.001 0.041 0.001 -0.19 0.21 -0.21 6.83
Spain 0.001 0.228 -0.001 -1.27 2.86 3.45 52.46
France -0.001 0.057 0.001 -0.59 0.45 -0.91 32.73
Ireland -0.001 0.397 -0.001 -2.73 3.42 0.01 29.41
Italy 0.000 0.228 -0.002 -1.02 1.36 0.86 12.07
Netherland 0.000 0.060 0.000 -0.54 0.64 0.16 45.60
Portugal -0.001 0.553 -0.002 -3.12 2.78 -0.19 14.11
U.S. 0.002 0.062 0.006 -0.56 0.25 -1.71 17.04
5-year CDS spread changes (basis points)
Germany -0.025 2.867 0.000 -19.02 15.19 0.09 14.05
Spain -0.036 17.570 -0.080 -109.51 87.30 -0.56 12.61
France -0.028 6.382 0.000 -54.84 37.90 -0.84 20.69
Ireland -0.231 24.841 -0.200 -154.33 223.13 0.83 25.33
Italy 0.051 19.320 -0.400 -99.03 98.74 -0.29 11.33
Netherland -0.033 4.861 0.000 -42.02 28.31 -1.95 32.72
Portugal -0.042 39.428 -0.050 -255.23 252.21 0.30 15.53
U.S. -0.026 2.237 0.000 -12.81 16.76 1.24 17.70
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Table C.2: Parameter estimates of spatial dependence models 1-year government bond yield
spreads

This table reports the estimated parameters of four spatial dependence models, applied
to weekly 1-year government bond yield spread changes of seven Eurozone countries.
Robust (Huber sandwich) standard errors are reported in parentheses. The models
are based on Student’s t distributed disturbances with time-varying heteroscedasticity
as in model (1)–(5). We report the maximum log-likelihood value (LogLike) and
AIC(Akaike information criterion). The sample runs from December 2009 - July 2020.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.167 0.020 0.022 0.000

(0.026) (0.010) (0.030) (0.001)
ωSP 0.276 0.007

(0.055) (0.006)
ωFR 0.099 0.001

(0.035) (0.002)
ωIR 0.529 0.009

(0.107) (0.010)
ωIT 0.566 0.030

(0.171) (0.021)
ωNE 0.299 0.010

(0.058) (0.009)
ωPO 0.528 0.010

(0.157) (0.015)
α/αGE 0.011 0.004

(0.002) (0.005)
αSP 0.023

(0.020)
αFR 0.007

(0.004)
αIR 0.027

(0.068)
αIT 0.181

(0.082)
αNE 0.024

(0.016)
αPO 0.046

(0.097)
βρ 0.919 0.984

(0.046) (0.017)
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(Table C.2 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.334 0.328 0.328 0.319

(0.047) (0.039) (0.041) (0.032)
βvol 0.996 0.997 0.996 0.997

(0.004) (0.004) (0.004) (0.003)
ν 3.374 3.354 3.517 3.509

(0.275) (0.273) (0.293) (0.290)
∆ VSTOXX -0.015 -0.016 -0.019 -0.014

(0.039) (0.036) (0.038) (0.035)
∆ term spread -0.050 -0.047 -0.057 -0.041

(0.047) (0.044) (0.047) (0.045)
local stock -0.001 0.001 0.000 0.001

(0.010) (0.009) (0.009) (0.009)

logLik 4733 4764 4778 4813
AIC -9424 -9482 -9503 -9555
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Table C.3: Parameter estimates of spatial dependence models
This table reports the estimated parameters of four spatial dependence models, ap-
plied to weekly CDS spread changes of seven Eurozone countries. Robust (Huber
sandwich) standard errors are reported in parentheses. The models are based on
Student’s t distributed disturbances with time-varying heteroscedasticity as in model
(1)–(5). To account for the different measurement units of the CDS changes (basis
points) compared to the yield spread changes in the other tables, the VSTOXX change
was rescaled by a factor 100. We report the maximum log-likelihood value (LogLike)
and AIC(Akaike information criterion). The sample runs from December 2009 - July
2020.

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel A: Spatial dependence parameters
ω/ωGE 0.170 0.014 0.045 0.000

(0.014) (0.011) (0.020) (0.001)
ωSP 0.609 0.009

(0.055) (0.012)
ωFR 0.153 0.003

(0.023) (0.004)
ωIR 0.391 0.009

(0.037) (0.009)
ωIT 2.802 0.195

(0.277) (0.124)
ωNE 0.156 0.003

(0.026) (0.004)
ωPO 0.861 0.030

(0.109) (0.028)
α/αGE 0.003 0.002

(0.002) (0.001)
αSP 0.048

(0.028)
αFR 0.005

(0.002)
αIR 0.025

(0.012)
αIT 0.247

(0.167)
αNE 0.008

(0.019)
αPO 0.062

(0.055)
βρ 0.923 0.982

(0.059) (0.017)
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(Table C.3 continued)

Static Scalar Dynamic Scalar Static Diagonal Dynamic Diagonal

Panel B: Volatility and control parameters
αvol 0.344 0.338 0.350 0.336

(0.033) (0.034) (0.036) (0.037)
βvol 0.999 0.999 0.999 0.999

(0.000) (0.000) (0.001) (0.001)
ν 2.537 2.512 2.780 2.842

(0.249) (0.246) (0.313) (0.332)
∆ VSTOXX -0.780 -0.973 -0.377 -0.323

(0.570) (0.596) (0.953) (0.901)
local gov spread -2.648 -2.857 -2.573 -2.142

(1.134) (1.079) (1.843) (1.541)
local stock -0.111 -0.075 -0.226 -0.166

(0.270) (0.231) (0.252) (0.304)

logLik -10562 -10540 -10284 -10228
AIC 21167 21126 20622 20526
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(a) German shock; ρt model (b) German shock; Rt model

(c) Spanish shock; ρt model (d) Spanish shock; Rt model

Figure C.1: Confidence intervals for long-term spillover effects
This figure gives the confidence intervals for the long-term risk spillover effect LRi,j,t of a 1 standard
deviation shock of the 5-yr government bond yield spread of country j to country i, where j equals Germany
and i equals Italy (top panels) or Spain (lower panels). The left and right panels relate to the scalar and
diagonal spatial model, respectively. The sample ranges from December 2009 - July 2020.
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