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Abstract

We consider whether external urban economic advantages (agglomeration econom-
ies) vary with time and space using a simple economic model and detailed micro-data
on 134 locations in New Zealand for the period 1976–2018. We find subtle temporal
variation, with estimates peaking in 1991 and then falling over the next 15-years by
approximately 1%. Since 2006, however, estimates have remained broadly stable.
Our results reveal more significant spatial variation: Large cities offer net benefits
in production, but not in consumption, whereas small locations close to large cities
(“satellites”) experience agglomeration economies that are stronger than average.
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1 Introduction

In “The Garden of Forking Paths,” Borges uses a parable to illustrate the multiplicity

of possible outcomes that can arise from the passage of time, observing “. . . time forks

perpetually toward innumerable futures” (Borges et al., 1962). Analogies of this theme

have been invoked to highlight barriers to the replication of scientific research and selec-

tion biases affecting publication (Gelman and Loken, 2013; Kasy, 2021). In economics,

where empirical research often seeks to identify the causal effects of parameters that are

subsequently used to appraise hypothetical scenarios and inform policy settings, we sug-

gest the “forking paths” zeitgeist raises related questions about validity. That is, to what

extent are economic parameters valid outside of the specific context—specifically, time

and place—in which they are estimated? Researchers have begun to grapple with these

gnarly epistemological questions (see, e.g., Meier and Sprenger, 2015; Rosenzweig and

Udry, 2020). In this spirit, we consider the temporal stability and spatial transferability

of estimates of external urban economic advantages, or “agglomeration economies”. The

complex mechanisms through which agglomeration can influence the choices of firms

and households hint at a large number of possible “forking paths”.

Why might policy-makers and researchers be interested in the stability and transferability

of agglomeration economies? We posit three reasons. First, estimates of agglomeration

economies are often used to appraise the effects of policies, such as transport projects,

in hypothetical scenarios that extend decades into the future. In doing so, appraisal

guidelines usually assume agglomeration economies are both stable and transferable—at

least after controlling for differences in industrial composition (see, e.g., Table 37 in Waka

Kotahi, 2020). Second, trends in agglomeration economies are central to debates on the

future of cities. Whereas Cairncross (1997) and Friedman (2006) argued technology

will reduce the benefits of proximity, Glaeser (2011) opined “despite the technological

breakthroughs that have caused the death of distance, it turns out that the world isn’t

flat; it’s paved.” In the wake of the COVID-19 pandemic, debates about the economic

advantages of cities—and whether these advantages are likely to persist in the future—

have surfaced anew (see, e.g., Shenker, 2020). Third, agglomeration economies are a

rubric, or “black box”, used to describe several distinct microeconomic channels, such as

knowledge spillovers and labour market efficiencies (Puga, 2010). Understanding how

agglomeration economies vary over time and space may help illuminate aspects of these

underlying channels. For these reasons, we suggest the stability and transferability of

agglomeration economies is relevant to both policy and research.
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Notwithstanding this relevance, few empirical studies consider whether agglomeration

economies vary with time and space, at least in a systematic fashion. In terms of temporal

stability, Martínez-Galarraga et al. (2008) analyse agglomeration economies in production

for Spain and find estimates decline in the period 1860–1999. Similarly, the recent meta-

analysis by Donovan et al. (2021) draws on estimates for the period 1960–2020 and

finds evidence that, since 2000, agglomeration economies in production have fallen

by 1–2%. More attention has been paid to spatial variation. Several meta-analyses—

see, for example, Ahlfeldt and Pietrostefani (2019) and Donovan et al. (2021)—and

primary studies—see, for example, Ahrend et al. (2017) and Chauvin et al. (2017)—

allow for and report differences between countries, although the factors that cause

these differences are typically left unexplored. Fewer studies, moreover, consider the

potential for spatial variation within countries, which is likely to be more relevant to

domestic policy settings. Notably for our purposes, Maré and Graham (2013) find some

evidence that agglomeration economies in production vary between nine regions in New

Zealand—even after controlling for the characteristics of individual firms.

Against this backdrop, we consider whether agglomeration economies vary with time

and space using data on 134 locations in New Zealand for the period 1976–2018.

Following Roback (1982), Gabriel and Rosenthal (2004), Y. Chen and Rosenthal (2008),

and Maré and Poot (2019), we estimate a simple economic model that measures the

relative advantages of locations to firms and workers in terms of the price of labour and

floorspace. Although grounded in the existing literature, our study combines several

useful attributes. Notably, we draw on detailed data for almost all individual full-time

workers in New Zealand at approximately five-year intervals over more than forty years.

Whereas Martínez-Galarraga et al. (2008) present estimates for two recent periods,

namely 1965–1979 and 1985–1999, our estimates cover nine intervals in the period

1976–2018. And, in contrast to Maré and Graham (2013), who estimate agglomeration

economies for nine regions in New Zealand, we estimate agglomeration economies for 134

locations. Unlike Gabriel and Rosenthal (2004) and Martínez-Galarraga et al. (2008), but

like Maré and Graham (2013) and Maré and Poot (2019), we use micro-data to control

for the observed characteristics of individual workers and dwellings. Together, these

attributes enable us to derive estimates of agglomeration economies in production and

consumption that are relatively robust and broadly comparable over time and space.

Three main insights emerge from our analysis. First, we confirm that micro-data yield

smaller estimates of agglomeration economies in production, with wage elasticities that

are approximately half those from aggregate data—a finding that aligns with the seminal
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work by Combes, Duranton and Gobillon (2008) and the recent meta-analysis by Ahlfeldt

and Pietrostefani (2019). More uniquely, we find the gap between estimates derived from

micro-data vis-á-vis aggregate data has not changed with time, implying that the relevance

of sorting by workers is stable—at least in New Zealand. Second, we find evidence of

subtle temporal variation in estimates of agglomeration economies, which arises due to

the effect of agglomeration on rent. Specifically, from a nadir in 1981, estimates peak in

1991, and then decline by approximately 1%—loosely corroborating the trend in Donovan

et al. (2021).1 Since 2006, however, our estimates of agglomeration economies have

remained broadly constant; contrary to claims, the world does not appear to be getting

“flatter”. Finally, we find evidence that agglomeration economies vary systematically

between locations: Large cities in New Zealand offer net benefits in production, but not

in consumption, whereas “satellite” locations that are close to large cities experience

agglomeration economies that are stronger than average. Evidence of large spatial

differences within a relatively small country like New Zealand—after controlling for the

observed characteristics of workers and dwellings—is a notable finding.

Our findings highlight several avenues for further research. First, we see value in

primary research, like Martínez-Galarraga et al. (2008) and the present study, which uses

consistent data and methods to trace the evolution of agglomeration economies within

countries and over time. Second, further research would ideally seek to explain temporal

and spatial variation in estimates of agglomeration economies. Although we detect the

fingerprints of such variation, and present informal explanations for its origins, we do

not pin-point the underlying causes. Third, we suggest there is merit in developing more

sophisticated measures of agglomeration. Such measures could, for example, consider

multi-modal transport costs, rather than just time or distance, and measure proximity to

specialised infrastructure and institutions—like major airports and universities—that may

augment the microeconomic effects of agglomeration (Brueckner, 2003; X. Chen et al.,

2021; Kantor and Whalley, 2014; Cermeño, 2019). Finally, we echo others by calling for

more research into agglomeration economies in consumption.

The remainder of this paper reads as follows: Section 2 develops the methodology;

Section 3 summarises the data; Section 4 presents the benchmark models and sensitivity

tests; Section 5 discusses our findings; and Section 6 concludes.

1 In addition to the general factors discussed in Donovan et al. (2021), such as information and communica-
tions technologies (“ICT”), we speculate that temporal variation in New Zealand in the period 1976–2001
may reflect the lingering effects of major economic policy reforms that were implemented in the 1980s.
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2 Methodology

2.1 Model

Our model follows Maré and Poot (2019), which in turn adapts Gabriel and Rosenthal

(2004). To start, we assume that mobile workers choose their locations given preferences

for housing, H, a composite consumption good, Y , and local amenities, fu(A). We

assume a representative worker’s preferences, Uit, for city i in period t is given by:

Uit = fu(Ait)Hα
itY

1−α
it . (1)

We assume all workers supply one unit of labour and earn a wage, wit, that is, our

model focuses on the choices of full-time workers. The price of housing, rit, is locally

determined, but we assume that the price of the composite good is the same everywhere—

so it can be indexed in period t without loss of generality. Given the budget constraint

wit = ritHit + Yit, we derive the following conventional Marshallian demand functions:

H∗it = α
wit
rit

and Y ∗it = (1− α)wit. (2)

Substituting the Marshallian demand functions for housing, H∗it, and the composite good,

Y ∗it , from Equation (2) into Equation (1) and re-arranging yields:

vit = κufu(Ait)
wit
rαit

= vt. (3)

Where vit denotes indirect utility and κu = αα(1− α)1−α is a constant. Following Roback

(1982), we impose a spatial equilibrium condition that requires that workers in all

locations achieve the same fixed reservation utility, vt, in each time period.

In each location, we assume there is a representative firm that uses a commonly-available,

constant returns to scale technology to produce the composite good, Yit, using floorspace,

Hit, and labour, Lit, as inputs. Formally, we have:

Yit = fy(Ait)Hγ
itL

1−γ
it , (4)
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where fy(Ait) describes the effect of local amenities, Ait, on productivity. We assume

firms pay wit and rit for labour and floorspace.2 Assuming firms maximise profits, we can

use the resulting first-order conditions to derive the following equilibrium condition:

rγitw
1−γ
it = κyfy(Ait), (5)

where κy = γγ(1 − γ)1−γ . Taking logs and re-arranging the equilibrium conditions in

Equations (3) and (5) yields iso-utility and iso-cost conditions for workers and firms:

ln fu(Ait) = α ln rit − lnwit + ln vt − ln κu, (6)

ln fy(Ait) = γ ln rit + (1− γ) lnwit − ln κy. (7)

Equations (6) and (7) measure the implicit value of local amenities to workers and firms

in equilibrium as a function of rents, wages, and structural parameters. To understand

the effect of agglomeration, lnDit, we differentiate Equations (6) and (7) as follows:

∂ ln fu(Ait)
∂ lnDit

= α
∂ ln rit
∂ lnDit

− ∂ lnwit
∂ lnDit

= αεrit − εwit = Ec, (8)

∂ ln fy(Ait)
∂ lnDit

= γ
∂ ln rit
∂ lnDit

+ (1− γ) ∂ lnwit
∂ lnDit

= γεrit + (1− γ)εwit = Ep. (9)

Where the constant terms drop out and we let ∂ ln rit
∂ lnDit = εrit and ∂ lnwit

∂ lnDit = εwit, that is,

elasticities of rents and wages with respect to agglomeration, which—in their most general

form—vary with location, i, and time, t. Together, Equations (8) and (9) conveniently

express the change in the implicit value of local amenities that follows from a change

in agglomeration in terms of the latter’s effects on rents and wages, as measured by

their elasticities.3 One direct implication of Equation (8) is that we can expect positive

agglomeration economies in consumption, Ec, if and only if αεrit > εwit. Bringing this

model to data then involves a relatively simple two-step process: First, we estimate the

elasticities of rents and wages with respect to agglomeration, εrit and εwit, and, second, we

combine these elasticities as per Equations (8) and (9), given values for α and γ.

2 Using rit as the price of floorspace for firms may cause bias if the composition of inputs into floorspace
differs between workers and firms and the prices of inputs varies over time. We expect this bias is small.

3 Specifically, Equation (8) defines the change in implicit value for workers who live and work in location, i.
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2.2 Estimation

To identify εwit and εrit, we estimate models consisting of two equations:

lnwit = fw(lnDit) + τwt + ζwi

ln rit = f r(lnDit) + τ rt + ζri ,

where f(lnDit) denotes a function of agglomeration, lnDit, which can vary between

equations and models; τt denotes individual time effects; and ζi denotes individual

location effects. For lnwit and ln rit, we begin by using average income and rent. In

our preferred models, however, we replace these averages with estimates of the spatial

income and rent premia, which are derived from a process similar to that used in Combes,

Duranton and Gobillon (2008).4 Specifically, we first regress the reported incomes and

rents of individual workers and dwellings for each Census year versus a set of location

fixed effects and controls for observed individual characteristics.5 We estimate separate

regressions for each year, such that the effects of observed characteristics on incomes

and rents can vary with time. The location fixed effects—or, “spatial income and rent

premia”—then become the dependent variables of the equations in our models.

We use Bayesian methods to estimate all models, which helps address four inter-related

empirical problems.6 First, we follow the literature on partial pooling models and treat

individual time and location effects, τt and ζi, as group effects (or, “random effects”)

that are drawn from common population distributions with their own variances, or

hyper-parameters (Gelman, Carlin et al., 2013). Compared to population effects (or,

“fixed effects”), group effects pool information both within and between time periods

and locations, mitigating the risk of over-fitting. With at most nine observations per

location, we are especially concerned about over-fitting the location effects, ζi. And,

unlike restricted maximum likelihood estimators, Bayesian methods directly estimate

4 Unlike Combes, Duranton and Gobillon (2008), our data do not follow workers or dwellings over time,
preventing us from including individual effects in the first-stage regressions. Donovan et al. (2021) find
that including such effects reduces estimates of agglomeration economies in production by 1.1% whereas
Ahlfeldt and Pietrostefani (2019) conclude controlling for “sorting” reduces estimates by 2–4%.

5 For workers, we control for gender, age (polynomial by gender), qualification (n = 10, except in 1976
when n = 4), two-digit industry sector (n = 54), ethnicity (n = 15), religion (n = 11), and birthplace
(n = 12). For dwellings, we control for the number of bedrooms (n = 10) and rooms (n = 10) as well as
dwelling type (n = 8) and heating (n = 8). Results of the first-stage regressions are available on request.

6 Specifically, all models are estimated using the statistical package R running in the RStudio environment
with the brms package and default priors (R Core Team, 2021; RStudio Team, 2021; Bürkner, 2017).
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the hyper-parameters that are associated with group effects. Second, our dependent

variables—that is, the spatial income and rent premia—are measured with uncertainty,

or error. Bayesian methods, specifically errors-in-outcomes models, enable us to directly

account for uncertainty in the spatial premia—as measured by their estimated standard

errors—in a theoretically consistent manner.7 Third, inspection of our data reveals the

presence of some unusual observations that are associated with small towns (c.f. Figures

1 and 2). To mitigate the influence of these observations, we allow our two response

variables to follow Student’s t-distributions, which—compared to Gaussian distributions—

allow more mass in the tails of the probability distributions (Geweke, 1993; Gelman and

Hill, 2007). Finally, Equations (8) and (9) define agglomeration economies as composite

parameters that are formed from estimates of both εwit and εrit. By jointly estimating these

equations using Bayesian methods, we can generate distributions of parameter estimates

for εwit and εrit that directly account for correlations between the two equations.8

We estimate four benchmark models. Model A uses average incomes and rents and

imposes common elasticities, ε, across all time periods and locations:

lnwit ∼ N (εw lnDit + τwt + ζwi , σ
w)

ln rit ∼ N (εr lnDit + τ rt + ζri , σ
r), (Model A)

where we follow the conventional assumption that group effects, τ and ζ, are drawn from

independent normal distributions.

Model B also imposes common elasticities across all time periods and locations but uses

the spatial income and rent premia within a multi-level, errors-in-outcomes setting:

lnwit ∼ N (lnw∗it, swit)

ln rit ∼ N (ln r∗it, srit)

lnw∗it ∼ N (εw lnDit + τwt + ζwi , σ
w)

ln r∗it ∼ N (εr lnDit + τ rt + ζri , σ
r), (Model B)

7 Combes, Duranton and Gobillon (2008) address errors-in-outcomes using a feasible generalized least-
squares (“FGLS”) estimator, which yields similar results to OLS estimators. The authors attribute this
result to the large number of observations at their disposal. Subsequent researchers have tended to follow
this lead, pointing to precise estimates of the spatial premia in the first-stage as reason to treat the latter
deterministically (see, e.g., footnote 13 in Groot et al., 2014). In contrast, the large number of relatively
small locations in our data leads to somewhat imprecisely estimated spatial premia.

8 Joint estimation, for example, allows us to model correlations between the residuals and individual effects,
τt and ζi. In Section 4.2.3, we model these correlations as a sensitivity test.
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where we assume the estimated spatial premia, lnwit and ln rit, are drawn from normal

distributions with true means, lnw∗it and ln r∗it, and standard deviations, swit and srit, re-

spectively, as defined by the standard errors of the premia in the first-stage regressions.

Model C then allows both of the true means, lnw∗it and ln r∗it, to follow Student’s t-

distributions with additional degrees-of-freedom parameters, ν:

lnwit ∼ N (lnw∗it, swit)

ln rit ∼ N (ln r∗it, srit)

lnw∗it ∼ t(εw lnDit + τwt + ζwi , ν
w, σw)

ln r∗it ∼ t(εr lnDit + τ rt + ζri , ν
r, σr). (Model C)

Finally, Model D allows elasticities to vary with time and location, as per the group effects,

δt and γi, respectively. In its most general form, Model D is defined as

lnwit ∼ N (lnw∗it, swit)

ln rit ∼ N (ln r∗it, srit)

lnw∗it ∼ t((εw + δwt + γwi ) lnDit + τwt + ζwi , ν
w, σw)

ln r∗it ∼ t((εr + δrt + γri ) lnDit + τ rt + ζri , ν
r, σr). (Model D)

In Section 4, we estimate several variants of Model D that restrict δt = 0 and γi = 0.

In short, Model A and Model B differ only in the use of aggregate data vis-á-vis spatial

premia, where the latter are preferred and require that we model errors-in-outcomes.

Model C then mitigates the effects of influential observations by allowing the dependent

variables to follow Student’s t-distributions. Despite their differences, Model A, Model

B, and Model C all assume that income and rent elasticities are constant with time and

space. In contrast, Model D allows the income and rent elasticities to vary with the

time and location group effects, δt and γi. We are primarily interested in understanding

whether there is evidence to prefer Model D, where the income and rent elasticities can

vary with time and space, over Model C, where they cannot. And, in keeping with our

aforementioned interest in the external validity of estimates of agglomeration economies,

we focus on the out-of-sample predictive performance of these benchmark models, that

is, their ability to predict observations not used in their estimation.
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3 Data

Our main source of data is the New Zealand Census (the “Census”). The temporal dimen-

sion is defined by the nine waves from 1976 to 2018.9 The cross-sectional dimension is

defined by the 143 zones of the urban area classification developed by Statistics New Zea-

land, where we consolidate zones in metropolitan areas, namely Auckland (four zones),

Wellington (four zones), Hamilton (three zones), and Napier-Hastings (two zones).10

The resulting panel of 134 locations over nine waves forms the basis of our analyses.

For each observation, we extract data on full-time workers aged 25-years or older and

rented dwellings. Due to security and confidentiality provisions, we lose 26 observations

associated with small towns in early Censuses—leaving us with 1,180 observations.11 We

use consumer price indices to index incomes and rents to 2018 (second quarter) levels. In

2018, the median and mean population of locations is 4,464 and 30,189, respectively.

The use of Census data confers advantages and disadvantages. In terms of advantages,

the Census seeks to survey all residents and typically has average response rates in excess

of 95%, mitigating problems with sample selection. And, by accessing unit records, we

can control for the characteristics of individual workers and dwellings. Usefully, the

Census also collects information at the place-of-residence and place-of-work, both of

which are relevant to our model. Notwithstanding these advantages, Census data also

has some limitations. As the Census does not track individuals over time, we cannot

control for unobserved sources of heterogeneity. Census data on income and rents are also

grouped into $100 and $10 bands, introducing some measurement error.12 The Census

also records gross income rather than labour income, where the latter is more relevant to

our model.13 Finally, the Census only collects prices for rented dwellings, which represent

around one-third of all dwellings, on average, in the period we analyse.

9 Specifically, the Census was undertaken in 1976, 1981, 1986, 1991, 1996, 2001, 2006, 2013, and 2018.
Although normally undertaken every five years, the Census planned for 2011 was postponed until 2013.

10 As urban areas, or locations, are not consistently coded across Censuses, we allocate individuals and
dwellings to urban areas as defined in 2018 using the most detailed geographic coding available in each
year. Where an urban area from an earlier Census is associated with more than one urban area in 2018,
we allocate records to the area that contains the largest share of the 2018 population. Generally, this is a
“meshblock”, which contain approximately 100 people, on average. For the 1976 Census, meshblock codes
were derived from undocumented administrative codes. For individuals who were away from home on the
night of the Census, coding was available only at a more aggregate (“area unit”) level.

11 Specifically, we lose 13, 10, and 3 observations from the 1976, 1981, and 1986 censuses, respectively.
12 We assign responses to the midpoint of bands and top-code responses in the highest band.
13 Gross income appears to be an accurate measure of labour income for full-time workers aged 25-years

or older. For these workers, Maré and Poot (2019) regress gross income from the 2001, 2006, and 2013
Censuses versus labour income from administrative data and find unitary coefficients and R2 > 0.97.
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Figure 1: Histograms of dependent variables, mean-centred by year. The left and right panels show aggregate
data and spatial premia; the top and bottom panels show incomes and rents, respectively.

Figure 1 presents histograms for our dependent variables, where the top and bottom

panels show incomes vis-á-vis rents and the left and right panels show aggregate data

vis-á-vis spatial premia, respectively. We find broadly symmetric distributions with

some evidence of fat tails, especially on the low-side. Although spatial premia appear

to be slightly more centred than aggregate data, the fat tails remain. Figure 2 then

plots the dependent variables (vertical axes) versus agglomeration (horizontal axes),

lnDit. We follow Holl (2012) and measure agglomeration using “effective population”,

Dit = Pit +
∑
j 6=i

Pjt
dij

, where the population, Pit, of location i is added to the sum of the
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Figure 2: Scatter plots of dependent variables (vertical axes), mean-centred by year, versus agglomeration
(horizontal axes), lnDit. The colour and size of points denotes locations and their population, Pit.
The left and right panels show the aggregate data and spatial premia; the top and bottom panels
show incomes and rents, respectively.

population, Pjt, of other locations j inversely-weighted by the distance in kilometres

between the two, dij . We measure, dij , in 2018; to our knowledge, historical data on

distances between locations does not exist. Approximately two-thirds of Dit stems from

Pit with the balance from Pjt. In Section 5, we consider alternative specifications for

agglomeration. Figure 2 reveals a positive association between prices and lnDit, with

slightly more spread in aggregate data vis-á-vis spatial premia—suggesting some of the

variation in prices is due to differences in the composition of workers and dwellings.

12



4 Results

4.1 Benchmark Models

Table 1 presents estimated parameters and standard errors (s.e.) for the four benchmark

models specified in Section 2.2. The first panel presents the common income and rent

elasticities, εw and εr, whereas the second panel presents the associated estimates of

agglomeration economies, Ep and Ec. The latter are computed from the elasticities, as

per Equations 8 and 9, where we follow Maré and Poot (2019) and assume the cost shares

of floorspace in production and consumption are γ = 0.10 and α = 0.20, respectively.14

The third panel summarises the time- and location-specific elasticities that are included

in each of the five variants of Model D. And, finally, the bottom panel summarises two

model performance measures, R2 and elpd, where we prefer the latter.15

Turning to the results, Model A—which uses aggregate data—returns income elasticities

that are approximately twice as large as Model B—which uses micro-data. The elpd values

indicate Model B performs worse than Model C, supporting the latter’s use of Student’s

t-distributions to mitigate influential observations.16 Turning to Model D, we find Model

D4—which allows rent elasticities to vary with time and location—has the highest elpd of

the models we test, closely followed by Model D5. Comparing Model B, Model C, and the

five variants of Model D, we find stable and precise estimates for the income elasticity

of 3.6–3.7%. For the rent elasticity, we find similar estimates for Model A, Model B,

and Model C.17 However, we find somewhat larger estimates in Models D2, D4, and D5,

which has economically significant implications for our results: Whereas Model C predicts

14 The assumptions for α and γ do not affect the estimated elasticities but instead shift the levels of
agglomeration economies in production and consumption, as per ∂Ep

∂γ
= εrit − εwit and ∂Ec

∂α
= εrit. For

example, if expenditure shares were 20% larger than we assume, such that γ = 0.12 and α = 0.24, then
the estimated agglomeration economies in production and consumption for Model D4 can be expected to
shift by 0.02(0.301− 0.036) = 0.005 and 0.04(0.301) = 0.012, respectively.

15 The Bayesian R2 is the median value from the posterior predictions of a model, averaged across the two
equations. The expected log pointwise predictive density (“elpd”) measures the out-of-sample performance
of a model using efficient leave-one-out cross-validation; see Vehtari et al. (2017) for details. We note the
R2 and elpd is only comparable between Model B, Model C, and Model D, which use the same dependent
variables—that is, the spatial income and rent premia that are estimated in the first-stage regressions.

16 We find νw ≈ 66 and νr ≈ 6. The latter indicates considerable mass exists in the tails of the probability
distribution for the response variable, providing further empirical support for Model C vis-á-vis Model B.

17 This raises an interesting question: Why does the use of micro-data (Model B) result in smaller elasticities
for incomes but not for rents when compared to aggregate data (Model A)? We posit that micro-data may
matter more for incomes than rents because, first, workers are more mobile than dwellings and, second,
we have weaker quality adjustments for dwellings. We return to the latter question in Section 5.
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Model A Model B Model C Model D

D1 D2 D3 D4 D5

εw 0.071 0.037 0.036 0.036 0.036 0.036 0.036 0.036
(0.009) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

εr 0.182 0.165 0.182 0.191 0.384 0.181 0.301 0.303
(0.019) (0.017) (0.019) (0.024) (0.055) (0.018) (0.054) (0.052)

Ep 0.082 0.049 0.051 0.052 0.071 0.051 0.063 0.063
(0.008) (0.005) (0.005) (0.006) (0.008) (0.006) (0.007) (0.008)

Ec −0.035 −0.004 0.000 0.002 0.041 0.000 0.024 0.024
(0.010) (0.007) (0.007) (0.008) (0.012) (0.007) (0.012) (0.012)

δwt No No No Yes No Yes No Yes
γwi No No No No Yes Yes No Yes
δrt No No No Yes No No Yes Yes
γri No No No No Yes No Yes Yes

R2 0.849 0.992 0.992 0.993 0.994 0.992 0.994 0.994
elpd 2, 154 1, 914 1, 970 2, 012 2, 188 1, 970 2, 214 2, 213

Table 1: Estimated elasticities for the four benchmark models with the standard errors in parentheses. All
models use 1,180 observations and include individual time and location effects, τt and ζi.

agglomeration economies in consumption are approximately zero, Models D2, D4, and

D5 predict they are positive, on average. Notwithstanding uncertainty in the estimates for

the rent elasticity, most lie close to the 0.176–0.304 range reported in Combes, Duranton

and Gobillon (2019) (c.f. Table 4, p. 1573). On balance, we suggest the results in Table 1

provide strong evidence of positive agglomeration economies in production, although

more uncertainty exists for agglomeration economies in consumption. Based on the elpd,

Model D4 is our preferred benchmark model to take forward for sensitivity testing. In

doing so, we note the temporal and spatial variation in agglomeration economies in

Model D4 originates via the rent equation, not the income equation.

4.2 Sensitivity Tests

4.2.1 Basic variants

We estimate two basic variants of Model D4 in which the income elasticity can vary with

location (“S1”) and time (“S2”), γwi and δwt . Results for these two tests are shown in the

second and third columns of Table 2, respectively. Compared to Model D4, both Models

S1 and S2 return similar elasticities and elpd values. That is, we find no evidence of

temporal or spatial variation in the elasticity of income with respect to agglomeration.
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Model D Sensitivity tests

D4 S1 S2 S3 S4 S5

εw 0.036 0.036 0.036 0.036 0.033 0.033
(0.006) (0.007) (0.006) (0.006) (0.005) (0.006)

εr 0.301 0.301 0.301 0.289 0.272 0.294
(0.054) (0.053) (0.055) (0.049) (0.049) (0.052)

η 0.149
(0.030)

Ep 0.063 0.063 0.063 0.062 0.057 0.059
(0.007) (0.008) (0.008) (0.007) (0.007) (0.007)

Ec 0.024 0.024 0.024 0.022 0.021 0.026
(0.012) (0.013) (0.012) (0.011) (0.011) (0.012)

δwt No No Yes No No No
γwi No Yes No No No No
δrt Yes Yes Yes Yes Yes Yes
γri Yes Yes Yes Yes Yes Yes
SUR No No No No Yes No
Corr. No No No No No Yes

R2 0.994 0.994 0.994 0.994 0.994 0.994
elpd 2, 214 2, 213 2, 214 2, 211 2, 258 2, 212

Table 2: Estimated elasticities for sensitivity tests of Model D4, with standard errors in parentheses. All
models use 1,180 observations and include individual time and location effects, τt and ζi.

4.2.2 Income-elasticity of rents

In another test (“S3”), we include the spatial income premium at the place-of-residence,

lnw∗hit , in the rent equation, which becomes ln r∗it ∼ t((εr + δrt + γri ) lnDit + η lnw∗hit +
τ rt +ζri , ν

r, σr).18 With this specification, we can test whether housing expenditure, ritH∗it,

is a constant share α of income, wit—that is, η =1—as predicted by the Marshallian

demand for housing in Equation 2, Section 2.1. Results for Model S3 are shown in the

fourth column of Table 2. We find similar elasticities to Model D4, although the estimated

income elasticity of rents, η, has a median value of 0.15 and a 95% credible interval of

[0.09, 0.21]. Thus, we find evidence to reject the assumption that housing costs are a

constant share of income and, instead, find rents are inelastic with respect to income.19

The elpd for Model S3 is lower than that for Model D4, which implies adding income to

the rent equation brings about a deterioration in model performance.

18 Uncertainty in lnw∗h
it is modelled using the standard errors from the first-stage regressions. We note

lnw∗h
it and lnw∗

it denote the income premia at the place-of-residence and place-of-work, respectively.
19 Differences in the samples used to calculate the spatial income and rent premia may cause η to be biased

downwards. Specifically, whereas income premia are derived from data on all full-time workers aged
25-years or older, rent premia pertain only to the subset of dwellings that are rented. As workers who own
their own home are expected to have, on average, higher incomes than those who rent, locations with
higher levels of home ownership are likely to have higher lnw∗h

it but not necessarily higher ln r∗
it—causing

η to be biased downwards. We do not expect this issue to affect the estimated rent elasticities, however.
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4.2.3 Additional correlations

As a final test, we allow for two additional types of correlation. First, we allow error

terms to be correlated between equations (“S4”), as in a seemingly unrelated regression,

or “SUR” (Zellner and Ando, 2010). Second, we allow for correlations between the

individual time and location effects, τt and ζi, which are common to both equations

(“S5”).20 Results for these two tests are shown in the final two columns of Table 2.

In S4 we find a large, positive, and precisely-estimated correlation (0.76, s.e. 0.02)

between the residuals of the two equations. In S5, we find similarly large, positive, and

precisely-estimated correlations between the time (0.69; s.e. 0.20) and location (0.44,

s.e. 0.12) effects. In both tests, however, the estimated income and rent elasticities—and

associated agglomeration economies—are very close to those for Model D4.

5 Discussion

Which model do we prefer? In terms of performance, Model S4 has a higher elpd than

Model D4. Inspection of the posterior distributions for the income and rent elasticities,

however, reveals only minor differences between the two models. Although Model S4

returns slightly more precise parameter estimates, the associated estimates of agglomer-

ation economies, Ep and Ec, are largely unchanged. That is, for all practical purposes,

both Models D4 and S4 have similar economic implications. Compared to Model S4,

however, Model D4 is both simpler and quicker to estimate. On this basis, we use Model

D4 to inform this discussion while noting results carry over to Model S4. In terms of

findings, we begin by comparing estimates derived from micro-data and aggregate data.21

Interestingly, we find the gap between estimates derived from aggregate data and micro-

data has remained broadly constant over time: That is, we have evidence that sorting

matters, although its effects appear to be relatively stable—at least in New Zealand.

Figure 3 shows trends in estimates of agglomeration economies in production (left panel)

and consumption (right panel) for Model D4. We find subtle temporal variation: From a

nadir in 1981, estimates peak in 1991, and then gradually decline. Between 1991 and

20 That is, we assume individual effects are drawn from bivariate normal distributions, τ ∼ N2(0,Στ ) and
ζ ∼ N2(0,Σζ), where off-diagonal elements of the covariance matrices, Στ and Σζ , can be non-negative.

21 We estimate an equivalent version of Model D4 using aggregate data, although without errors-in-outcomes.
Results for this model are not reported but are available on request from the authors.
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Figure 3: Trends in agglomeration economies in production (left panel) and consumption (right panel), as
derived from Model D4. The dashed vertical lines denote the median for the sample.

2006, agglomeration economies in production and consumption fell by approximately

0.7% and 1.4%, respectively, but have since been relatively stable. Although the mag-

nitude of this decline is similar to that in Donovan et al. (2021), which draws on data

for 54 countries, the peak in the latter study occurs approximately one decade after that

which we find here for New Zealand. Informally, we observe less temporal variation for

the three most recent Censuses compared to those in the period 1976–2001. As well as

the general factors discussed in Donovan et al. (2021), such as ICT technologies, we note

that, in the 1980s, New Zealand implemented major economic policy reforms in response

to a fiscal crisis (Evans et al., 1996). These reforms included, but were not limited to,

the complete removal of agricultural subsidies, which reduced the financial returns from

agriculture and led to a collapse in the price of agricultural land (Vitalis, 2007). Greater

temporal variation in the period 1976–2001 may reflect the lingering effects of these

shocks. This explanation has parallels to recent legal scholarship by Sitaraman et al.

(2021), which argues deregulatory initiatives in the U.S. during the 1980s and 1990s—

for example, in transport, communications, trade policy, and anti-trust and corporate

consolidation—exacerbated urban and rural inequalities. That is, major policy reforms

can have spatial dimensions. Notwithstanding variation early in the period we analyse,

estimates of agglomeration economies have in recent times remained relatively stable.
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Figure 4: Agglomeration economies in production (bottom) and consumption (top). These are the median
estimate for each location in 2018, as per Model D4. Labels denote the six locations with the
largest populations, whereas dashed lines denote highways.
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Figure 5: Agglomeration economies in production (vertical axes) and consumption (horizontal axes) for the
six largest cities in New Zealand, as derived from Model D4. The dashed lines indicate the median
for the sample whereas solid lines indicate the median for each location.

In contrast, we find more significant spatial variation in agglomeration economies. Figure

4 maps median estimates of agglomeration economies in production and consumption

for each location in 2018. We observe some clustering in the results: Locations that are

close to larger cities—such as Auckland (population 1.4 million), Wellington (population

404,000), and Christchurch (population 385,000)—tend to have stronger agglomeration

economies, and vice versa for more remote locations. Figure 5 then plots agglomeration

economies in production (vertical axes) versus consumption (horizontal axes) for the

six largest cities. In these panels, each point represents an individual posterior estimate,

whereas the solid (orange) lines indicate the median for each city and the dashed

(grey) lines indicate the median for the sample. In these cities, we find estimates of

agglomeration economies in production and consumption of approximately 5% and

0%, respectively, which is smaller than but close to the median for locations in the

sample. That is, increased agglomeration enhances productivity but not consumption in

New Zealand’s largest cities. This result aligns with earlier research that finds reported

well-being in New Zealand’s larger urban areas is lower than average (Morrison, 2011).
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Figure 6: Agglomeration economies in production (vertical axes) and consumption (horizontal axes) for the
six locations with the largest average effects, as derived from Model D4. The dashed lines indicate
the median for the sample whereas solid lines indicate the median for each location.

Broad similarities in the results for larger cities in New Zealand, however, belies notable

differences for smaller locations. In Figure 6, we plot the six locations with the largest

agglomeration economies in production and consumption, as measured by the geometric

average of the medians of the two. Here, we find agglomeration economies in production

and consumption of approximately 15% and 20%, respectively. Not only are these

estimates several times larger than the average but also, in these locations, agglomeration

economies in consumption exceed those in production. As for why, we can only speculate.

Notably, all six locations are small—with resident populations less than 3,000—and

are located close to larger urban areas. Stronger agglomeration economies in “satellite”

locations may indicate there are additional benefits from proximity to larger cities that

are not captured in our agglomeration measure. We return to this question below.

At the other end of the spectrum, we find several locations with weaker than average

agglomeration economies. Figure 7 illustrates the six locations with the lowest geometric

average for estimates of agglomeration economies. For these locations, we estimate

20



Figure 7: Agglomeration economies in production (vertical axes) and consumption (horizontal axes) for the
six locations with the smaller effects, as derived from Model D4. The dashed lines indicate the
median for the sample whereas solid lines indicate the median for each location.

agglomeration economies in production and consumption of approximately 0% and

−10%, respectively. To explain these results, we can again only speculate. All six towns

are relatively small, with populations less than 7,000 and, more interestingly, all are

relatively remote. Again, we observe hints of clustering: Four of the six locations—namely,

Kaitaia, Paihia, Kawakawa, and Kaikohe—are located in the same Far North District of

New Zealand, whereas the other two are both located in the central North Island.

Finding that locations close to large cities experience stronger agglomeration economies,

and vice versa, begs the question of whether our measure of agglomeration is misspecified?

In Section 3, we adopt an ad-hoc specification for agglomeration, Dit = Pit +
∑
j 6=i

Pjt
dij

,

in which the population, Pit, of location i in time t is added to the populations of

other locations, Pjt, inversely-weighted by the travel-distance in kilometres between the

two, dij . Like a “market potential” measure, this specification causes the weight that

is attached to the population of other locations to decrease linearly with the distance

between locations (Harris, 1954). We considered several alternative specifications for
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agglomeration. First, we introduced a decay factor, κ, into the measure of agglomeration,

Dit = Pit +
∑
j 6=i

Pjt
dκij

, to control how the contribution of other locations, Pjt, attenuates

with distance, dij . We estimate several models where κ ranges from 0.80 to 1.20.

Although we find some evidence that κ < 1, the resulting income and rent elasticities

are essentially unchanged. Second, we test a specification of agglomeration where the

contribution of other locations is subject to an exponential decay that is based on time,

rather than distance. Following Ahlfeldt, Redding et al. (2015), we set the coefficient of

travel-time to −0.07. Compared to Model D4, we find similar elasticities and worse model

performance. Third, we test a non-linear specification for agglomeration, where lnDit

enters with both linear and quadratic terms. Again, performance deteriorates compared

to Model D4. These results suggests spatial patterns in our estimates are unlikely to arise

from straightforward misspecification in the measurement of agglomeration.

To explore alternative explanations for the clustering hinted at in our results, we adopt

more formal—yet still ad-hoc—definitions for types of locations. For satellites, we

consider two definitions: “Satellite A” describes those locations that are within 90-

minutes travel-time of cities with populations of more than 300,000 and “Satellite B”

describes those locations that are within 45-minutes travel-time of cities with populations

of more than 50,000, based on 2018 populations.22 In contrast, “Remote” describes

locations more than 60-minutes travel-time from cities with populations of 50,000 or

more. Figure 8 relates these definitions to estimates of agglomeration economies in

production. The top left panel plots estimates of agglomeration economies in production

for each location (vertical axis) versus agglomeration (horizontal axis), lnDi—where the

length of error bars indicates the 90% credible interval for each location. In this way,

the top left panel illustrates both the heterogeneity that exists between locations and

the amount of uncertainty that exists within locations. Heterogeneity in location-specific

estimates of agglomeration economies exhibits a familiar “funnel” pattern, or regression

to the mean, with variation tending to decrease with agglomeration, lnDi. Figure 8 also

reveals that uncertainty in estimates within locations tends to reduce with agglomeration.

This may simply reflect that larger cities are associated with more precise spatial premia

or, perhaps, that they are less affected by idiosyncratic shocks—possibly due to greater

economic diversity. We find all locations with “effective populations” Di ' 50, 000 return

estimates of agglomeration economies in production that are close to, albeit slightly

below, the median (dashed horizontal line). Put simply, as locations increase in size, we

find that our estimates of agglomeration economies converge more than they fork.

22 In 2018, only three cities—namely, Auckland, Wellington, and Christchurch—had populations greater
than 300,000 (Satellite A), whereas 17 cities had populations greater than 50,000 (Satellite B).
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Figure 8: Top-left panel: Estimates of agglomeration economies in production for each location (vertical
axis) versus agglomeration (horizontal axis), lnDi. The top-right, bottom-left, and bottom-right
panels show the median estimates of agglomeration economies for “Satellite A”, “Satellite B”, and
“Remote” locations, respectively, versus the median for the sample.

The top-right, bottom-left, and bottom-right panels in Figure 8 then show the median

estimates of agglomeration economies in production for “Satellite A”, “Satellite B”, and

“Remote” locations, respectively, as previously defined. Where locations meet the defin-

itions for both Satellite A and B, then they are shown in both panels. Estimates for

“Satellite A” and “Remote” locations tend to lie above and below the median, respectively,

whereas those for “Satellite B” are more mixed. To understand whether these definitions

have any bite, we adapt Model D4 to include a group-level intercept per location-type as
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well as an interaction between location-type and agglomeration. Notably, the inclusion of

these terms improves model performance, with “Satellite A” locations returning higher

than average rent elasticities. We posit “Satellite A” locations may experience stronger

agglomeration economies as they offer some of the benefits of large cities but with lower

overall congestion costs. Locations close to large cities may, for example, benefit from

access to specialised infrastructure and institutions, like major airports and universities.23

The latter do not feature explicitly in our measure of agglomeration but may augment its

microeconomic effects, for example by expanding accessibility or enhancing knowledge

spillovers (Brueckner, 2003; X. Chen et al., 2021; Kantor and Whalley, 2014; Cermeño,

2019). At the same time, these small satellite locations appear to be free of congestion.

To finish, we consider three limitations of our analysis. First, we find that rent is inelastic

with respect to income (c.f. Section 4.2.2), which contravenes our model of worker

preferences and might suggest the need for a more flexible approach. However, when we

add income to the rent equation in Model S3 (c.f. Table 2), we find the elasticity, εr, is

largely unchanged. This suggests that our results are likely to be robust to more flexible

models of worker preferences in which housing is not a constant share of expenditure.

Second, our estimates of the spatial rent premium do not control for some important

dwelling attributes, or characteristics, such as land area and construction quality. Aspects

of our methodology, however, help mitigate the potential bias introduced by unobserved

dwelling attributes. Persistent differences in rent levels between locations, for example,

are captured in the individual effects, ζri . This means that bias would need to originate in

variation in unobserved dwelling attributes that affects locations differently over time. To

the extent that temporal variation in unobserved dwelling attributes is correlated with

income, then this potential bias is likely to be addressed by Model S3, which includes

income in the rent equation. Third and finally, we do not address the risk of endogeneity.

Our reading of the literature on wage and rent elasticities, however, leaves us somewhat

sanguine about this risk. Combes, Duranton, Gobillon and Roux (2010), for example, find

endogeneity in the quantity of labour supply has only modest effects on wage elasticities.

Similarly, Combes, Duranton and Gobillon (2019) estimate the elasticity of urban house

prices with respect to population in France and report estimates of 0.176–0.304 for

pooled OLS (c.f. Table 4, p. 1573) versus 0.215–0.267 for instrumental variables (c.f.

Table A1, p. 1586). As our estimated income and rent elasticities are close to those

reported in other studies, including those that control for endogeneity, we suggest the

latter is likely to pose only a small risk to our results and findings.

23 The importance of access to airports may be amplified by New Zealand’s relative international remoteness,
complex domestic geography, and lack of long-distance passenger rail services.
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6 Conclusion

When thinking about agglomeration economies, our results suggest that “The Garden of

Forking Paths” analogy may need an extra dimension: A multiplicity of outcomes can

arise over both time and space. That said, the temporal variation we find is relatively

subtle: From a nadir in 1981, estimates peak in 1991, and then gradually decline. In

addition to technological shocks, like ICT, these trends may reflect the lingering effects

of major economic policy reforms implemented in the 1980s. Between 1991 and 2006,

agglomeration economies in production and consumption fell by approximately 0.7% and

1.4%, respectively. After 2006, however, our estimates remain stable; contrary to popular

claims, technology does not appear to have made the world “flatter”. In contrast, we find

evidence of more notable spatial variation in agglomeration economies: Larger cities in

New Zealand offer net benefits in production, but not in consumption, whereas small

towns that are close to large cities, or “satellites”, experience agglomeration economies

that are stronger than average. Taken together, our results suggest that agglomeration

economies are rather stable—at least in recent decades—but cast some doubt on their

transferability—at least within New Zealand. The latter is especially relevant to smaller

towns, where our results reveal a wide range of outcomes, or “forking paths.”

To the extent that our findings raise questions over the stability and transferability of

agglomeration economies, they also highlight the need for further research and nuanced

policies. More research is needed to trace the evolution of agglomeration economies

within countries and over time and, where possible, explain the resulting variation

in estimates. We also repeat calls for more research into agglomeration economies

in both production and consumption. Although agglomeration seems to enhance the

productivity of most cities and towns in New Zealand, we find more tenuous benefits for

consumption. Whether this reflects the inevitable corrosion of amenity by congestion,

or a failure to adopt effective policies to mitigate congestion, remains an open question.

In terms of empirical measurement, we see merit in exploring agglomeration indicators

that respond to multi-modal transport costs—rather than simply time or distance—

and consider proximity to specialised infrastructure and institutions, like airports and

universities. Finally, we underscore the need for nuanced urban policies. Although we

find evidence of stronger agglomeration economies in satellite locations, for example,

these locations typically have small populations and, presumably, less congestion—both

of which are endogenous attributes that may be affected by policies. The latter would,

ideally, recognise and respond to these temporal and spatial forks in the road.
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