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Abstract

We propose a novel Dynamic Conditional Correlation model with Conditional
Linear Information Pooling (CLIP-DCC) which endogenously determines an opti-
mal degree of commonality in the correlation innovations. Effectively, this allows a
part of the update of each individual correlation to parsimoniously depend on the
information contained in all asset return pairs. In contrast to existing approaches,
such as the Dynamic EquiCOrrelation (DECO) model, the CLIP-DCC model does
not restrict long-run behavior, thereby naturally complementing target correlation
matrix shrinkage approaches. Empirical findings suggest substantial benefits for a
minimum-variance investor in real-time. Combining the CLIP-DCC model with tar-
get shrinkage yields additive improvements, confirming that they address distinct
parts of uncertainty of the conditional correlation matrix.
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van der Wel and the participants at the IAAE 2021 annual conference (online, June 2021), the 27th CEF
conference (online, June 2021), the 4th annual workshop on Financial Econometrics (Örebro, November
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1 Introduction

The conditional covariance matrix of asset returns is of crucial importance for portfolio

construction and risk management, among others. Multivariate ARCH-type models, in

particular the Dynamic Conditional Correlation (DCC) model by Engle (2002), have be-

come a popular tool to model and forecast time-varying conditional covariance matrices.

However, the accuracy of covariance matrix estimates is known to deteriorate as the num-

ber of assets grows. A key contributing factor within the DCC model is the noisy nature

of the outer product of the standardized returns that is used to update the correlations.

As noted by Engle and Kelly (2012), this causes the DCC update of each individual con-

ditional correlation to only draw from its own cross-product of asset returns, leaving the

(potentially useful) information on the correlations between other assets untapped.

In this paper, we propose a DCC model with Conditional Linear Information Pooling

(CLIP-DCC) to better handle a large cross-section of assets. Inspired by the Dynamic

EquiCOrrelation (DECO) model of Engle and Kelly (2012), the CLIP-DCC model intro-

duces cross-sectional commonality in the update of the conditional correlations. Specifi-

cally, the CLIP-DCC model can be represented as a DCC model with an additional ‘pooled’

innovation term based on the average cross-product of all pairs of asset returns. This allows

the CLIP-DCC update of any correlation to parsimoniously exploit the information avail-

able in the full cross-section of assets. The pooling strength can be determined endogenously

during likelihood estimation. The CLIP-DCC model offers two important advantages over

the DECO model. First, the CLIP-DCC model still allows for cross-sectional differences in

the conditional correlations, instead of fully equating all of them, which may be empirically

unrealistic. Second, the CLIP-DCC model does not impose (implicit) restrictions on the

long-run correlation matrix, whereas the DECO model structures it to be an equicorrela-

tion matrix as well. By preserving the long-run correlation matrix the CLIP-DCC model

complements approaches that shrink the correlation targeting matrix (Engle et al., 2019).

In fact, we may combine the CLIP-DCC model with target shrinkage, allowing for the

separate and independent handling of the uncertainty of the long-run correlation matrix

and the short-run movements around it.

Furthermore, we show that the pooling aspect of the CLIP-DCC model can be further
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refined using a block structure, similar to how the Block-DECO model loosens the DECO

constraint, see Engle and Kelly (2012). An important theoretical contribution is that

we prove that the resulting block-based pooling operation preserves positive definiteness.

Practically, this means that the CLIP-DCC framework can easily incorporate relevant group

structure information if available.

We demonstrate in a Monte Carlo exercise that Composite Likelihood (CL) can be

used to reliably estimate the parameters in the CLIP-DCC model, in line with the findings

of Pakel et al. (2021) for the DCC model. We empirically evaluate the performance of

our CLIP-DCC model in an application to daily US large-cap stock returns for the pe-

riod February 1981 until December 2020, constructing global minimum variance portfolios

(GMVP) in real-time. For a wide span of portfolio dimensions, ranging from 10 to 500

stocks, we find that the CLIP-DCC model significantly reduces out-of-sample portfolio

variance compared to the DCC model, whereby the relative improvements increase as the

portfolio dimension grows. In addition, the CLIP-DCC model greatly outperforms the

DCC model during periods of financial turmoil, such as the 2008 Great Financial Crisis.

Combining the CLIP-DCC model with non-linear shrinkage (NLS) of the target, using the

method of Ledoit and Wolf (2020), further improves performance. For example, for the

portfolio dimension N = 500 we obtain an out-of-sample GMVP annualized standard de-

viation of 6.40(6.62) and 6.12(6.37) for the DCC and the CLIP-DCC model with(out) NLS

of the target, respectively. This confirms that these methods address different sources of

uncertainty in the conditional correlation estimates and are in fact complementary.

This paper builds upon a rich literature on multivariate volatility modeling (e.g. Bauwens

et al., 2006; Silvennoinen and Teräsvirta, 2009). In particular, this paper is connected to ex-

tensions of the DCC model that help accommodate large cross-sections. This includes linear

and non-linear shrinkage of the target correlation matrix (Hafner and Reznikova, 2012; En-

gle et al., 2019), CL estimation (Pakel et al., 2021), the use of intraday high and low prices

(De Nard et al., 2022) and projection methods (Llorens-Terrazas and Brownlees, 2022).

Our paper is most closely related to the (Block-)DECO model by Engle and Kelly (2012).

The outline of this paper is as follows. Section 2 develops the CLIP-DCC model, showing

how it can be obtained from the combination of a DCC model with an appropriately scaled
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(Block-)DECO-type model. A simulation study to assess the quality of the CL estimator for

the CLIP-DCC model is carried out in Section 3. Section 4 presents a real-time application

to daily stock data and Section 5 concludes. Finally, proofs and additional results are

provided in the online Appendix.

2 Methodology

2.1 The DCC and DECO Models

Let ri,t denote the return on asset i at time t for i = 1, . . . , N and t = 1, . . . , T , and let

rt := (r1,t, . . . , rN,t)
′. For simplicity, we follow the standard practice to assume that the

returns have mean zero. We focus on models for the conditional covariance matrix of rt,

denoted as Σt := E[rtr
′
t|It−1], where It−1 is the information set at time t− 1. Specifically,

we adopt the Dynamic Conditional Correlation (DCC) framework of Engle (2002) using

the decomposition

Σt = Dt Rt Dt, (1)

where Dt is an N ×N diagonal matrix with the conditional volatilities of the asset returns

on the diagonal, and Rt is the N ×N conditional correlation matrix. Decomposition (1) is

convenient as it facilitates (i) flexible covariance dynamics by separately modeling the con-

ditional volatilities and correlations and (ii) sequential estimation of the volatility models

and the correlation model, preventing the estimation of many parameters simultaneously.

In the DCC approach, the (squares of the) diagonal elements of Dt are typically mod-

elled by conventional GARCH-type specifications (Bollerslev, 1986). For example, in the

empirical application in Section 4, we use the GJR-GARCH model (Glosten et al., 1993)

such that the conditional variance σ2
i,t := E[r2i,t|It−1] is given by

σ2
i,t = wi + (ai + ci1[ri,t−1 < 0])r2i,t−1 + biσ

2
i,t−1, (2)

with 1[A] an indicator function for the eventA and the coefficients wi, ai, ci and bi satisfying

wi > 0, ai > 0, bi ≥ 0, and ai + ci/2 + bi < 1.

The dynamics of the conditional correlation matrix Rt in the DCC model make use of
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the N × 1 vector of standardized (or devolatilized) returns

zt = D−1t rt. (3)

Using (1) we find that E[ztz
′
t|It−1] = Rt, such that the outer product of the devolatilized

returns ztz
′
t provides an unbiased ex-post proxy of the true conditional correlation matrix.

The baseline DCC specification of Engle (2002) is given by

QDCC
t = (1− α− β) C + α zt−1z

′
t−1 + βQDCC

t−1 , (4)

RDCC
t = diag(QDCC

t )−1/2 QDCC
t diag(QDCC

t )−1/2, (5)

where diag(A) denotes the function that returns a diagonal matrix containing the diagonal

elements of the N×N matrix A, α and β are scalar parameters satisfying α > 0, β ≥ 0 and

α+β < 1, and C is a (symmetric) positive definite matrix. Note that E(RDCC
t ) ≈ C, such

that C can be interpreted as the long-run correlation matrix, whereby the approximate

nature stems from the re-scaling in (5) to go from QDCC
t to RDCC

t . This re-scaling is

necessary because, while QDCC
t is guaranteed to be positive definite, its diagonal elements

are (close to but) not necessarily equal to unity. For this reason, QDCC
t is typically referred

to as a pseudo-correlation matrix. Aielli (2013) proposes a correction for this scaling step,

but Engle et al. (2019) among others note that the effects are not relevant in empirical

applications; we therefore do not pursue this correction here. An interesting alternative for

the re-scaling step is the projection method of Llorens-Terrazas and Brownlees (2022).

While the DCC innovation ztz
′
t is an unbiased estimator of Rt, it nevertheless provides

only highly noisy updates of the individual conditional correlations. The Dynamic Equicor-

relation (DECO) model by Engle and Kelly (2012) dramatically restricts the correlation

matrix by assuming that all conditional correlations are equal. Practically, this restriction

is implemented by applying a transformation to the conditional correlation matrix provided

by the DCC-recursion given by (4) and (5) as follows

ρt =
1

N(N − 1)
ι′N(RDCC

t − IN)ιN , (6)

RDECO
t = ρtJN + (1− ρt)IN , (7)

where ιN is an N × 1 vector of ones, IN is the N ×N identity matrix and JN is an N ×N

matrix of ones. The form of (6) and (7) shows that the dynamic equicorrelation matrix
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RDECO
t is constructed using the (cross-sectional) average of the conditional correlations

of RDCC
t , denoted by ρt. Because of the linearity of (6) and (7), this means that all the

conditional correlations of the DECO model are approximately innovated by the average

of the cross-products of ztz
′
t. The main practical allure of this model is that analytic

expressions are available for the inverse and determinant of RDECO
t . This dramatically

speeds up likelihood estimation of the parameters α and β, see Engle and Kelly (2012) for

details.

To visualize the differences and implications of the DCC and DECO models, we con-

sider an empirical example and estimate both models on daily returns of the 30 industry

portfolios constructed by Kenneth French, from January 2, 2000 until December 31, 20091.

The top panels of Figure 1 depict the dynamic conditional correlations between the first

three industries, which are Food, Beer and Smoke.

Figure 1 shows that almost all correlation estimates lie in the positive domain, reflecting

positive co-movement of these industry portfolios. Comparing the top two panels, we make

two important observations. First, the dynamic correlation estimates of the DECO model

lie on the 3-dimensional ‘45 degree’ line due to the equicorrelation structure, while those

of the DCC model form a fairly dispersed cloud. The DCC and DECO models are thus

extremes on the bias-variance spectrum. By this we mean that, on the one hand the DCC

model is innovated using ztz
′
t, which is an unbiased, yet very noisy, ex-post proxy of the

true conditional correlation matrix Rt. On the other hand, the DECO model equates all

conditional correlations and is therefore approximately innovated by the average of the

cross-products of ztz
′
t. This obviously reduces variance but potentially introduces bias in

case the equicorrelation assumption is not appropriate. Therefore, it might be worthwhile

exploring a setup that can fill this gap and provide a more ‘optimized’ level of commonality

in the update-mechanism.

Second, we observe that the DECO model also implicitly warps the unconditional cor-

relation matrix as a direct consequence of the structure imposed on the conditional corre-

lations. That is, the DCC model is centered around an unrestricted long-run, estimated

here using the sample covariance matrix of the devolatized returns Ĉ = T−1
∑T

t=1 ztz
′
t with

1Data is obtained from: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Figure 1: Selection of dynamic correlation estimates of the DCC, DECO, sdDECO and

CLIP-DCC models using thirty industry portfolios, January 2000 until December 2009.

Note: This figure contains the dynamic conditional correlation estimates of the Food (1), Beer (2)

and Smoke (3) industry portfolios. The correlation models are estimated using Composite Likelihood

(except the DECO model, which is estimated using the full likelihood) on the devolatilized returns

obtained from GJR-GARCH(1,1) specifications and with target Ĉ = T−1
∑T

t=1 ztz
′
t.

[ĉ12 ĉ13 ĉ23] = [0.621 0.436 0.344], which is the default estimator of C in the literature. In

contrast, the DECO model is centered around an equicorrelation matrix with estimated

equicorrelation parameter ρ̂ = 0.537. To make this warping explicit, note that

E[RDECO
t ] = E[ρtJN + (1− ρt)IN ] = ρ̄JN + (1− ρ̄)IN , (8)

ρ̄ = E[ρt] =
1

N(N − 1)
ι′N(E[RDCC

t ]− IN)ιN , (9)

where ρ̄ denotes the long-run average correlation. Due to the linearity of the transformation

from RDCC
t to RDECO

t as given by (6) and (7), the long-run E[RDECO
t ] is thus structured

in the same way as the conditional correlation matrices RDECO
t .
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Intuitively, however, the conditional and unconditional correlation matrix could likely

benefit from different levels of structure. This stems from the differences in effective sample

size used for their estimation. Namely, estimation of the long-run correlation matrix can

draw from the entire sample. Conversely, the conditional correlations can only tap from a

much smaller selection of recent observations. Within our model framework this is reflected

by the fact that Ĉ uses the entire sample of T observations, while the DCC recursion in (4)

amounts to an exponentially weighted moving average. In particular, if the concentration

ratio N/T is relatively small, then the estimator Ĉ will be fairly accurate, demanding little

additional structure. On the other hand, if N itself is not small or if the autocorrelation

of the conditional correlations is low, then the conditional correlation matrix can likely

benefit substantially from structure. Decoupling the structure imposed on the conditional

and unconditional correlations would essentially allow us to separately deal with uncertainty

of the long-run correlation matrix and the deviations therefrom.

The main contribution of this paper, namely the DCC model with Conditional Linear

Information Pooling (CLIP-DCC), is the result of addressing these two concerns. Specif-

ically, we first introduce a scaled DECO-type model to undo the warping of the long-run

dynamics in Section 2.2 and, second, consider a mixture setup to provide a more appro-

priate level of cross-sectional structure for the conditional correlations in Section 2.3. Due

to the linearity of the operations, we show that the CLIP-DCC model amounts to a DCC

model with an additional ‘pooled’ innovation term, such that implementation is straightfor-

ward. Section 2.4 then shows how the CLIP-DCC model may be extended to incorporate

relevant group structure information using a block structure.

2.2 The Scaled Direct DECO Model

In this section, we introduce a model similar to the DECO model, but with the structure

imposed at the pseudo-correlation level Qt. Moreover, the model involves a recentering

step to undo the implicit warping of the long-run correlation matrix. We argue that it is

generally more convenient to apply structure in the pseudo-correlation space Qt than at the

correlation level Rt for two reasons. First, one can consider transformations that preserve

positive definiteness but do not necessarily maintain the unit diagonal, without having to
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standardize twice. The re-centering step is an example of such a transformation. Second,

imposing structure at the pseudo-correlation level can come with large computational gains.

To facilitate the discussion we begin by reviewing the concept of a compound symmetric

(CS) matrix, which is closely related to the equicorrelation matrix.

Definition 1 (Compound-symmetric matrix) A square matrix S of dimension N×N

is a compound symmetric matrix if and only if it can written be as

S = oJN + (d− o)IN , (10)

that is, all diagonal elements of S are equal to d ∈ R, while all off-diagonal elements are

equal to o ∈ R.

Proposition 1 (Positive-definiteness of CS matrices) A CS matrix S of dimension

N × N with N ≥ 2, diagonal element d ∈ R and off-diagonal element o ∈ R is positive

definite if and only if d > 0 and o
d
∈ ( −1

N−1 , 1). Additionally, if S is positive definite then

diag(S)−1/2 S diag(S)−1/2 is an equicorrelation matrix with equicorrelation o
d
.

Next, we introduce a transformation that can be used to construct a CS matrix from

an arbitrary square matrix.

Definition 2 (Compound-symmetry transformation) For any A ∈ RN×N we define

the mapping θ(A) : RN×N → RN×N as

θ(A) := θO(A)JN + [θD(A)− θO(A)]IN , (11)

where the scalars θD(A) and θO(A) are the diagonal and off-diagonal averages of A, that

is for N ≥ 2,

θD(A) :=
1

N

N∑
i=1

aii, (12)

θO(A) :=
1

N(N − 1)

N∑
i=1

N∑
j=1, j 6=i

aij, (13)

where aij is the ij-th element of A. If N = 1, we set θ(A) = θD(A) = θO(A) = A.
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Note that RDECO
t = θ(RDCC

t ), such that θ(·) can be interpreted as an intuitive general-

ization of the DECO transformation in (6) and (7) that accommodates covariance matrices,

instead of only correlation matrices. The mapping θ(·) has several convenient properties,

as summarized in the following proposition.

Proposition 2 (Linearity and positivity of the CS transformation) θ(·) is a linear

mapping that preserves positive (semi-)definiteness, that is for A ∈ RN×N we have that

1. θ(A + B) = θ(A) + θ(B), ∀B ∈ RN×N ,

2. θ(kA) = kθ(A), ∀k ∈ R,

3. If A is positive (semi-)definite, then θ(A) is positive (semi-)definite.

Applying the compound symmetry mapping θ(·) to QDCC
t as given in (4), we can

construct a ‘direct’ DECO (dDECO) model. That is, we define QdDECO
t := θ(QDCC

t ) and

using Proposition 2 we obtain the recursion

QdDECO
t = (1− α− β)θ(C) + αθ(zt−1z

′
t−1) + βQdDECO

t−1 , (14)

where QdDECO
t is positive definite if QDCC

t is positive definite. Standardization of QdDECO
t

by dividing by its diagonal elements will yield a valid equicorrelation matrix (see again

Proposition 1). This model is therefore highly similar to the DECO model as it is based on

the same equal pairwise correlations assumption. The difference between the two models is

a slightly different implementation of this constraint, namely, the dDECO model switches

the order of standardization and pooling compared to the DECO model.

First imposing structure and then standardizing, as in the dDECO model, greatly

reduces computational demands. This is because QdDECO
t has only two unique elements,

namely its diagonal element dt := θD(QDCC
t ) and its off-diagonal element ot := θO(QDCC

t ),

whereby θD(·) and θO(·) are linear mappings. Instead of tracking the N ×N matrix QDCC
t

in full, as needed for the DECO model, we thus only need to consider the two scalar

processes for dt and ot given by

dt = (1− α− β)θD(C) + αθD(zt−1z
′
t−1) + βdt−1, (15)

ot = (1− α− β)θO(C) + αθO(zt−1z
′
t−1) + βot−1, (16)
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which are driven by the diagonal and off-diagonal mean of the DCC innovation zt−1z
′
t−1,

respectively. Afterwards, QdDECO
t can be obtained from dt and ot as in (10).

Due the linearity of θ(·), we have that both the DECO model and the dDECO model

have (approximately) displaced the long-run correlation matrix from C to θ(C), an equicor-

relation matrix if C has a unit diagonal. We therefore propose a multiplicative re-centering

step to undo the warping of the long-run correlation matrix. Specifically, we construct the

scaled dDECO (sdDECO) model as follows

QsdDECO
t := [C1/2θ(C)−1/2]QdDECO

t [θ(C)−1/2C1/2], (17)

where C1/2 and θ(C)−1/2 denote the symmetric square-root of C and θ(C)−1 obtained using

the eigenvalue decomposition. Symmetry and positive definiteness of QsdDECO
t is inherited

from the positive definiteness of QdDECO
t and immediately apparent.

Inserting (14) in (17), the update recursion for QsdDECO
t can be written directly as

QsdDECO
t = (1− α− β)C + αZt−1 + βQsdDECO

t−1 , (18)

where Zt−1 is a positive semi-definite innovation term (see again Proposition 2) given by

Zt−1 = [C1/2θ(C)−1/2]θ(zt−1z
′
t−1)[θ(C)−1/2C1/2], (19)

where E(θ(zt−1z
′
t−1)) = θ(E(zt−1z

′
t−1)) ≈ θ(C), such that E(Zt−1) ≈ C. Here the ap-

proximate nature stems from minor differences arising from standardization. From there

it is straightforward to see that the sdDECO model, by construction, has again center of

movement C. Effectively, the conditional correlations of the sdDECO model are there-

fore updated using the average of the cross-products of zt−1z
′
t−1, similar to the (d)DECO

model, but with an additional scaling to preserve the long-run correlation matrix. Because

the sdDECO model leaves the unconditional correlations unaltered, the pooling can be

interpreted to be ‘conditional’.

2.3 The CLIP-DCC Model

Although the sdDECO model preserves the long-run correlation target, it still imposes a

large amount of structure on the conditional correlations as all time-variation is generated
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by two scalar processes, see again (15)-(17). Therefore, to overcome our other concern and

provide a more nuanced amount of commonality in the individual correlation updates, we

now present the DCC model with Conditional Linear Information Pooling (CLIP-DCC).

Specifically, for the pseudo-correlation process QCLIP−DCC
t we consider a convex combina-

tion of QDCC
t and QsdDECO

t , that is

QCLIP−DCC
t = (1− ω)QDCC

t + ωQsdDECO
t , (20)

where ω ∈ [0, 1] is the mixture weight. Using (4) and (18) and assuming α and β are the

same for both processes, we may directly write the update recursion for QCLIP−DCC
t as

QCLIP−DCC
t = (1− α− β)C + α[(1− ω)zt−1z

′
t−1 + ωZt−1] + βQCLIP−DCC

t−1 , (21)

where Zt−1 is given by (19). It is straightforward to show that QCLIP−DCC
t is positive

definite if QDCC
t is positive definite and has center of movement C. Furthermore, re-

parameterization with α1 := α(1− ω) and α2 := αω yields,

QCLIP−DCC
t = (1− α1 − α2 − β)C + α1zt−1z

′
t−1 + α2Zt−1 + βQCLIP−DCC

t−1 , (22)

which reveals that, effectively, we are simply adding a pooling term Zt−1 to the DCC

recursion as an additional explanatory variable. As noted by Engle and Kelly (2012), the

correlations of the DCC model evolve essentially independently while those of the (d)DECO

model co-move perfectly. In contrast, the CLIP-DCC model allows for a more nuanced level

of cross-sectional dependence, with magnitude determined by the mixture weight ω.

Although intuitively one may think of the sdDECO component in (20) as a shrinkage

target for the conditional correlation matrix, our approach differs from traditional shrinkage

methods. Namely, we determine the optimal pooling intensity endogenously by estimating

ω simultaneously with the DCC model parameters (based on the likelihood, as discussed

in detail in Section 2.5), instead of relying on asymptotic theory or cross-validation. Sepa-

ration of the structure imposed on the conditional and unconditional correlation matrices

is crucial for this estimation process. This is because the sample correlation matrix Ĉ used

for targeting already provides the best estimate of the long-run C in-sample, such that

its optimal pooling intensity using maximum likelihood is near zero. As a result, a setup

where a dDECO component is used instead of an sdDECO component in (20), yields very
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small estimates of the mixture weight ω, effectively reducing the model to the base DCC

model. Structuring the long-run correlation matrix thus demands a different approach as

will be outlined in Section 2.5.

To illustrate the appeal of the CLIP-DCC framework, we again consider our empirical

example in Figure 1. The bottom left panel shows that the sdDECO model yields a line-type

movement pattern similar to the DECO model, but with center of movement Ĉ as in the

DCC model. The slight curvature of the sdDECO line is the result of the standardization

step from QsdDECO
t to RsdDECO

t . In addition, we observe in the bottom right panel that

the variability of the CLIP-DCC model is between that of the DCC and sdDECO models.

The estimated mixture weight ω̂ is equal to 0.514, such that the CLIP-DCC update relies

roughly equally on the unstructured innovation zt−1z
′
t−1 and the pooled innovation Zt−1,

see again (21).

Finally, it is interesting to remark that the estimated autoregressive coefficient β̂ is

lower for the CLIP-DCC model than for the DCC model (0.944 and 0.965, respectively),

while the estimated innovation coefficient α̂ is higher for the CLIP-DCC model compared

to the DCC model (0.056 and 0.029, respectively). For both models the sum α̂+ β̂ is close

to but strictly smaller than 1. Bollerslev et al. (2020), among others, find a similar pattern

when replacing ztz
′
t in (4) with more accurate realized estimators based on intraday data.

Because more aggressive updating leads to added variability, this explains why the visual

differences between the CLIP-DCC and DCC models are substantial, but perhaps slightly

smaller than expected from the large mixture weight ω̂. More importantly, this means that

the CLIP-DCC model is able to be more responsive to new data by countering the added

uncertainty with cross-sectional structure.

2.4 The Block-CLIP-DCC Model

In the presence of a clear group structure of the assets, one would like to use this information

in the estimation of the conditional correlation matrix. While the CLIP-DCC model does

not need any such information, we may extend our framework to exploit it when available.

That is, the mixture setup of the CLIP-DCC model and the block structure of the Block-

DECO model of Engle and Kelly (2012) can be seen as different solutions to the same
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cross-sectional structuring problem, which are not mutually exclusive.

Given a K-group partition n1, n2, . . . , nK of the cross-section of N assets such that

nj ∈ N+, j = 1, 2 . . . , K and
∑K

j=1 nj = N , we assume without loss of generality that

the data is ‘sorted’ such that the assets i = 1, . . . , n1 are in the first group, the assets

i = n1 +1, . . . , n1 +n2 are in the second group and so forth. For notational convenience, we

summarize this K-group information in the K × 1 vector G := [n1, n2, . . . , nK ]′. We now

introduce a mapping θBL(·, G) that can be used to turn a square matrix into a ‘K-block

compound symmetric matrix’ with group structure G.

Definition 3 (Block-CS transformation) For A ∈ RN×N with N ≥ 2, we define

θBL(A, G) =


θ(A∗11) τ(A∗12) · · · τ(A∗1K)

τ(A∗21) θ(A∗22) · · · τ(A∗2K)
...

...
. . .

...

τ(A∗K1) τ(A∗K2) · · · θ(A∗KK),

 , (23)

τ(V) = (
1

m1m2

ι′m1
Vιm2)Jm1×m2 , ∀V ∈ Rm1×m2 , (24)

where A∗ij for i, j = 1, 2 . . . , K is the ij-th ni × nj block of A using the block partition

G := [n1, n2, . . . , nK ]′, n1, n2, . . . , nK ∈ N+ and
∑K

j=1 nj = N .

In Definition 3, we observe that the diagonal blocks of θBL(A, G) are obtained by

applying the compound symmetry transformation θ(·) to the diagonal blocks of A. For

the off-diagonal blocks, we use the function τ(·), which returns a constant matrix with the

mean of the input matrix everywhere. Proposition 3 summarizes some useful properties of

θBL(·, G), matching the properties of θ(·) listed in Proposition 2.

Proposition 3 (Linearity and positivity of the block-CS transformation) θBL(·, G),

with G := [n1, n2, . . . , nK ]′, n1, n2, . . . , nK ∈ N+ and
∑K

j=1 nj = N , is a linear mapping that

preserves positive (semi-)definiteness, that is, for A ∈ RN×N with N ≥ 2 we have that

1. θBL(A + B, G) = θBL(A, G) + θBL(B, G), ∀B ∈ RN×N ,

2. θBL(kA, G) = kθBL(A, G), ∀k ∈ R,

3. If A is positive (semi-)definite, then θBL(A, G) is positive (semi-)definite.
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Using Proposition 3, we may repeat the steps in the previous sections and obtain Block-

dDECO, Block-sdDECO and Block-CLIP-DCC models by replacing θ(·) with θBL(·, G).

In practice, we may be unsure of the ‘best’ group structure and have multiple can-

didate structures. Therefore, we may also allow for multiple (distinct) block structures

simultaneously. That is, we can consider a mixture setup of the DCC model with L Block-

sdDECO models, each with a distinct group structure Gl, l = 1, 2, . . . , L. This then yields

L additional explanatory terms in the pseudo-correlation update recursion of the form

Bl,t−1 = [C1/2θBL(C, Gl)
−1/2]θBL(zt−1z

′
t−1, Gl)[θ

BL(C, Gl)
−1/2C1/2], (25)

where Bl,t−1 is a positive semi-definite (by Proposition 3) explanatory term with group

structure Gl, suitably scaled to preserve long-run dynamics (i.e. we have E(Bl,t−1) ≈ C).

2.5 Parameter Estimation and Target Shrinkage

We can estimate the parameters in the CLIP-DCC model using maximum likelihood in a

three-step procedure, following Engle (2002). The same procedure can be applied to all

other models considered in Section 2, including sdDECO and Block-CLIP-DCC. In the first

step, we estimate univariate GJR-GARCH models for each asset.

Second, we estimate the intercept matrix C, see again (4), with targeting by using

the sample covariance of the devolatilized returns. This prevents the likelihood estimation

of O(N2) parameters. It is well established that the quality of the sample correlation

matrix degrades as the concentration ratio N/T grows, see e.g. Ledoit and Wolf (2004).

We may therefore also consider alternative targeting procedures. For example, in our

empirical application, we consider the non-linear shrinkage (NLS) estimator by Ledoit and

Wolf (2020)2, which shrinks the sample correlation matrix at the eigenvalue level and has

theoretical as well as empirical advantages compared to linear shrinkage estimators (Engle

et al., 2019).

Third, we use Gaussian quasi-maximum likelihood (QML) to estimate the scalar pa-

rameters α, β and ω. In particular, following Pakel et al. (2021), we employ a Composite

2We make use of the code made available by Michael Wolf at

https://www.econ.uzh.ch/dam/jcr:11d24ab0-7ec2-4b3f-8ef4-7affaa727d25/analytical shrinkag.m.zip

15



Likelihood (CL) approach which approximates the full log likelihood using an average of

bivariate log likelihoods constructed from pairs of asset returns. Specifically, we use CL

estimation based on contiguous pairs, that is we pair asset 1 and 2, 2 and 3 and so forth.

This results in N − 1 bivariate log likelihoods whose average will be maximized. For the

DCC model, Pakel et al. (2021) find this yields highly similar parameter estimates as com-

pared to CL based on all N(N−1)/2 pairs, which is much more computationally intensive.

Because CL avoids multiplications, inverses and determinants with N × N matrices it is

computationally much cheaper than traditional full maximum likelihood (FML), especially

for large N . Moreover, Pakel et al. (2021) find that the estimates of α and β of the DCC

model are meaningfully biased towards 0 for realistic sample sizes when estimated using

FML, but not for CL. This bias for FML is found to rapidly increase with the dimension N .

3 Monte Carlo Simulation

To assess the quality of the CL estimator for the CLIP-DCC model, particularly in view

of the mixture weight ω, we conduct a Monte Carlo study using the setup of Pakel et al.

(2021). We simulate data from a CLIP-DCC DGP assuming a conditional multivariate

Gaussian distribution for N ∈ {10, 30, 100}, T = 2000, α = 0.05, β = 0.93 and ω ∈

{0, 0.25, 0.5, 0.75, 1}. This selection of mixture weights therefore includes the DCC model

(ω = 0 ) and the sdDECO model (ω = 1). For simplicity, we set all σi,t = 1 and do not

involve estimation of the univariate GARCH models. For the intercept matrix C, we use

Ci,j = πiπj for i 6= j and Ci,i = 1 for i, j = 1, . . . , N , where the πi are drawn from a

truncated normal distribution with mean 0.5 and standard deviation 0.1 and truncation

interval [0.1, 0.9].

Table 1 contains the Monte Carlo means and standard deviations of the parameter

estimates of α, β and ω, obtained by estimating the CLIP-DCC model on the simulated

data using CL estimation based on 500 replications. We observe for all considered settings

and for all three parameters that the mean estimate is very close to the true parameter

value. In particular, even for ω = 0 and ω = 1, when the CLIP-DCC model collapses to the

DCC model and the sdDECO model, respectively, the CL approach performs satisfactory.

Additionally, we find that the Monte Carlo standard deviations decrease as N increases.
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Table 1: Monte Carlo means and standard deviations of the parameters of the CLIP-DCC

model estimated using CL.
ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1

α 0.052 0.050 0.051 0.050 0.051

(0.004) (0.006) (0.008) (0.010) (0.011)

N = 10 β 0.928 0.927 0.926 0.925 0.925

(0.005) (0.008) (0.012) (0.017) (0.022)

ω 0.037 0.240 0.502 0.761 0.986

(0.051) (0.097) (0.087) (0.068) (0.026)

α 0.051 0.050 0.050 0.051 0.050

(0.003) (0.005) (0.006) (0.008) (0.009)

N = 30 β 0.928 0.927 0.927 0.926 0.927

(0.003) (0.005) (0.007) (0.012) (0.016)

ω 0.028 0.242 0.500 0.763 0.994

(0.040) (0.081) (0.064) (0.040) (0.012)

α 0.051 0.050 0.050 0.051 0.050

(0.002) (0.004) (0.005) (0.006) (0.008)

N = 100 β 0.928 0.928 0.926 0.925 0.927

(0.002) (0.003) (0.005) (0.010) (0.014)

ω 0.026 0.243 0.503 0.763 0.999

(0.034) (0.069) (0.047) (0.029) (0.004)

Note: This table contains the average parameter estimates (over the replications) of the CLIP-DCC

model estimated using CL. The standard deviations of the parameter estimates are displayed in paren-

theses below the averages. The data is simulated from a CLIP-DCC model with α = 0.05, β = 0.93,

ω ∈ {0, 0.25, 0.5.0.75, 1}, N ∈ {10, 30, 100} and T = 2000 using 500 replications.

This suggests that the potential efficiency loss of CL decreases as N becomes large, in

line with the results of Pakel et al. (2021). Furthermore, we find in unreported additional

simulations for different values of T that bias tends to decrease as T grows. Finally, we

remark that the amount of skewness and excess kurtosis of the parameter estimates is

mostly mild except when the true mixture weight ω is at either of the bounds (ω = 0 or

ω = 1), which naturally compresses the distribution of ω̂. These findings reassure us that

the CLIP-DCC model parameters may be effectively estimated using the CL approach.
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4 Empirical Application

4.1 Data and Empirical Set-up

We examine the empirical usefulness of the CLIP-DCC model and its interaction with

shrinkage of the target correlation matrix in an application to portfolio construction for US

equity. We collect daily stock prices from the Center for Research in Security Prices (CRSP)

database for the period from February 6, 1981 until December 31, 2020 and consider a

wide range of portfolio sizes with N ∈ {10, 30, 50, 100, 300, 500}. The investment universe

is (slowly) varying over time, in the sense that at each estimation date (see below) we

select the N stocks with the highest market capitalization, similar to Engle et al. (2019).

Note that for N = 30, 100, and 500 this roughly picks the constituents of the Dow Jones

Industrial Average (DJIA), the S&P 100 and the S&P 500 indexes, respectively.

The parameters in the CLIP-DCC and alternative correlation models are estimated

using a rolling window of 2500 observations, using devolatilized returns obtained from

univariate GJR-GARCH models as given in (2). For computational purposes the models are

re-estimated every 21 trading days using CL based on contiguous pairs with alphabetically

sorted stocks according to their ticker symbols, similar to Pakel et al. (2021). At each

estimation date, we use the N largest stocks with the additional requirement that closing

prices are available for both the complete estimation window as well as 21 days ahead for

evaluation purposes. This yields exactly 360 estimation dates and 7560 evaluation days.

4.2 Evaluation

In the absence of high quality ex-post measures, we follow the common practice of indirect

evaluation of the conditional correlation matrices by using them to construct portfolios,

see e.g. Engle and Kelly (2012) and Engle et al. (2019). Specifically, we consider the global

minimum variance portfolio (GMVP). This portfolio is popular due to its simplicity and its

independence of the expected return, which empirically is often poorly estimated (Michaud,

1989). The analytical solution for the GMVP weight vector ut is given as

ut =
Σ−1t ιN

ι′NΣ−1t ιN
, (26)
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where Σt denotes the covariance matrix at time t. For our application, we consider a daily

re-balancing approach whereby we make new GMVPs every day using one-step ahead fore-

casts of the conditional covariance matrix. These forecasts can be obtained by combining

correlation matrix forecasts with the diagonal matrix of volatility forecasts obtained from

the GJR-GARCH models, see again (1). Filling in the covariance matrix forecasts in (26)

then yields feasible estimators of the GMVP weights.

In terms of evaluation, we consider the (annualized) average (AV) and the (annualized)

standard deviation (SD) of the out-of-sample daily portfolio log returns as well as the

corresponding information ratio IR := AV/SD. Naturally, since the objective of the GMVP

is to minimize variance, we are mostly interested in the out-of-sample standard deviation.

To assess whether the differences in SDs resulting from different correlation models are

significant, we employ the test by Ledoit and Wolf (2011) based on heteroskedasticity-

and-autocorrelation corrected standard errors. For robustness, we also consider two mean-

variance (MV) portfolios and the quasi-likelihood (QLIKE) loss, see Patton and Sheppard

(2009), in Appendix B. Qualitatively, our findings there are similar to the main results

presented below.

4.3 Parameter Estimates

Table 2 contains average parameter estimates and average standard errors across the esti-

mation dates of the different correlation models for the investment universe N = 100. To

quantify time-variation, we also present the min-max ranges of the parameter estimates.

Findings for the other portfolio sizes are highly similar and not displayed for brevity.

We observe that the average parameter estimates α̂ and β̂ are fairly standard. That

is, we find small values of α̂, large values of β̂, and a sum close to 1. Comparing the

parameter estimates of the DCC model to the estimates of the pooled models, we note that

the latter admit a larger α̂ and a smaller β̂. This reveals that the pooled models require less

smoothing of the conditional correlations over time as a consequence of the imposed cross-

sectional structure. In addition, for the CLIP-DCC model, we note that α̂1 = α̂(1− ŵ), the

parameter for the DCC innovation term zt−1z
′
t−1, see (22), is comparable to the parameter

estimate α̂ of the DCC model. Therefore, despite the addition of the pooled innovation
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Table 2: Average parameter estimates for the different DCC models for N = 100, December

1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC

α̂ 0.015 [0.006, 0.050] 0.039 [0.007, 0.112] 0.043 [0.008, 0.138] 0.040 [0.009, 0.136]

(0.006) (0.017) (0.018) (0.017)

β̂ 0.969 [0.858, 0.991] 0.945 [0.794, 0.991] 0.944 [0.795, 0.991] 0.948 [0.800, 0.989]

(0.014) (0.025) (0.025) (0.022)

ω̂ 0.653 [0.474, 0.767]

(0.186)

α̂1 0.012 [0.004, 0.035]

(0.006)

α̂2 0.028 [0.005, 0.102]

(0.015)

Note: This table contains the average parameter estimates of the DCC, dDECO, sdDECO and CLIP-

DCC models across the different estimation windows for N = 100. In addition, the minimum and

maximum parameter estimates and the average estimated standard errors are displayed in brackets

behind and in parentheses below the average parameter estimates, respectively. We estimate the models

every 21-days using a moving window of length T = 2500 for a total of 360 estimation moments.

term Zt−1, the contribution of the DCC innovation term is largely maintained in the CLIP-

DCC model, while the autoregressive parameter estimate β̂ is reduced somewhat. This

highlights the simultaneous bias-variance trade-off in the time dimension and the cross-

sectional dimension as a result of the joint estimation of the smoothing parameters α and

β and the pooling parameter ω.

For the CLIP-DCC model, we find that the average estimate of the mixture weight

ω̂ is equal to 0.653, indicating that the sdDECO component is found to dominate the

DCC component, see (20). In line with this, we have that α̂2 = α̂ω̂ is more than twice

as large as α̂1 = α̂(1 − ω̂) on average, indicating that the pooled innovation term Zt−1 is

found to be more informative than the unstructured DCC innovation zt−1z
′
t−1, see again

(22). All these findings are highly comparable with those of the empirical example in the

methodology section using industry portfolios.

Finally, the min-max ranges indicate that the parameter estimates are subject to some

time-variation. Although this is not necessarily insightful due to the changing investment

universe, we do note a gradual increase of the mixture weight ω̂ over time combined with a
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sharper decrease in the persistence α̂+ β̂ after the 2008 Great Financial Crisis. The former

observation suggests a mild increase in correlation co-movement over time.

4.4 Portfolio Performance

Table 3 presents summary statistics of the daily out-of-sample log returns of the GMVPs

constructed using the different models as well as the 1/N portfolio for comparison. First

and foremost, we find that the CLIP-DCC model has the lowest out-of-sample SD for all

considered portfolio sizes, outperforming all other correlation models and the 1/N port-

folio. The SDs of the GMVPs decline as the portfolio dimension N grows, in line with

the increasing possibilities for diversification. Moreover, we observe that the relative im-

provements of the CLIP-DCC model compared to the DCC model increase with N as well.

That is, for N = 10 the improvements are relatively minor, with an SD of 15.392 for the

CLIP-DCC model compared to 15.473 for the DCC model. By contrast, the improvements

for N = 500 are much larger with an SD of 6.375 versus 6.621 for the CLIP-DCC and the

DCC models, respectively. These reductions in SDs of the CLIP-DCC model compared

to the DCC model are found to be highly significant for all but the smallest portfolio size

N = 10, which is only significant at the ten percent level. This suggests that allowing for

commonality in the dynamics of the conditional correlations becomes more important as

the cross-sectional dimension increases.

Second, we observe that the dDECO model performs poorly compared to the other

models in all metrics, while the sdDECO model delivers comparable performance to the

DCC model. This suggests that imposing an equicorrelation structure on the long-run

correlation matrix indeed incurs a too high bias for the reduction in variance obtained. It

also indicates that the variance reduction by the structure of the sdDECO model roughly

cancels against the bias incurred relative to the DCC model. The out-performance of the

CLIP-DCC model is the result of allowing for an intermediate solution, providing a more

optimized level of structure.

To further compare the DCC and CLIP-DCC models, we investigate the time course

of their difference in performance. Figure 2 presents the difference in cumulative out-of-

sample GMVP variance between the two models. Specifically, we subtract the cumulative
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Table 3: Daily out-of-sample GMVP performance constructed using different DCC models

for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N

AV 4.856 3.758 5.778 5.272 7.283

N = 10 SD 15.473 15.745 15.480 15.392∗ 19.167

IR 0.314 0.239 0.373 0.343 0.380

AV 6.050 5.272 6.339 6.243 8.041

N = 30 SD 13.901 14.846 13.842 13.661∗∗∗ 18.457

IR 0.435 0.355 0.458 0.457 0.436

AV 4.506 3.198 3.792 4.221 8.458

N = 50 SD 13.060 14.448 13.151 12.842∗∗∗ 18.271

IR 0.345 0.221 0.288 0.329 0.463

AV 2.981 1.356 1.317 2.553 8.273

N = 100 SD 10.892 13.134 10.989 10.726∗∗∗ 18.225

IR 0.274 0.103 0.120 0.238 0.454

AV 6.239 1.654 2.514 5.418 9.034

N = 300 SD 7.986 11.163 7.876 7.750∗∗∗ 17.975

IR 0.781 0.148 0.319 0.699 0.503

AV 5.108 0.820 1.672 4.554 9.558

N = 500 SD 6.621 9.137 6.476 6.375∗∗∗ 17.961

IR 0.771 0.090 0.258 0.714 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information

ratio (IR) of the out-of-sample daily log returns for the GMVPs constructed using different dynamic

correlation models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The

out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using

an estimation window of 2500 days and re-estimation of the parameters every 21 days. A significant

decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is

indicated with a *,** and *** for a p−value below 0.1, 0.05 and 0.01, respectively, using the two-sided

test by Ledoit and Wolf (2011) with HAC standard errors.

out-of-sample variance, as proxied by the sum of the GMVP squared log returns, of the

CLIP-DCC model from the DCC model. A higher value therefore reflects a larger gain

from the use of the CLIP-DCC framework relative to the DCC model.
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Figure 2: Difference in cumulative out-of-sample GMVP variance between the DCC and

CLIP-DCC model, December 1990 until December 2020.

Note: This figure contains for different investment universe sizes the evolution of the difference in

cumulative out-of-sample GMVP variance between the DCC and CLIP-DCC model, denoted by

∆
∑

t r
2
GMV,t =

∑T
t=1[r2DCC,t−r2CLIP−DCC,t], where rDCC,t and rCLIP−DCC,t denote the out-of-sample

logarithmic returns of the GMVP constructed by the DCC and CLIP-DCC model, respectively. The

vertical lines reflect economically relevant dates.

In Figure 2, we mostly find a steadily increasing cumulative benefit from using the

CLIP-DCC model. However, during the peak of the 2008 Great Financial Crisis, we ob-

serve a large sudden increase. Although the movement may visually appear to be near

instantaneous, it spans about a one to three month period. Furthermore, a second up-

ward jump (albeit of a smaller magnitude) is located around Black Monday on August

8, 2011, following the downgrading of US sovereign debt by Standard and Poor’s. This

highlights the beneficial effects of the CLIP-DCC framework around periods of financial

turmoil. One possible explanation is an increase in equity correlation co-movement associ-
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ated with market downturns (Ang and Chen, 2002). This could reduce the bias incurred

by the cross-sectional structure of the CLIP-DCC model. A second possible explanation

may be an increase in uncertainty of the conditional correlations during these periods of

high volatility, favoring the pooling aspect of the CLIP-DCC framework. A third reason

may be that the lower weight on the past correlation matrix (β̂) combined with a higher

weight for innovations (α̂) for the CLIP-DCC model compared to the DCC model allows

for a more rapid identification of this recessionary period.

In Figure 2, we also find that the CLIP-DCC and DCC models offer comparable per-

formance between 2011-2020 for the largest investment universes N = 300 and 500. This

suggests that for large cross-sections the pooling function θ(·) may be overly restrictive.

To investigate more flexible pooling structures, Appendix B.1 considers Block-CLIP-DCC

models as outlined in Section 2.4 using industry memberships. Although the Block-CLIP-

DCC model outperforms the standard Block-DECO model, it does not outperform the

CLIP-DCC. This may be due to industry memberships not reflecting a particularly strong

clustering, see Oh and Patton (2023).

Finally, we find mixed effects of the COVID-19 pandemic around the date of the US

lockdown in March 2020. In particular, we have that the CLIP-DCC framework provides

benefits for the smaller investment universes N = {10, 30, 50}, losses for the medium sizes

N = {100, 300} and has almost no effect for N = 500. The impact of this pandemic

recession is thus more ambiguous, likely due to its different nature.

Next, we investigate the effects of target shrinkage for the long-run correlation matrix C

and its interplay with the CLIP-DCC approach. Table 4 presents summary statistics of the

daily out-of-sample log returns of the GMVPs of the DCC, dDECO, sdDECO and CLIP-

DCC models using the NLS approach of Ledoit and Wolf (2020) for the target. Comparing

Table 3 and Table 4, we observe that NLS of the target decreases portfolio SD in all cases.

We find that the benefits of NLS are minor for the small portfolio sizes up to N = 100, but

increase for the large portfolio sizes N = 300 and N = 500. Appendix B.4 examines the

impact of a shorter estimation window of T = 1250 days, where we find even larger gains

from using NLS. This is in line with intuition, because the quality of the sample covariance

matrix rapidly deteriorates as the concentration ratio N/T rises (Ledoit and Wolf, 2004).
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Table 4: Daily out-of-sample GMVP performance using different DCC models for N ∈

{10, 30, 50, 100, 300, 500} and NLS of the target, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N

AV 4.858 3.758 5.787 5.277 7.283

N = 10 SD 15.471 15.745 15.474 15.388∗ 19.167

IR 0.314 0.239 0.374 0.343 0.380

AV 6.064 5.271 6.377 6.261 8.041

N = 30 SD 13.891 14.845 13.826 13.650∗∗∗ 18.457

IR 0.437 0.355 0.461 0.459 0.436

AV 4.502 3.199 3.883 4.247 8.458

N = 50 SD 13.035 14.446 13.116 12.812∗∗∗ 18.271

IR 0.345 0.221 0.296 0.332 0.463

AV 2.979 1.356 1.358 2.517 8.273

N = 100 SD 10.846 13.132 10.956 10.682∗∗∗ 18.225

IR 0.275 0.103 0.124 0.236 0.454

AV 6.198 1.665 2.791 5.313 9.034

N = 300 SD 7.841 11.161 7.745 7.607∗∗∗ 17.975

IR 0.791 0.149 0.360 0.698 0.503

AV 4.865 0.820 1.778 4.305 9.558

N = 500 SD 6.400 9.137 6.206 6.122∗∗∗ 17.961

IR 0.760 0.090 0.287 0.703 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information

ratio (IR) of the out-of-sample daily log returns for the GMVPs constructed using different dynamic

correlation models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The

out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using

an estimation window of 2500 days and re-estimation of the parameters every 21 days. A significant

decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is

indicated with a *,** and *** for a p−value below 0.1, 0.05 and 0.01, respectively, using the two-sided

test by Ledoit and Wolf (2011) with HAC standard errors.

Furthermore, also when using target shrinkage the CLIP-DCC model achieves the lowest

out-of-sample SD among all models. In fact, we find that the improvements of NLS and the

CLIP-DCC model over the base DCC model are additive. This confirms their theoretical
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complementary nature, acting on different components of the uncertainty of the conditional

correlation matrix. In sum, we recommend using the CLIP-DCC model combined with NLS

of the target to model conditional correlation matrices.

5 Conclusion

We augment the Dynamic Conditional Correlation (DCC) model of Engle (2002) by allow-

ing for partial commonality in the update of the conditional correlations. Specifically, we

propose the DCC model with Conditional Linear Information Pooling (CLIP-DCC) which

allows the correlation innovation of each pair to parsimoniously depend on the information

contained in all asset return pairs. Additionally, the CLIP-DCC model preserves long-run

dynamics, thereby naturally complementing methods that shrink the correlation target.

We demonstrate in a Monte Carlo study that the parameters of the CLIP-DCC model,

including the pooling intensity, can be effectively estimated using composite likelihood. A

real-time empirical application to a large selection of US stocks from 1981 until 2020 finds

significant benefits of the CLIP-DCC model for a minimum-variance investor. Combining

the CLIP-DCC model with the shrinkage estimator of Ledoit and Wolf (2020) for the target

yields complementary benefits, confirming that these methods target different sources of

uncertainty of the conditional correlation matrix.
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A Proofs

A.1 Proposition 1

First, we note that 1
d
S with d > 0 is positive definite if and only if S is positive definite.

Next, we may write 1
d
S = ρJN + (1− ρ)IN with ρ = o

d
, which may be shown to be positive

definite if and only if o
d
∈ ( −1

N−1 , 1). This follows from the fact that 1
d
S has two distinct

eigenvalues, 1 + (N − 1)ρ and 1 − ρ, which can be seen to both be positive if and only if

o
d
∈ ( −1

N−1 , 1). This also reveals that standardizing a positive definite compound symmetric

matrix S yields a valid equicorrelation matrix 1
d
S with equicorrelation o

d
, see also Definition

2.1 and Proposition 2.1 of Engle and Kelly (2012).

A.2 Proposition 2

For the case that N = 1 we define θ(·) to be the identity mapping, such that the properties

of Proposition 2 trivially hold. We now proceed with the case N ≥ 2. By noting that θ(·)

is a linear function of θD(·) and θO(·), which are sums and thus clearly linear themselves,

we have that θ(·) is a linear mapping and properties 1 and 2 immediately follow.

Using Proposition 1, it suffices for the positive definiteness part of property 3 to show

that θD(A) > 0 and θO(A)
θD(A)

∈ ( −1
N−1 , 1). By definition we have that if A is positive definite

that x′Ax > 0,∀x ∈ RN with x 6= 0N . By selecting x to be a vector containing a single

1 at the i-th position and 0 elsewhere, we observe that aii > 0 for all i ∈ 1, . . . , N . This

implies that all diagonal elements are strictly larger than 0, such that clearly θD(A) > 0.

In addition, by selecting x to be a vector with 1 on the i-th position, -1 on the j-th position

and 0 elsewhere, we obtain aii + ajj > aij + aji for all i, j ∈ 1, . . . , N , where i 6= j. Taking

sums over i and j, using aij = aji by symmetry and using the definitions of θD(·) and θO(·),

we obtain
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N∑
i=1

N∑
j=1

(aii + ajj) >
N∑
i=1

N∑
j=1

(aij + aji)

N
N∑
i=1

aii +N

N∑
j=1

ajj > 2
N∑
i=1

N∑
j=1

aij

N
N∑
i=1

aii >

N∑
i=1

N∑
j=1

aij

N

N∑
i=1

aii >

N∑
i=1

N∑
j=1, j 6=i

aij +
N∑
i=1

j=i∑
j=i

aij

N
N∑
i=1

aii >
N∑
i=1

N∑
j=1, j 6=i

aij +
N∑
i=1

aii

(N − 1)
N∑
i=1

aii >
N∑
i=1

N∑
j=1, j 6=i

aij

1

N

N∑
i=1

aii >
1

N(N − 1)

N∑
i=1

N∑
j=1, j 6=i

aij

θD(A) > θO(A),

(A.1)

such that θO(A)
θD(A)

< 1. Finally, by selecting x = ιN we obtain NθD(A)+N(N−1)θO(A) > 0

which in turn may be rewritten to show that θO(A)
θD(A)

> −1
N−1 . Together, this entails that

θO(A)
θD(A)

∈ ( −1
N−1 , 1), which concludes the proof.

For the positive semi-definite case of property 3, we note that if A is positive semi-

definite then by definition we have that x′Ax ≥ 0,∀x ∈ RN . Therefore we may use the

same arguments as for the positive definite case but lose the strictness of the inequalities.

Here we note that if θD(A) = 0, this implies that A and also θ(A) are an N ×N matrix of

zeros, which is positive semi-definite (all eigenvalues are 0). Therefore for arguments that

utilize θO(A)
θD(A)

we can consider the case that θD(A) > 0 and obtain that θO(A)
θD(A)

∈ [ −1
N−1 , 1],

such that θ(A) is positive semi-definite.

A.3 Proposition 3

From Proposition 2 we have that θ(·) is a linear function. It can be straightforwardly

verified that also the matrix averaging transformation τ(·) is a linear function as it can be
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written as a sum. Therefore, since θBL(·, G) is composed of θ(·) and τ(·) operations, it is

straightforward to show that properties 1 and 2 of Proposition 3 hold.

With regards to property 3, we follow the proof structure of Theorem 1 from Roustant

and Deville (2017). Specifically, we first assume that A is positive semi-definite and define

the block averaging function τBL(A, G) for A ∈ RN×N with N ≥ 2 and block structure G,

τBL(A, G) =


τ(A∗11) τ(A∗12) · · · τ(A∗1K)

τ(A∗21) τ(A∗22) · · · τ(A∗2K)
...

...
. . .

...

τ(A∗K1) τ(A∗K2) · · · τ(A∗KK),

 , (A.2)

which may also be written as

τBL(A, G) = L(G)AL(G)′, (A.3)

L(G) =


1/n1Jn1 On1×n2 · · · On1×nK

On2×n1 1/n2Jn2 · · · On2×nK

...
...

. . .
...

OnK×n1 OnK×n2 · · · 1/nKJnK
,

 , (A.4)

where Onj×nk
is an nj × nk matrix of zeros and A∗ij for i, j = 1, 2 . . . , K is the ij-th block

of A using the block partition G := [n1, n2, . . . , nK ]′. Here L(G) can be seen to be positive

semi-definite as it is a block diagonal matrix with positive semi-definite diagonal blocks.

From the quadratic form it can be seen that τBL(A, G) is positive semi-definite if A is

positive semi-definite. We then consider the difference ∆(A, G) := θBL(A, G)− τBL(A, G)

which admits the following form

∆(A, G) =


θ(A∗11)− τ(A∗11) On1×n2 · · · On1×nK

On2×n1 θ(A∗22)− τ(A∗22) · · · On2×nK

...
...

. . .
...

OnK×n1 OnK×n2 · · · θ(A∗KK)− τ(A∗KK),

 , (A.5)

that is, ∆(A, G) is a block diagonal matrix consisting of the matrices θ(A∗jj)− τ(A∗jj) for

3



j = 1, . . . , K, which may be written as

θ(A∗jj)− τ(A∗jj) = θ(A∗jj)−
1

n2
j

ι′nj
A∗jjιnj

Jnj

= θ(A∗jj)−
1

n2
j

[nj(nj − 1)θO(A∗jj) + njθ
D(A∗jj)]Jnj

= θO(A∗jj)Jnj
+ [θD(A∗jj)− θO(A∗jj)]Inj

− 1

n2
j

[nj(nj − 1)θO(A∗jj) + njθ
D(A∗jj)]Jnj

= [θD(A∗jj)− θO(A∗jj)]Inj
+

1

nj
[θO(A∗jj)− θD(A∗jj)]Jnj

= [θD(A∗jj)− θO(A∗jj)][Inj
− 1

nj
Jnj

],

(A.6)

where θD(A∗jj)−θO(A∗jj) is a non-negative scalar (see again the proof of Proposition 2) and

Inj
− 1

nj
Jnj

a positive semi-definite matrix. The latter fact may be derived from Proposi-

tion 1 by noting that it is a CS matrix or from noticing that is in fact a projection matrix.

We now have that ∆(A, G) is positive semi-definite because all its diagonal matrices are

positive semi-definite. Since θBL(A, G) = ∆(A, G) + τBL(A, G), it follows that θBL(A, G)

is also positive semi-definite as it is the sum of two positive semi-definite matrices.

Finally, we show that if A is positive definite that θBL(A, G) is also positive definite.

For x ∈ RN we consider h(x) := x′θBL(A, G)x, which may also be written as

h(x) = x′∆(A, G)x + x′τBL(A, G)x, (A.7)

where h(x) is 0 if and only if x′∆(A, G)x and x′τBL(A, G)x are both equal to 0 (as neither

can be negative due to positive semi-definiteness). First, we have for x′τBL(A, G)x that

x′τBL(A, G)x = x′L(G)AL(G)′x = xm(G)′Axm(G), (A.8)

xm(G) =
[
( 1
n1
ι′n1

x∗1)ι
′
n1

( 1
n2
ι′n2

x∗2)ι
′
n2
· · · ( 1

nK
ι′nK

x∗K)ι′nK

]′
, (A.9)

where x∗j for j = 1, . . . , K is the j-th subvector of x based on the group structure G.

Because A is assumed positive definite we have that x′τBL(A, G)x is 0 if and only if

xm(G) = 0N . We also observe that xm(G) can be viewed as a vector of group means, such

that xm(G) = 0N if and only if the group means of the vector x based on the group structure

G are all 0. That is, x′τBL(A, G)x = 0 if and only if 1
nj
ι′nj

x∗j = 0 for all j = 1, . . . , K. Note

that if nj = 1, i.e. for groups with only one member, this directly implies that that x∗j = 0.
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Second, we have for x′∆(A, G)x that

x′∆(A, G)x =
K∑
j=1

[θD(A∗jj)− θO(A∗jj)]x
∗
j
′[Inj
− 1

nj
Jnj

]x∗j , (A.10)

which is 0 if and only if x∗j
′[Inj
− 1

nj
Jnj

]x∗j = 0 for all j = 1, . . . , K, because [θD(A∗jj) −

θO(A∗jj)] > 0 for all j = 1, . . . , K with nj ≥ 2 if A is positive definite. Using the symmetric

square root of Inj
− 1

nj
Jnj

, we may show that x∗j
′[Inj
− 1

nj
Jnj

]x∗j = 0 implies that [Inj
−

1
nj

Jnj
]1/2x∗j = 0nj

, which in turn implies [Inj
− 1

nj
Jnj

]x∗j = 0nj
. From there, we observe

that the condition x∗j − ιnj
( 1
nj
ι′nj

x∗j) = 0nj
only holds if x∗j is a scalar multiple of ιnj

. If

we combine this with the requirements for x′τBL(A, G)x = 0, we then get that h(x) is 0 if

and only if x∗j = 0nj
for all j = 1, . . . , K, which is equivalent to x = 0N . This means that

x′Ax > 0 for all x ∈ RN where x 6= 0N . We conclude that if A is positive definite then

θBL(A, G) is also positive definite.
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B Additional Results

B.1 Block-based models

We examine the performance of the block-based CLIP-DCC models as outlined in (23)-

(25) and follow Engle and Kelly (2012) by using industry group membership based on

SIC codes to impose a block structure. Specifically, we use the K = 5 and K = 10

Fama-French industry categorisation and estimate the BL-dDECO, BL-sdDECO and BL-

CLIP-DCC models for N ∈ {100, 300, 500}, also employing NLS of the target. Table B.1

summarizes the out-of-sample performance of the GMVPs constructed using these models.

In Table B.1, we observe large improvements of the BL-dDECO model over the dDECO

model, some improvements of the BL-sdDECO model over the sdDECO model and nearly

no benefit of the BL-CLIP-DCC model over the CLIP-DCC model. Comparing the block

structures, we find K = 10 to be superior for the BL-dDECO and BL-sdDECO models,

while K = 5 is slightly better for the BL-CLIP-DCC model. This confirms that the poor

performance of the dDECO model is mainly the result of imposing too much structure on

the long-run correlation matrix and loosening it increases performance. For example, for

N = 500 we find an SD of 9.137 for the dDECO model, an SD of 8.394 and 7.347 for theK =

5 and K = 10 BL-dDECO models and an SD of 6.400 for the DCC model. Furthermore,

the fact that the BL-CLIP-DCC model appears to offer no benefit over the CLIP-DCC

model suggests that correlation movement information within industries is not much more

informative than information from assets in other industries. For a further discussion of

the appropriateness of clustering based on SIC codes, we refer to Oh and Patton (2023).

It would be interesting for future research to consider an empirical application with data

that admits a very clear group structure. For example, by considering many assets from a

few very differently behaving asset classes.
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Table B.1: Daily out-of-sample GMVP performance constructed using different industry

block-based DCC models for N ∈ {100, 300, 500} and NLS of the target, December 1990

until December 2020.

K = 5 BL-dDECO BL-sdDECO BL-CLIP-DCC 1/N

AV 1.112 1.063 2.233 8.273

N = 100 SD 12.116 10.890 10.675 18.225

IR 0.092 0.098 0.209 0.454

AV 1.594 2.818 5.250 9.034

N = 300 SD 10.130 7.711 7.590 17.975

IR 0.157 0.365 0.692 0.503

AV 1.023 1.938 4.328 9.558

N = 500 SD 8.394 6.208 6.109 17.961

IR 0.122 0.312 0.708 0.532

K = 10 BL-dDECO BL-sdDECO BL-CLIP-DCC 1/N

AV 2.028 1.842 2.693 8.273

N = 100 SD 11.657 10.873 10.694 18.225

IR 0.174 0.169 0.252 0.454

AV 2.889 3.084 5.336 9.034

N = 300 SD 9.080 7.730 7.597 17.975

IR 0.318 0.399 0.702 0.503

AV 1.628 2.096 4.339 9.558

N = 500 SD 7.347 6.234 6.121 17.961

IR 0.222 0.336 0.709 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio

(IR) of the out-of-sample daily log returns for the GMVPs constructed using different block-based

dynamic correlation models and the 1/N portfolio. The lowest SD per dimension size is highlighted in

bold. The out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560

days, using an estimation window of 2500 days and re-estimation of the parameters every 21 days. Five

(K = 5) and ten (K = 10) Fama-French industry memberships are used to impose a block-structure.
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B.2 Mean-variance portfolios

This section considers mean-variance (MV) portfolios using a similar re-balancing strategy

as for the GMVPs in the main text. For the MV portfolios the variance is minimized

subject to a return constraint. Specifically, we mimic the strategies of Engle and Kelly

(2012) and Engle et al. (2019), which use the sample mean and a momentum signal for

the return constraint, respectively. The results are containted in Appendix Table B.2 and

B.3. Here we also find the CLIP-DCC model to significantly reduce the SD compared to

the DCC model, although the effect on the mean differs across portfolio sizes. Maximum

IR portfolios or portfolios with leverage constraints are left for future research.

B.3 QLIKE losses

For robustness, we use the quasi-likelihood (QLIKE) loss of Patton and Sheppard (2009)

to directly evaluate the one-step ahead covariance forecasts made using the different cor-

relation models. Specifically, Appendix Table B.4 summarizes the QLIKE performance of

the models using the average (AV) loss, the standard deviation (SD) of the losses and the

proportion of improvement (PI), which reflects the share of dates that the model has a

lower QLIKE than the base DCC model. Overall, we conclude again that the CLIP-DCC

model outperforms the DCC model and the dDECO model looking at both the AV and PI

values. Comparing the dDECO and DCC model, we find the latter to outperform for all

dimension sizes, except N = 500. This indicates that the structure of the dDECO model

may only be useful in the very large dimensional setting. Interestingly, the sdDECO model

is the best performing in terms of the AV for the larger dimensions (N = 50, 100, 300, 500),

while the CLIP-DCC model is the best in terms of the PI. This result for the PI paints a

similar picture as Figure 2, where we also observe that the CLIP-DCC model consistently

beats the DCC model by a small amount, which adds up over time.
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Table B.2: Daily out-of-sample MV portfolio (standard) performance constructed using

different DCC models for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December

2020.
DCC dDECO sdDECO CLIP-DCC 1/N

AV 5.028 4.261 5.497 5.201 7.283

N = 10 SD 16.317 16.666 16.374 16.268 19.167

IR 0.308 0.256 0.336 0.320 0.380

AV 6.300 5.822 6.584 6.492 8.041

N = 30 SD 14.016 15.176 13.983 13.796∗∗∗ 18.457

IR 0.449 0.384 0.471 0.471 0.436

AV 4.819 3.600 4.127 4.578 8.458

N = 50 SD 13.069 14.585 13.167 12.853∗∗∗ 18.271

IR 0.369 0.247 0.313 0.356 0.463

AV 3.765 2.117 2.226 3.413 8.273

N = 100 SD 11.012 13.178 11.129 10.846∗∗∗ 18.225

IR 0.342 0.161 0.200 0.315 0.454

AV 7.023 2.570 3.133 6.261 9.034

N = 300 SD 8.115 10.985 8.060 7.895∗∗∗ 17.975

IR 0.865 0.234 0.389 0.793 0.503

AV 5.450 1.756 1.806 4.950 9.558

N = 500 SD 6.789 9.149 6.697 6.559∗∗∗ 17.961

IR 0.803 0.192 0.270 0.755 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio

(IR) of the out-of-sample daily log returns for the MV portfolios constructed using different dynamic

correlation models and the 1/N portfolio. Specifically, we use the geometric sample mean and a 10

percent annual return target, similar to Engle and Kelly (2012). The lowest SD per dimension size is

highlighted in bold. The out-of-sample periods ranges from December 1990 until December 2020 for a

total of 7560 days, using an estimation window of 2500 days and re-estimation of the parameters every

21 days. A significant decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to

the DCC model is indicated with a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively,

using the two-sided test by Ledoit and Wolf (2011) with HAC standard errors.
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Table B.3: Daily out-of-sample MV portfolio (momentum) performance constructed using

different DCC models for N ∈ {10, 30, 50, 100, 300, 500}, December 1990 until December

2020.
DCC dDECO sdDECO CLIP-DCC 1/N

AV 5.211 3.960 5.727 5.379 7.283

N = 10 SD 16.671 16.977 16.727 16.630 19.167

IR 0.313 0.233 0.342 0.323 0.380

AV 7.157 6.780 7.191 7.273 8.041

N = 30 SD 14.603 15.210 14.480 14.353∗∗∗ 18.457

IR 0.490 0.446 0.497 0.507 0.436

AV 5.522 5.098 4.693 5.268 8.458

N = 50 SD 13.609 14.507 13.647 13.378∗∗∗ 18.271

IR 0.406 0.351 0.344 0.394 0.463

AV 4.402 3.180 2.317 3.866 8.273

N = 100 SD 11.374 12.921 11.402 11.178∗∗∗ 18.225

IR 0.387 0.246 0.203 0.346 0.454

AV 7.396 3.530 3.527 6.646 9.034

N = 300 SD 8.601 11.025 8.442 8.318∗∗∗ 17.975

IR 0.860 0.320 0.418 0.799 0.503

AV 5.987 2.229 2.419 5.488 9.558

N = 500 SD 7.246 9.215 7.081 6.953∗∗∗ 17.961

IR 0.826 0.242 0.342 0.789 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information ratio

(IR) of the out-of-sample daily log returns for the MV portfolios constructed using different dynamic

correlation models and the 1/N portfolio. Specifically, we use a momentum signal taking the geometric

mean over the previous 252 days, excluding the most recent 21 days, similar to Engle et al. (2019). The

target return is set to the arithmetic mean of this mean vector. The lowest SD per dimension size is

highlighted in bold. The out-of-sample periods ranges from December 1990 until December 2020 for a

total of 7560 days, using an estimation window of 2500 days and re-estimation of the parameters every

21 days. A significant decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to

the DCC model is indicated with a *,** and *** for a p− value below 0.1, 0.05 and 0.01, respectively,

using the two-sided test by Ledoit and Wolf (2011) with HAC standard errors.

10



Table B.4: Daily out-of-sample QLIKE using different DCC models for N ∈

{10, 30, 50, 100, 300, 500}, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC

AV 14.449 15.109 14.432 14.357

N = 10 SD 13.215 13.044 12.896 12.889

PI 0.308 0.460 0.481

AV 41.882 46.497 41.326 41.136

N = 30 SD 34.642 32.841 32.895 33.283

PI 0.208 0.495 0.578

AV 71.932 78.882 69.883 69.905

N = 50 SD 51.529 47.931 47.930 48.773

PI 0.218 0.560 0.661

AV 153.837 164.419 145.324 146.550

N = 100 SD 97.043 86.354 86.832 89.776

PI 0.279 0.683 0.796

AV 515.756 517.575 452.134 464.607

N = 300 SD 307.922 237.937 253.667 270.666

PI 0.465 0.892 0.945

AV 973.402 905.116 823.696 851.357

N = 500 SD 550.597 378.756 434.620 464.127

PI 0.611 0.949 0.974

Note: This table contains the average (AV) and standard deviation (SD) of the daily out-of-sample

QLIKE score for the different DCC models. In addition, the proportion of improvement (PI) denotes

the share of dates that the model has a lower QLIKE score than the DCC model. The out-of-sample

periods ranges from December 1990 until December 2020 for a total of 7560 days, using an estimation

window of 2500 days and re-estimation of the parameters every 21 days.
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B.4 Robustness estimation length

Appendix Table B.5 and B.6 contain the daily out-of-sample performance of the GMPVs

constructed using the different correlation models with an estimation window length of

T = 1250 and without and with NLS of the target, respectively. Comparing Appendix

Table B.5 and B.6 with Table 3 and Table 4, we note that the SD is higher for the DCC,

sdDECO and CLIP-DCC models for T = 1250 than for T = 2500, while the reverse is true

for the dDECO model. This suggests that models that have an unrestricted long-run can

benefit from a longer estimation sample, which makes sense as the concentration ratio N/T

greatly determines the quality of the sample covariance estimator (Ledoit and Wolf, 2004).

Furthermore, our overall conclusions are highly similar here to those when using the

longer estimation window T = 2500. That is, the dDECO model performs worst, the

DCC and sdDECO model perform relatively similar and the CLIP-DCC model performs

the best in terms of out-of-sample SD. Comparing Table B.5 and B.6, we also find again

that NLS of the target decreases the SD values, such that the CLIP-DCC model with NLS

has the lowest SD. In terms of the relative benefits of both methods, we find NLS and the

CLIP-DCC model to decrease the SD about the same compared to the DCC model for

N = 100. For higher values of N the NLS appears to add more value, while for smaller N

the CLIP-DCC model is found to be most useful. Because the benefits of both methods

are additive (or even slightly synergistic for large N), we recommend using a combined

approach.
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Table B.5: Daily out-of-sample GMVP performance constructed using different DCC mod-

els for N ∈ {10, 30, 50, 100, 300, 500} and T = 1250, December 1990 until December 2020.

DCC dDECO sdDECO CLIP-DCC 1/N

AV 4.225 3.167 4.746 4.486 7.283

N = 10 SD 15.589 15.909 15.592 15.521∗ 19.167

IR 0.271 0.199 0.304 0.289 0.380

AV 5.220 4.279 4.571 5.029 8.041

N = 30 SD 14.045 14.796 13.945 13.854∗∗∗ 18.457

IR 0.372 0.289 0.328 0.363 0.436

AV 2.891 2.068 1.992 2.560 8.458

N = 50 SD 13.374 14.499 13.309 13.148∗∗∗ 18.271

IR 0.216 0.143 0.150 0.195 0.463

AV 3.239 0.853 0.978 2.727 8.273

N = 100 SD 11.142 13.104 11.172 10.991∗∗∗ 18.225

IR 0.291 0.065 0.088 0.248 0.454

AV 5.256 1.241 2.038 4.760 9.034

N = 300 SD 8.366 10.989 8.374 8.205∗∗∗ 17.975

IR 0.628 0.113 0.243 0.580 0.503

AV 4.937 0.883 1.926 4.505 9.558

N = 500 SD 7.165 9.022 7.146 7.005∗∗∗ 17.961

IR 0.689 0.098 0.269 0.643 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information

ratio (IR) of the out-of-sample daily log returns for the GMVPs constructed using different dynamic

correlation models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The

out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using

an estimation window of 1250 days and re-estimation of the parameters every 21 days. A significant

decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is

indicated with a *,** and *** for a p−value below 0.1, 0.05 and 0.01, respectively, using the two-sided

test by Ledoit and Wolf (2011) with HAC standard errors.
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Table B.6: Daily out-of-sample GMVP performance constructed using different DCC mod-

els for N ∈ {10, 30, 50, 100, 300, 500}, T = 1250 and NLS of the target, December 1990

until December 2020.
DCC dDECO sdDECO CLIP-DCC 1/N

AV 4.227 3.169 4.732 4.477 7.283

N = 10 SD 15.583 15.908 15.582 15.513∗ 19.167

IR 0.271 0.199 0.304 0.289 0.380

AV 5.284 4.280 4.736 5.145 8.041

N = 30 SD 14.010 14.791 13.897 13.816∗∗∗ 18.457

IR 0.377 0.289 0.341 0.372 0.436

AV 2.946 2.071 2.229 2.687 8.458

N = 50 SD 13.308 14.495 13.226 13.081∗∗∗ 18.271

IR 0.221 0.143 0.169 0.205 0.463

AV 3.183 0.855 1.088 2.737 8.273

N = 100 SD 11.027 13.100 11.055 10.881∗∗∗ 18.225

IR 0.289 0.065 0.098 0.252 0.454

AV 5.377 1.241 2.474 4.829 9.034

N = 300 SD 7.979 10.987 7.977 7.813∗∗∗ 17.975

IR 0.674 0.113 0.310 0.618 0.503

AV 4.577 0.883 2.038 4.059 9.558

N = 500 SD 6.589 9.021 6.491 6.370∗∗∗ 17.961

IR 0.695 0.098 0.314 0.637 0.532

Note: This table contains the annualized average (AV), standard deviation (SD) and information

ratio (IR) of the out-of-sample daily log returns for the GMVPs constructed using different dynamic

correlation models and the 1/N portfolio. The lowest SD per dimension size is highlighted in bold. The

out-of-sample periods ranges from December 1990 until December 2020 for a total of 7560 days, using

an estimation window of 1250 days and re-estimation of the parameters every 21 days. A significant

decrease of the (logarithmic squared) SD of the CLIP-DCC model compared to the DCC model is

indicated with a *,** and *** for a p−value below 0.1, 0.05 and 0.01, respectively, using the two-sided

test by Ledoit and Wolf (2011) with HAC standard errors.
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