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Abstract

In this paper we review, upgrade, and synthesize existing models from evolu-
tionary game theory that aim at explaining behaviour in the ultimatum game,
and we compare their predictions with the existing experimental evidence.

We find that the results in Gale et al. (1995) and Rand et al. (2013) are
primarily driven by bias in the mutations. We make versions with local instead
of global mutations for both. This minimizes the bias, and changes the results.

We also consider Quantal Response Equilibria in combination with the as-
sumption that individuals are selfish after all. The Quantal Response Equilib-
rium is the noisy twin of the Nash equilibrium, and looking at this combination
we explore an alternative explanation for what we observe in the lab, namely
noise instead of deviations from selfishness.

Finally, we provide a refurbished version of the model of commitment in
Nowak et al. (2000). The de-biased version of the model in Rand et al. (2013)
becomes a special case of this more general model (with the possibility for
commitment muted).

We find that the experimental evidence does not align with the models in
Gale et al. (1995), Rand et al. (2013), or our de-biased versions of them, and
that it also rejects the combination of selfishness and the Quantal Response
Equilibrium. All of these models predict that the distribution of minimal ac-
ceptable offers should start with high frequencies at 0, end with low frequencies
at 1, and have decreasing frequencies in between, which is not what is found in
lab experiments.

Keywords: Ultimatum game, fairness, mutation-selection equilibrium,
Quantal Response Equilibrium, commitment, experimental evidence
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1. Introduction1

Humans are not just selfish. When deciding what to do, we do not only2

look at how our behaviour affects ourselves, but we also take into account the3

consequences of our actions for others. How we came to deviate from straight-4

forward selfishness is one of the bigger questions in human evolution.5

One of the classical games in which we see deviations from selfish money-6

maximizing behaviour is the ultimatum game (Güth et al., 1982). This game7

is played between a proposer and a responder. The proposer makes a proposal8

how to distribute a given amount of money between herself and the responder.9

The responder then accepts or rejects the proposal. If she rejects, neither player10

gets any money. For responders, the selfish money-maximizing choice would be11

to accept any proposal in which she gets a positive amount of money. That,12

however, is not what we find in lab experiments (Güth et al., 1982; Oosterbeek13

et al., 2004), where low offers regularly get rejected.14

In this paper, we will review existing models from evolutionary game theory15

that aim at explaining this behaviour. We will also create new and improved16

versions of those models, describe their predictions in greater detail, and com-17

pare these predictions with the existing empirical evidence. This means that18

the paper will make a series of points, but we hope that the multitude of obser-19

vations does not conceal the importance of each individual one.20

1.1. Mutation-selection equilibria, bias, and the asymmetry argument21

Two well-known models from the literature are Gale et al. (1995) and Rand22

et al. (2013). Both of these models describe mutation-selection equilibria. The23

ingredient that these models aim to capture is that not all suboptimal behaviours24

are equally costly. Rejecting a proposal in which the responder gets 1 euro and25

the proposer gets 9 costs the responder 1 euro. On the other hand, if offering26

2 euros would have been accepted, then proposing 1 euro for the responder and27

9 for oneself, and having this proposal rejected, costs the proposer 8 euros. In28

this example, one could therefore say that both the proposer and the responder29

made a mistake, and that the mistake made by the proposer is much more costly30

than the mistake made by the responder.31

The concept of a mutation-selection equilibrium assumes that mutation cre-32

ates a constant inflow of suboptimal strategies. In the ultimatum game, the33

asymmetry in how bad these mutations are for the fitness of their carriers then34

translates to an asymmetry in how long it takes for selection to eliminate them,35
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and an asymmetry in how much they hurt the fitness of those they meet on their36

way out. Mutant proposers and mutant responders therefore ripple through the37

population differently, and that ends up having a nontrivial effect on what we38

should expect to see if mutation and selection balance in equilibrium.39

A problem with both Gale et al. (1995) and Rand et al. (2013), however,40

is that both these models have global, and therefore biased mutations. As41

a result, the deviations from selfish, money maximizing behaviour that they42

find are primarily driven by the bias in the mutations, and not so much by the43

asymmetry in how costly different suboptimal behaviours are. Because mutation44

bias is not a good basis for an explanation, we redo both models, with mutations45

that are local instead of global. Switching from global to local mutations reduces46

the bias to a minimum, and changes the results significantly. In Section 2 we47

do this for the model in Rand et al. (2013), and in Section 3 we do this for the48

model in Gale et al. (1995).49

The original papers, understandably, only focus on predictions regarding the50

average offer and the average threshold, below which responders start rejecting.51

We also look at other aspects of the prediction, such as, for instance, the relation52

between the average offer and the average threshold, the within population53

variance, and the variance across time, or across populations. In the model54

from Rand et al. (2013) low intensities of selection push offers and thresholds55

up, thereby getting them closer to levels found in experiments. In Section 256

we show that this comes at a cost, and that is that weakening selection also57

deteriorates the match between model predictions and empirical findings on58

these other dimensions.59

1.2. Quantal Response Equilibria, learning dynamics, and the asymmetry argu-60

ment (again)61

Instead of looking at the ultimate level immediately, one can also look at a62

more proximate level first, and ask the question if the conclusion that humans63

deviate from selfish money-maximizing behaviour is justified. An alternative64

interpretation of the behaviour observed in the lab could be that individuals65

are in fact selfish, but that they are not perfectly informed, or otherwise not66

perfectly aware of what it is that they should do in order to earn as much money67

as they can. In order to do that, we calculate the Quantal Response Equilibria68

(McKelvey and Palfrey, 1995) for the ultimatum game (Yi, 2005), under the69

assumption of selfishness. This is a concept from classical game theory, that70

can also be seen as resulting from learning dynamics with noise. Also here,71
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as with mutation-selection equilibria, the asymmetry argument is relevant, and72

also here, one can crank up the noise to get the average offer and the average73

threshold up quite a bit. We do however observe that other characteristics of74

the equilibrium distribution provide a poor match with the empirical evidence.75

In one of the two types of Quantal Response Equilibria, the distribution of76

MAO’s is predicted to be downward sloping; the higher the MAO, the rarer77

they should be. This is not confirmed by the data, which suggests that there is78

more to human behaviour in the ultimatum game than everyone trying to get79

high monetary payoffs, but not knowing exactly what to do to get them.80

This also carries over to explanations at the ultimate level. An equivalent81

argument about the mismatch between the shape of the distribution and the82

experimental evidence actually implies that every model that is only based on83

the asymmetry argument, and that does not include a pathway through which84

rejecting has actual fitness benefits, is to be rejected too. This therefore also85

applies to the models in Gale et al. (1995) and Rand et al. (2013) as well as our86

de-biased versions of them.87

1.3. Commitment, and a unified model88

Another well-known model for the evolution of behaviour in the ultimatum89

game is Nowak et al. (2000). In this model, rejecting itself is still bad for fitness,90

but accepting lower offers than others do, can also lead to getting lower offers91

than others – provided that proposers have a way of finding out how low they92

can go and still have their offer accepted. This means that the model specifies a93

pathway through which being the accepting type can actually be bad for fitness,94

and being the rejecting type can be good for fitness. That makes this model95

different from the models in Gale et al. (1995) and Rand et al. (2013), and96

their de-biased versions, in which there is never a fitness advantage to being the97

rejecting type.98

We provide a version of the model from Nowak et al. (2000) which lifts some99

exogenously imposed restrictions on what strategies individuals can and cannot100

use. Our version is moreover a general model, in the sense that it contains101

our de-biased version of the model from Rand et al. (2013) as a special case.102

This helps illustrate the interaction between commitment (Frank, 1987; 1988;103

Akdeniz and van Veelen, 2021) and the asymmetry in costliness of mistakes.104
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2. Mutation-selection equilibria: Rand et al. (2013)105

2.1. The simulation model in Rand et al. (2013)106

Rand et al. (2013) consider a finite population model, in which 100 individu-107

als play ultimatum games in both roles. Every individual has a strategy that108

specifies the offer they make in the role of proposer, as well as their minimal109

acceptable offer (MAO) in the role of responder. These offers and thresholds110

range from 0 to 1, and in the simulations we will be focusing on, they do so111

continuously. Each generation, every individual plays the ultimatum game with112

every other individual, once as a proposer and once as a responder. The result-113

ing payoff is the average of the payoffs over all 99 pairings (in which a total of114

198 games are played).115

The population is updated according to a Moran process. One agent is picked116

at random to die, and individual i ∈ {1, ..., 100} is picked with probability117

proportional to exp (wπi) to reproduce, where w is the intensity of selection,118

and πi is the average payoff of individual i. Mutations happen at rate u at119

reproduction; with probability 1 − u, the new individual inherits the strategy120

from the reproducing individual, and with probability u, the new individual121

carries a randomly selected strategy. The distribution from which the mutant122

is drawn is independent of the strategy before mutation; both the new offer and123

the new MAO are always drawn from a uniform distribution on [0, 1]. We will124

refer to this as global mutation.125

The average trait value of the mutant is always 1
2 – which is the value halfway126

the interval out of which the mutants are drawn – regardless of the trait value127

before mutation. Selection always works in favour of low values of the MAO’s,128

and for low values of the MAO, it works in favour of low offers. That means that129

selection pulls these values towards the bottom of the interval [0, 1]. Therefore,130

when selection is at work, the average mutant has a higher offer and a higher131

MAO than the average offer and the average MAO in the population. In other132

words, mutation is biased, and mutants will result in increased offers and MAO’s133

more often than they result in decreased offers and MAO’s.134

2.2. Our version135

There are two inconsequential differences between their simulations and ours.136

The first is that we use a Wright-Fisher process instead of a Moran process. The137

Wright-Fisher process is computationally more efficient, but other than that, it138

perfectly reproduces the findings in Rand et al. (2013) for global mutations. The139
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second inconsequential difference is that Rand et al. (2013) have co-occurring140

mutations; if an individual mutates, then both a new offer and a new MAO are141

drawn. Our version of the model has independent mutations. At any reproduc-142

tion event, the offer mutates with probability u, and so does the MAO. That143

means that with probability u2 mutations of the offer and of the MAO co-occur,144

and with probability 2u (1− u) only one of them mutates. Also this does not145

make much of a difference (see Supplementary Material 1.4 for details).146

The important, and consequential difference is that in our version mutations147

are not global. Instead, mutations are changes with respect to the old trait148

value. That means that if a mutation of the offer happens, and the old offer is149

p, then the new offer is p+∆p, where ∆p is drawn from a uniform distribution150

on [−0.1, 0.1]. There are two exceptions. The first is a result of the fact that151

we do not allow for offers below 0. Therefore, if p+∆p < 0, the new offer is 0.152

Similarly, we also do not allow for offers over 1, and therefore, if p + ∆p > 1,153

the new offer is 1. This implies that mutations are unbiased for trait values in154

[0.1, 0.9], and become a little biased if they drop below 0.1 or go over 0.9 (in155

which case the bias is still very small compared to the bias with global mutations156

in Rand et al., 2013). The same procedure applies to the MAO.157

2.3. Global versus local mutation158

In Figure 1 we compare the results from Rand et al. (2013) with the results159

for our version. That makes this figure the counterpart of Figure 2 in Rand160

et al. (2013). For our figure, we did however choose to invert the horizontal axis.161

Their Figure 2 has low intensities of selection on the left and high intensities162

on the right. We do the opposite. The reason for that is that we want to163

make it clear that the benchmark, on the left, is the situation where responders164

accept all positive offers, and proposers offer nothing or close to nothing. The165

models investigate ways to arrive at dynamics that push the average offer and166

the average MAO up from 0, and we want it to be clear that reducing the167

intensity of selection does exactly that in both versions.168

2.3.1. Lower offers, lower MAO’s169

From the simulations, we learn that there are two important differences170

between global and local mutations. The first is that with the bias significantly171

reduced, the average offers and MAO’s stay low for longer, and require further172

reduced intensities of selection to reach the same average offers and average173

MAO’s. Here it is important to note that on the right hand side of the graph,174
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(A)

(B)

(C)

Figure 1: Global versus local mutations. In red the average offers and MAO’s for the model in Rand et al.
(2013), which has global, co-occurring mutations. In blue the same, but for local, independent mutations. Both
the average offers and the average MAO’s are higher with global, and therefore biased mutations, and lower with
local, and therefore much less biased mutations. In order to get offers, or MAO’s, up to average levels found in
experiments, one would have to move to lower intensities of selection with local mutations than one would with
global mutations. Section 2.4 explains why that is problematic. The mutation rate is 0.001 in panel A, 0.01 in panel
B, and 0.1 in panel C.
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with low intensities of selection, average offers and average MAO’s end up at175

0.5 in both versions. The reason why this eventually happens, and why that176

would happen for a range of reasonable modeling choices, is that 0.5 is halfway177

the parameter space, and therefore this must be the average over time in the178

limit of weak selection, where payoffs cease to matter. In Section 2.4 we will179

discuss in more detail why allowing for arbitrarily low intensity of selection,180

while focusing on how far offers and MAO’s can be pushed up on average, limits181

the predictive power of the model on other criteria.182

2.3.2. Gap vs. no gap183

The second difference is there for all mutation rates in Figure 1, but it is the184

most visible for u = 0.1 (Fig. 1C). Here we see that on the left side of the graph,185

at high intensities of selection, there is no perceptible gap between the average186

offer and the average MAO for global mutation, while there is a very visible187

gap for local mutations. The latter is consistent with the asymmetry argument.188

Given that there is a consistent inflow of local mutations, proposers benefit from189

creating some space between their offer and the average MAO in the population;190

this way they reduce the risk that their offer is rejected by a responder with191

an above average MAO. Responders always get higher payoffs if they accept,192

and therefore they always benefit from moving their MAO down. The closer193

they get to an MAO of 0, however, the less of a difference a further decrease194

in their MAO makes. Also, if proposers increase their offers, that reduces the195

selection pressure against low MAO’s. Both sides therefore want to create some196

distance, but since MAO’s cannot drop below 0, that will result in mutations197

moving both averages up from 0, with a gap in between.198

If we then start on the left hand side of the graph, and move a little to199

the right, then first the effect of reducing the intensity of selection is that this200

keeps mutants around for longer. With local mutations, this creates a wider201

distribution of offers and MAO’s, which selects for strategies that on average202

keep more distance. This, in turn, leads to higher offers and MAO’s due to the203

asymmetry in selection pressure. On the left end of the graph, we therefore see204

a widening gap, and an increase in offers and MAO’s. Later on, when selection205

gets even weaker, and we get closer to the right end of the graph, everything just206

becomes noise. That causes both average offers and average MAO’s to approach207

0.5, which closes the gap.208

With global mutations, on the other hand, there is hardly any gap at first.209

Here, the moving up of the offers and MAO’s as selection gets weaker is the210

8



result of the bias in mutations balancing against ever weaker selection. The211

absence of a gap in the beginning therefore is understandable, because with212

global mutations, the equilibrium distribution of MAO’s away from the mode is213

much more spread out. This implies that moving away from where most MAO’s214

are does not make enough of a difference for the probability to have one’s offer215

accepted, and that makes the reason to move away, that is there with local216

mutations, vanish.217

Both differences – there being a gap versus there not being a gap at the218

left end of the graph, and the overall difference in average offers and average219

MAO’s – indicate that with local mutations, the dynamics are mainly driven by220

the asymmetry in fitness effects, while the dynamics with global mutations are221

primarily driven by bias in the mutations. The latter is not a good basis for an222

explanation of deviations of selfishness.223

2.4. Predictions for weak selection224

In Section 2.3.1, we have seen that both with global and with local muta-225

tions, lowering the intensity of selection allows the average offer and the average226

MAO’s to move away from 0, and towards 1
2 . There are however limitations227

to how observations about the averages for weak selection can be interpreted228

meaningfully. To see the reasons why, we will look a bit more closely at the229

dynamics in the absence of selection.230

2.4.1. Reason 1: going against selection by shutting selection down231

When the intensity of selection is 0, the dynamics in the model by Rand et al.232

(2013) are only driven by mutations. That implies that with global mutations,233

what we are seeing is the result of a sequence of random draws from a uniform234

distribution on [0, 1], where no value of the draw is more likely to survive for235

longer and reproduce more than any other. Therefore, if we let the simulation236

run long enough, and we choose the intensity of selection to be 0, we will see the237

average offer and the average MAO converge to 1
2 (which is the midpoint of the238

interval [0, 1], and the expected value of the uniform distribution over it). By239

choosing a sufficiently weak intensity of selection, one can moreover get these240

averages anywhere between 0 – the limit for unfettered selection – and 1
2 – the241

limit for unfettered mutation.242

All of this implies that the fact that it is possible to get the average offer or243

the average MAO up to any value between 0 and 0.5, by choosing a sufficiently244

low intensity of selection, is not necessarily informative about selection – other245
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than that selection always points towards lower offers and lower MAO’s. Selec-246

tion pulls both of them down, and if one reduces selection strength ever more,247

one can reduce by how much both are dragged down. The observation that248

one can find parameter choices for which the averages in the simulations match249

averages from experiments therefore is a somewhat arbitrary result of the fact250

that the average trait value in the strategy set is 1
2 , and not a reflection of what251

selection does to the strategies in this set. By definition of what happens in the252

limit of weak selection, and what happens in the limit of strong selection, de-253

viations of which we try to explain, the model covers everything between offers254

and MAO’s being 0, and the equal split.255

A more general probabilistic symmetry argument, given in Supplementary256

Material 2.1, also applies to the version with local mutations. In this case,257

the results are driven much less by bias in the mutation, and much more by the258

asymmetry in costliness of mistakes, but the fact that also here any average offer259

below 0.5 can be reached by choosing a sufficiently low intensity of selection is260

an artefact of the fact that the neutral process, with mutation only, finds itself261

in the middle of the strategy space on average.262

2.4.2. Reason 2: averages over the population and time versus averages over263

the population264

There is also a second reason why not too much should be made of the265

fact that one get the average offer and the average MAO in the simulations to266

match average offers and average MAO’s from lab experiments, if that requires267

choosing low intensities of selection. That reason has to do with the fact that268

the averages reported for the simulations are averages over populations and269

over time, and the averages in lab experiments are only averages over a given270

population. It is important to stress that these two are not the same. There are271

different ways in which the average in a population in a lab experiment can be272

the same as the average over the population and over time in the simulations,273

while other aspects of the simulations generate a remarkable mismatch with the274

empirical evidence.275

Figure 2A displays how the average offer and the average MAO within the276

population change over time in part of a run with relatively infrequent mutation,277

and weak selection. Mutations there are global and co-occurring, as they are278

in Rand et al. (2013). Figure 2B is a snapshot, which illustrates that most of279

the time, the population is at fixation, or close to it. The variance within the280

population therefore is almost always 0 or close to 0. Over time, however, the281
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(A)

(B)

(C)

Figure 2: Weak selection. The top panel shows how the average offer and the average MAO in the population
change over time for part of a run with an intensity of selection of w = 0.001. Mutations are global and co-occurring,
and the mutation rate is u = 0.001. In the neutral process, the average offer and the average MAO move completely
independently. Here, with weak selection, they move almost completely independently (although the timing of
changes to both coincides because of co-occurring mutations). The middle panel is a snapshot during the run. The
bottom panel gives the average distribution over time, where we collected strategies within intervals of length 0.04.
This average distribution is very close to the uniform distribution from which the mutants are drawn. The average
over time of the average offers (MAO’s) is a horizontal red (blue) line in panel A, and a vertical red (blue) line in
panel C.
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offers and MAO’s are highly variable; Figure 2C indicates that they are quite282

literally all over the place.283

When considering the results from lab experiments, we can assume that284

different populations are undergoing the same, or similar dynamics, and that285

implies that we may treat experiments in different populations as equivalent286

to different moments in time in the same simulation. If we do that, then the287

within population variance in experiments is much too large, and the between288

population variance in experiments is much too small to match the simulations,289

even if we can find model parameters for which the average over time of the290

average over the population in the simulations match the average for a sample291

from a population at a given moment in time.292

2.4.3. Reason 3: lack of correlation between offers and MAO’s293

Another remarkable observation is that the offer and the MAO in these294

simulations are almost completely uncorrelated (this is also visible in Figure295

2A). As a consequence, the average offer within the population is sometimes296

higher than the average MAO within the population, but almost equally often297

it is the other way around. Only when also averaged over time, is the average298

offer a bit above the MAO, but that masks that they move almost completely299

independently. Therefore, under weak selection, we should expect to find the300

average offer to be lower than the average MAO almost as often as the other301

way around. That is at odds with what is found in for instance cross-cultural302

experiments, where the offers in any given population are not independent of the303

income-maximizing offer in that population (Henrich et al., 2001; 2005; 2006).304

The lack of correlation between offers and MAO’s in the simulations therefore305

is a remarkable mismatch with the empirical data.306

Supplementary Material 2 shows that these mismatches are not confined307

to the combination of global and infrequent mutation. Whether mutations are308

global and co-occurring, as in Rand et al. (2013), or local and independent, as in309

our version, and whether mutations are frequent or infrequent, when selection is310

weak, averages over time from the simulations may coincide with averages from311

lab experiments, but predictions from the model that are not aggregated over312

time are not in line with the empirical evidence.313

2.5. Mutation rates314

The model in Rand et al. (2013) has two variables that can tilt the balance315

between mutation and selection; the intensity of selection, and the mutation316
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rate. Decreasing the intensity of selection and increasing the mutation rate317

both make mutations overwhelm selection against rejecting positive offers. The318

reasons above point to limitations we encounter if we use the intensity of selec-319

tion to push up average offers and MAO’s for a given mutation rate. That still320

leaves the door open for increasing the mutation rate as a way to push offers321

and MAO’s up.322

A natural next question is therefore what a reasonable mutation rate is. For323

global mutations, it is important to realize that the “upward force” as a result of324

the bias scales up with the mutation rate. With global mutations, at a mutation325

rate of 1, individuals with high fitness still reproduce more than individuals with326

low fitness, but all selection is washed out completely by the bias. That means327

that, whether or not 1 is a realistic mutation rate, what is unrealistic for sure328

is that the force that is pushing the offers and MAO’s up is just the bias in the329

mutations going in the other direction than selection.330

For local mutations, on the other hand, there is only a little bit of bias around331

the edges (close to 0 and 1). That means that if dynamics take the offers and332

MAO’s in the population up to intermediate levels, then even the moderate333

amount of bias that is there for trait values close to 0 disappears (instead of334

scaling up). The argument against high mutation rates with global mutations335

therefore does not apply with local mutations. One can moreover decide not336

to interpret the mutation rate too literally. There may be alternative genetic337

architectures that maintain the same variance within the population with much338

lower mutation rates. With sexual reproduction, for instance, no offspring is an339

exact copy of either of the parents. It is however important to realize that, for340

a given intensity of selection, with local mutations, it is not possible to push341

the average offer and MAO up to any level between 0 and 1. At 1, the highest342

possible mutation rate, these averages are not at 1
2 , but somewhere strictly (and,343

depending on the intensity of selection, possibly substantially) below 1
2 . All of344

this is discussed in more detail in Supplementary Material 1.3, where we fix345

intensities of selection, and let mutation rates vary.346

2.6. WEIRD people347

Another consideration that suggests we should allow for a margin of error348

when comparing averages from simulations and averages from experiments, is349

that those experiments tend to be done with WEIRD subjects, and the envir-350

onment that makes us WEIRD is evolutionarily new. This is a point made351

by Henrich et al. (2010). One of the examples they point to is behaviour in352
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the ultimatum game, and this is based on Henrich et al. (2006). In this study,353

they find that the income maximizing offers in two WEIRD populations (Emory354

students and rural Missouri) are relatively high compared to 13 non-WEIRD355

populations – and for the income maximizing offer to be high, there needs to356

be a relatively large share with a relatively large MAO. With WEIRD people357

having relatively high MAO’s, experiments with WEIRD people therefore may358

set a bar that is a bit higher than necessary.359

2.7. The shape of the distribution360

Section 4 discusses a possible explanation of the data from lab experiments361

based on noise (instead of deviations from selfishness). This explanation is362

rejected by the empirical evidence, and this rejection is based on properties of363

the distribution other than the average offer or the average MAO. This mismatch364

between the empirical evidence and the predictions of the noise-based Quantal365

Response model also carries over to mutation-selection equilibria. It is helpful366

to first look at what one could consider to a be a somewhat more proximate367

explanation in order to understand what the prediction is, and why that would368

also follow from a mutation-selection model. Therefore, we will postpone this369

point to the end of Section 4. It may be good though to point to the fact that370

the mutation-selection equilibrium has another prediction in store, and to the371

fact that this one does not pertain to the average offer and the average MAO.372

2.8. Summarizing373

The results in Rand et al. (2013) are for a large part driven by bias in the374

mutations. If we un-bias the mutation process by replacing global mutations375

with local mutations, average offers and average MAO’s in the simulations drop376

significantly. We can still get these averages up to levels found in experiments,377

but in order to do that, we have to choose really low intensities of selection.378

The fact that one can always do that, is, first of all, a somewhat gratuitous379

result of the fact that the intensity of selection can serve as a slider that can380

put us anywhere between the middle of the strategy space, and the point where381

selection alone would take us. Moreover, as we lower the intensity of selection,382

we may get the average offer and MAO (over time and over the population) closer383

to the averages (over the population) in experiments, but other characteristics384

of the prediction move away from what we observe – including the fact that for385

really low intensities of selection, the average offer and the average MAO are386

almost uncorrelated over time.387
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3. Mutation-selection equilibria: Gale et al. (1995)388

Another paper that describes mutation-selection equilibria in the ultimatum389

game is Gale et al. (1995). While Rand et al. (2013) allow for an interpretation390

with genetic transmission as well as social learning, Gale et al. (1995) explicitly391

focus on the latter. There are also some technical differences. The model392

in Rand et al. (2013) has a finite population, for which they run stochastic393

simulations. Gale et al. (1995) on the other hand assume an infinitely large394

population, for which they calculate deterministic replicator dynamics. The395

strategy space in the main part of Rand et al. (2013) is continuous. The strategy396

space in Gale et al. (1995), on the other hand, is discrete; individuals can choose397

offers or MAO’s only with certain, fixed increments. There are also some subtle398

differences concerning how mutation events and reproduction events relate.399

These differences in modelling details come with differences in results. We400

will describe some of those differences here, and, in more detail, in the Sup-401

plementary Material. The similarities, however, are more important, and more402

prominent, than the differences. We will therefore first reproduce their main set403

of equations, and discuss what we see in equilibrium.404

3.1. The model in Gale et al. (1995)405

In Gale et al. (1995), the size of the pie is 40, but it is clear that one can406

choose any integer for size. We will therefore let n denote the amount to be407

divided. In Gale et al. (1995), proposers can offer i = 1, ..., n to the responder;408

they can only offer integer numbers equal to or smaller than the pie size, but409

not including 0. Responders are characterized by an MAO, which is denoted by410

j, and which also ranges from 1 to n in steps of 1.411

The differential equations that describe the dynamics are then given by

ẋi = (1− δ) (πi,P − πP )xi + δ

(
1

n
− xi

)
for proposers, where xi is the share of proposers that propose i, ẋi is its time

derivative, δ is the mutation rate, πi,P is the payoff of proposers that propose

i, and πP is the average payoff in the proposer population, and by

ẏj = (1− δ) (πj,R − πR) yj + δ

(
1

n
− yj

)
for responders, where yj is the share of responders with an MAO of j, ẏj is412

its time derivative, πj,R is the payoff of responders with an MAO of j, and413
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Figure 3: Mutation-selection equilibrium in Gale et al. (1995). The original model has global mutations,
and this mutation-selection equilibrium has a mutation rate δ of 0.15. The thick tails of the distributions are a
symptom of the bias in the mutation. With local mutations, the tails are much less thick (see Figure 4).

πR is the average payoff in the responder population. The payoffs to different414

types of proposers depend on the composition of the responder population, and415

the payoffs to different types of reponders depend on the composition of the416

proposer population. In their paper, Gale et al. (1995) allow for the mutation417

rates to differ between the proposer and responder populations, but we will start418

with their default case, where they are the same.419

We would like to keep the models of Gale et al. (1995) and Rand et al. (2013)420

as comparable as possible. Some of the simulation results from the model in421

Rand et al. (2013) are represented by frequencies of strategies in intervals of422

finite size; see for instance Figure 2B and C. In order to be as close as possible423

to that way of representing properties of simulation runs, we adjust the spacing424

of the strategies a little – which does not affect the equations above; the change425

only induces a minor change in how the payoffs are calculated. Instead of having426

proposer strategy i propose i, we choose for strategy i to propose the midpoint427

of the interval [i− 1, i], which is i − 1
2 . Similarly, we let responder strategy j428

have an MAO of j − 1
2 . That means we still have n strategies for both roles,429

but now we are not treating one end of the range from 0 to n differently; the430

smallest offer now is 1
2 up from 0, and the largest is 1

2 down from n, while before,431

0 was excluded and n was included. This change is not consequential for what432
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Figure 4: Mutation-selection equilibrium in Gale et al. (1995) with local mutations. This mutation-
selection equilibrium has a mutation rate δ of 0.75. The tails are much thinner than with highly biased, global
mutations. The spike at 1 and the dip at 2 are part of a dampening wave pattern caused by the remaining bias in
mutations at the edges of the strategy space.

the mutation-selection equilibria look like.433

Without mutations, at δ = 0, almost all starting populations will converge434

to a population state where all responders have the lowest possible MAO and435

all proposers make the lowest possible offer. With mutations, that need not be436

the case. Mutations in Gale et al. (1995) are again global, as they introduce all437

MAO’s and all offers at the same rate. This means that introducing mutations438

will by definition increase the average offer and the average MAO above 0 as439

a result of the bias. There are obviously also asymmetries in how fast subop-440

timal strategies are selected away, which creates the patterns in the offers and441

MAO’s in Figure 3, but the main force behind the deviations from 0 with global442

mutations is the bias.443

3.2. Our version444

Because mutation bias is still not a good basis for an explanation, we also445

made a version of Gale et al. (1995) with local instead of global mutations.446

Local mutations work in a similar way as in our version of the model from Rand447

et al. (2013) with local mutations. A mutation induces a change in the offer,448

and this change can be up to a fixed number of steps to the right, or to the left,449
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where all changes within that range are equally likely (with exceptions similar450

to those for our local mutations for Rand et al., 2013, if those changes would451

lead to offers or MAO’s below 0 or over n). An example of a mutation-selection452

equilibrium with local mutations is given in Figure 4. Comparing the mutation-453

selection equilibria in Figures 3 and 4, we see that with local mutations, it454

takes much higher mutation rates to get to the same levels of average offers and455

MAO’s, and that with local mutations, that happens without the thick tails456

that are symptomatic of the fact that with global mutations, higher mutation457

rates imply more upward push from the bias.458

3.3. Finite versus infinite populations, and multiplicity of equilibria459

In Gale et al. (1995), a mutation-selection equilibrium is a population state,460

characterized by a combination of frequencies of different strategies, for which461

the dynamics indicate no net change due to the combination of mutation and462

selection. The population state depicted in Figure 3 is such an equilibrium.463

These equilibria are moreover stable, in the sense that at least nearby population464

states move towards it, and sometimes there is even global convergence. What465

the authors seem to have overlooked, however, is that for one and the same466

combination of parameters, there can be multiple mutation-selection equilibria.467

In the Supplementary Material, we show that this is the case for low mutation468

rates. If the mutation rate is low enough, then there are multiple mutation-469

selection equilibria, at which almost all proposers make the same offer, and470

with a range of options for what that offer is. For higher mutation rates, there471

is just one, globally attracting, mutation-selection equilibrium.472

The finite population dynamics in Rand et al. (2013) on the other hand are473

noisy, and not deterministic. The population will therefore keep moving around,474

and a mutation-selection equilibrium becomes a distribution over population475

states that reflects that some population states are visited (much) more often476

than others. By letting simulations run for a long time, we can figure out477

properties of this distribution of states, such as the average offer or the average478

MAO. This distribution is always unique, also if mutation rates are low enough479

for the infinite population version from Gale et al. (1995) to have multiple480

equilibria. The noise in Rand et al. (2013) would then make the population481

visit these different equilibria, and states close to them, over time.482

In the Supplementary Material, we compare Gale et al. (1995) and Rand483

et al. (2013) by choosing versions of the latter with increasing population sizes.484
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We find that infinite population models are not a great approximation for finite485

population dynamics with small or even moderately sized populations.486

3.4. Unequal mutation rates and Quantal Response487

The setup in Gale et al. (1995) does allow for the possibility that mutation488

rates differ between proposers and responders. This is more reasonable for social489

learning than it would be for genetic transmission. With social learning, one490

could argue that if not much is at stake, there is less incentive to try to retain491

what you have learned. This kind of control over mutation rates make the agents492

more sophisticated than they are in the default version of the model, in which493

mutation rates are the same for both roles in the game. It also makes agents494

more sophisticated than they are in the model of Rand et al. (2013), where495

mutation rates are the same for offers and for MAO’s.496

The motivation that Gale et al. (1995) give for the unequal mutation rates497

is strikingly similar to the motivation given for the definition of a Quantal Re-498

sponse Equilibrium (McKelvey and Palfrey, 1995). A Quantal Response Equilib-499

rium does not describe a mutation-selection equilibrium, so conceptually these500

are two different things, but both do have in common that they are ways in which501

the asymmetry in costliness of mistakes shapes how noise ripples through the502

population. In Quantal Response Equilibria, this noise in caused by perception503

error, or otherwise failures to maximize, and in mutation-selection equilibria504

the mutations are the sourse of the noise. The next section discusses Quantal505

Response Equilibria for the ultimatum game, and one important thing that we506

will see there, is that there is a whole set of models, including Quantal Response507

Equilibria and mutation-selection equilibria, that predict types of distributions508

that are not in line with the empirical evidence. We will make this general509

observation once we have also looked at Quantal Response Equilibria.510

4. Quantal Response Equilibria511

In this section, we will try to see if one can explain human behaviour in512

the ultimatum game without assuming that people deviate from selfishness. In-513

stead, we assume that people are in fact selfish, but that they are also limited514

in their understanding of what it is that they need to do in order to maximize515

their fitness, or something that translates to fitness, like money. This imperfect516

understanding is formalized by the game-theoretic notion of a Quantal Response517

Equilibrium (QRE, McKelvey and Palfrey, 1995), which can be described as a518
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statistical version of a Nash equilibrium, where suboptimal behaviour is not519

ruled out, but only assumed to be unlikely. The reason why this can be in-520

teresting for the question how behaviour in the ultimatum game has evolved,521

is that Quantal Response Equilibria can emerge as the result of a variety of522

learning dynamics. Like the mutation-selection equilibria discussed in Section523

2, the QRE for the ultimatum game is shaped by the asymmetry in how costly524

mistakes are. After working our way through the details of the different types525

of QRE’s, we will see that the empirical evidence actually rejects that humans526

play a QRE in which they try to maximize how much money they earn.527

Looking at QRE’s and comparing them to the empirical evidence is first of528

all interesting, because it helps rule out that people are selfish after all, and that529

their behaviour in the ultimatum game is just the result of not knowing exactly530

how to maximize their payoff. The deviations from selfishness we observe in531

experiments therefore cannot be explained away by people making mistakes. On532

top of this, the discrepancies between the empirical evidence on the one hand and533

the predictions of a combination of QRE and selfishness on the other also carry534

over to a larger class of evolutionary models at the ultimate level. Any dynamical535

model in which the reason why rejections are still present in equilibrium is536

that there is some source of noise that keeps introducing suboptimal behaviour,537

while selection keeps selecting against it, turns out to be inconsistent with the538

empirical evidence. That includes models that are in principle also open to539

an interpretation in which individuals evolve a preference for rejecting, as is540

the case for all mutation-selection equilibria discussed in the previous sections.541

This is an important, consequential observation, because it rules out a whole542

category of models that aim to explain the behaviour in the ultimatum game;543

all models that do not include a mechanism through which an actual fitness544

benefit is associated with rejecting proposals, do not explain behaviour in the545

ultimatum game. Before being able to articulate what the prediction is, and546

how that is refuted by the empirical evidence, it will be helpful to work through547

the technical details of the QRE, and first answer the more proximate question548

whether the behaviour can be reconciled with selfishness after all.549

4.1. Quantal Response Equilibria and learning dynamics550

The idea behind a Quantal Response Equilibrium (QRE, McKelvey and Pal-551

frey, 1995, Goeree et al., 2016) is that players are imperfectly informed about552

the consequences of different behaviours. This concept does not assume any-553

thing about whether people are selfish or not; it can be combined with any type554
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of preference, be it selfish, pro-social, anti-social, or inequity averse. Here, how-555

ever, we will combine QRE with selfish preferences. The predictions therefore556

will be the result of a combination of selfish preferences and the Quantal Re-557

sponse model. Because of the fact that we do assume selfish preferences, words558

like “payoffs” will in fact coincide with money amounts when we use them below.559

The defining property of a QRE is that strategies that result in high payoffs560

are played with higher probability than strategies that earn the agent lower pay-561

offs. In the standard specification, the difference in probabilities is determined562

using a rationality parameter λ. The higher this rationality parameter, the lar-563

ger the difference between these probabilities, and in the limit of λ → ∞, only564

strategies that get the highest payoff are played. As a result, Quantal Response565

Equilibria become Nash equilibria in the limit of λ → ∞. One reason why play-566

ers might not be infinitely, or perfectly rational, is that increasing one’s λ might567

not be free. At some point, getting better at recognizing which actions lead to568

high payoffs might not be worth the additional costs of boosting this capacity.569

There are different ways to model individual behaviour that would imply570

dynamics that justify using the notion of a QRE. One such way is if individuals571

observe the payoffs in the population with a little bit of noise. This implies572

that their idea of what actions would get them the highest payoffs is mostly573

accurate, but due to the noise, they may sometimes think that the best they574

can do is choose an action that does not in fact come with the highest expected575

payoff. This is more likely to happen for actions that are close to optimal, for576

which it takes only a tiny shock to make it seem as if this is the optimal choice.577

In the resulting “perturbed best response dynamics” (Hofbauer and Sandholm,578

2002; Sandholm, 2010; Alós-Ferrer and Netzer, 2010), individuals play what they579

think is the optimal thing to do against the current state of the population. If the580

noise follows a certain distribution, then this perturbed best response dynamic581

becomes the logit response dynamics, which can bring populations playing a582

game to a (logit) QRE.583

A second way would be to assume instead that players adjust their behaviour584

locally, where they take their current strategy as their point of departure, and585

tend to adjust it in the direction in which payoffs increase. This is then combined586

with some amount of noise in how they adjust. The balance between those two587

factors implies that if payoffs increase steeply in one direction, individuals are588

most likely to adjust their behaviour in the right direction, and, in expectation,589

by a lot, whereas if payoff differences are small, then noise makes it more likely590

that they misdirect their adjustment. The resulting dynamics also converge to591
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a QRE (Anderson et al., 2004). We do not focus on either of these two dynamic592

justifications; we just want to point to the fact that there is a variety of dynamic593

justifications for the concept of a QRE.594

There are two versions of the QRE that we can apply to the ultimatum595

game; the Agent-QRE and the Normal form-QRE. There is a rationale behind596

those names, but it is not important for our purposes, and below we will just597

describe what they are for the ultimatum game.598

4.2. Agent-QRE599

If an offer in which the responder would get x is made, the responder chooses

between, on the one hand, accepting, and getting x by doing so, and, on the

other, rejecting and getting 0. In an Agent-QRE, that means that the responder

is more likely to accept than to reject – unless x = 0 – and that this gap grows

as x increases. For x = 0, there is no payoff difference, and therefore she accepts

with 50% chance. In the logit specification of an Agent-QRE, the probability

that the responder accepts depends on the offer x as follows:

P (accept|x) = eλ·x

eλ·x + eλ·0
=

eλx

eλx + 1

The formula itself is not too important, but for the comparison with the empir-600

ical evidence, it is important to observe that this would indeed predict that all601

positive proposals are more likely to be accepted than they are to be rejected,602

while the proposal x = 0 would have to be accepted half of the time. This is603

also illustrated by the red lines in Figure 5, that plot how the acceptance rates604

would depend on the proposal x for different rationality parameters λ.605

Which offer would maximize the earnings for the proposer depends on what606

responders do. More precisely, what the best offer is, depends on the way in607

which the probability with which the responder accepts, changes with the offer608

that is made. For rationality parameters λ between 0 and 2, the probability with609

which the responder accepts is so insensitive to the proposal, that proposers are610

best off just proposing nothing for the responder and everything for themselves.1611

This proposal will then be accepted with 50% probability. Increasing the offer612

1This can be found by taking the derivative of the expected earnings. These expected
earnings are the amount the proposer gets if the offer is accepted (which is 1 − x) times the

probability with which it is accepted (which is eλx

eλx+1
). The derivative of (1− x) eλx

eλx+1
to x

is negative for all x ∈ (0, 1) for 0 ≤ λ ≤ 2, while for all λ > 2, there is one – and only one – x
within the interval (0, 1) for which this derivative is 0.
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(A) (B)

(C) (D)

Figure 5: Agent-QRE. The red lines represent the probability with which the responder accepts an offer in which
she gets x. The higher x, the larger the difference in payoff between accepting and not accepting, and therefore
the higher the probability of acceptance. How strong the probability to accept responds to the payoff difference
depends on the rationality parameter λ, which is 2, 4, 8 and 16 in panels A, B, C and D, respectively. The blue
lines represent the probability distribution over the offers made by the proposers in the QRE (just to be sure: this
makes it is a different type of line than the red line is). The red line always starts at 0.5; the proposal in which the
responder gets nothing is accepted with 50% chance.

does increase the probability with which the proposal is accepted a bit, but613

not enough to offset the reduction of the share of the pie when it is accepted.614

Therefore, for low λ’s, the offer with the highest payoffs to the proposer, and615

therefore with the highest probability in the QRE, is 0 (see Figure 5A).616

For λ’s larger than 2, what the best response is first increases with λ. This617

can be seen in Figure 5B, where the peak of the blue graph has moved to the618

right. Later, for even higher λ’s, changes in responder behaviour push the offer619

with the highest expected payoff back down again, which can be seen in Figure620

5C and 5D, where the position of the peak moves back to the left, and gets ever621
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closer to 0 as λ gets ever larger.622

One can also see this from the formula for the density of offers made by the

proposer in the logit specification for the Agent-QRE.

e
λ(1−x) eλx

eλx+1∫ 1

0
e
λ(1−y) eλy

eλy+1 dy

The exponent in the numerator is λ times the expected payoff to the proposer of623

offering x. The density therefore peaks at the point where this expected payoff624

is maximized. High λ’s moreover make for larger differences between the density625

for strategies with low expected payoffs and high expected payoffs. The peak626

therefore gets ever higher as λ increases, while the position of the peak, which627

is determined by the behaviour of responders, first moves to the right, and then628

back to the left.629

4.3. Comparison empirics630

For the comparison with the empirical evidence, we focus on responder beha-631

viour, for which we pool data from different studies that use the direct-response632

method together (see Figure 6). The following studies are included: Andersen633

et al. (2011); Barmettler et al. (2012); Bornstein and Yaniv (1998); Cameron634

(1999); Carpenter et al. (2005a;b); Croson (1996); Forsythe et al. (1994); Light-635

ner et al. (2017); Ruffle (1998); Slonim and Roth (1998). For each experiment,636

we extract the data for the standard ultimatum game, and discard the data for637

other treatments that vary certain aspects. Offers are calculated proportional638

to the total amount available in the ultimatum game in order to standardize the639

behavior across different experiments. Because it is not universally agreed upon640

whether stakes size matters, we also exclude the observations for the largest641

stakes in Andersen et al. (2011); Cameron (1999); Slonim and Roth (1998),642

while the Supplementary Material contains a version where we do include all643

stake sizes. The Supplementary Material also contains a version where we use644

data obtained with the strategy method to calculate rejection rates and compare645

them to the predictions of the Agent-QRE.646

To test whether the predictions of the Agent-QRE fit the experimental evid-

ence, we ran a logistic regression. With a logistic function, the probability that

the offer is accepted is given by

P (accept|x) = 1

1 + e−(β0+β1x)
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Figure 6: Acceptance/rejection rates in agent-QRE vs. empirical acceptance/rejection rates. The
coloured lines are the acceptance rates in the agent-QRE for different λ’s. The circles indicate acceptance rates for
different proposals, pooling data from a number experiments together. Their size reflects the number of observations
for that offer. The black line is the fitted acceptance rate as a function of the offer for a logit regression. Here,
we use data obtained with the direct-response method, and we exclude some treatments with high stakes. In the
Supplementary Material we include all stake sizes, and we compare the predictions of responder behaviour in the
Agent-QRE with acceptance rates based on data obtained with the strategy method.

In the Agent-QRE, the acceptance probability of an offer in x is

P (accept|x) = eλx

eλx + 1
=

1

1 + e−λx

This means that this probability in the Agent-QRE is nested in the logit specific-

ation, because the only difference between the two specifications is the intercept

term β0. The intercept is moreover the critical term, especially at the offers of

0, since the probability of accepting an offer of 0 Agent-QRE is

P (accept|0) = 1

2

whereas, for the logistic function including the intercept, it is

P (accept|0) = 1

1 + e−β0
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Depending on whether β0 is statistically significantly different from 0 or not, we647

can therefore directly say something about the probability of accepting an offer648

of 0 being different from 1
2 .649

We fit logistic functions with and without the intercept to test between

the two specifications, and our results show a highly statistically significant

coefficient on the intercept (p-value < 0.001). This indicates that the logistic

regression including the intercept provides a significantly better fit than the

Agent-QRE (see the Supplementary Material for details). The estimated coef-

ficient on β0 moreover has a negative sign, resulting in an estimated acceptance

probability of an offer of 0 that is below 50%;

P (accept|0) = 1

1 + e−β0
<

1

2

as e−β0 > 1.650

What this implies for the Agent-QRE is that the empirical acceptance rates651

are not consistent with the prediction of the QRE under the assumption that652

individuals are purely focused on maximizing their monetary payoff. Offers of 0653

are accepted in significantly less than 50% of the cases, and there is an interval654

of low offers, for which subjects reject more often than they accept. The fact655

that there is such an interval is inconsistent with the idea that monetary payoffs656

are the only determinant of rejecting behaviour. Instead, it is consistent with657

subjects balancing the money they would get from accepting the offer against658

something else, which is best described as the joy of rejecting an unfair offer, or659

an aversion to accepting it.660

4.4. Normal form-QRE661

In the Normal form-QRE, we assume that proposers choose a proposal662

between 0 and 1, and responders choose an MAO between 0 and 1. That means663

that instead of considering responder strategies for each proposal separately,664

we consider strategies for the whole spectrum of possible offers. Moreover, the665

strategies we consider all have a natural, simple form; they have a threshold,666

above which they accept all offers, and below which they reject all offers. Many667

models reduce the strategy set this way, including the models in Gale et al.668

(1995) and Rand et al. (2013), as well as our version of the latter, all of which669

we discussed in Sections 2 and 3. The experimental evidence moreover suggests670

that this is not an unreasonable simplification; many people reject low offers and671

accept high offers, and switch from one to the other at some point in between.672
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(A) (B)

(C) (D)

Figure 7: Normal form-QRE. The red lines represent probability distributions over MAO’s for the responder,
and the blue lines represent probability distributions over the offers made by the proposers, both in one and the
same QRE. The rationality parameter, λ, is 2, 4, 8 and 16 in panels A, B, C and D, respectively. The red graphs
are all decreasing; in Normal form-QRE, lower MAO’s occur with higher frequency than higher MAO’s. The blue
graphs have ever higher peaks, that start in the middle, and move ever more to the left.

In this setup, a QRE is a combination of distributions, one for the proposer673

and one for the responder. What the payoffs to different strategies for the674

proposer are, depends on the distribution of MAO’s of responders, and vice675

versa. In equilibrium, strategies with higher expected payoffs are chosen with676

higher probabilities, and strategies with lower payoffs are chosen with lower677

probabilities, and this is true both for proposers and for responders.2678

The Agent-QRE and the Normal form-QRE are not the same. In the Normal679

form-QRE, the proposer strategy that maximizes expected payoff starts at 0.5680

2Just for completeness: if f(x) is the distribution of proposals and g(x) is the distribution
of MAO’s, then the following needs to be true for the combination of them to be a Normal
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for λ = 0, and then only moves down. Therefore, if we look at Figure 7, we see681

that the peak starts in the middle, and always moves to the left (besides also682

becoming ever higher). This is different from how the distribution of proposer683

strategies changes with the increase of λ in the Agent-QRE, where the position684

of the peak starts at 0, first moves to the right, and then back to the left3685

(while the red lines are just not comparable, because they represent responder686

strategies in different ways).687

These technicalities are not unimportant, but for the comparison with what688

subjects in labs do, what matters most is that the frequency with which players689

choose different MAO’s decreases with the MAO; in the Normal form-QRE, an690

MAO of 0 is chosen the most, an MAO of 1 is chosen the least, and in between,691

if 0 < x < y < 1, then x is chosen more often than y.692

4.5. Comparison empirics693

For the comparison with the empirical evidence, we focus on responder beha-694

viour, for which we pool data from different studies that use the strategy method695

together (see Figure 8). The following studies are included: Bader et al. (2021);696

Bahry and Wilson (2006); Benndorf et al. (2017); Chew et al. (2013); Demiral697

and Mollerstrom (2020); Inaba et al. (2018); Keuschnigg et al. (2016); Peysak-698

hovich et al. (2014). For each experiment, we extract the data for the standard699

ultimatum game, and discard the data for other treatments that vary certain700

aspects.701

The majority of studies that use the strategy method restrict the subjects to702

strategies that can be characterized with an MAO. They ask their participants to703

submit a number, and if the offer they get is less than that number, it is rejected,704

form-QRE for the ultimatum game:

f(x) =
eλ

∫ x
0 (1−x)g(y)dy∫ 1

0 eλ
∫ z
0 (1−z)g(y)dydz

g(y) =
e
λ
∫ 1
y xf(x)dx∫ 1

0 eλ
∫ 1
z xf(x)dxdz

3In the Agent-QRE, what responders do, changes with λ, but only directly, because a higher
λ gives more weight to strategies with higher payoffs. Which responder strategies would result
in what payoffs is not changing with λ, because in the Agent-QRE, these are calculated for
any given proposal, which, if your partner just made it, is happening with probability 1.
In the Normal form-QRE, the expected payoffs that different responder strategies generate
do depend on what proposers do. The distribution of what responders do in the Normal
form-QRE therefore depends on λ in an additional way, because λ also has an effect on what
proposers do.
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Figure 8: MAO’s in Normal form-QRE vs. empirical MAO’s. The coloured lines are the MAO’s for different
λ’s. The bars indicate the frequencies of different MAO’s in experiments. Because subjects gravitate towards round
numbers, and because the increments subjects can choose also differ between experiments, we group the MAO’s
together as follows; the first bar is the frequency of MAO’s of exactly 0, the second bar is the frequency of MAO’s
strictly between 0 and 0.05, the third bar is the frequency of MAO’s of exactly 0.05, the fourth bar is the frequency
of MAO’s strictly between 0.05 and 0.1, and so on. Here, we use data obtained with the strategy method.

and if it is higher than or equal to it, it is accepted. There are however a few705

exceptions; Bahry and Wilson (2006) and Keuschnigg et al. (2016); Bader et al.706

(2021) ask participants to submit their accept/reject decisions for each possible707

offer separately. Participants in these studies therefore have the flexibility to708

switch between accepting and rejecting more than once, as opposed to the single709

switched point imposed by the method of submitting an MAO. For these studies710

we include participants who never switched, who switched only once (who start711

with rejecting and switch to accepting at a certain offer level), and those who712

switched twice (once from rejecting to accepting in the first half of the strategy713

space for offers, and another time from accepting to rejecting in the second714

half of the strategy space). We included this last group of subjects as well,715

as it seems that also rejecting hyper-fair offers is not a mistake, but aligns716

with an existing, consistent preference. In this case, we take the first switching717

point as their MAO. We do exclude other participants who do not fall into718

one of these categories. If the participant accepted all offers, we take their719
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MAO to be 0. MAO’s are calculated proportional to the total amount available720

in the ultimatum game in order to standardize the behavior across different721

experiments (see the Supplementary Material for more details).722

Figure 8 shows that the distribution of MAO’s in experiments does not723

follow the pattern predicted by the Normal form-QRE. It is clear that the724

frequency of MAO’s is not a decreasing function of the MAO, and as a simple725

indication of this, we can consider all MAO’s below 0.25 on the one hand, and726

all MAO’s above 0.25 up to, and including 0.5. The first interval, [0, 0.25),727

contains fewer observations than the second one, (0.25, 0.5], which is at odds728

with the distribution being a decreasing function.729

4.6. Evolutionary dynamics in general730

The evolutionary game theory models in the literature fit the setup of the731

Normal form-QRE perfectly. In Gale et al. (1995), Rand et al. (2013), and in732

our de-biased versions of both, there is a population of proposers that are char-733

acterized by their offers, and a population of responders that are characterized734

by their MAO’s. Also there are similarities in the predicted distributions of735

offers and MAO’s. We will therefore focus on how the mismatch for the Normal736

form-QRE carries over to evolutionary explanations at the ultimate level.737

A good first observation is that the mutation-selection equilibria in Gale738

et al. (1995), Rand et al. (2013), as well as in our de-biased version, all have739

the property that the equilibrium distribution of MAO’s goes from frequent to740

infrequent as the MAO’s go from low to high. In other words, the density is the741

highest at 0, and then it decreases, until it is the lowest at an MAO of 1. That742

is a straightforward consequence of the fact that rejecting proposals is bad for743

fitness, and therefore having a lower MAO is always better than having a higher744

MAO.745

The simple version of the original evolutionary question regarding human be-746

haviour in the ultimatum game is: if rejecting is always bad for fitness, why do747

we observe rejections at all? At first sight, one might think that the mutation-748

selection models of Gale et al. (1995) and Rand et al. (2013) offer an escape749

from the iron logic that rejecting can only be bad for fitness, and should be se-750

lected against. Depending on parameter values, the average MAO in mutation-751

selection equilibrium can after all be sizable, and even if we de-bias the model,752

as we did in Section 2, the average MAO in equilibrium can still be pushed up753

to non-negligible amounts by choosing high mutation rates and, in Rand et al.754

(2013), low intensities of selection. In mutation-selection equilibria, or models755
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with noise in general, we should however realize that the presence of across-the-756

board selection against rejecting does not imply that the average MAO in the757

population should be 0. The only thing that it implies, is that lower MAO’s are758

favoured by selection over higher MAO’s, and therefore higher MAO’s should759

be observed less often than lower ones. The fact that the data do not align760

with that prediction, implies that no model with mutation-selection equilibria,761

in which selection works against rejections, can explain the rejecting of positive762

offers in humans. That remains true for all models in which rejecting is only bad763

for fitness. The observation that 0 is not the most common MAO in humans764

(far from it) therefore rejects all models that do not open up channels through765

which rejecting proposals can also bring fitness benefits.766

4.7. Implications, great and small767

The first implication of the comparisons of QRE’s and observed behaviour in768

the lab is totally intuitive and unsurprising. People really deviate from selfish-769

ness, and what we observe in the lab is not some mirage caused by noise rippling770

through a population of selfish individuals asymmetrically.771

The way this carries over to models that aim at giving ultimate explana-772

tions for human behaviour in the ultimatum game is less straightforward, and773

probably a bit more surprising, but therefore not less logically sound. Models774

in which all that happens is that some source of noise is added to the dynamics,775

without introducing a selective pressure that actually favours rejecting beha-776

viour, are also at odds with the empirical evidence. These models do not predict777

that everyone in the population should have an MAO of 0, but they do predict778

that 0 should be the most common MAO (or, more generally, they predict that779

the higher the MAO, the less frequently it should be observed). That is clearly780

at odds with the empirical evidence.781

5. Commitment782

Nowak et al. (2000) propose a model for the evolution of behaviour in the783

ultimatum game in which the mechanism why rejections evolve is commitment784

(see also Frank, 1988, and Akdeniz and van Veelen, 2021). The rejecting itself785

is still bad for fitness, but their model opens a door through which being com-786

mitted to rejections can be good for fitness. In their model, much the same787

as in other models, responders are characterized by a minimal acceptable offer788

(MAO), which is a threshold below which they reject proposals. Unlike other789
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models, Nowak et al. (2000) allow proposers to sometimes observe the behaviour790

in past interactions of individual responders, and if they see that the responder791

accepted a proposal below what they would offer without observing, they lower792

their offer to what they know this responder apparently accepts. As a result,793

having a lower than average MAO, while leading to fewer costly rejections if794

unobserved, now has the disadvantage of also leading to worse offers, in case a795

player is observed to accept them.796

In this section, we present a slightly upgraded version of the simulation model797

in Nowak et al. (2000). This illustrates a few core properties of this mechanism.798

The first is that, obviously, having a high MAO should sometimes lead to getting799

a higher offer for the mechanism of commitment to work. An individual’s MAO800

must therefore be recognized from time to time, and proposers should sometimes801

do something with that information. On the other hand, the MAO does not802

always have to be recognized, and it does not have to be recognized perfectly, in803

order for commitment to work. A modest individual effect, by which those with804

higher MAO’s on average get somewhat better offers, can still move the whole805

population to a state in which proposers serve their own interests by making806

sizable offers, even in cases where they do not have any information about the807

particular responder they are matched with.808

Some of the differences between our version and the original have to do with809

restrictions on the admissible strategies that Nowak et al. (2000) impose. While810

these restrictions are not necessarily unreasonable, we felt that it is better to811

see if and when strategies evolve that satisfy them, rather than imposing them812

exogenously. Our version of Nowak et al. (2000) is also a generalization of the813

version of Rand et al. (2013) that we presented in Section 2. This allows us to814

explore the relative effects of asymmetry and commitment, and it allows us to815

illustrate the power of the combination of them. Also, it is aesthetically nice to816

have a unified model.817

5.1. The simulation model in Nowak et al. (2000)818

In the simulation model in Nowak et al. (2000), each individual is defined by819

a default offer p and a minimal acceptable offer q. In any given interaction, the820

proposer will offer whatever is smaller; her own p value, or the lowest amount821

that she knows was accepted by the responder during previous interactions. In822

addition, there is a small probability that the proposer will offer her value p823

minus some random number between 0 and 0.1. This makes sure that even if824
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everyone in the population has the same p for a number of subsequent genera-825

tions, there still will be observations for a range of lower proposals. Strategies826

are restricted to those with values for p and q that add up to a number that827

does not exceed 1; p+ q ≤ 1.828

5.2. Our version829

Our version first of all abstracts away from the way in which players find out830

about the MAO’s of their partners. In Nowak et al. (2000), players sometimes831

observe past behaviour, from which they can make inferences about the MAO.832

We just assume that there is a fixed probability with which individuals know833

what the MAO of their partner is, and with the remaining probability they do834

not. The pathway could be reputation, but it can also be that people have other835

ways of recognizing individual differences in attitudes before playing.836

Because Nowak et al. (2000) use reputation as a way for proposers to get837

information on the MAO of their partners, the mechanism behind the evolution838

of rejections here is sometimes classified as reputation (see for instance Debove839

et al., 2016, or Henrich et al., 2010). This is a defensible and understandable840

choice. What we would like to emphasize, though, is that in a population that is841

playing the ultimatum game, there are interesting incentives concerning commu-842

nication. Proposers would like to be informed about the MAO of the responder843

they are matched with, so that they can maximize how much they can keep844

without getting their proposal rejected. Responders with high MAO’s would845

like the proposer they are matched to know what their MAO is. Responders846

with below average MAO’s however would like the proposer not to find out847

what their true MAO is. This partial alignment of the incentives for successful848

communication suggests that also without reputation, one could imagine some849

exchange of information to be established. Experimental evidence suggests that850

also in the absence of reputation, humans do indeed pick up on cues that help851

them predict rejecting behaviour with some success (van Leeuwen et al., 2018).852

Therefore, what we want to stress is that one can also see commitment as853

the underlying mechanism for the evolution of rejecting behaviour; rejecting854

itself is still bad for fitness, but being committed to rejections is good, because855

it results in better offers (Frank, 1988; Akdeniz and van Veelen, 2021). This856

does require that others are able to identify, to some degree, who is committed.857

Reputation is one of the pathways to do that, but since it is not the only one,858

we abstract away from how it is that proposers tell different responders apart,859

and just include a parameter that represents the degree to which they can.860
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The second way in which our version is different, is that our proposers are861

characterized by two variables instead of one. One variable is their default offer,862

which they make if they are uninformed. The other is the maximum MAO they863

are willing to match as a proposer if they are informed about the MAO of the864

responder. Rather than assuming that proposers always match the MAO they865

observe, in our version, what they do with this information also evolves.866

Also, in Nowak et al. (2000), proposers never propose more than their default867

proposal p, and only propose less than p if they know that will be accepted too.868

We allow for the possibility that proposers evolve to match the MAO of an869

opponent, also if it lies above their default offer p. The reason is that we think870

it is important to model the advantage it brings to be committed to an MAO871

that is above average, at least as much as it is important to allow being more872

accommodating than average to be exploited and selected against.873

A fourth way in which our simulations are different, is that we do not as-874

sume that individuals sometimes lower their offer with a random amount, as in875

Nowak et al. (2000). This is not needed, because we abstracted away from the876

mechanism by which proposers are sometimes informed about the MAO of the877

responder they are matched with. We do have mutations on all traits, including878

the offer without observing, the same way as in our version with local mutations879

of Rand et al. (2013).880

Finally, we do not impose the restriction that the default offer and the MAO881

should add up to a number that does not exceed 1. Our individuals can be882

endowed with any combination of those, as long as both are between 0 and883

1. We do think that there are reasons why the offer and the MAO have not884

evolved to values larger than 0.5, but we prefer not to impose restrictions on885

the set of admissible strategies in order to rule out values above 0.5. Also, for886

understanding the working of the model, it will actually be instructive to allow887

values for p and q that both are larger than 0.5, even if we see reasons why these888

would not evolve (see also section 3.2.1 in Debove et al., 2016, where they point889

to the consequences of this restriction).890

5.3. Results891

Without observability, the model is the same as our version of Rand et al.892

(2013), but with local mutations. At s = 0, at the left end of Figure 9, the893

MAO and the offer without observing therefore are the same as they are for894

local mutations in Figure 1B at w = 1. The MO (the maximum offer they will895

make as a proposer to match the MAO of the responder, if observed) is a trait896
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Figure 9: Local mutations and partial observability I. Individuals have three traits; the maximum offer (MO)
they will make as a proposer to match the MAO of the responder, if observed; the offer (O) they make if they do
not; and their MAO as a responder. The averages of these traits change with the probability with which proposers
observe the MAO of the responder, which ranges from s = 0 (no observability) to s = 1 (full observability). Other
parameter values are fixed at u = 0.01 and w = 1.

without fitness consequences if MAO’s are never observed. That implies that at897

s = 0 it will drift neutrally within the interval [0, 1], and will be 0.5 on average.898

At s = 1 it is the offer without observing that becomes irrelevant, and will899

be 0.5 on average. Full observability moreover turns the tables on proposers and900

responders, because now the MAO of the responder is a given to proposers, who901

serve their own interest best by matching all positive MAO’s. The situation at902

s = 1 therefore is the mirror image of the situation at s = 0, where the role of903

the offer without observing at s = 0 is played by the MAO at s = 1, and the904

role of the MAO at s = 0 is played by the MO at s = 1.905

In between, we see that increasing the observability shifts the balance between906
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(A)

(B)

Figure 10: Local mutations and partial observability II. Panel A is a snapshot of the population, indicating
the distribution of maximum offers (MO) they will make as a proposer to match the MAO of the responder; the
offers (O) they make if they do not observe the responder’s MAO; and their MAO as a responder. Panel B averages
these across time, and thereby represents average distributions. Parameter values are fixed at u = 0.01, w = 1, and
a probability of observing responder’s MAO of s = 0.3. The spike at 1.0 and the dip just before 0.1 are part of a
dampening wave pattern caused by the mutations being a little biased at the edges, where mutations beyond 1 are
not possible.

the costs of being committed to rejecting low offers, which mainly occur when907

not observed, and the benefits, which only occur when observed. This pushes908

the average MAO up. The average offer without observing follows suit, because909
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even though rejecting low offers evolves for when the MAO is observed, they910

are still a fact of life when not observed.911

This is still a mutation-selection equilibrium, in which local mutations would912

flatten all distributions in the absence of selection, while selection can lift certain913

frequencies within the distributions up. When observability increases, selection914

for positive offers without observing becomes weaker. Up to s = 0.7, selec-915

tion on the offers without observing the MAO keeps it above the average MAO916

within the population at all times. From s = 0.8 onward, with ever less selection917

countering the flattening of the distribution of offers without observing, the flat-918

tening sometimes wins, and sends the average offer without observing roaming919

below the average MAO, while selection at other times manages to temporarily920

stabilize the average offer without observing above the average MAO.921

5.4. Model limitations922

In this model, as in Nowak et al. (2000), we treat observability as an exo-923

genous parameter. This is useful for illustrating how commitment works, but924

because of the partially aligned, partially misaligned interests between proposers925

and responders with respect to communicating the MAO’s of responders, the926

observability is more likely to be endogenous, and subject to evolution itself.927

One can also stack levels of observability on top of each other. On top of928

the probability with which proposers see the MAO of the responder, one could929

also introduce the probability with which the responder observes the MO of930

the proposer, and introduce the minimal MO she is willing to adjust her MAO931

to. While setting the first observability to 1 turns the tables to the benefit of932

responders, setting this second observability to 1 would turn the tables back to933

the benefit of proposers. We do not think this would be a particularly useful934

modelling exercise. We do however believe that there is a good reason why935

offers and MAO’s would not exceed 0.5. The very nature of the ultimatum936

game makes it easier for proposers to commit than it is for responders. That937

implies that in a commitment tug-of-war between proposers and responders, we938

would expect that proposers will structurally find themselves on the shorter end939

of the stick.940

6. Summary, discussion, reflection941

In this paper, we have looked at a few prominent models from the evolu-942

tionary game theory literature that aim at explaining human behaviour in the943
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ultimatum game. Gale et al. (1995) and Rand et al. (2013) both describe prop-944

erties of mutation-selection equilibria, without a mechanism by which rejecting945

unfair proposals would get a selective advantage. We find that in both of them,946

the main driver of the results is bias in the mutations. This is not a good basis947

for an explanation. We made versions of both with local instead of global muta-948

tions. This minimizes the bias, and makes sure that the results are driven, not949

primarily by bias, but by the asymmetry in how costly mistakes are for pro-950

posers and responders. The reduction in bias makes average offers and average951

MAO’s go down much more than the effect of the asymmetry makes them go952

back up again. The net change from global to local mutations therefore comes953

with significantly lower average offers and average MAO’s. While the versions954

with local mutations capture the effect of the asymmetry in costliness of mis-955

takes much better than the originals with global mutations, they still assume956

that rejecting is always bad, which is reflected by the fact that the mutation-957

selection equilibrium is characterized by higher MAO’s always occurring less958

frequently than lower MAO’s.959

We also looked at Quantal Response Equilibria under the assumption that960

individuals are selfish. This noisy version of the Nash equilibrium, where people961

make mistakes in maximizing their payoff, and are more likely to make smaller962

mistakes than larger ones, comes in two versions. The first is characterized by963

probabilities of accepting that start at 50% for the offer of 0, and increases964

from there onward. The second is characterized by an equilibrium distribution965

in which an MAO of 0 has the highest density, an MAO of 1 the lowest, and966

the density always decreases as the MAO goes up everywhere in between. Both967

predictions are not confirmed by the experimental data, where we use data from968

existing experiments that use the direct response method to go with the first,969

and data from experiments that use the strategy method to go with the second970

prediction. The empirical evidence therefore rejects that the behaviour in the971

lab is the result of selfish people being imperfect at maximizing the amount of972

money they earn.973

The second mismatch, between the observed shape of the distribution of974

MAO’s and what Quantal Response would predict if people were selfish, also975

carries over to models at the ultimate level, as long as these models maintain976

the assumption that rejections can only be bad for fitness. This includes the977

mutation-selection equilibria in Gale et al. (1995), in Rand et al. (2013), and978

those in our de-biased versions of them.979

The last model we looked at is Nowak et al. (2000). The mechanism at work980
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there is commitment. If proposers have a way of finding out what the MAO of981

responders is, then having a higher MAO helps getting higher offers. The act982

of rejecting itself therefore is still bad for fitness, but being the rejecting type983

is good for fitness. We made an upgraded version of their model, that avoids984

making assumptions that rule out certain strategies a priori. Our version of985

Rand et al. (2013) also becomes a special case of our version of Nowak et al.986

(2000).987

6.1. Inequity aversion and the mismatch hypothesis988

The three papers we have focused on here are the best known evolutionary989

game theory models from the literature on this topic. They are however not the990

only ways in which one could try to explain human behaviour in the ultimatum991

game. One other possibility would be to assume that humans have inequity992

averse preferences (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000) that993

have evolved for playing other games, and that we inadvertendly bring to the994

ultimatum game too. That would imply that the rejecting behaviour in the995

ultimatum game is maladaptive.996

Akdeniz and van Veelen (2021) show that there are two weak links in this997

argument. The first is that in most models for the evolution of deviations from998

selfishness, these “other games” are prisoner’s dilemmas, and in those models,999

altruism evolves, or maybe spite, but not inequity aversion. The second is that1000

this would imply that rejection rates should not depend on who makes the1001

proposal – the person that the money is to be split with, or a computer – and1002

that it should not depend on what the menu of possible proposals is that the1003

proposer can choose from. Blount (1995) find that the first is not true, Falk et al.1004

(2003) find that the second is violated (while an explanation with commitment1005

would predict that whether or not we reject should depend on whether or not1006

the other player is in fact responsible for an unfair proposal).1007

6.2. Other explanations1008

Akdeniz and van Veelen (2021) we also discuss why the fairness norm in1009

the ultimatum game is not really group-beneficial – thereby ruling out a group1010

selection argument – and they argue that repeating an ultimatum game would1011

also not help explaining the behaviour that we find. Because those arguments1012

are made elsewhere, we do not repeat them here. We also do not aim at making1013

an exhaustive review of all existing models; there is already an excellent overview1014
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of the literature (Debove et al., 2016), and to complement that, we limited1015

ourselves to discussing a few prominent ones in more depth.1016

6.3. Deviations from selfishness in general1017

There are many ways in which humans deviate from simply selfish money-1018

maximizing behaviour. Studying deviations from selfishness in the ultimatum1019

game therefore is part of a broader endeavour, that also tries to explain devi-1020

ations from selfishness in other games. This gives another argument against1021

asymmetry-based models – while mutation bias-based explanations are hardly1022

ever a good option. For these other games, it is much more straightforward1023

to see that asymmetry-based explanations could never work. Behaviour in the1024

trust game can not be explained with models based on asymmetry in the cost-1025

liness of mistakes; trustees not sending back money and trustors not trusting1026

is very stable, also with mutations or noise. Also behaviour in the prisoners’1027

dilemma or in the public good game, with or without punishment, cannot be1028

explained on the basis of asymmetry. Here the simple reason is that these games1029

are just not asymmetric. As an explanation for the human sense of fairness in1030

general, therefore, asymmetry-based explanations would need to be combined1031

with other mechanisms for deviations from selfishness in other games. That1032

makes for instance commitment as a mechanism more parsimonious, because1033

that gives an explanation of deviations from simple selfishness in a much wider1034

variety of games (Frank, 1988; Akdeniz and van Veelen, 2021). That is not to1035

say that asymmetries are irrelevant (they are not) but it makes it even more1036

unlikely that asymmetry is the core driver of rejections in the ultimatum game.1037
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Supplementary Material for:

Evolution and the ultimatum game:

Why do people reject unfair offers?

Abstract

In the supplementary material, we discuss a few
things in more detail. Section S1 compares Rand
et al. (2013) with our version with local mutations.
Section S2 describes why choosing arbitrarily weak
selection is problematic. Section S3 describes the
model in Gale et al. (1995) as well as our version
with local mutations, and illustrates the possibility
of multiple equilibria for the former. Section S4 illus-
trates the link and the differences between the mod-
els in Gale et al. (1995) and Rand et al. (2013). Sec-
tion S5 discusses some details of Quantal Response
Equilibria, and how their predictions are compared
to experimental data.
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S1 Finite population models1

S1.1 The model in Rand et al. (2013)2

The model in Rand et al. (2013) has a finite population, in which 100 individu-3

als play ultimatum games in both roles. Every individual has a strategy that4

specifies the offer they make in the role of proposer, and their MAO in the role5

of responder. These offers and thresholds range from 0 to 1. Each generation,6

every individual plays the ultimatum game with every other individual, once as7

a proposer and once as a responder. The resulting payoff is the average of the8

payoffs over all 99 pairings.9

The population is updated according to a Moran process. One agent is picked10

at random to die, and individual i ∈ {1, ..., 100} is picked with probability11

proportional to exp (wπi) to reproduce, where w is the intensity of selection,12

and πi is the average payoff of individual i. Mutations happen at rate u at13

reproduction; with probability 1 − u, the new individual inherits the strategy14

from the reproducing individual, and with probability u, the new individual15

carries a randomly selected strategy. If a mutation happens, both the new offer16

and the new MAO are drawn from a uniform distribution on [0, 1].17

S1.2 Our versions18

There is one general, inconsequential difference between their simulations and19

ours, and that is that we use a Wright-Fisher process instead of a Moran pro-20

cess. The Wright-Fisher process is computationally more efficient, but other21

than that, it perfectly reproduces the findings in Rand et al. (2013) for global22

mutations. The more important difference is that in our version, mutations are23

local. We consider two local alternatives for the mutation process.24

S1.2.1 Local, co-occurring mutations25

In the first one, mutations on both dimensions (offer and MAO) are co-occurring,26

as they are in Rand et al. (2013). That means that if a mutation happens, then27

both a new offer and a new MAO are drawn. The only difference with Rand28

et al. (2013) is that they are drawn from a local distribution, instead of a global29

one. If the old offer is p, then the new offer is p+∆p, where ∆p is drawn from a30

uniform distribution on [−0.1, 0.1]. There are two exceptions. If p+∆p < 0, the31

new offer is 0. Similarly, if p+∆p > 1, the new offer is 1. The same procedure32
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applies to the MAO.33

S1.2.2 Local, independent mutations34

In the second version, mutations in the offer or the MAO happen independently.35

At any reproduction event, the offer mutates with probability u, and so does36

the MAO. That means that with probability u2 mutations of the offer and of37

the MAO co-occur, with probability 2u (1− u) only one of them mutates, and38

with probability (1− u)
2
neither of the two mutates. Mutations still happen39

locally, as described above.40

The differences between these two versions are relatively small (see Section41

S1.4). Because the second version is more elegant, this is the one that we use42

here and in the main text.43

S1.3 Global versus local mutation44

The first question that Rand et al. (2013) answer for their model, and that we45

answer for ours, is: which combinations of the intensity of selection and the46

mutation rate put the average offer and the average MAO in the range of the47

averages in empirical findings. There are two ways to rephrase that question, or48

to visualize the answer. The first is: for a given mutation rate, how low would49

the intensity of selection have to be in order to get the offers and MAO’s up to50

levels found in experiments. The second is: for a given intensity of selection,51

how high would the mutation rate have to be in order to get offers and MAO’s52

up to the levels found in experiments.53

For the figures in the main text, we took the first approach: we fixed a54

mutation rate, and considered a variety of intensities of selection. This way55

these figures indicate how far we would have to reduce the intensity of selection56

in order to push average offers and average MAO’s up to values in the range57

found in experiments. Here, we complement that with the second approach.58

In Figure S1, below, the intensities of selection are fixed, and we look at the59

average offers and MAO’s for a variety of mutation rates. For reasons explained60

in the main text, and in Section S2 of the supplementary material, we would61

like to stay away from the limit of weak selection, and therefore we choose the62

three larger intensities of selection that feature in Figure 1 in the main text.63

In this representation, with fixed intensities of selection and increasing muta-64

tion rates, the simulations suggest the same as Figure 1 in the main text does,65

and maybe even more strongly so. If we compare the version from Rand et al.66
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(2013), with global, biased mutations, to our version with local, and therefore67

much less biased mutations, then the average offers and the average MAO’s68

are significantly lower in the latter. We also see that with local mutations, the69

average offer and the average MAO do not always reach the averages from exper-70

iments, even at the maximum mutation rate, where everybody always mutates.71

With global mutations, both average offers and average MAO’s inevitably get72

to 0.5 as mutation rates increase. The reason is that when mutations are global,73

then at u = 1, when both the offer and the MAO mutate at every reproduction74

event, it becomes irrelevant who is reproducing. The parents therefore stop75

passing on any (genetic) information; every new individual is a mutant, and all76

mutants are drawn from the same distribution, regardless of what the parents77

are. Therefore, at u = 1, on both dimensions, the population at any point in78

time just becomes a collection of independent random draws from [0, 1].79

With local mutations, average offers and average MAO’s do not necessar-80

ily get to 0.5 as the mutation rate increases. In this case, parents still pass81

on genetic information, because even if everyone mutates, these mutations are82

drawn from a distribution that is centered around the trait value of the parent.83

The trait value of the parent matters for payoffs, and therefore for the expected84

number of offspring, and that makes it possible for the average offer and the85

average MAO to stay below 0.5, even if the mutation rate is 1.86

This illustrates that one can also push the average offers and the average87

MAO’s up by increasing the mutation rate. It also illustrates that there are88

limits to how far one can push them up, and for moderate to high intensities of89

selection, even a mutation rates of 1 does not push them up high enough.90

It is possible to model the genetics underlying the behaviour differently. If91

we for instance assume that there is a number of different loci that all can92

increase or decrease the offer or the MAO by a little bit, and we assume sexual93

reproduction, then it is possible that also with lower mutation rates, one can94

sustain similar levels of variation in the population, and thereby push the offers95

and MAO’s up by the same amount. It should however be noted that this would96

naturally make mutations local, and therefore with global mutations, where the97

effect of the bias scales up with the mutation rate, there is less space to think98

of reasons why high mutation rates make sense.99

49



(A)

(B)

(C)

Figure S1: Global versus local mutations. In red the average offers and MAO’s for the model
in Rand et al. (2013), which has global, co-occurring mutations. In blue the same, but for local,
independent mutations. The intensity of selection is 0.1 in panel A, 1 in panel B, and 10 in panel
C. For w = 0.1 one can still get to the averages observed in experiments, but with local mutations
it requires very high mutation rates. For w = 1 and w = 10, even a mutation rate of u = 1 is not
high enough for local mutations.
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S1.4 Co-occurring versus independent mutations100

Figure S2 shows that only for a combination of strong selection and a low muta-101

tion rate is there a modest difference between local, co-occurring mutations102

and local, independent mutations. For higher mutation rates and/or weaker103

selection, this difference disappears. Because there is no real reason why muta-104

tions would co-occur, we chose to use the version with independent mutations.105

The comparison here is done to make sure that the lion share of the difference106

between simulations with the model from Rand et al. (2013) and simulations107

with ours is due to replacing global, and therefore biased mutations with local,108

and therefore much less biased ones, and not to switching from co-occurring to109

independent mutations.110

S2 Weak selection111

In the main text, we have seen that for a fixed mutation rate, we can always112

push average offers and the average MAO’s up, from 0, to any point between113

0 and 0.5, by reducing the intensity of selection. We have also seen that there114

are limitations to how much the intensity of selection can be reduced, and still115

produce a meaningful prediction. Here we will make that argument a bit more116

precisely and elaborately.117

S2.1 Probabilistic symmetry118

When the intensity of selection is 0, the dynamics in the model by Rand et al.119

(2013) become symmetric, in the sense that any transition from one population120

state to the other is equally likely as its mirror image. More precisely, if pi121

denotes the offer of player i in the role of proposer, and qi is the MAO of122

player i in the role of responder, then a population state is characterized by123

vectors p = [p1, ..., pN ] and q = [q1, ..., qN ], where N is the population size.124

Symmetry means that a transition from population state (p,q) to population125

state (p′,q′) is equally likely as its mirror image, going from population state126

(1− p,1− q) to population state (1− p′,1− q′), where 1 is a vector of 1’s.127

This symmetry implies that if we average the population states over time, we will128

find a symmetric distribution. The average offer over this distribution therefore129

will be 0.5, and the average MAO will also be 0.5, and both of these are a130

consequence of the fact that 0.5 is halfway the strategy set that the population131
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(A)

(B)

(C)

Figure S2: Co-occurring versus independent mutations. In red the average offers and
MAO’s with local, co-occurring mutations, and in blue the same, but for local, independent muta-
tions. The mutation rate is 0.001 in panel A, 0.01 in panel B, and 0.1 in panel C.

moves around in – with probabilistic symmetry.132

All of this implies that the fact that it is possible to get the average offer or133
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the average MAO up to any value between 0 and 0.5 by choosing a sufficiently134

low intensity of selection is not necessarily something that reflects anything to do135

with selection. Selection pulls both of them down, and if one reduces selection136

ever more, then one can reduce how much both are dragged down. The fact137

that one can get them to average at values arbitrarily close to 0.5 by almost138

eliminating selection, however, is a somewhat arbitrary result of the shape of139

the strategy set, and not of what selection does to the strategies in it.140

In the main text we illustrate this by looking at a simulation run for global141

and infrequent mutation, and, of course, weak selection. Here in the supplement-142

ary material we will also consider global and frequent, local and infrequent, and143

local and frequent mutation.144

S2.2 Weak selection, global mutation, low mutation rate145

The left hand side of Fig. S3 depicts a few aspects of a run with global mutation,146

a low intensity of selection (w = 0.001), and a low mutation rate (u = 0.001).147

Panel A shows how the average offer and the average MAO change over time for148

a part of a simulation run. Panel C gives a snapshot of the distribution at some149

moment in time, and here we find both traits to be at fixation, as is expected to150

be the case for most of the time with such a low mutation rate. Panel E averages151

these distributions (like the one given in panel C) across time, producing the152

average distribution over time. As is to be expected, this is quite close to the153

uniform distribution on [0, 1], which is the distribution that all mutants come154

from.155

The fact that the average offer and the average MAO move around quite a156

bit over the course of a run limits the predictive power of the model for this157

combination of low intensity of selection and low mutation rate. Any average158

that we find in experiments would be close to the average in the simulations159

at some points in time, but it would be far away from the averages that the160

simulations produce at many other points in time. Also, at most points in time,161

there is not much variation; the variation in panel E is generated by the variab-162

ility across time, not by the variation at any moment in time. The prediction163

of this model therefore is that we should observe a close to monomorphic pop-164

ulation, where the probability with which we would observe a certain average165

is the result of a draw from the uniform distribution. The fact that the MAO166

of everyone in the population is regularly also above the offers of everyone in167

the population (almost 50% of the time) also implies that if we really believe in168

53



(A) (B)

(C) (D)

(E) (F)

Figure S3: Global, co-occurring mutations, w = 0.001, and u = 0.001 (left) and u = 0.1
(right). The top panels give the average offer and MAO over time for a part of the run. The
middle panels give the distribution of strategies at some random moment in the simulation run.
The bottom panels give the average distribution over time, where we bundled strategies within
intervals of length 0.04 together. The average offer of the average distribution and the average
MAO of the average distribution are horizontal lines in panel A and B, and vertical lines in panel
E and F.
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weak selection, we should also conclude that if we now find the average MAO to169

be below the average offer, then this is just a coincidence, and it could also have170

been the other way around. That would make it very unlikely that between171

different populations they would correlate, and that the first always turns out172

to be below the second (Henrich and Boyd, 2001; Henrich et al., 2001; 2006).173

S2.3 Weak selection, global mutation, high mutation rate174

The right hand side of Fig. S3 depicts the same aspects for a run, also with175

global mutation, and also with a low intensity of selection (w = 0.001), but with176

a high mutation rate (u = 0.1). Here, the averages in the population do not177

move around as much, and the shape of the distribution at any point in time is178

relatively close to the distribution of the inflow of mutants, which is a uniform179

distribution over [0, 1]. Given the low intensity of selection, this makes sense.180

With much less variability over time, this produces a much sharper prediction:181

the distribution should be close to uniform on [0, 1] at all times. This does not182

match the empirical evidence either, because the distributions that we find in183

experiments typically are not that close to uniform. Moreover, as before, the184

average offer and the average MAO move close to independently, and this does185

not predict the average offer to be above the average MAO.186

S2.4 Weak selection, local mutation, low mutation rate187

With weak selection, local mutations, and low mutation rates, the populations188

are typically also close to monomorphic, as they are with global mutations in189

combination with low mutation rates. Over time, they also move around quite a190

bit, and, similar to global mutations, not in synchrony. What is different is that191

changes in the averages come in much smaller steps, as a result of the mutations192

being local, and therefore the averages move around much slower (see Fig. S4A,193

where time runs 10 times faster than in Fig. S3A). The distribution over time194

is not the same as the “distribution that all mutants come from”, as it is with195

global mutations, because with local mutations, there is no such thing as a196

constant mutant distribution. Because the average is a random walk, restricted197

to [0, 1], the distribution still ends up looking like a uniform distribution, with198

some deviations at and close to the boundaries (see Fig. S4E). These boundaries199

are a bit stickier than other monomorphic states; trait values 0 and 1 collect200

more incoming mutations, that otherwise would have gone below 0 or over 1,201

and once the population is temporarily absorbed in one of the boundaries, and202
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(A) (B)

(C) (D)

(E) (F)

Figure S4: Local, independent mutations, w = 0.001, and u = 0.001 (left) and u = 0.1
(right). The top panels give the average offer and MAO over time for a part of the run. The
middle panels give the distribution of strategies at some random moment in the simulation run.
The bottom panels give the average distribution over time, where we bundled strategies within
intervals of length 0.04 together. The average offer of the average distribution and the average
MAO of the average distribution are horizontal lines in panel A and B, and vertical lines in panel
E and F.
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everyone has trait value 0, or everyone has trait value 1, leaving requires a203

mutant with the right sign. The population therefore spends some extra time204

at these extreme points.205

S2.5 Weak selection, local mutation, high mutation rate206

With weak selection and high mutation rates, the mutations being local rather207

than global allows random effects to persist for longer, because mutations are208

not biased towards the middle anymore – except for trait values at or close209

to 0 or 1. Deviations from the average over time therefore have much more210

amplitude than they do with global mutations (notice that also here, time is211

running 10 times faster in Fig. S4B than it is in Fig S3B). Compared to low212

mutation rates (Fig. S4D vs. Fig. S4C), the distribution at any given point213

in time is much less concentrated, and over time, the population moves around214

faster (Fig. S4B vs. Fig. S4A), but otherwise, also here the average (over215

time) of the averages (over the population) is a uniform distribution, with some216

deviations at the edges (see Fig. S4F).217

S2.6 Variance over time218

In order to have an indication of how stable or unstable the distributions are over219

time, we can calculate the variance in average offers, or the variance in average220

MAO’s, over time. If pt is the average offer in the population at time t, and221

p = 1
T

∑T
t=1 p

t is the average over time of these averages over the population,222

then223

1

T

T∑
t=1

(
pt − p

)2
is the variance across time. Simulations with a low variance have more predictive224

power than simulations with a high variance.225

As a benchmark of something that has no predictive power, one could use226

the variance that would go with randomly drawing a new average offer or MAO227

from a uniform distribution on [0, 1] every period. In that case, the variance is228 ∫ 1

0

(x− 0.5)
2
=

1

3

[
(x− 0.5)

3
]1
0
=

1

12
≈ 0.083

Calculating these variances for the simulations paints a picture that is in line229

with what one would expect from Fig. S3 and Fig. S4; whether mutations are230
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(A) (B)

(C) (D)

Figure S5: Variances over time for weak selection. With global, and rare mutations
(u = 0.001), the variance over time gets very high for w = 0.01 and w = 0.001 (A). With global,
and frequent mutations (u = 0.1), the average is very stable, and the variance stays low (B).
With local, and rare mutations, the variance over time gets high again, even a bit higher than the
variance one would get from independent draws from the uniform distribution – indicated in the
figures by straight horizontal lines (C). With local, and frequent mutations, the variance also gets
very high for weak selection (D).

global and rare; local and rare; or local and frequent, variances get very high231

when selection gets weak (see Fig. S5). Because the edges of the interval [0, 1]232

are temporarily absorbing for local mutations, the variances there become even233

higher than 1
12 when mutations are rare. The variance only remains low for234

mutations that are both global and frequent. In this case, the distribution at235

any point in time will be close to the distribution that the mutants come from.236

This implies that with weak selection, the simulations are literally all over237

the place. For global and infrequent mutations, they are extremely variable238

over time; and for global and frequent mutations, they are extremely variable239
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at any moment in time. We should, however, not have a model with global,240

and therefore biased mutations anyway – as we have seen that it is this bias241

that drives the results – and if we choose local, and therefore much less biased242

mutations, the averages are, again, all over the place for weak selection, this243

time regardless of the mutation rate. That implies that the trick to push average244

offers and average MAO’s up by lowering the intensity of selection goes at the245

expense of predictive power; any population average that one would find at some246

point in time would literally be equally likely under the model.247

S3 Infinite population models248

S3.1 The model in Gale et al. (1995)249

First we repeat the equations for the model in Gale et al. (1995). The amount250

to be divided is denoted by n. The share of proposers that propose i is denoted251

by xi, for i = 1, ..., n, and the share of responders with an MAO of j is denoted252

by yj , for j = 1, ..., n. The mutation-selection dynamics are given by253

ẋi = (1− δ) (πi,P − πP )xi + δ

(
1

n
− xi

)
for proposers using strategies i = 1, ..., n, where ẋi the time derivative of xi, δ254

is the mutation rate, πi,P is the payoff of proposers that propose i, and πP is255

the average payoff in the proposer population, and by256

ẏj = (1− δ) (πj,R − πR) yj + δ

(
1

n
− yj

)
for responders that use strategies j = 1, ..., n, where ẏj is the time derivative of257

yj , πj,R is the payoff of responders with an MAO of j, and πR is the average258

payoff in the responder population.259

The first term on the right hand side reflects selection, the second term re-260

flects mutation. Global mutation means that all strategies have the same inflow261

due to mutation (it is δ
n for all strategies) and an outflow that is proportional262

to the current shares (it is δxi for proposers and δyj for responders). Gale et al.263

(1995) allow for the mutation rate δ to differ between proposers and responders,264

but we will first assume that they are the same.265
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(A)

(B)

(C)

Figure S6: Multiple equilibria for Gale et al. (1995). With δ = 0.05 and global mutation,
there are 3 mutation-selection equilibria. The most frequent strategy for proposers in those equi-
libria ranges from i = 8 (A) to 10 (C), making the predominant offer in those equilibria range from
7 1
2 (A) to 9 1

2 (C).
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S3.2 Our small changes to the version with global muta-266

tions267

The offers and MAO’s in the original model run from 1 to n, and exclude 0.268

When we compare this model, which has a discrete strategy space, with the269

model from Rand et al. (2013), that has a continuous strategy space, it can be270

nice to make strategies in the former comparable to strategies within an interval271

in the latter. We therefore shifted all proposals to the left by 1
2 ; instead of having272

proposer strategy i propose i, we choose for strategy i to propose the midpoint273

of the interval [i− 1, i], which is i − 1
2 . Similarly, we let responder strategy j274

have an MAO of j − 1
2 . This only affects the equations above indirectly, in the275

sense that the payoff calculations now involve slightly shifted offers and MAO’s.276

Below, we will sometimes still just refer to those strategies as strategy i or j,277

because that is shorter, but sometimes we will explicitly refer to the offer, and278

then we write i− 1
2 , or to the MAO, in which case we write j − 1

2 .279

We also normalize the payoffs, so that the maximum payoff is 1 and the280

minimum payoff is 0. With normalization, one can see n, not as an indicator of281

the pie size, but as an indicator of how finely one unit can be subdivided. This282

helps comparing the results to simulations from Rand et al. (2013), which have283

a fixed amount of 1 to be divided in the ultimatum game.284

S3.3 Multiple equilibria285

Figure S6 shows a variety of equilibria for the same combination of n and δ.286

All of those equilibria are similar, in that most proposers are making the same287

offer, with fewer proposers making higher offers, and even fewer making lower288

offers. Most responders have MAO’s somewhere between the smallest possible289

MAO and the offer that most proposers make, and very few have larger MAO’s.290

The different equilibria are characterized by what the most frequent offer is; for291

n = 50 and δ = 0.05 – the parameters from Figure S6 – there are equilibria292

where the most frequent MAO is 7 1
2 (A), 8 1

2 (B), or 9 1
2 (C).1293

The first parameter combinations in Figure S7 have multiple mutation-294

selection equilibria. The other three have unique, globally attracting mutation-295

selection equilibria. With the limited computing power of 1995, Gale et al.296

1For replicator dynamics with a continuous strategy space, one would expect a spectrum
of equilibria, with positive point mass at some offer for proposers. These would be stable to
perturbations that are small in the variational distance, but not to perturbations that are
small in the Prohorov metric (see Van Veelen and Spreij, 2009).
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(A) (B)

(C) (D)

Figure S7: Mutation-selection equilibria in Gale et al. (1995) with global mutations.
For δ = 0.05 there are multiple equilibria (see Figure S6). We picked the first one for panel A. For
δ = 0.075 (B), δ = 0.1 (C), and δ = 0.125 (D), there is a unique, globally attracting mutation-
selection equilibrium. The fat tails are a symptom of the bias in the mutations.
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may have missed the possibility that the population might converge to different297

states depending on the starting point.298

S3.4 Our version with local mutations299

Also here, global mutations are biased, which is not a good basis for an explan-300

ation. Therefore, as we did with the model in Rand et al. (2013), we also made301

a version with local, and therefore much less biased mutations. In the local302

version, if an individual mutates that currently plays strategy i, then the new303

strategy becomes any strategy from i− k to i+ k, all with equal probability –304

provided that these changes do not make the offer or MAO drop below 0 or go305

over 1. The latter is guaranteed not to occur if k < i ≤ n − k. If i ≤ k, the306

mutant becomes any strategy from 2 to i+k with probability 1
2k+1 , and strategy307

1 with the remaining probability, and if > n− k, then the mutant becomes any308

strategy from i − k to n − 1 with probability 1
2k+1 , and strategy n with the309

remaining probability.310

For n = 50 and mutations that take a mutant a maximum of k = 2 steps311

to the right or to the left, that means that the equations for the replicator312

dynamics for proposers become313

ẋ1 = (1− δ) (π1,P − πP )x1 + δ

(
−2

5
x1 +

2

5
x2 +

1

5
x3

)
ẋ2 = (1− δ) (π2,P − πP )x2 + δ

(
1

5
x1 −

4

5
x2 +

1

5
x3 +

1

5
x4

)
for the first two, then314

ẋi = (1− δ) (πi,P − πP )xi + δ

(
1

5
xi−2 +

1

5
xi−1 −

4

5
xi +

1

5
xi+1 +

1

5
xi+2

)
for strategies 3 to 48, and315

ẋ49 = (1− δ) (π49,P − πP )x49 + δ

(
1

5
x47 +

1

5
x48 −

4

5
x49 +

1

5
x50

)
ẋ50 = (1− δ) (π50,P − πP )x50 + δ

(
1

5
x48 +

2

5
x49 −

2

5
x50

)
for the last two. For responders, this is316
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(A) (B)

(C) (D)

Figure S8: Mutation-selection equilibria in Gale et al. (1995) with local mutations.
Mutation rates are δ = 0.25 (A), δ = 0.5 (B), δ = 0.75 (C), and δ = 1 (D). The wave pattern at the
boundaries of the strategy space is caused by the remaining bias in mutations at the boundaries,
where mutations to strategies below 0 or above 50 are ruled out.
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ẏ1 = (1− δ) (π1,R − πR) y1 + δ

(
−2

5
y1 +

2

5
y2 +

1

5
y3

)
ẏ2 = (1− δ) (π2,R − πR) y2 + δ

(
1

5
y1 −

4

5
y2 +

1

5
y3 +

1

5
y4

)
for the first two, then317

ẏj = (1− δ) (πj,R − πR) yj + δ

(
1

5
yj−2 +

1

5
yj−1 −

4

5
yj +

1

5
yj+1 +

1

5
yj+2

)
for strategies 3 to 48, and318

ẏ49 = (1− δ) (π49,R − πR) y49 + δ

(
1

5
y47 +

1

5
y48 −

4

5
y49 +

1

5
x50

)
ẏ50 = (1− δ) (π50,R − πR) y50 + δ

(
1

5
y48 +

2

5
y49 −

2

5
y50

)
for the last two.319

Figure S8 shows mutation-selection equilibria for global mutation and a vari-320

ety of mutation rates. Many observations made when comparing global and local321

mutations for Rand et al. (2013) can also be made here. The most obvious one322

is that when comparing Figures S7 and S8, we see that also here, all else equal,323

average offers and MAO’s are lower with local than with global mutation (note324

that mutation rates in Figure S8 are higher than in Figure S7).325

Because mutants have to remain within the strategy space, we assumed that326

mutations to strategies below 0 are replaced with mutations to 0, and mutations327

to strategies above n are replaced by mutations to n. That means that 0 and328

n have extra incoming mutations, while, in our case, with a maximum change329

in strategy of 2 due to mutation, strategies 1 and n − 1 only have a reduced330

amount of incoming mutations, since strategies below 0 or above n that could331

mutate to 1 and n− 1, respectively, do not exist. In equilibrium, this creates a332

spike at 1, a valley at 2, and those also ripple through the frequencies towards333

the middle. In panel (D) we see the same at the top end of the strategy space.334

Finally, a difference between Rand et al. (2013) with local mutations and335

Gale et al. (1995) with local mutations, is that we have seen that even at a336

mutation rate of 1, the average offer and the average MAO are not 1
2 in Rand337
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et al. (2013) with local mutations. In Figure S8 we see that for the version338

of Gale et al. (1995) with local mutations, this is not true, and both averages339

are in fact 1
2 . This is caused by the difference in how reproduction events and340

mutations relate in both models. In Rand et al. (2013), mutations happen341

at reproduction. That means that at a mutation rate of 1, reproductions still342

happen, but at every one of those, a mutation occurs. With local mutations, that343

means that the trait value of the offspring is still correlated with the trait value344

of the parents (which is not true for global mutations). In Gale et al. (1995),345

mutations happen not at reproduction. Instead, the mutation rate reflects how346

many mutation events occur relative to the number of reproduction events.347

That means that here, at a mutation rate of 1, there are only mutations, and348

reproduction is just not happening.349

S4 Link between Rand et al. (2013) and Gale350

et al. (1995)351

For infinitely large population dynamics, if a population is in equilibrium, it does352

not move. In finite population dynamics, also in equilibrium, the population353

moves around, but visits some states (much) more often than others. With finite354

population dynamics, the equilibrium therefore is a distribution over population355

states. As the population size increases, the noise decreases, and the variation356

in population states across time goes down. In the limit of infinitely large357

populations, the dynamics become deterministic.358

In order to investigate the link between the finite population model in Rand359

et al. (2013) and the infinite population model in Gale et al. (1995), we ran simu-360

lations with increasing population size for Rand et al. (2013). When we compare361

snapshots from the population with the average distribution (over time), we find362

that the difference between these two does indeed decrease with population size363

– which is an indication that the population does indeed move around less. For364

global mutation and a population size of 100, the difference between the snap-365

shot and the average distribution (which averages these snaphots over time) is366

very large, and also for a population size of 1, 000 it is still considerably different,367

and only at a population of 10, 000, they come close. The characteristics of the368

average distribution therefore are not perfectly representative for the average369

characteristics of the distribution at any given point in time, although much370

more at 10, 000 than the other population sizes. The variance within the pop-371
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ulation at any moment in time is also smaller than the variance in the average372

distribution. This difference also goes down, but is quite substantial at 100 and373

1, 000. One could therefore say that the infinite population model in Gale et al.374

(1995) is only a good approximation of the finite population model in Rand375

et al. (2013) for quite large finite populations. The discrepancies are however376

smaller for our versions of the two with local mutations (not depicted).377

S5 Quantal Response Equilibria378

S5.1 Predictions and data379

S5.1.1 Data380

Author, Year
# Obs. # Obs.

DR vs. STR
all stakes low/medium

Andersen et al. (2011) 458 325 DR
Bader et al. (2021) 485 – STR

Bahry and Wilson (2006) 288 – STR
Barmettler et al. (2012) 100 – DR
Benndorf et al. (2017) 98 – STR

Bornstein and Yaniv (1998) 20 – DR
Cameron (1999) 202 165 DR

Carpenter et al. (2005a;b) 107 – DR
Chew et al. (2013) 207 – STR
Croson (1996) 56 – DR

Demiral and Mollerstrom (2020) 283 – STR
Forsythe et al. (1994) 67 – DR
Inaba et al. (2018) 121 – STR

Keuschnigg et al. (2016) 487 – STR
Lightner et al. (2017) 42 – DR

Peysakhovich et al. (2014) 576 – STR
Ruffle (1998) 44 – DR

Slonim and Roth (1998) 820 570 DR

Table S1: Alphabetical list of empirical papers whose data we use. The second column
shows the number of observations after eliminating the treatments using the non-standard versions
of the ultimatum game, for studies with a variety of stake sizes, the third column shows the number
of observations after excluding also the treatments with the largest stake sizes in studies testing
the stake size effects, and the last column shows whether the experimental design uses the direct-
response (DR) or the strategy (STR) method.

We use the data from the papers listed in Table S1 in our main text and381
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(A) (B)

(C) (D)

(E) (F)

Figure S9: Rand et al. (2013) for different population sizes. The mutation rate is 0.125,
the intensity of selection is 1, and the population size is 100 (top panels), 1, 000 (middle panels), and
10, 000 (bottom panels). Panels A, C, and E show the average distributions of offers and MAO’s,
where the average is taken over time. Panels B, D, and F show snapshots of offers and MAO’s.
The scaling on the horizontal axes in B and D is different from the other panels. Because running
additional generations becomes rather expensive at a population size of 10,000, the distribution in
E is a bit noisier than in A and C.
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(1) (2)
P(accept) P(accept)

Offer 4.778*** 7.463***
(p<0.001) (p<0.001)

Intercept -1.035***
(p<0.001)

Observations 1496 1496
Log-likelihood -600.78098 -580.5621
AIC 1203.562 1165.124
BIC 1208.873 1175.745
Pearson’s χ2 190.56 302.69
LR-test 40.44 (p<0.001)

p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table S2: Logistic regression results with and without the intercept.

in the supplementary material. In addition to these, we use the data from the382

meta-analysis of Tomlin (2015) in Figure S10.2 For both the direct-response383

method and the strategy method we calculate the outcome variable proportional384

to the total amount available in the ultimatum game to make observations385

from different studies comparable as much as allowed by the grid used in the386

experiments. All of the studies use real monetary stakes.387

In studies that use the direct-response method we consider how often an388

offer is accepted out of the number of times that offer is made, as an estim-389

ate of its acceptance probability. In studies that use the strategy method we390

analyze the MAO’s reported by participants, or their accept/reject decisions for391

each possible offer level, as an estimate of the acceptance probability for every392

possible offer.393

S5.1.2 Logistic regression with and without the intercept394

Since the Agent-QRE is equivalent to the logit specification without the inter-395

cept, we ran logit regressions with and without the intercept to test between the396

two specifications. Table S2 presents the results. As can be seen from Column397

(2), the coefficient on the intercept is highly statistically significant. In line with398

this, the AIC, BIC, Pearson’s χ2 criteria, and the likelihood-ratio (LR) test all399

2Since the dataset in Tomlin (2015) does not include information on stake sizes, we excluded
those observations in our analysis for the main text.
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Figure S10: Acceptance/rejection rates in agent-QRE vs. empirical accept-
ance/rejection rates. The coloured lines are the acceptance rates in the agent-QRE for different
λ’s. The circles indicate acceptance rates for different proposals, pooling data from a number
experiments together. Their size reflects the number of observations for that offer. The black line
is the fitted acceptance rate as a function of the offer for a logit regression. Here, we use data
obtained with the direct-response method, including all stake sizes.

indicate that the introduction of the intercept term in Column (2) improves the400

model fit significantly.401

S5.1.3 With and without large stakes402

In the main text, we compared the predictions of the Agent-QRE with rejec-403

tion rates we calculated by pooling data from experiments that use the direct-404

response method. Because it is not universally agreed upon whether stake size405

matters, we excluded the observations for the largest stakes in the papers by406

Andersen et al. (2011); Cameron (1999); Slonim and Roth (1998).3 If we include407

all stake sizes, the pattern is similar (see Figure S10).408

3In experiments that use three levels of stake sizes we exclude the largest one; in exper-
iments that use four levels of stake sizes we exclude the largest two. As Carpenter et al.
(2005a) uses stake sizes of only $10 and $100, we include both stakes in our analysis in the
main text.
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S5.1.4 Strategy method data for Agent-QRE409

In the main text, we compared the predictions of the Agent-QRE with rejection410

rates that we calculate by pooling data from experiments that use the direct re-411

sponse method. This is the more natural thing to do, but one can also construct412

rejection rates from experiments that use the strategy method. The majority of413

studies that use the strategy method restrict subjects to strategies that can be414

characterized with an MAO; they exclude strategies for which there exist two415

offers, where the higher one is rejected, and the lower one is accepted. This re-416

striction by construction implies that we will find that rejection rates are never417

decreasing in the offer. The prediction that rejection rates increase therefore418

cannot be tested with the experiments that use the strategy method in this way.419

The prediction that all acceptance rates should be above 50% can be tested, and420

would be rejected with data from experiments that use the strategy method –421

as it is with experiments that use the direct-response method (see the left panel422

in Figure S11).423

Three of the studies in our sample (Bader et al., 2021; Bahry and Wilson,424

2006; Keuschnigg et al., 2016) do not restrict subjects to submitting an MAO.425

They instead ask their participants to submit their accept/reject decisions for426

each possible offer level, which allows them to freely switch between accepting427

and rejecting. For these studies we include the participants who never switch,428

who switch only once (those that start with rejecting and switch to accepting at429

a certain offer level), and those who switch twice (from rejecting to accepting in430

the first half of the strategy space of offers, and from accepting back to rejecting431

in the second half of the strategy space). We exclude participants who do not432

fall into one of these categories. The number of observations given in Table S1433

represents the number of observations after excluding these participants. Using434

the data from these studies we can test both the prediction that rejection rates435

monotonically increase in the offer and the prediction that all acceptance rates436

should be above 50%; and both would be rejected (see the right panel in Figure437

S11).438

S5.2 Agent-QRE and learning models439

In the Agent-QRE, a higher offer is accepted with higher probability than a lower440

offer. The underlying assumption is that the noise in the perception of what the441

payoff-maximizing thing to do is, is the same for all proposals. Combined with442

the fact that the payoff difference between accepting and rejecting gets larger443
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(A) (B)

Figure S11: Acceptance/rejection rates in agent-QRE vs. empirical accept-
ance/rejection rates under the strategy method. The coloured lines are the acceptance
rates in the agent-QRE for different λ’s. The black line in panel A indicates acceptance rates for
different proposals, pooling data from a number experiments together that use the strategy method
and ask subjects to submit an MAO. The two dotted lines in panel B indicate acceptance rates
for different proposals, for the three experiments that use the strategy method and ask subjects
to submit their accept/reject decision for each possible offer within their grid. Study1 is Bahry
and Wilson (2006), and Study2 combines the data from Keuschnigg et al. (2016) and Bader et al.
(2021) as they have an identical design.

when proposals increase, and therefore selection against rejecting also becomes444

stronger, this leads to the probability of accepting the offer being larger for445

larger offers and smaller for smaller offers.446

The assumption of constant noise can be realistic, but one can also imagine447

that there are models for which this does not hold. For instance, one can also448

assume that the noise is higher for proposals that are made less frequently, and,449

depending on how the increased noise balances against the increased payoff450

difference, the rejection rate of a higher offer, that is made less frequently, could451

also end up being higher than that of a lower offer, that is made more frequently.452

Also more in general, for models of selection that fit the setup of an Agent-453

QRE, where responses to different offers evolve separately, the property that454

higher offers get lower rejection rates may not universally hold. If we think of a455

model where strategies for different proposals do indeed evolve independently,456

then one could imagine that there is more selection happening for proposals457

that are made more frequently. If the mutation rate for responses to different458
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offers is the same, one can imagine population states for which high offers are459

made so infrequently, that selection against rejections there is weak, and the460

rejection rate ends up being higher than that of a lower offer, that is made more461

frequently, and where there is more selection undoing the effect of mutations.462

It is good to keep in mind, though, that this is only a detail, and perhaps a463

reason to prefer the Normal form-QRE over the Agent-QRE, but not an escape464

from the fact that the data would reject these models too. While the property465

of the Agent-QRE (higher x are always accepted with higher probability) might466

not carry over to all learning models or mutation-selection models that treat467

strategies for all offers separately, the property that acceptance rates should all468

be larger than 50% for all positive offers does. It is this property that is clearly469

violated by the data.470
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