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ABSTRACT

We find that the outperformance for Fama-French factors compared to macroeconomic factors

in terms of fitting the cross-section of expected returns disappears when accounting for horizon

effects. In addition, we obtain novel empirical relations between macroeconomic factors and

Fama-French factors at longer horizons. To obtain our results, we introduce a general linear

multifactor asset pricing methodology that integrates systematic risk measured at different

frequencies into a single pricing equation. Our setup allows for a setting where investors with

different investment horizons may experience different levels of systematic risk, which could

arise from delayed stock price reaction to systematic factor news.
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Factor investing is a highly relevant topic for investors as well as academics. Beardsley, Don-

nadieu, Sheridan, and Xu (2018) report that smart beta products1 represent a global assets under

management (AUM) of 430 billion USD. Smart beta AUM has been growing at a rate of 30% per

year since 2012, while this was only 13% for standard passive strategies. Common factors, which

typically form the basis of smart beta strategies, explain a large part of the time-series and cross-

sectional variation in stock returns and offer sizable risk premia.2 Institutional investors use these

factors for both portfolio construction and performance evaluation (e.g. Dahlquist and Ødegaard,

2018).

There is extensive evidence suggesting a delay in reaction of certain stock prices to news about

systematic factors. As a consequence of such delays, investors with different investment horizons

may experience different levels of systematic risk (Kamara, Korajczyk, Lou, and Sadka, 2016).

Factor models are often estimated using a monthly observation frequency. The investment horizon,

however, varies across investors and does not need to be equal to the estimation horizon. For

example, Lan, Moneta, and Wermers (2021) find a range of holding periods between 1 year and

4.5 years for US-domiciled actively managed equity mutual funds. To appropriately measure the

relation between systematic factors and asset prices thus requires an integrated framework that

allows for horizon effects.3

1Smart beta strategies can be characterized as simple, rules-based, and transparent strategies that have their con-
ceptual origin in the Ross (1976) factor investing framework (Kahn and Lemmon, 2016).

2Fama and French (1993) and Asness, Moskowitz, and Pedersen (2013).

3Kamara, Korajczyk, Lou, and Sadka (2016) also note that horizon pricing effects could alternatively arise since
investors may choose to trade infrequently when monitoring and trading costs are sufficiently large. See Bandi and
Tamoni (2017), Dew-Becker and Giglio (2016) for additional reasons why horizon pricing effects may arise.
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This paper contributes to the literature by introducing a general linear multifactor asset pricing

methodology that integrates systematic risk measured at different frequencies into a single pricing

equation. We achieve this by applying a frequency domain decomposition to the stochastic dis-

count factor.4 Our flexible setup applies to all linear multifactor asset pricing models, works with

any frequency filter that produces orthogonal additive components, and allows us to investigate

asset pricing relations across frequencies in a multifactor setting. We explore two applications

by performing empirical tests within our setup on macroeconomic and Fama-French type factor

models. These empirical tests leverage our frequency-specific asset pricing framework to obtain

several novel insights into both factor pricing and model performance for these factor models.

The macroeconomic factors that we study are the term spread, expected and unexpected infla-

tion, industrial production, and the default spread as in Chan, Chen, and Hsieh (1985) and Chen,

Roll, and Ross (1986). The Fama-French type factors that we consider are the market, size, value,

momentum, and liquidity factors as defined in Fama and French (1993), Carhart (1997), and Pastor

and Stambaugh (2003).

We use the Christiano and Fitzgerald (2003) band-pass filter to isolate fluctuations correspond-

ing to different frequency ranges. Band-pass filtering is the standard approach in the macroeco-

nomics literature to study business cycle behavior. We consider a range of frequency bands to

obtain an overview of the behavior of the different factors at different horizons. An advantage over

compounding returns and aggregating factors over time,5 is that filtering allows us to separate and

4Frequency domain techniques have been used previously in a similar setting by Dew-Becker and Giglio (2016)
and Neuhierl and Varneskov (2021), for example.

5As in, for example, Cooper, Gulen, and Schill (2008) and Kamara, Korajczyk, Lou, and Sadka (2016).
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describe the behavior for each horizon in isolation, as well as specifically identify factor horizon

pricing consequences within the context of a single pricing equation.

Our empirical analysis uses a large cross-section of equity returns and contains monthly data

for US equity portfolios. The test assets are 202 portfolios consisting of bivariate sorted portfolios

and a set of industry portfolios which capture many cross-sectional anomalies (Giglio and Xiu,

2018; Feng, Giglio, and Xiu, 2020). Our sample period runs from January 1968 to December

2016. Beyond studying monthly data, we apply band-pass filtering to obtain fluctuations at wave

lengths lower than 1 year (short-term), 1 to 3 years (shorter business cycles), 3 to 8 years (longer

business cycles), and longer than 8 years (long-term trends). The cycle lengths for the business

cycles are in line with Burns and Mitchell (1946) and Comin and Gertler (2006), and the long-term

trends cycle length is based on Haug and Dewald (2004).

The frequency-specific asset pricing framework allows us to uncover a range of new findings

regarding Fama-French type and macroeconomic factors.6 Our asset pricing results show that

the frequency-specific specification outperforms the monthly specification for both types of fac-

tor models. In addition, the superiority of the Fama-French factors compared to macroeconomic

factors in terms of cross-sectional fit disappears when accounting for horizon effects.7 Moreover,

6Surprisingly, although horizon effects have been investigated for Fama-French type factors (Adrian and Rosenberg
(2008), Bandi, Garcia, Lioui, and Perron (2010), Bandi and Tamoni (2017), Boons and Tamoni (2015), Brennan and
Zhang (2020), Cosemans (2011), Neuhierl and Varneskov (2021), and in particular Kamara, Korajczyk, Lou, and
Sadka (2016).) little is known about how macroeconomic factors behave at different horizons. Moreover, as suggested
by Andersen, Bollerslev, Diebold, and Wu (2005), interesting relations may exist between Fama-French type factors
and macroeconomic factors depending on the frequency that we consider.

7The superior performance of the Fama-French model estimated on monthly data has been documented previously
by Asness, Moskowitz, and Pedersen (2013) and Chan, Karceski, and Lakonishok (1998). Our finding is line with
Fama (1981, 1990), who finds that the explanatory power of macroeconomic variables increases with the time horizon.
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we find that different factors are priced at different frequencies and that risk premia differ across

frequencies.

Our data analysis provides additional context to our findings. For the Fama-French factors, 75%

of the variation falls within the short-term one-year pass band. In contrast, for some macroeco-

nomic factors more than 30% of the variation falls within the long-term trend pass band of 8 years

and longer. This stark difference provides a suggestion regarding the source of model performance

difference at the monthly estimation frequency. As the horizon increases, the correlations between

Fama-French type and macroeconomic factors increase from close to zero to absolute magnitudes

of 0.4 to 0.6. This suggests that the factors contain more similar information at longer horizons,

which resonates with the disappearance of the model performance differential when accounting for

frequency pricing effects.

The result that the value factor is priced at the business cycle horizon is in line with Zhang

(2005) and Petkova and Zhang (2005), who show that value stocks are riskier during downturns,

and less risky during good times. In addition. Our findings shed additional light on Asness,

Moskowitz, and Pedersen (2013), and show that when looking beyond the one-month horizon,

macroeconomic factors could be a possible source driving common variation of value and momen-

tum strategies.

Our results are robust to the filter version. We find comparable results when using the Christiano-

Fitzgerald random walk filter, the Baxter-King filter, and a one-sided backward looking version of

the Christiano-Fitzgerald random walk filter. The latter version shows that our results are robust to

excluding forward-looking information from the filter.
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The findings in this paper indicate that factor-based portfolio construction and performance

evaluation should take into account the different behavior and pricing of factors at different hori-

zons. As Cohen, Polk, and Vuolteenaho (2009) describe, exposure to factors on a long rather than a

short horizon is relevant for managers making long-term investment decisions and for individuals

following a buy-and-hold strategy, since they trade infrequently. Risk that appears in the short-

term may not appear systematically in the long run for these investors. Long-term investors collect

short-run risk premia while bearing less of the risk associated with these short-term factors in the

long run, as illustrated in Kamara, Korajczyk, Lou, and Sadka (2016).

The remainder of the paper is organized as follows. Section I discusses research related to our

approach to study factors at different frequencies. Section II presents the theoretical framework of

our multifactor frequency-specific representation and Section III sets out the empirical asset pricing

methodology. Section IV describes the data and Section V discusses return and factor behavior

across frequencies. Section VI presents our asset pricing results and Section VII concludes.

I. Related Literature

Our paper contributes to existing literature that shows that the return measurement interval

matters for the exposure, pricing, and explanatory power of different risk factors. Several papers

investigate the properties and performance of equity factor models at different observation frequen-

cies by compounding returns and aggregating factor data. Levhari and Levy (1977) and Handa,

Kothari, and Wasley (1989) show that both factor exposures as well as price of risk estimates vary

with the time horizon on which the CAPM is estimated.
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A range of studies8 provides further evidence of the sensitivity of beta estimates to the return

intervals for different markets and different data frequencies. Handa, Kothari, and Wasley (1989),

Kothari, Shanken, and Sloan (1995), and Campbell and Viceira (2002) advocate to consider longer

horizon betas, as monthly and quarterly betas might either be affected by mispricing or not pick up

delayed systematic shocks. Handa, Kothari, and Wasley (1993) show that the outcome of tests of

asset pricing models can indeed be sensitive to the return measurement interval.

We use frequency filtering techniques that allow us to study asset return fluctuations at different

horizons in isolation. One advantage of the frequency filtering approach is that it does not suffer

from the disadvantage of using long-horizon compounded returns, since these still affected by

large short-term shocks, such as the 2008 crisis. Another advantage is that it allows us to study

horizon pricing effects within the context of a single asset pricing equation. The frequency filtering

approach is standard in the macroeconomics literature and has received increasing attention in the

finance literature.

Our paper contributes to an increasing body of papers using frequency filtering approaches. For

example, Goldberg and Vora (1978) show that the CAPM market beta varies substantially across

different cyclical components. Ortu, Tamoni, and Tebaldi (2013) propose a component-wise de-

composition of time series based on the level of persistence to analyze long-run risk. Boons and Ta-

moni (2015) use the framework of Ortu, Tamoni, and Tebaldi (2013) and find that macroeconomic

growth risk is a key determinant of variation in expected returns at the four-year horizon. Bandi

and Tamoni (2017) represent the beta of an asset as a linear combination of frequency-specific

8Brailsford and Faff (1997), Brailsford and Josev (1997), Cohen, Maier, and Schwartz (1986), Frankfurter, Leung,
and Brockman (1994), Gilbert, Hrdlicka, Kalodimos, and Siegel (2014), and Hawawini (1983).

6



betas and show that the business cycle component (2 to 4 years) can explain the cross-section of

equity portfolios. Bandi, Chaudhuri, Lo, and Tamoni (2021) use a spectral factor model approach

to show that traditional factor models restrict betas to be constant over frequencies, while this can

hide horizon-specific pricing effects. In contrast to these papers, our approach works with any filter

that produces orthogonal additive components, does not depend on assumptions regarding the state

variable process, and applies to all linear multifactor asset pricing models.

The frequency filtering approach that we use is related to papers that study time variation in be-

tas, which is empirically relevant for multifactor models (Ferson, 2013). For example, Andersen,

Bollerslev, Diebold, and Wu (2006) and Lewellen and Nagel (2006) use a rolling window regres-

sion to incorporate time variation in beta estimates. These rolling window regressions may be seen

as particular types of filters in light of Ang and Kristensen (2012), who develop a nonparametric

kernel estimation approach to estimate time-varying parameters in conditional factor models. This

method allows for various kernels, with rolling window estimation being the equal-weighted one-

sided filter case of this estimator. They find that estimates obtained from a two-sided symmetric

kernel fit result in a better fit than backward-looking filters. Our spectral approach is similar to the

kernel approach of Ang and Kristensen (2012), while the kernel approach makes use of the time

domain and our spectral approach makes use of the frequency domain.

Our paper is related to papers studying frequency-specific effects in the stochastic discount

factor (SDF). Dew-Becker and Giglio (2016) use a frequency-specific SDF framework and derive

frequency-specific prices of risk and show that low-frequency fluctuations in the economy are

priced significantly. Neuhierl and Varneskov (2021) develop a model-free framework and show

that frequency-specific effects are indeed present within the SDF.
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II. Theoretical Framework

In this section, we introduce a general linear multifactor asset pricing methodology that inte-

grates systematic risk measured at different frequencies into a single pricing equation. Our starting

point is the standard linear multifactor asset pricing model9

E[ri,t ] = λ
′
βi, (1)

where ri,t denotes the excess return on asset i at time t, βi denotes the exposures of asset i to the set

of factors, and λ denotes the prices of risk (see e.g. Cochrane, 2005). For this asset pricing model,

we have the asset pricing equation

E[mt+1Ri,t+1] = 1, (2)

where mt+1 denotes the SDF and Ri,t+1 the return on asset i at time t. Ross (1976) shows that there

exists an SDF of the form

mt+1 = a+b′ ft+1, (3)

that generates the pricing relation (1).10

To allow for frequency-specific pricing effects (as found by e.g. Neuhierl and Varneskov, 2021),

we make use of a frequency filter that decomposes a covariance stationary time series yt into a sum

9See, for example, Chen, Roll, and Ross (1986), Fama and French (1993, 2015), Baker and Wurgler (2006), and
Ang, Hodrick, Xing, and Zhang (2006). Many potential factors have been identified to explain the cross-section of
equity returns. Harvey, Liu, and Zhu (2016) report over 300 factors in various multifactor settings which attempt to
explain the cross-section differences in returns, also referred to as “the factor zoo” (Cochrane, 2011).

10Specifically, βi = var( ft)−1cov( ft ,ri,t) and λ =−var(mt)/E(mt).
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of orthogonal components capturing fluctuations from different frequencies. This provides the

following decomposition.11

yt =
T

∑
τ=1

y(τ)t , (4)

where t denotes time, τ denotes frequency of component y(τ)t , and T denotes the total number

of non-overlapping frequency bands.12 The higher the persistence of a component, the lower the

frequency. Thus, the first component y(1)t captures the high-frequency fluctuations whereas the last

component y(T )
t captures the low-frequency fluctuations.

Using the orthogonal decomposition in (4), we decompose the excess returns ri,t and the factors

ft into orthogonal components. This results in the following orthogonal frequency decomposition,

ri,t =
T

∑
τ=1

r(τ)i,t and ft =
T

∑
τ=1

f (τ)t . (5)

Since the frequency components are orthogonal, it holds that cov
(
r(τ)i,t , f (σ)t

)
= 0 for τ 6= σ.

Making use of decompositions (5), we propose a frequency-specific representation of the SDF

for linear multifactor asset pricing models.13 This representation is linear in the horizon compo-

nents and leads to a frequency-specific linear multifactor asset pricing equation. While our SDF

11The existence of the decomposition under the assumption of covariance stationarity can be shown using a spectral
representation theorem or the Wold (1938) decomposition. See Internet Appendix I.A for further details.

12In a band-pass specification, the decomposition would be written as yt = ∑
T
τ=1 y(pτ−1,pτ)

t , where y(pτ−1,pτ)
t denotes

the component of yt with period oscillations between pτ−1 and pτ, with p0 = 0≤ p1 < .. . < pT = ∞. Here, y(pτ−1,pτ)
t

corresponds to y(τ)t in the abbreviated notation of (4).

13This decomposition can be motivated by the frequency effects found in the SDF by Neuhierl and Varneskov
(2021).
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representation allows for horizon variation, it imposes no a priori structure. The proof of the fol-

lowing proposition is stated in Internet Appendix II.

PROPOSITION 1: The frequency decomposition (4) allows the following linear, frequency-specific

multifactor SDF,

mt+1 = a+
T

∑
τ=1

b(τ)′ f (τ)t+1. (6)

This frequency-specific SDF corresponds to the pricing relation

E[ri,t ] =
T

∑
τ=1

λ
(τ)′

β
(τ)
i , (7)

where

β
(τ)
i = Var

(
f (τ)t+1

)−1
Cov

(
f (τ)t+1, r(τ)i,t+1

)
(8)

denotes the frequency-specific regression betas of the frequency component of the excess return

with respect to the frequency component of the factors and a constant, and λ(τ) denotes the

frequency-specific prices of risk.

III. Empirical Asset Pricing Applications

To investigate the type of insights that can be gained from our frequency-specific asset pricing

method, we apply it to two well-known linear multifactor asset pricing models.

The models that we consider are:

• Application 1: the macroeconomic specification of Chen, Roll, and Ross (1986), with the

monthly growth rate of industrial production (IP), the monthly change expected in expected
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inflation (EI), unexpected inflation (UI), the credit spread (DEF), and the term spread (TS)

as factors.

• Application 2: a Fama-French type specification, which is an extension of the three-factor

model of Fama and French (1993). The model has market (MKT), size (SMB), value (HML),

momentum (MOM; Carhart, 1997), and a traded liquidity (LIQ; Pastor and Stambaugh,

2003) as factors.

Our choice for these models is motivated by the following aspects. By using these factor spec-

ifications, we include examples of macroeconomic factors (Application 1) as well as fundamental,

technical, and market factors (Application 2). In this way, we cover all factor types, except sta-

tistical factors, as set out by Chan, Karceski, and Lakonishok (1998). In addition, by studying

both Fama-French type factors and macroeconomic factors, we can shed additional light on the

relation between both types of factors (as studied by Asness, Moskowitz, and Pedersen, 2013, and

references therein).

We make use of Proposition 1 to obtain frequency-specific representations of these factor mod-

els. Since these representations still have a linear factor structure, we may apply the Fama and

MacBeth (1973) procedure to test which of the factors in these models are priced. In the first step

of this procedure, we use frequency-specific time-series regressions for each pass band τ and each

portfolio i to obtain estimates of the frequency-specific exposures. It follows from Proposition 1

that the time-series step is the band spectrum regression of Engle (1974), where we use a different
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frequency filter. We see from (8) that we may estimate the frequency-specific betas14 via

r(τ)i,t = β0,i +β
(τ)′
i f (τ)t + ε

(τ)
i,t . (9)

The second step of the procedure is to estimate the cross-sectional regression (7). Thus, for

each time t we regress excess returns on all the frequency-specific estimated exposures of (9) for

each horizon τ = 1, . . . ,T and a constant. This leads to the following regression.

ri,t+1 = λ0,t +
T

∑
τ=1

λ
(τ)′
t β̂

(τ)
i +ηi,t+1, (10)

where ηi,t+1 denotes the pricing error.

To compare the outcomes to the standard estimation setup, we also estimate (9) and (10) using

unfiltered monthly data. We run these regressions using both static and rolling window estimation

for the exposures. For the rolling window estimate, we estimate the conditional loadings β̂i,t for

each month t based on the preceding W months and obtain T−W time-varying exposure estimates.

A common choice in the literature for monthly data is a window size of W = 60 months.15

When the estimated exposures are collinear, or when the exposure matrix is of reduced rank, the

second stage may not be estimated correctly using the standard estimators (e.g., Kan and Zhang,

14That both the left-hand side and the right-hand side are taken within frequency band τ follows since by orthogo-
nality of the frequency components it holds that cov

(
r(τ)i,t , f (σ)t

)
= 0 for τ 6= σ. This is shown explicitly in the proof of

Proposition 1.

15See, for example, Ang and Kristensen (2012), Fama and French (1993, 1997), and Kamara, Korajczyk, Lou, and
Sadka (2016), who also employ a window size of 5 years.
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1999; Kleibergen, 2009). We therefore make use of the rank test of Cragg and Donald (1997)

to test the null hypothesis whether the matrix [1N β] has less than full rank. The matrix contains

a constant and the exposure matrix. We perform this test for monthly static exposures, for each

window of the monthly rolling window approach, and for the complete set of static frequency

betas.

We test for the significance of the average prices of risk λt using bootstrapped standard errors.

We use a circular block bootstrap (Politis and Romano, 1992) to estimate of the variance of the

price of risk and use this to calculate the corresponding t-statistic.16 The block size is determined

based on the data-driven method of Politis and White (2004), which yields the optimal block size

in a finite sample of given length. We set the block size at 1
2 pT −1, (i.e., the highest periodicity

in the last pass band) such that for cycles longer than pT −1 years, the possible low correlation of

half a cycle is preserved.17 We construct B = 1,000 unfiltered samples and filter these to obtain

statistics for filtered data. In Internet Appendix V.A we describe this bootstrap procedure in detail.

To assess the performance of the pricing models relative to each other, we use the test statistic

derived by Rivers and Vuong (2002) and Hall and Pelletier (2011). Their statistic allows us to

compare the goodness of fit of two non-nested models and is still valid under misspecification of

the models. The test statistic is given by

J =
Q(1)−Q(2)

σ̂T/
√

T
, (11)

16See Cameron and Trivedi (2005) section 11.2.5–11.2.6 for the details of constructing a bootstrap estimate of the
standard error without asymptotic refinement.

17In our empirical setting, we set pT −1 = 96 months. Therefore we set the block size of the bootstrap to 48 months.
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where Q(m) = 1
T

T
∑

t=1
η
(m)′
t η

(m)
t , where η

(m)
t is the N× 1 vector of pricing errors corresponding to

model m for m = 1,2, and where σ̂T is a consistent estimator of the asymptotic standard deviation

of the difference between Q(1) and Q(2). The statistic is asymptotically normally distributed. We

estimate the standard error σ̂T/
√

T of the difference in pricing errors using a bootstrap procedure.

Internet Appendix V.B describes this bootstrap procedure and provides further details regarding

the test statistic (11).

IV. Data and Filter Choice

For our empirical analysis, we use monthly US data and our sample period runs from January

1968 until December 2016. A complete description of our data sources and availability can be

found in Internet Appendix III.

A. Test asset return data

We use the 202 value-weighted equity portfolios of Giglio and Xiu (2018) and Feng, Giglio,

and Xiu (2020), which consist of 25 size-value sorted portfolios, 17 industry sorted portfolios,

25 portfolios formed on operating profitability and investment activity, 25 size-variance sorted

portfolios, 35 portfolios formed on size and net share issuance, 25 portfolios formed on size an

accruals, 25 size-beta portfolios, and 25 size-momentum portfolios. The portfolios are obtained

from the data library of Kenneth French. All sets of 25 portfolios are 5× 5 bivariate sorted port-

folios, the 35 portfolios are 5× 7 bivariate sorted, and the industry portfolios are sorted based on
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their SIC code.18 Our use of this set of 202 equity portfolio returns is motivated by the fact that it

captures most well-known cross-sectional anomalies and exposures to various factors (Giglio and

Xiu, 2018).

B. Factor data

The first multifactor model that we consider is the model of Chen, Roll, and Ross (1986) and

Chan, Chen, and Hsieh (1985), which contains five macroeconomic factors. These factors are the

monthly growth rate of industrial production, the monthly change expected in expected inflation,

unexpected inflation, the credit spread, and the term spread. The data for these factors is obtained

from the OECD and the St. Louis Fed. The definitions of these factors as well as details regarding

their construction are given in Internet Appendix III.

The second multifactor model that we consider is a Fama-French type factor model. We con-

sider the market factor (MKT ), size factor (SMB), and value (HML) factor of Fama and French

(1993). We further include the momentum factor (MOM) of Carhart (1997) and the traded liquid-

ity factor (LIQ) of Pastor and Stambaugh (2003). The first four factors are obtained from the data

library of Kenneth French. The traded liquidity factor is obtained from the website of Robert F.

Stambaugh.19

18For a detailed description of the portfolio formation and factor construction, see
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

19http://finance.wharton.upenn.edu/∼stambaug/.
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Table I
Summary statistics of the 202 equity excess portfolios returns

This table reports the descriptive statistics of excess returns on 202 equity portfolios from January 1968 to December
2016. For each portfolio set we report the mean, median, standard deviation (std.), minimum (min.) and maximum
(max.) of the average returns within the set in percentage. The average standard deviation of each portfolio set is also
reported. S/Val corresponds to size-value, ind. to industry, O/I to operating profitability-investment activity, S/Var to
size-variance, S/N to size-net share issuance, S/A to size-accruals and S/M to size-momentum.

25 S/Val 17 ind. 25 O/I 25 S/Var 35 S/N 25 S/A 25 S/B 25 S/M All 202

Mean av. return 0.68 0.55 0.57 0.66 0.64 0.64 0.67 0.63 0.63
Median av. return 0.69 0.57 0.57 0.74 0.68 0.65 0.66 0.66 0.65
Std. av. return 0.21 0.10 0.20 0.32 0.23 0.15 0.15 0.33 0.23
Min. av. return 0.06 0.32 –0.03 –0.40 0.09 0.22 0.33 –0.06 –0.40
Max. av. return 1.01 0.70 0.96 1.09 0.96 0.85 0.90 1.24 1.24
Average std. 5.70 5.75 5.23 5.79 5.77 5.83 5.63 5.93 5.71

C. Descriptive statistics

Table I summarizes average excess returns of the 202 equity portfolios on a monthly fre-

quency. Most of the variation in average returns can be found in the size-variance portfolios and

the size-momentum portfolios. Most of the average excess returns are positive, although there

are exceptions such as the small size-high variance, small size-low profitability, and low operat-

ing profitability-high investment portfolios, which have respective average excess returns of –0.40,

–0.06 and –0.03. The highest average excess return corresponds to the small size-high momen-

tum/low variance portfolios. In Internet Appendix III we present an overview of these statistics

and the correlations between the excess returns of the portfolios. This correlation lies between

0.32 and 0.98.

The summary statistics of the macroeconomic variables and the Fama-French factors for the
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unfiltered monthly observations are given in panel A and B of Table II, respectively. The expected

inflation is the least volatile macroeconomic factor, while the term spread is the most volatile

macroeconomic factor. The macroeconomic factors are moderately correlated with correlations

between –0.31 and 0.33, with the exception of the correlation between expected and unexpected

inflation which is 0.58. We further find moderate correlation between the Fama-French factors

with correlations between –0.28 and 0.29. The highest correlation is between the market and size

factor. The correlation between the value and momentum factor is negative, in line with Asness,

Moskowitz, and Pedersen (2013).

D. Filter choice

For our main analysis, we use the Christiano-Fitzgerald random walk (CF-RW) filter, which

approximates the ideal band pass filter without losing observations at the begin and end of the

sample. The CF-RW filter finds its origin in Baxter and King (1999), who develop a band-pass

filter (BK-filter) that resembles the ideal band-pass filter closely at the cost of losing observations

at the begin and end of the data set. Christiano and Fitzgerald (2003) handle the lost observations

by expanding the time series, assuming that the underlying time series follows a random walk,

such that the best pre-sample (post-sample) estimate is the first (last) data point.20

We choose to use the Christiano and Fitzgerald (2003) filter due to its flexible pass bands

20The performance of the CF-RW filter is very similar to the BK filter, see Figure IA.2b in the Internet Appendix
for a comparison of the CF-RW filter and the BK-filter on the market factor. The correlation between these filtered
series is 0.98.
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Table II
Summary statistics of the macroeconomic variables and Fama-French

factors

Panel A reports the summary statistics of the macroeconomic variables and Panel B of the Fama-French factors for the
sample period January 1968 to December 2016. We report the monthly averages (mean) and corresponding standard
deviation (std.) in percentages, and correlations.

Panel A: Macroeconomic variables

Correlation

Variable Mean Std. IP EI UI RP TS

Industrial Production IP 0.18 0.73 1
Expected Inflation EI 0.00 1.24 0.03 1
Unexpected Inflation UI 0.01 1.08 -0.17 0.58 1
Credit Spread DEF 1.09 0.44 -0.31 -0.03 0.12 1
Term Spread TS 1.78 1.35 0.12 0.30 0.33 0.18 1

Panel B: Fama-French factors

Correlation

Factor Mean Std. MKT SMB HML MOM LIQ

Market MKT 0.49 4.54 1
Size SMB 0.16 3.11 0.29 1
Value HML 0.38 2.90 -0.28 -0.21 1
Momentum MOM 0.63 4.34 -0.14 -0.02 -0.18 1
Liquidity LIQ 0.40 3.39 -0.01 0.00 0.04 -0.01 1

and clean separation.21 It separates the time series {yt : t = 1, . . . ,T} into a cyclical component

and a component capturing the remainder. Denoted in the time domain, the filtered time series is

21We do not consider a moving average (MA) filter, since it does not fully isolate the intended horizon as it does not
produce orthogonal components. Figure IA.2a of the Internet Appendix shows a comparison between an MA filtered
series and a CF-RW filtered series.
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calculated as

ỹt = g̃t−1y1 +g∗t−2y2 + · · ·+g∗1yt−1 +g∗0yt +g∗1yt+1 + . . .+g∗T−t−1yT−1 + g̃T−tyT , (12)

for t = 3, . . . ,T −2. The band-pass filter weights g∗` correspond to an ideal pass band filter for the

frequency range [ω1,ω2], and are given by

g∗` =


sin(ω2`)−sin(ω1`)

π` for ` 6= 0

ω2−ω1
π

for `= 0.
(13)

We describe the ideal band pass filter in more detail in Internet Appendix I.B. The frequency

bounds ω1 < ω2 are defined as ω j = 2π/p j, where p j denotes the corresponding cycle length in

months. For the beginning and the end of the sample, Christiano and Fitzgerald (2003) assume

that yt follows a random walk. They use end-point weights that are computed as linear functions

of the other weights. The end-point weights of the CF-RW filter are given by

g̃T−t =−
(

1
2

g∗0 +
T−t−1

∑
`=1

g∗`

)
(14)

and

g̃t−1 =−
(
g∗t−2 + . . .+g∗1 +g∗0 +g∗1 + . . .+g∗T−t−1 + g̃T−t

)
. (15)

The CF-RW filter is two-sided, and as such includes forward-looking information. While this

should not be an issue when investigating cross-sectional relations (Ang and Kristensen, 2012),

we assess the robustness by using a truncated one-sided version of the CF-RW filter, which only

19



includes backward-looking data. Internet Appendix Section IV.C describes this one-sided filter.

V. Return and Factor Behavior at Different Frequencies

In this section, we analyze the properties of the filtered data. We first focus on the filtered data

itself, and then continue with the relations between the different series. All filtering is done with

the CF-RW filter, unless specified otherwise.

A. Filtered returns and factors

We apply the filter for different pass bands to obtain an orthogonal decomposition into short-,

medium-, and long-term fluctuations. The periodicities that we use for the medium-term fluctua-

tions, which we separate into shorter business cycles (1 to 3 years) and longer business cycles (3

to 8 years), are inspired by the business cycle definitions of Burns and Mitchell (1946) and Comin

and Gertler (2006). Cycles longer than 8 years correspond to long-term trends, as in Haug and De-

wald (2004). We consider short-term fluctuations as cycles shorter than 1 year. Table III reports an

overview of the pass bands that we use in our empirical setting and the corresponding frequencies.

We filter the equity portfolio excess returns, the macroeconomic factors, and the Fama-French

factors. Figure 1 shows an example of filtered output for the industrial production factor. Figure 1a

shows the filtered industrial production monthly growth rate filtered between 3 to 8 years, as well

as corresponding filter weights. The high frequency component is shown in Figure 1b. The density

plots show that the filtered time series is a frequency-weighted series depending on past and future

observations. The filter weights are asymmetric.
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Table III
Overview of the pass bands

This table shows the labeling we use for each frequency pass band and periodicity in months (years).

Label Periodicity ω1 ω2

Short-term; high frequency < 12 months (< 1 year) 2π/12 ∞

Medium-term; short business cycle 12–36 months (1–3 years) 2π/36 2π/12
Medium-term; long business cycle 36–96 months (3–8 years) 2π/96 2π/36
Long-term; low frequency > 96 months (> 8 years) 0 2π/96

Figure 1. Filtered industrial production. The industrial production factor (IP) is filtered using
the Christiano-Fitzgerald random walk (CF-RW) filter. Figure 1a shows the filtered factor for
the pass band 3–8 years and Figure 1b shows fluctuations < 1 year. The grey areas represent
NBER recessions. The plots below are density plots of the filter weights for a 3–8 year filter,
corresponding to the two observations of the dashed and dash dotted line.

(A) Long business cycle component (3–8 years)
and the original industrial production factor.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

−4

−2

0

2

Unfiltered CF-RW, 3–8 years

(B) High frequency component (<1 year) and
the original industrial production factor.
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In Table IV we report summary statistics for the filtered factors. Overall, we see a declining

standard deviation as the frequency decreases. The percentage variance shows that the credit spread

and term spread are relatively low frequency factors, since the lower frequency components (3 to

8 years and greater than 8 years) contain over 30% of the monthly variation. This is in line with

Faria and Verona (2018), who find that the business cycle component of the term spread contains

the majority of the variation. For Fama-French factors and both expected- and unexpected inflation,

we see that over 75% of the monthly variation is captured in the less-than-one-year pass band.

To verify whether the cross-frequency components are orthogonal in-sample, we look at the

correlation between the factor components. Table IA.2 in the Internet Appendix shows these cor-

relations. The correlations between the cross-frequency components are generally zero, although

for the lower frequencies (3 to 8 years and greater than 8 years) there is some correlation, but

generally lower than 0.15 in absolute terms. This slight frequency leakage at lower frequencies

can be attributed to the relatively limited sample length in terms of the periodicity for the lower

frequencies.

B. Correlation structure

B.1. Correlations between factors and returns

The 202 portfolio excess returns and the macroeconomic factors show limited correlation on a

monthly (unfiltered) basis, with correlations between –0.1 and 0.1, similar to the values found by

Chen, Roll, and Ross (1986). For the Fama-French factors these correlations are higher, between

–0.5 and 0.5, and for the market factor even higher at 0.8, similar to the values found by Fama and
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Table IV
Descriptive statistics of the filtered factors

This table reports the descriptive statistics for the macroeconomic factors (panel A) and Fama-French factors (panel
B) for the sample which runs from January 1968 to December 2016, for monthly unfiltered data and filtered data. The
mean, standard deviation and percentage variance (in comparison to monthly data) are reported.

Panel A: Macroeconomic factors Panel B: Fama-French factors

Unf. <1y 1–3y 3–8y >8y Unf. <1y 1–3y 3–8y >8y

Mean Mean

IP 0.18 0.00 0.00 -0.01 0.18 MKT 0.49 0.00 0.02 -0.00 0.48
EI -0.00 0.00 0.00 -0.00 -0.00 SMB 0.16 0.00 0.00 -0.02 0.17
UI 0.01 0.00 0.00 0.00 0.01 HML 0.38 0.00 -0.01 -0.04 0.43
DEF 1.09 0.00 0.00 0.01 1.08 MOM 0.63 0.00 0.01 0.02 0.60
TS 1.78 0.00 0.00 -0.00 1.78 LIQ 0.40 0.00 0.01 0.04 0.36

Standard deviation Standard deviation

IP 0.73 0.55 0.32 0.32 0.15 MKT 4.54 4.07 1.63 1.00 0.66
EI 1.24 1.23 0.15 0.04 0.02 SMB 3.11 2.85 0.97 0.50 0.65
UI 1.08 0.99 0.35 0.20 0.12 HML 2.90 2.51 1.08 0.79 0.60
DEF 0.44 0.10 0.17 0.25 0.31 MOM 4.34 3.93 1.54 0.86 0.65
TS 1.35 0.58 0.51 0.75 0.77 LIQ 3.39 3.11 1.07 0.58 0.62

% Variance % Variance

IP 57.12 19.49 18.63 4.35 MKT 80.38 12.80 4.84 2.09
EI 98.37 1.43 0.08 0.04 SMB 83.81 9.67 2.59 4.35
UI 83.88 10.56 3.51 1.30 HML 75.33 13.96 7.50 4.24
DEF 4.94 14.71 31.42 48.67 MOM 82.08 12.54 3.92 2.26
TS 18.47 14.28 30.82 32.96 LIQ 84.33 9.91 2.97 3.31
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French (1993) and Carhart (1997).

These correlations are highly similar for the short-term fluctuations. For the medium-term

fluctuations, the correlation patterns are different. The correlations between the ten factors and the

portfolio returns increase in absolute value for 1 to 3 years, but remains low for factors such as

industrial production and the term spread. This changes for 3 to 8 years and fluctuations greater

than 8 years, where the correlation is on average about 0.3 to 0.4. The correlation structure between

the portfolio excess returns themselves is preserved across frequencies, but weakens slightly as the

frequency decreases.

B.2. Correlations between factors of the same type

Figure 2a shows the correlations between the macroeconomic factors and Figure 2b shows the

correlations between the Fama-French factors. The figures report the correlations for the unfiltered

data as well as for each pass band. The correlations for the unfiltered data correspond to those

reported in Table II and are similar to those reported by Chen, Roll, and Ross (1986), Fama and

French (1993), and Carhart (1997). Overall, for each of the different pass bands, there is less

correlation between the Fama-French factors than between the macroeconomic factors.

B.3. Correlations between factors of different types

Next, we investigate the correlation between the individual Fama-french factors and the in-

dividual macroeconomic factors. This is motivated by Asness, Moskowitz, and Pedersen (2013),

who refer to macroeconomic factors as a potential source of common variation that could be driving
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Figure 2. Correlations across frequencies (within factor types). Figure 2a shows the correla-
tion between the macroeconomic factors for each pass band and Figure 2b shows the correlation
between the Fama-French factors for each pass band, for the sample which runs from January 1968
to December 2016. Shaded bars represent significance at the 5% significance level.
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value and momentum returns. Each panel of Figure 3 shows the correlation for a Fama-French fac-

tor with each of the macroeconomic factors for different pass bands. Similar to Asness, Moskowitz,

and Pedersen (2013) and Daniel and Titman (2012), we find that the macroeconomic and Fama-

French factors are not highly correlated at the monthly frequency.

Figure 3a shows that the correlation between the market factor and the industrial production

factor increases as the frequency decreases. This changes from zero correlation on a monthly basis

to a correlation of 0.43 for cycles between 3 to 8 years and a correlation of 0.51 for fluctuations

with a horizon greater than 8 years. For each Fama-French factor, we find substantial correlation

between the specific Fama-French factor and the macroeconomic factors for shorter business cycles

(cycles between 1 and 3 years). Figure 3d shows that the momentum factor and the term spread

become negatively correlated for cycles greater than 3 years. Figure 3e shows that liquidity is

negatively correlated to expected inflation for cycles between 3 to 8 years.

In summary, we find that the default spread is negatively correlated to the momentum factor for

most frequencies. These findings show that, when taking into account the different frequencies,

macroeconomic variables can indeed be related to value and momentum returns, but also to the

other Fama-French factors. Our frequency-specific approach, has therefore allowed us to uncover

additional relations relative to the monthly observation frequency results of Asness, Moskowitz,

and Pedersen (2013). Our findings show that indeed, macroeconomic factors could be a possible

source driving common variation of value and momentum strategies.
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Figure 3. Correlations across frequencies (across factor types). The figures show the correla-
tion between each Fama-French factor and the macroeconomic factors for the data ranging from
January 1968 to December 2016. Shaded bars represent significance at the 5% significance level.

(A) Market factor.

IP EI UI DEF TS
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(B) Size factor.

IP EI UI DEF TS
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(C) Value factor.

IP EI UI DEF TS
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(D) Momentum factor.

IP EI UI DEF TS
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(E) Liquidity factor.

IP EI UI DEF TS
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

Unfiltered

< 1 year

1–3 years

3–8 years

> 8 years

27



Figure 4. R-squared of the Fama-French factors regressed on the macroeconomic factors.
This figure represents the regression between the Fama-French factors and the macroeconomic
factors for the sample which runs from January 1968 to December 2016. Shaded bars represent
significance at the 5% significance level based on 1,000 bootstrapped R2.
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B.4. Explaining Fama-French factors with macroeconomic factors

In light of Asness, Moskowitz, and Pedersen (2013), who suggest macroeconomic factors as a

possible source driving common variation of value and momentum strategies, we further analyze

the relation between the Fama-French factors and the macroeconomic factors. We do this by

regressing each filtered Fama-French factor f (τ)t on the full set of filtered macroeconomic factors

and a constant as follows.

f (τ)t = γ0 + γ
(τ)
IP IP(τ)

t + γ
(τ)
EI EI(τ)t + γ

(τ)
UI UI(τ)t + γ

(τ)
DEF DEF(τ)

t + γ
(τ)
T S T S(τ)t + ε

(τ)
t . (16)

We run this regression for unfiltered monthly data as well as for filtered data corresponding to each

frequency pass band τ (i.e. as a band spectrum regression). For long-horizon regressions such

as these, the asymptotic distribution of the t-statistics will be non-standard. We therefore use the

rescaled t-statistic, computed as t/
√

T (Valkanov, 2003). The distribution of the rescaled t-statistic
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is simulated using the bootstrap method described in Goetzmann and Jorion (1993). We use this

method to obtain p-values and R2 confidence intervals.22

Figure 4 shows the time series R2 of (16) for each frequency pass band. We see that according

to the model fit, the value factor seems to be the best explained by the macroeconomic factors

compared to the other Fama-French factors. The R2 values increase as the frequency decreases,

showing that the Fama-French factors can be better explained by the macroeconomic factors at

lower frequencies. We focus on the estimation results for short-term business cycle fluctuations

(between 1 and 3 years) as reported in Table V, since these have a particularly interesting economic

interpretation. The results show that the R2 is significant for the market factor, value factor, and

liquidity factor with values of 0.186, 0.203, and 0.165, respectively. At this frequency, the value

factor is negatively related to the term spread.

The short-term business cycle frequency relation between the value factor and macroeconomic

variables, as well as the negative relation with the term spread, is in line with the literature. As

Fama and French (1989) point out, the term spread tracks short-term business cycle fluctuations.

Specifically, the term spread is found to be low during good economic conditions, and high in

times of bad economic conditions. Additionally, Zhang (2005) and Petkova and Zhang (2005)

document that value firms are more burdened with unproductive capital, making them more prone

to economic downturns. Value stocks are therefore riskier during bad economic times, and less

risky during good economic times, suggesting business cycle dependency.23 Finally, the results

22Engle (1974) points out that applying a filter to both the left- and right-hand side in a regression satisfying the
assumptions of OLS, will lead to estimates that are still unbiased but inefficient due to the serial correlation in the
disturbance terms.

23Empirical evidence has been documented in Petkova (2006) and Hahn and Lee (2006), who find a significant
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Table V
Coefficient estimates of each Fama-French factor regressed on the

macroeconomic factors for fluctuations between 1 and 3 years

This table reports the coefficient estimates of each Fama-French factor regressed on the macroeconomic factors for the
sample which runs from January 1968 to December 2016, with the corresponding rescaled t-statistics, t/

√
T , reported

underneath between parentheses. In the column t/
√

T , the empirical p-values are reported using 1,000 bootstrap repli-
cations. We provide the bootstrapped R2 as well as the 95% bootstrap confidence interval. The coefficient estimates
correspond to filtered data with fluctuations between 1 and 3 years.

constant γIP γEI γUI γDEF γT S R2

Market (MKT) 0.000 1.047 2.319 1.183* 2.858** −0.333 0.186**
t/
√

T 0.012 0.171 0.186 0.242 0.275 −0.097 (0.021, 0.177)
Empirical p-value 0.240 0.179 0.243 0.064 0.024 0.510

Size (SMB) 0.000 0.441 1.176 0.462 1.035 0.053 0.121
t/
√

T 0.004 0.117 0.153 0.153 0.161 0.025 (0.022, 0.178)
Empirical p-value 0.678 0.337 0.260 0.277 0.227 0.871

Value (HML) 0.000 0.188 −0.885 0.225 −1.569* −0.541** 0.203**
t/
√

T −0.013 0.047 −0.108 0.070 −0.229 −0.238 (0.018, 0.156)
Empirical p-value 0.179 0.711 0.415 0.589 0.086 0.049

Momentum (MOM) 0.000 −0.382 −1.722 −0.710 −2.701* 1.272*** 0.189
t/
√

T 0.008 −0.066 −0.146 −0.154 −0.275 0.391 (0.03, 0.215)
Empirical p-value 0.379 0.598 0.482 0.229 0.084 0.002

Liquidity (LIQ) 0.000 1.085** 0.769 0.397 −0.802 −0.068 0.165**
t/
√

T 0.010 0.267 0.093 0.122 −0.116 −0.030 (0.017, 0.159)
Empirical p-value 0.333 0.033 0.457 0.318 0.337 0.812

***, **, * significant at 1, 5, 10% significance level, respectively.

also show a significant relation between the term spread and the momentum factor.

relation between the value factor and innovations/change in the term spread in monthly data, respectively. Taking into
account different frequencies, Kang, In, and Kim (2017) find a significant relation between the short-business cycle
component of the value factor and the change in term spread.

30



VI. Asset Pricing Results

A. Factor exposure estimation results

We start by analyzing the first stage horizon-specific exposure estimates. These results are re-

ported in Table VI. We find that for monthly data, a large portion of the market, size, and value

exposures is significant. The proportion of significant exposures increases as the frequency de-

creases. The results suggest that horizon effects are present in the exposures. The exposures vary

across horizons and differ in standard deviation and significance levels across horizons, especially

for the macroeconomic factors and for the size and value factor.

Panel B of Table VI reports the average time series R2 over the 202 portfolios. These R2 values

show that the fit improves for the macroeconomic model as the horizon becomes longer, in line

with Gençay, Selçuk, and Whitcher (2001). For the Fama-French model, we find that the average

fit remains stable across horizons. The correlations between factor exposures across horizons are

generally moderate to low, indicating that there are indeed horizon-specific effects present in the

exposures. Internet Appendix Table IA.3 reports the correlations between the frequency-specific

betas.

In order to test the validity of our second stage results, we check whether the total exposure ma-

trix is full rank by the Cragg and Donald (1997) rank test. Panel C of Table VI shows these results,

indicating that we can reject the null hypothesis of less than full rank for the 202 mixed portfolios

for the static full sample (static) exposures on a monthly basis for the Fama-French model, but
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Table VI
Descriptive statistics of the horizon-specific loadings

This table reports descriptive statistics of the 202 first stage regressions. Panel A reports the average loading and
standard deviation over the portfolios for exposures at different horizons for the sample which runs from January 1968
to December 2016, for both the macroeconomic and Fama-French factors. We also report the proportion of significant
exposures at the 5% level, based on Newey-West standard errors with 48 lags. Panel B reports the average time series
R2. Panel C reports the bootstrapped p-value of the rank test, with H0: less than full rank. “Monthly” corresponds to
monthly data, the pass bands correspond to filtered data and “all frequencies” corresponds to all pass bands combined.
Factors and returns are filtered using the CF-RW filter.

Panel A: Loadings and significance

Macroeconomic factors Fama-French factors

Freq. cons. IP EI UI DEF TS cons. MKT SMB HML MOM LIQ

Average Monthly 0.00 0.02 −0.53 0.44 0.45 0.35 0.00 1.02 0.42 0.17 −0.05 0.01
< 1y 0.00 −0.55 −0.48 −0.06 7.50 1.13 0.00 1.02 0.41 0.17 −0.05 0.01
1–3y 0.00 1.40 3.12 1.53 3.68 −0.59 0.00 1.05 0.41 0.14 −0.06 0.00
3–8y 0.00 2.06 −4.96 1.28 0.98 0.11 0.00 1.00 0.48 0.21 −0.01 0.08
> 8y 0.01 0.48 −6.84 −2.78 0.05 0.59 0.00 0.95 0.49 0.07 −0.00 0.07

Standard Monthly 0.01 0.15 0.16 0.15 0.30 0.11 0.00 0.13 0.47 0.25 0.16 0.04
deviation < 1y 0.00 0.20 0.19 0.14 1.62 0.40 0.00 0.13 0.47 0.24 0.16 0.05

1–3y 0.00 0.50 1.17 0.48 1.05 0.34 0.00 0.15 0.48 0.24 0.17 0.08
3–8y 0.00 0.49 4.15 0.73 0.66 0.21 0.00 0.16 0.50 0.32 0.21 0.19
> 8y 0.01 1.18 8.42 1.62 0.36 0.20 0.00 0.19 0.50 0.40 0.23 0.17

Proportion Monthly 0.05 0.00 0.85 0.42 0.02 0.70 0.39 1.00 0.95 0.89 0.66 0.29
significant < 1y 0.00 0.33 0.69 0.00 1.00 0.85 0.00 1.00 0.95 0.88 0.64 0.32

1–3y 0.00 0.97 1.00 1.00 1.00 0.86 0.00 1.00 0.94 0.87 0.73 0.61
3–8y 0.01 1.00 0.82 0.92 0.88 0.64 0.06 1.00 0.93 0.91 0.81 0.84
> 8y 0.83 0.80 0.84 0.97 0.68 0.99 0.91 1.00 0.97 0.96 0.90 0.87

Panel B: Average first stage time series R2 Panel C: Rank test p-value

Monthly < 1y 1–3y 3–8y > 8y Monthly All frequencies
Macroeconomic 0.020 0.041 0.192 0.287 0.493 0.367 0.005
Fama-French 0.864 0.862 0.900 0.882 0.862 < 0.001 0.003
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we cannot reject the null hypothesis for the macroeconomic model.24 Consequently, the prices of

risk attached to the macroeconomic factor exposures estimated with the traditional approach on

unfiltered monthly data will not be informative. For the frequency-specific specification, we can

reject the null hypothesis of less than full rank for both models.

B. Cross-sectional asset pricing regression results

Before we proceed with the frequency-specific asset pricing results, we first run the standard

asset pricing regression for the unfiltered monthly data, based on both full sample exposures and

rolling window exposures. The window size for the rolling window exposures is 60 months. Stan-

dard errors are based on 1,000 bootstrapped samples. The standard setup provides a reference

point against which to compare the frequency-specific results.

The monthly cross-sectional asset pricing results (Table VII) show that the Fama-French model

performs better than the macroeconomic factor model in terms of cross-sectional fit,25 and mean

absolute pricing error. For the macroeconomic factors we see that expected inflation plays a signif-

icant role using static exposures, while for rolling window exposures none of the macroeconomic

exposures are significant. For the Fama-French factors, both value and momentum are signifi-

cantly priced for both static and rolling window exposures. These findings are in line with Asness,

24We cannot reject the null hypothesis of less than full rank for the 202 mixed portfolios for rolling window expo-
sures with a window size of 5 years for both models.

25We check for factor structure in the residuals of the first stage by using the FACCHECK measure described in
Kleibergen and Zhan (2015). We find that the factor structure in the residuals is less present for the Fama-French
models compared to the macroeconomic model on all frequencies and becomes less severe on lower frequencies.
Hence comparison of the second stage R2 of the two models may not be appropriate. We therefore also compare the
models based on the pricing error of the models.
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Table VII
Cross-sectional regressions for 202 mixed portfolios, unfiltered monthly data

This table reports second-stage cross-sectional regressions of monthly excess US equity portfolio returns on the esti-
mated loadings and a constant over the sample which runs from January 1968 to December 2016,

ri,t+1 = λ0,t +∑ j λ j,t β̂ j,i,t +ηi,t+1

where the loadings are estimated over the full sample (static exposures) and with a rolling window of five years in the
first stage. The table reports the annualized time series averages of the λ j with t-statistics obtained by the bootstrap
procedure between parentheses underneath, and the annualized average risk premium

(
λ j,t × β̂ j,i,t

)
in percentage for

each factor j. We further report the average cross-sectional (adjusted) R2, the mean absolute pricing error
(
MAPE,

between brackets underneath the R2
)

and the sum of squared pricing errors
(
Q(m), between brackets underneath

the adjusted R2
)
. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively, based on 1,000

bootstrapped samples.

Panel A: Macroeconomic factor model

R2 Adj. R2

IP EI UI DEF T S λ0 [MAPE]
[
Q(m)

]
Static exposures
λ −2.782 8.099** 9.243* −0.274 0.971 7.693** 0.276 0.257
t-statistic (−1.039) (2.150) (1.749) (−0.176) (0.187) (2.374) [2.136] [9.211]
Risk premium −0.062 −4.280 4.032 −0.123 0.339

Rolling window exposures
λ −0.785 −0.777 0.621 −0.392 −0.366 6.478*** 0.292 0.274
t-statistic (−0.743) (−0.582) (0.353) (−1.041) (−0.234) (2.940) [2.139] [7.973]
Risk premium 1.257 0.290 0.312 −1.786 1.747

Panel B: Fama-French factor model

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
Static exposures
λ −0.145 1.039 5.538*** 9.016*** −1.770 6.798*** 0.422 0.407
t-statistic (−0.060) (0.561) (3.019) (4.582) (−0.362) (2.929) [1.831] [4.599]
Risk premium −0.148 0.438 0.957 −0.426 −0.021

Rolling window exposures
λ −3.502 2.107 3.385** 4.372*** 2.929 10.510*** 0.417 0.402
t-statistic (−1.560) (1.158) (2.281) (2.842) (1.427) (4.544) [1.874] [5.145]
Risk premium −3.595 0.975 0.582 −0.183 0.008
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Moskowitz, and Pedersen (2013), Chan, Karceski, and Lakonishok (1998), and Connor (1995).

The average market price of risk is negative for both specifications, which is consistent with the

literature.26 As Cochrane (2005) notes, the intercept should be zero when using excess portfolio

returns. Internet Appendix Table IA.4 shows the cross-sectional results for the Fama-French model

when imposing a zero-intercept restriction. The average price of market risk is positive in these

specifications.

We now proceed with the frequency-specific specification and discuss the additional insights

gained from our approach. Table VIII shows the results using frequency-specific exposures based

on filtered data. We report t-statistics based on bootstrapped standard errors. The results show

that the model performance differential between the macroeconomic and Fama-French models

in terms of cross-sectional R2 and average pricing error is smaller compared to the difference in

cross-sectional fit on a monthly basis.27

The risk premium estimates in the macroeconomic model show that on the short horizon ex-

pected inflation, unexpected inflation, and the term spread are significantly priced. The term spread

is significantly priced at the 1 to 3 year horizon, while credit spread is significant at the 3 to 8 years

horizon. For horizons longer than 8 years, none of the factors are significant.

For the Fama-French model we find a significant price of risk for momentum for horizons up

to 1 year and for size and value at the 3 to 8 years horizon. The value factor being priced at the

26Fama and French (1992, 1993), Jagannathan and Wang (1996), Petkova (2006), Liu and Zhang (2008), Da and
Schaumburg (2011) and Eiling (2013) report negative market premia estimates on monthly and quarterly data, Boons
and Tamoni (2015) reports a negative market price of risk on lower frequencies as well.

27Internet Appendix Table IA.4 panel B shows that, similar to the results for the unfiltered version, the frequency-
specific results are again not strongly affected by restricting the intercept to zero.
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business cycle horizon is in line with Zhang (2005) and Petkova and Zhang (2005). The market

factor does not play a significant role at the 5% level on any of the horizons, but the average price

of risk is negative at the 3 to 8 years horizon.28 These results are in line with the findings of

Kamara, Korajczyk, Lou, and Sadka (2016), who show that market, size, and value have long-

run risk factor characteristics, while liquidity and momentum exhibit characteristics of short-term

risk factors. Our results also align with Koijen, Lustig, and Van Nieuwerburgh (2017) and Bandi,

Chaudhuri, Lo, and Tamoni (2021), who find that the temporal dimension of risk is relevant for the

cross-section of expected returns.

To compare the cross-sectional fit of the frequency-specific specification to the monthly (un-

filtered) specification, we compute the adjusted cross-sectional R2. For the frequency-specific

models, we find a 10% to 20% higher fit compared to their monthly counterpart. In addition, the

mean squared pricing error and sum of squared pricing errors are lower for the frequency-specific

models.

To test whether this improvement in goodness of fit is significant, we perform the test of Rivers

and Vuong (2002) and Hall and Pelletier (2011) for non-nested models. The results are reported

in Table IX. We find that the macroeconomic frequency-specific model outperforms its monthly

counterparts, for both static and rolling window exposures. Comparing the macroeconomic and

Fama-French factor models, we find that the Fama-French model significantly outperforms the

macroeconomic factor model when using unfiltered monthly data. For the frequency-specific spec-

ification, this difference diminishes and is insignificant. These results indicate that the macroeco-

28A possible explanation for this negative market risk premium estimate is that the market portfolio acts as a hedge
portfolio against not-included state variables (Fama, 1996).
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Table VIII
Cross-sectional regressions for 202 mixed portfolios, filter-based exposures

This table reports second-stage cross-sectional regressions of monthly filtered excess US equity portfolio returns on
the spectral loadings and a constant for the sample which runs from January 1968 to December 2016,

ri,t+1 = λ0,t +
T

∑
τ=1

λ
(τ)′
t β̂

(τ)
i +ηi,t+1

where the spectral loadings are estimated over the full sample for each pass band τ. The table reports the annualized
time series averages of the frequency-specific λ

(τ)
j with t-statistics obtained by the bootstrap procedure between paren-

theses underneath, and the annualized average risk premium
(

λ
(τ)
j,t × β̂

(τ)
i, j

)
in percentage for each factor j. We further

report the average cross-sectional (adjusted) R2, the mean absolute pricing error
(
MAPE, between brackets underneath

the R2
)

and the sum of squared pricing errors
(
Q(m), between brackets underneath the adjusted R2

)
. ***, **, and *

denote significance at the 1%, 5%, and 10% level, respectively, based on 1,000 bootstrapped samples.

Panel A: Macroeconomic factor model

R2 Adj. R2

IP EI UI DEF T S λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

1.063 6.411** 6.759*** 0.024 4.062*** 7.265** 0.541 0.490
t-statistic (0.950) (2.580) (2.650) (0.087) (3.095) (2.267) [1.554] [3.951]
Risk premium −0.583 −3.046 −0.437 0.182 4.592

λ
(1−3y)

0.355 −0.217 1.499 0.314 1.718**
t-statistic (0.390) (−0.409) (1.223) (0.547) (2.139)
Risk premium 0.495 −0.677 2.294 1.156 −1.008

λ
(3−8y) −0.508 −0.257 0.439 −1.921** −0.525

t-statistic (−0.462) (−0.403) (0.489) (−1.989) (−0.161)
Risk premium −1.045 1.274 0.561 −1.879 −0.057

λ
(>8y)

0.282 0.115 0.216 0.231 −0.430
t-statistic (0.337) (0.171) (0.288) (0.187) (−0.136)
Risk premium 0.135 −0.783 −0.599 0.012 −0.253

37



Table VIII—continued

Panel B: Fama-French factor model

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

2.765 −0.770 −0.799 12.893*** 1.484 8.031*** 0.555 0.506
t-statistic (0.834) (−0.341) (−0.325) (3.215) (0.292) (3.511) [1.598] [2.914]
Risk premium 2.825 −0.318 −0.139 −0.606 0.013

λ
(1−3y)

0.051 0.422 1.516 −3.116 −1.873
t-statistic (0.016) (0.217) (0.732) (−1.078) (−0.953)
Risk premium 0.053 0.173 0.209 0.176 −0.009

λ
(3−8y) −5.312* 2.770** 2.538** −3.238 2.467

t-statistic (−1.720) (1.973) (2.269) (−1.104) (1.186)
Risk premium −5.291 1.337 0.525 0.037 0.186

λ
(>8y)

0.463 −0.272 0.732 2.380 0.587
t-statistic (0.176) (−0.135) (0.375) (1.046) (0.255)
Risk premium 0.440 −0.133 0.050 −0.006 0.044

nomic factors contain pricing information at lower frequencies that is not picked up by the analysis

on unfiltered monthly data.

C. Robustness checks

We test for robustness with respect to the additional assumptions made for the CF-RW filter

by comparing the cycles extracted with the CF-RW filter with those extracted by the Baxter-King

(BK) filter (Baxter and King, 1999). Internet Appendix Figure IA.2b shows the filtered market

factor using the BK-filter and the CF-RW filter. We find that the cycles extracted by the BK filter

are very similar to the CF-RW filter, with a correlation of 0.95.
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Table IX
Test results non-nested models

This table reports the test statistic (Rivers and Vuong, 2002; Hall and Pelletier, 2011) J which tests two non-nested
models (model 1 and model 2) based on the squared pricing error Q(m). The standard deviation is constructed with
1,000 bootstrap samples. The test statistic follows asymptotically a normal distribution. For each model, we report
the factors and estimation method of the exposures, static or rolling window, where rolling window estimation is done
with a window size of 60 months. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively. Bold
font refers to model m with a significantly lower squared pricing error (at 5%).

Model 1 Model 2 Q(1)−Q(2) J

Macroeconomic, frequency-specific Macroeconomic, static unfiltered −5.260** −2.189
Macroeconomic, frequency-specific Macroeconomic, rolling window unfiltered −4.022** −2.117
Fama-French, frequency-specific Fama-French, static unfiltered −1.685 −1.431
Fama-French, frequency-specific Fama-French, rolling window unfiltered −2.231* −1.851

Macroeconomic, static unfiltered Fama-French, static unfiltered 4.612** 2.230
Macroeconomic, rolling window unfiltered Fama-French, rolling window unfiltered 2.828** 2.396
Macroeconomic, frequency-specific Fama-French, frequency-specific 1.037 1.192

We also perform the pricing analysis using a one-sided backward-looking filter and find that our

results are robust to the exclusion of forward-looking information. Internet Appendix Table IA.5

reports these results.

As an additional robustness check, we vary the block size of the bootstrap setting to construct

standard errors. These results are reported in Internet Appendix Table IA.6. The results of Ta-

ble VIII (t-statistics) are not affected by choosing a smaller block size of three months.

VII. Conclusions

This paper introduces a general linear multifactor asset pricing methodology that integrates

systematic risk measured at different frequencies into a single pricing equation. Our flexible setup
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applies to all linear multifactor asset pricing models, works with any frequency filter that pro-

duces orthogonal additive components, and allows us to investigate asset pricing relations across

frequencies in a multifactor setting.

We use our approach in two applications and perform empirical tests within our setup on

macroeconomic and Fama-French type factor models. Our frequency-specific asset pricing frame-

work allows us to obtain several new insights into both factor pricing and model performance for

these factor models.

The macroeconomic factor model includes the monthly growth rate of industrial production,

the monthly change expected in expected inflation, unexpected inflation, the credit spread, and

the term spread. The Fama-French type model includes the market, size, value, momentum, and

liquidity factors. We estimate monthly (unfiltered) and frequency-specific versions of these models

on 202 US equity portfolios. We use data from January 1968 until December 2016.

We document the behavior of the factors across frequencies. We find that the correlation be-

tween macroeconomic factors and Fama-French factors increases with the horizon. The correlation

between the market factor and the monthly growth rate of industrial production increases from al-

most zero correlation on a monthly basis to a correlation of 0.4 for horizons between 3 and 8 years,

and to a correlation above 0.5 for fluctuations greater than 8 years. In addition, we find that for

horizons between 1 and 3 years, about 20% of the variation in the value factor can be explained

by macroeconomic factors. This sheds additional light on the analysis of Asness, Moskowitz, and

Pedersen (2013), who found no relation when studying macroeconomic factors as a possible source

of common variation driving value and momentum returns on monthly data.
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The frequency-specific approach shows the existence of horizon effects in both the loading

estimates and risk premia for macroeconomic and Fama-French factors. Our results indicate that

at the short horizon, expected inflation, unexpected inflation, and the term spread play a significant

role in explaining the cross-section of returns. At business cycle horizons, lower frequency factors

such as the credit spread and term spread play significant roles. For the Fama-French model, we

find that momentum is priced for horizons up to 1 year, and size and value are priced at the 3 to

8 years horizon. The value factor being priced at the business cycle horizon is in line with Zhang

(2005) and Petkova and Zhang (2005).

We perform bootstrap versions of a non-nested model test to compare the goodness of fit for the

different specifications. In line with the literature, we find that using monthly unfiltered data, the

Fama-French model outperforms the macroeconomic model significantly. For the macroeconomic

model, the frequency-specific specification significantly outperforms the monthly specification in

terms of goodness of fit. Given the improved fit for the frequency-specific macroeconomic model,

our test no longer shows any significant difference in goodness of fit for the frequency-specific

versions of the macroeconomic and Fama-French models. These results indicate that the macroe-

conomic factors contain pricing information at lower frequencies that is not picked up by the

analysis on unfiltered monthly data.

The results in this paper show empirically that there are frequency-specific effects in two well-

known linear multifactor asset pricing models. Our findings are relevant for both portfolio con-

struction and performance evaluation (e.g., Cohen, Polk, and Vuolteenaho, 2009; Dahlquist and

Ødegaard, 2018), since long-term investors collect short-term risk premia while bearing less of the

risk associated with these short-term factors in the long run (e.g., Kamara, Korajczyk, Lou, and
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Sadka, 2016).
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Faria, Gonçalo, and Fabio Verona, 2018, The equity risk premium and the low frequency of the term spread,

Bank of Finland Research Discussion Paper 7.

Feng, Guanhao, Stefano Giglio, and Dacheng Xiu, 2020, Taming the factor zoo: A test of new factors, The

Journal of Finance 75, 1327–1370.

46



Ferson, Wayne E., 2013, Conditional Asset Pricing (Springer) 2 edn. Encyclopedia of Finance, chap. 10.

Frankfurter, George M., Wai K. Leung, and Paul D. Brockman, 1994, Compounding period length and the

market model, Journal of Economics and Business 46, 179–193.
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In this document we provide supplementary material to Van der Zwan, Hennink, and Tuijp (2021).

I. Time series decomposition and the ideal band pass filter

A. Decomposition of the time series

Under the assumption that a time series yt is covariance stationary, the spectral representation

theorem (see, e.g., Parzen (1961) and Priestley (1981) for more details) states that yt can be written

as

yt =
T

∑
τ=1

vτ cos(2πωτ t)+uτ sin(2πωτ t), vτ,uτ ∼ N(0,σ2
τ) i.i.d. (IA.1)

where σ2
τ corresponds to the spectral density function at frequency ωτ. In other words, any co-

variance stationary time series can be decomposed into multiple orthogonal components capturing

fluctuations at different frequencies. That is,

yt =
T

∑
τ=1

y(pτ−1,pτ)
t =

T

∑
τ=1

y(τ)t , (IA.2)
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where y(pτ−1,pτ)
t ≡ y(τ)t . pτ denotes the length of one cycle, e.g., the periodicity. Thus, y(pτ−1,pτ)

t

denotes the component of yt with period oscillations between pτ−1 and pτ, with p0 = 2 ≤ p1 <

... < pT = ∞. The frequency and periodicity are related as ωτ = 2π/pτ. It follows that the set

{1, ...,T } spans the whole frequency domain—that is, the components are non-overlapping and

contain fluctuations from every persistence level. Since these pass bands are non-overlapping span

and all pass bands together contain fluctuations from every level, it also holds that

var(yt) =
T

∑
τ=1

var(y(τ)t ). (IA.3)

Further, from this theory it follows that the ideal band pass filter can be employed to extract those

frequency components. We describe the ideal band pass filter in section IB.

The above mentioned spectral representation theorem can be related to the approach of Ortu,

Severino, Tamoni, and Tebaldi (2020) in the following way. Under the assumption that a time

series yt is covariance stationary, the Wold decomposition theorem states that yt can be written as

yt =
∞

∑
`=0

ψ`εt−`, (IA.4)

where εt denotes a white noise process and ψ` denotes the absolute summable Wold coefficients,

such that the spectral functions of yt are well-defined. Then, Theorem 2 in Ortu, Severino, Tamoni,

and Tebaldi (2020) shows that we can alternatively write the time series yt as (IA.2).

Since the portfolio (excess) returns and factors meet the aforementioned requirement, e.g.,

they are covariance stationary, we can decompose both into a sum of horizon-specific components.

Further, having this representation, it follows that the covariance between factors and returns can
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also be decomposed such that (see, e.g., Boons and Tamoni, Appendix B2 for a proof of this result

in context of the Wold decomposition),

cov(ri,t , ft) =
T

∑
τ=1

cov
(

r(τ)i,t , f (τ)t

)
. (IA.5)

In other words, there are no cross-component covariance terms across different horizons between

the excess returns and the factors. This follows from the fact that the components r(τ)i,t and f (σ)t

capture information from different frequencies for τ 6= σ.

B. The ideal band pass filter

We briefly describe the ideal band pass filter. A more detailed derivation of the ideal band pass

filter can be found in for example, Sargent (1987), chapter 11.6. One can decompose a covariance

stationary time series {yt : t = 1, ...,T} orthogonally such that both components lie in a different

frequency range, that is,

yt = ỹt +ηt , (IA.6)

where ỹt contains the desired frequency range [a,b], where a < b. The frequency a (b) refers to

fluctuations with a period larger than pa (pb). For example, in monthly data when a = 2π/12 and

b = 2π/36, pa = 12 and pb = 36, i.e., the periodicity of the filtered component is between 1 and

3 years. The component ηt contains all the frequencies outside of [a,b]. It is a eminent result the

filtered time series can be written as a moving average of the original time series (for example,

Sargent (1987), p. 256–260),

ỹt = G(L)yt , (IA.7)
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where G(L) corresponds to the ideal pass band filter with the following form

G(L) =
∞

∑
`=−∞

g∗` L`, (IA.8)

with L`(yt)≡ yt−`. Here, the ideal band pass filter weights g∗` are given by

g∗` =


sin(ω2`)−sin(ω1`)

π` for ` 6= 0

ω2−ω1
π

for `= 0.
(IA.9)

Using the fact that a time series can be represented by a combination of infinite amount of sine and

cosines functions of various frequencies (Baron Fourier, 1878), the ideal band pass filter of (IA.8)

corresponds to the following frequency response function

G
(
e−iω)=

 1 for ω ∈ [a,b]

0 otherwise.
(IA.10)

The frequency response function is defined in the frequency domain. From this perspective, one

can see that this filter can perfectly maintain the the fluctuations between the pass band [a,b] of

the original time series yt without amplifying them, while suppressing the frequencies outside this

pass band. However, employing this ideal band pass filter requires an infinite amount of data. We

therefore use an approximation to this ideal band pass filter.
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II. Proof of Proposition 1

Proof of Proposition 1: Similar to the linear multifactor case of Cochrane (2005) chapter 6, we

assume that the stochastic discount factor has a linear form in the frequency components, e.g.,

mt+1 = a+
T

∑
τ=1

b(τ)′ f (τ)t+1. (IA.11)

We further have the traditional asset pricing equation E[mt+1Ri,t+1] = 1. We now work out this

pricing equation

1 = E[mt+1Ri,t+1] = E[mt+1]E[Ri,t+1]− cov(mt+1,Ri,t+1)

⇐⇒ E[Ri,t+1] =
1

E[mt+1]
− cov(mt+1,Ri,t+1)

E[mt+1]
=

1
a
− cov(mt+1,Ri,t+1)

a

⇐⇒ E[ri,t+1]≡ E[Ri,t+1]−R f
t+1 =−

cov(mt+1,Ri,t+1)

E[mt+1]
=−cov(mt+1,Ri,t+1)

a
(IA.12)

where we use that E[mt+1] = a and assuming that the mean of factors is captured in a, e.g.,

E[ ft+1] = 0. In the last line, we use the pricing equation for the risk-free rate R f
t+1 that 1 =

E[mt+1R f
t+1] = E[mt+1]R

f
t+1, since the risk-free rate is considered to be known. Thus, R f

t+1 =

5



1
E[mt+1]

. We work out the covariance term in (IA.2),

cov(mt+1,Ri,t) = cov

(
a+

T

∑
τ=1

b(τ)′ f (τ)t+1,Ri,t+1

)

= cov

(
T

∑
τ=1

b(τ)′ f (τ)t+1,
T

∑
τ=1

R(τ)
i,t+1

)

=
T

∑
τ=1

b(τ)′E
[

f (τ)t+1R(τ)
i,t+1

]
+

T

∑
s,τ=1
s 6=τ

b(τ)′E
[

f (τ)t+1R(s)
i,t

]
+

T

∑
s,τ=1
s 6=τ

b(s)′E
[

f (s)t+1R(τ)
i,t+1

]

=
T

∑
τ=1

b(τ)′E
[

f (τ)t+1R(τ)
i,t+1

]
,

where the last line follows from the fact that we decompose the factors and returns as in (IA.2),

that is, orthogonal across horizon. Therefore, theoretically, cross-component covariance terms are

zero. We plug this result into (IA.12)

E[ri,t+1] =−
1
a

(
T

∑
τ=1

b(τ)′E
[

f (τ)t+1R(τ)
i,t

])
. (IA.13)

We now define the frequency-specific beta as

β
(τ)
i = Var

(
f (τ)t+1

)−1
Cov

(
f (τ)t+1, R(τ)

i,t+1

)
(IA.14)
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for τ = 1, ...,T . We recover these frequency-specific betas in the equation above by multiplying

the term in the summation by E
[

f (τ)t+1 f (τ)′t+1
]
E
[

f (τ)t+1 f (τ)′t+1
]−1, thus,

E[ri,t+1] =−
1
a

(
T

∑
τ=1

b(τ)′E
[

f (τ)t+1 f (τ)′t+1

]
E
[

f (τ)t+1 f (τ)′t+1

]−1
E
[

f (τ)t+1R(τ)
i,t

])

=−1
a

(
T

∑
τ=1

b(τ)′E
[

f (τ)t+1 f (τ)′t+1

]
β
(τ)
i

)
.

We now define λ0 and λ(τ) as

λ0 ≡
1

E[mt+1]
=

1
a

λ
(τ) ≡−1

a
E
[

f (τ)t+1 f (τ)′t+1

]
b(τ) =−λ0E

[
f (τ)t+1 f (τ)′t+1

]
b(τ),

where λ(τ) denotes the prices of risk at frequency τ. Hence, we have that

E[ri,t+1] =
T

∑
τ=1

λ
(τ)′

β
(τ)
i . (IA.15)

Q.E.D.

III. Data

This section provides a description of the data and its sources, details on the construction of ex-

pected inflation used to construct two macroeconomic factors, and additional statistics on the test

portfolios.
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TABLE IA.1: Data description
Variable names, ranges and source of the data are provided in this table.

Variable Sample range Source

Consumer Price Index (CPI) Jan 1955–Dec 2016 OECD
Corporate Bond yield, Moody’s Aaa Jan 1968–Dec 2016 St. Louis Fed
Corporate Bond yield, Moody’s Baa Jan 1968–Dec 2016 St. Louis Fed
Fama-French three factors (market, size, value) Jan 1968–Dec 2016 Kenneth R. French
Industrial Production, seasonally adjusted Jan 1968–Dec 2016 St. Louis Fed
Momentum factor Jan 1968–Dec 2016 Kenneth R. French
One Month Treasury Bill Jan 1955–Dec 2016 Kenneth R. French
Portfolio returns Jan 1968–Dec 2016 Kenneth R. French
Liquidity factor (traded) Jan 1968–Dec 2016 Lubos Pastor
Long-term Government Bond over 10 year (LGB) Jan 1968–Dec 2016 St. Louis Fed
Three Month Treasury Bill yield (TB) Jan 1968–Dec 2016 OECD

A. Definitions of macroeconomic factors

• Industrial production (IP): the factor is defined as the monthly growth rate1 of industrial

production.

• Expected inflation (EI): we define EI as the monthly change in the inflation expectation.

Thus,

EIt = Et [It+1]−Et−1[It ], (IA.16)

where It is the monthly inflation rate, measured as the natural log difference of the seasonally

adjusted consumer price index (CPI) of period t. Et−1[ · ] denotes the expectation operator

conditional on the information available at the end of month t− 1. We follow the method

of Fama and Gibbons (1984) as in Chen, Roll, and Ross (1986), Liu and Zhang (2008), and

1Chen, Roll, and Ross (1986) also consider the yearly growth rate to account for growth in the long run and to
overcome the noise in monthly growth rates, however, we account for this by filtering.
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Shen, Yu, and Zhao (2017) to construct expected inflation. The precise construction is given

in section III.B of this Appendix.

• Unexpected inflation (UI): UI captures inflation information not captured by EI, so We

define unexpected inflation (UI) as

UIt = It−Et−1[It ], (IA.17)

where It = logCPIt− logCPIt−1 and Et−1[It ] (Fama and Gibbons, 1984).

• Credit spread (DEF): a yield spread capturing the default premium. We construct DEF fol-

lowing Liu and Zhang (2008) by taking the spread between the Baa corporate bond yield and

the Aaa corporate bond yield. This differs in two ways from Chen, Roll, and Ross (1986).

First, they consider returns and we consider the yield. Second, they choose a long-term gov-

ernment bond instead of Aaa corporate bond. Instead, we consider a Aaa corporate bond

rather than a government bond, since the use of government bond data may unintendedly

introduce a liquidity effect in the variable (e.g., Elton, Gruber, Agrawal, and Mann, 2001).

• Term spread (T S): we define the term spread as the spread between Treasury bonds with a

maturity over ten years and the three-month Treasury bill.

B. Construction of expected inflation

We follow Fama and Gibbons (1984) to model the monthly expected inflation as in Chen, Roll,

and Ross (1986), Liu and Zhang (2008) and Shen, Yu, and Zhao (2017). Following Fisher (1930),
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the expected inflation can be written as

Et−1[ It ] = R f
t −Et−1[RHOt ], (IA.18)

where It = logCPIt− logCPIt−1, the risk-free rate is denoted as R f
t (one-month treasury bill), and

RHOt is defined as the ex-post real return on treasury bills in period t, that is, RHOt =R f
t −It . Fama

and Gibbons (1984) employ a first order moving average MA(1) process to model the change in

RHOt , so that

∆RHOt = εt +θεt−1. (IA.19)

Note that we need CPI and treasury bill data prior to the sample beginning, January 1968, to

estimate θ at the beginning of the sample. We model the monthly difference in ex-post real return

on treasury bills using an updating MA(1) model, e.g., expanding window estimation starting from

January 1955 on wards. Using the fitted residual values of (IA.19), it follows that

Et−1[RHOt ] = RHOt−1− ε̂t− θ̂ ε̂t−1. (IA.20)

We plug this into (IA.18) to obtain expected inflation, which we then use to create the variables

expected inflation (yielding the first difference) and unexpected inflation.

C. Additional descriptive statistics equity returns

In this subsection we show some additional statistics on the 202 equity portfolios in excess of

the risk-free rate on monthly frequency. These equity portfolios consist of seven sets of bivariate

sorted portfolios and a set of industry portfolios. Figure IA.1 shows a visualization of Table 1 and
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FIGURE IA.1: Boxplots of the average excess returns and correlation matrix of the excess
returns of the 202 equity portfolios. This figure summarizes the average excess returns of the
202 portfolios for the sample which runs from January 1968 to December 2016. The solid thick line
corresponds to the median, the black dot corresponds to the mean. The circle are “outliers”. S/Val
corresponds to size-value, ind. to industry, O/I to operating profitability-investment activity, S/Var
to size-variance, S/N to size-net share issuance, S/A to size-accruals and S/M to size-momentum.
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the correlation between the portfolios. The correlation of the portfolios lies between 0.3 and 0.98

for monthly data.
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IV. Filter analysis

A. Filter choice

We present a comparison between the Christiano-Fitzgerald random walk (CF-RW) filter, a moving

average (MA) filter and the Baxter-King (BK) filter. Figure IA.2 shows the market factor, filtered

with three types of filters. To illustrate the difference between the CF-RW filter and a moving

average filter, we zoom in on the period January 2005 to December 2010, which contains a crisis.

Figure IA.2a zooms in on this period and shows the MA filter and CF-RW filter compared to the

monthly factor. The moving average filter has 36 lags, e.g., a three-year moving average, and the

CF-RW filter filtering out fluctuations between 1 to 3 years. The CF-RW filter is able to capture

the sudden drop, whereas the moving average filter is not—it rather smooths out the loss.

Figure IA.2b shows the performance of the Baxter-King filter (dashed) and the CF-RW filter,

both filtering out fluctuations between 3 to 8 years over the whole sample. The filtered series

follow a similar pattern, although at some points the BK filter seems to be less smooth at certain

points (between 1990 and 2000). The correlation between the two series is high, 0.95, which is

also the case for other factors and equity returns. Also note the required observation loss of 36

observations on both sides when using the BK filter. This indicates that both filters are able to pick

up relevant and similar low-frequency information.

B. Orthogonality of the filter

The orthogonal decomposition of a time series forms the basis of our theoretical framework.

That is, the frequency components are orthogonal across horizons. Theoretically, the ideal band

pass filter produces orthogonal components. However, we have a limited sample size. We therefore
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FIGURE IA.2: Filtered market factor using different filters. The market factor is filtered
using multiple filters and multiple pass bands. Figure IA.2a shows the monthly market factor,
the Christiano-Fitzgerald random walk (CF-RW) filter with pass band 1 to 3 years and a moving
average with 36 lags, between January 2005 and December 2010. Figure IA.2b shows the filtered
market factor, using the Baxter-King (BK) filter of order 36 and the CF-RW filter, both between 3
to 8 years, over the whole sample. The grey areas represent NBER recessions.

(A) Market factor filtered with a moving average filter and the CF-RW filter.
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(B) Market factor filtered with the BK- and CF-RW filter.
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must assess the in-sample correlation between the components. Table IA.2 shows the in-sample

correlations between the filtered factors. The correlation between the pass bands are generally

zero or almost zero (< 0.05). For the lower frequencies the filter has more difficulty to isolate
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frequency specific information—the correlation between the components capturing 36–96 months

and greater than 96 months are correlated, but generally lower than 0.15 in absolute terms.

C. One-sided Christiano-Fitzgerald filter

The CF-RW filter described in Section IV.E is a two-sided filter, which means it incorporates

forward-looking information to filter the time series. Recall that this filter is defined as

ỹt = g̃t−1y1 +g∗t−2y2 + · · ·+g∗1yt−1 +g∗0yt +g∗1yt+1 + ...+g∗T−t−1yT−1 + g̃T−tyT . (IA.21)

Specifically, the filtered time series of (IA.21) at time t depends on both past (y1, ...,yt) and future

observations (yt+1, ...,yT ). To analyze a conditional model, we need a backward looking filter.

Recall that (IA.21) is an approximation of the ideal band pass filter, which we can adjust such that

it only uses past and contemporaneous information. The filtered time series is then calculated as

ỹt = ĝt−1y1 +g∗t−2y2 + · · ·+g∗1yt−1 +g∗0yt , (IA.22)

where ĝt−1 =−
(
g∗0+g∗1+ ...+g∗t−2

)
. We refer to this filter as the CF-RW one-sided filter. This ad-

justment leads to a less ideal approximation of the optimal filter, which induces a “leakage effect”,

which means that in some cases the neighboring frequencies of [ω1,ω2] are not entirely filtered out.

This is indeed the case, as the cross-component correlations are generally non-zero, but moderate.

However, for neighboring pass bands, especially lower frequencies, the absolute correlation can

increase to 0.5. The cross-sectional results using this filter are reported in Table IA.5.
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V. Bootstrap procedures

A. Bootstrapped standard errors

We calculate the standard errors numerically by using bootstrap. Specifically, we use the circular

block bootstrap approach of Politis and Romano (1992) to account for possible underlying de-

pendence structure in the data. Our bootstrap approach works as follows. In each bootstrap, we

draw blocks of 48 observations with replacement from our original monthly sample consisting of

T = 588 observations from January 1968 to December 2016. Using these blocks, we construct

new samples of length T for unfiltered excess returns and unfiltered factors. For each bootstrap

sample b, we filter both the newly constructed data set, e.g., the excess returns and factors. We

create in total B = 1,000 bootstrap samples. We then obtain standard errors for the estimates for

the average effects/price of risk by calculating the standard deviation of this parameter estimation

across B bootstrap samples.

Note that in the first stage of our analysis, e.g., exposure estimation, we work with filtered

data. The reason for not bootstrapping filtered data is the assumptions made on the data in the

bootstrap method. Circular block bootstrap and other bootstrap methods such as stationary block

bootstrap and moving block bootstrap requires the data to be stationarity and weakly dependent.

For low frequency filtered data, this can be a problem. For example, the case where we consider a

block length of 30 observations and sample from filtered data containing fluctuations longer then

96 months. Since the block length is shorter than half a completion of a cycle, this block could

capture a part of the longer-term trend, and is hence not stationary. This induces problems in the

newly constructed bootstrapped sample b if for example the last observation of a block c and the

first observation of the following block c+1 do not naturally follow each other. If c captures a long-

term downward trend and c+ 1 captures a fluctuation capturing the top, the new sample contains

a break since these blocks are disjoint. We therefore sample from the unfiltered data using blocks,

which still preserve possible correlation structures, and then filter these new samples.
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The bootstrapped standard errors are robust to alternative bootstrap methods such as moving

block. Using conventional bootstrap methods, that is, drawing random individual observations,

we observe that for lower frequencies the standard error estimates become less conservative. Our

choice for circular block bootstrap rather than moving block bootstrap to avoid undersampling of

the sample endpoints. Further, the bootstrapped standard errors are also robust to alternative block

lengths. We used the data-driven block length selection method of Politis and White (2004) to

select the block length of 48 months. They also recommend varying the block length to check its

robustness, as this method also relies on a selection cut-off of five lags in the autocovariance.

B. Non-nested model testing

To assess the performance of the models, we use a test statistic derived by Rivers and Vuong

(2002)) and Hall and Pelletier (2011) to compare two non-nested models estimated by using mo-

ment conditions. The test statistic is asymptotically normal distributed. This approach is similar

to the method of Hansen and Hansen and Jagannathan (1997). The test essentially compares the

Generalized Method of Moments (GMM) objective values of model m = 1,2. The GMM objective

denotes

Q(m) = min
θ

g(θ)′Wg(θ), (IA.23)

where g(θ) denotes the moment conditions and W the weighting matrix. GMM aims to minimize

the pricing errors. Our setting can be seen as a special case with weighting matrix W being the

identity matrix and g(θ) denoting the pricing errors of our model. Q(m) reduces then to the sum

of squared pricing errors, e.g., Q(m) = 1
T ∑

T
t=1 α

(m)′
t α

(m)
t , where α

(m)
t is the N×1 vector of pricing

17



errors corresponding to model m. The test statistic then denotes

J =
Q(1)−Q(2)

σ̂T/
√

T
, (IA.24)

where σ̂T is a consistent estimator of the asymptotic standard deviation of the difference between

Q(1) and Q(2). We obtain the standard error σ̂T/
√

T by bootstrapping.

We use the bootstrap approach described above in Section V.A to obtain an estimation of

asymptotic variance σ̂2
T in the test statistic of Rivers and Vuong (2002) and Hall and Pelletier

(2011). Specifically, in each bootstrap sample b we estimate the pricing errors of both models

m = 1,2, calculate the GMM objective Q(m) for m = 1,2 and the corresponding GMM objective

difference, Q(1)−Q(2). We do this B = 1,000 times and calculate the standard error σ̂T/
√

T of

Q(1)−Q(2) across B simulations.

VI. Additional Asset Pricing Results

Table IA.3 reports the cross-sectional correlation between the frequency-specific exposures.

The correlation for both the macroeconomic and Fama-French model between the frequency-

specific exposures is moderate, generally ranging from 0.05–0.50. Only for the market factor

this correlation is high for the neighboring frequencies lower than 12 months and 12–36 months.

To assess the influence of including a constant in the second stage on the negative price of risk

found for the market factor in our empirical setting, we consider the specification where we restrict

the constant to be set at zero, e.g., λ0 = 0. The results are shown for the Fama-French model in

Table IA.4. Similar to Eiling (2013), we find that without an intercept, the market price of risk is

positive in the monthly settings, indicating little variation in the market betas across the portfolios.
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In the frequency-specific specification we not not find this difference—we find similar results for

including a constant λ0 and for restricting this constant to be zero.

The frequency domain filter that we use includes forward-looking information. We also test

the results for this filter when truncating the future weights, i.e., not taking forward-looking infor-

mation into account. See Section IV.C for a detailed description of this backward-looking filter.

The resulting filtered time series are less smooth compared to conventional frequency domain fil-

tering methods. The pricing results using the one-sided CF-RW filter and the conventional filter

are reported in Table IA.5. We find similar results for both methods: similar point estimates and

significance, goodness of fit and MAPE. Minor differences can be found for the macroeconomic

data at lower frequencies, since the adjusted filter is not as smooth as the conventional filter. Thus,

the cross-sectional results are not affected by incorporating forward-looking information.

Table IA.6 report the cross-sectional results of the 202 equity portfolios with standard errors

obtained from the bootstrap procedure, with block size 3. The t-statistics are generally higher than

our basis case of 48 months. Based on the 5% significance level, we find the same factors to be

significant. Additionally, the market factor is significant at a 5% level. In short, our case of block

size 48 months produce more conservative t-statistics, especially on lower frequencies, since it

allows to pick up the possible low frequency correlation up to 48 months.
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TABLE IA.4: Cross-sectional regressions for 202 mixed portfolios without intercept
This table reports second-stage cross-sectional regressions of monthly filtered excess US equity portfolio returns on
the spectral loadings for the sample which runs from January 1968 to December 2016,

ri,t+1 = λ0,t +
T

∑
τ=1

λ
(τ)′
t β̂

(τ)
i,t + ε

τ
i,t .

where the loadings are estimated over the full sample and a rolling window of five years. In the frequency-specific
case, the factors and portfolios are filtered using the one-sided backward-looking CF-RW filter. The table reports the
annualized time series averages of the λ j with t-statistics obtained by the bootstrap procedure between parentheses
underneath, and the annualized risk premium in percentage. We further report the average cross-sectional (adjusted)
R2, the mean absolute pricing error

(
MAPE, between brackets underneath the R2

)
and the sum of squared pricing

errors
(
Q(m), between brackets underneath the adjusted R2

)
. ***, **, and * denote significance at the 1%, 5%, and

10% level, respectively, based on 500 bootstrapped samples.

Panel A: Fama-French factor model, unfiltered monthly exposures

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
Static exposures

λ 0.744 7.115*** 10.312*** −2.903 6.370*** 0.000 0.747 0.740
t-statistic (0.430) (4.237) (6.504) (−0.513) (3.187) (−) [1.847] [5.325]
Risk premium (%) 0.313 1.229 −0.487 −0.035 6.501

Rolling window exposures

λ 2.080 4.750*** 5.260*** 3.387 6.614*** 0.000 0.741 0.734
t-statistic (1.110) (3.168) (3.506) (1.343) (3.233) (−) [1.876] [6.169]
Risk premium (%) 0.958 0.794 −0.232 −0.045 6.638

Panel B: Fama-French factor model, filter-based exposures

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

7.104* −1.347 −1.573 15.765*** −0.988 0.000 0.809 0.788
t-statistic (1.897) (−0.548) (−0.557) (4.100) (−0.160) (−) [1.590] [3.351]
Risk premium (%) 7.258 −0.556 −0.274 −0.741 −0.009

λ
(1−3y)

2.017 0.600 1.251 −3.752 −1.706
t-statistic (0.509) (0.257) (0.546) (−1.288) (−0.752)
Risk premium (%) 2.109 0.246 0.172 0.212 −0.008

λ
(3−8y) −4.401 3.236** 3.038** −2.093 2.275

t-statistic (−1.334) (2.093) (1.972) (−0.655) (0.957)
Risk premium (%) −4.384 1.561 0.629 0.024 0.171

λ
(>8y)

1.118 −0.400 1.943 −0.066 1.977
t-statistic (0.391) (−0.184) (0.920) (−0.027) (0.850)
Risk premium (%) 1.063 −0.196 0.133 0.000 0.147



TABLE IA.5: Cross-sectional regressions for 202 mixed portfolios, filter-based exposures, adjusted
backward-looking CF-RW filter
This table reports second-stage cross-sectional regressions of monthly filtered excess US equity portfolio returns on the spec-
tral loadings for the sample which runs from January 1968 to December 2016,

ri,t = λ0,t +
T

∑
τ=1

λ
(τ)′
t β̂

(τ)
i + ε

τ
i,t .

where the spectral loadings are estimated over the full sample for each pass band τ. The factors and portfolios are filtered using
the one-sided backward-looking CF-RW filter described in Section IV.C. The table reports the annualized time series averages
of the frequency-specific λ

(τ)
j with t-statistics obtained by the bootstrap procedure between parentheses underneath, and the

annualized average risk premium
(

λ
(τ)
j,t × β̂

(τ)
i, j

)
in percentage for each factor j. We further report the average cross-sectional

(adjusted) R2, the mean absolute pricing error
(
MAPE, between brackets underneath the R2

)
and the sum of squared pricing

errors
(
Q(m), between brackets underneath the adjusted R2

)
. ***, **, and * denote significance at the 1%, 5%, and 10% level,

respectively, based on 500 bootstrapped samples.

Panel A: Macroeconomic factor model

R2 Adj. R2

IP EI UI DEF T S λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

0.782 8.301*** 4.802 1.005 5.686* 7.402** 0.544 0.494
t-statistic (0.583) (3.215) (1.618) (0.938) (1.934) (2.382) [1.566] [3.468]
Risk premium (%) −0.295 −4.285 1.740 1.587 2.732

λ
(1−3y)

0.017 0.236 2.765 0.077 3.284*
t-statistic (0.012) (0.215) (1.557) (0.071) (1.906)
Risk premium (%) 0.021 0.334 4.171 0.210 −1.333

λ
(3−8y) −2.836 −1.035 −0.342 −1.434* −6.134

t-statistic (−1.542) (−0.800) (−0.197) (−1.892) (−1.117)
Risk premium (%) −5.514 0.359 −0.505 −0.931 0.114

λ
(>8y)

1.795 0.575 1.195 0.812 4.034
t-statistic (1.323) (0.602) (0.863) (0.421) (0.850)
Risk premium (%) 2.496 −1.353 −0.931 0.155 1.426

Panel B: Fama-French factor model

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

5.742 −2.122 −1.406 16.173*** −1.353 8.632*** 0.562 0.513
t-statistic (1.483) (−0.788) (−0.505) (3.340) (−0.248) (3.768) [1.535] [2.718]
Risk premium (%) 5.867 −0.883 −0.243 −0.783 −0.013

λ
(1−3y) −3.013 −0.181 4.425 −6.431 −3.408

t-statistic (−0.665) (−0.063) (1.572) (−1.510) (−1.029)
Risk premium (%) −3.146 −0.076 0.662 0.369 −0.031

λ
(3−8y) −6.643 4.307** 2.003* −3.623 5.101

t-statistic (−1.190) (2.059) (1.964) (−0.562) (1.407)
Risk premium (%) −6.790 1.977 0.409 0.047 0.350

λ
(>8y)

1.154 0.196 −0.947 2.931 1.402
t-statistic (0.243) (0.058) (−0.284) (0.566) (0.403)
Risk premium (%) 1.126 0.096 −0.083 −0.001 0.110



TABLE IA.6: Cross-sectional regressions for 202 mixed portfolios, filter-based exposures, alterna-
tive bootstrap (three month block size)
This table reports second-stage cross-sectional regressions of monthly filtered excess US equity portfolio returns on the spec-
tral loadings for the sample which runs from January 1968 to December 2016,

ri,t = λ0,t +
T

∑
τ=1

λ
(τ)′
t β̂

(τ)
i + ε

τ
i,t .

where the spectral loadings are estimated over the full sample for each pass band τ. The table reports the annualized time series
averages of the frequency-specific λ

(τ)
j with t-statistics obtained by the bootstrap procedure between parentheses underneath,

and the annualized average risk premium
(

λ
(τ)
j,t × β̂

(τ)
i, j

)
in percentage for each factor j. We further report the average cross-

sectional (adjusted) R2, the mean absolute pricing error
(
MAPE, between brackets underneath the R2

)
and the sum of squared

pricing errors
(
Q(m), between brackets underneath the adjusted R2

)
. ***, **, and * denote significance at the 1%, 5%, and

10% level, respectively, based on 1,000 bootstrapped samples. The bootstrap block size is set at 3 months.

Panel A: Macroeconomic factor model

R2 Adj. R2

IP EI UI DEF T S λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

1.063 6.411** 6.759** 0.024 4.062** 7.265** 0.541 0.490
t-statistic (1.015) (2.288) (2.411) (0.039) (2.13) (2.303) [1.554] [3.951]
Risk premium (%) −0.583 −3.046 −0.437 0.182 4.592

λ
(1−3y)

0.355 −0.217 1.499 0.314 1.718**
t-statistic (0.511) (−0.278) (1.433) (0.540) (2.027)
Risk premium (%) 0.495 −0.677 2.294 1.156 −1.008

λ
(3−8y) −0.508 −0.257 0.439 −1.921*** −0.525

t-statistic (−0.619) (−0.279) (0.395) (−2.849) (−0.287)
Risk premium (%) −1.045 1.274 0.561 −1.879 −0.057

λ
(>8y)

0.282 0.115 0.216 0.231 −0.430
t-statistic (0.472) (0.162) (0.254) (0.527) (−0.310)
Risk premium (%) 0.135 −0.783 −0.599 0.012 −0.253

Panel B: Fama-French factor model

R2 Adj. R2

MKT SMB HML MOM LIQ λ0 [MAPE]
[
Q(m)

]
λ
(<1y)

2.765 −0.770 −0.799 12.893*** 1.484 8.031*** 0.555 0.506
t-statistic (0.635) (−0.244) (−0.232) (2.706) (0.281) (3.540) [1.598] [2.914]
Risk premium (%) 2.825 −0.318 −0.139 −0.606 0.013

λ
(1−3y)

0.051 0.422 1.516 −3.116 −1.873
t-statistic (0.010) (0.117) (0.839) (−1.322) (−0.996)
Risk premium (%) 0.053 0.173 0.209 0.176 −0.009

λ
(3−8y) −5.312** 2.77** 2.538** −3.238 2.467

t-statistic (−2.088) (2.014) (2.369) (−1.035) (0.967)
Risk premium (%) −5.291 1.337 0.525 0.037 0.186

λ
(>8y)

0.463 −0.272 0.732 2.38 0.587
t-statistic (0.159) (−0.157) (0.441) (1.239) (0.276)
Risk premium (%) 0.440 −0.133 0.050 −0.006 0.044
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