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Abstract 

We analyse optimal abatement and carbon pricing strategies under a variety of economic, 

temperature and damage risks. Economic growth, convex damages and temperature-dependent 

risks of climatic tipping points lead to higher growth rates, but gradual resolution of uncertainty 

lowers them. For temperature-dependent economic damage tipping points, carbon prices are higher, 

but when the tipping point occurs, the price jumps downward. With only a temperature cap the 

carbon price rises at the risk-adjusted interest rate. Adding damages leads to a higher carbon price 

that grows more slowly. But as temperature and cumulative emissions get closer to their caps, the 

carbon price is ramped up ever more. Policy makers should commit to a rising path of carbon prices.  
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1. Introduction 

Rising temperatures and the threat to our planet and the economy constitute the biggest market 

failure we know of (Stern, 2007). One solution is to price carbon as this reduces demand for carbon-

intensive goods, encourages green innovation and carbon capture and sequestration, and locks up 

fossil fuel in the crust of the earth. This Pigouvian solution charges emissions at a price that 

implements the optimal policy, namely the price that internalizes the global warming externality 

(Pigou, 1920). There is a burgeoning debate on how high that tax should be, but with implications 

for future values of that tax often delivered as a by-product only. Yet future tax rates are a crucial 

determinant of the investment decisions that need to be taken today to implement an efficient and 

timely transition to a climate-neutral future. In this paper our emphasis is therefore not only on the 

level but more on the shape of the time path of the optimal carbon price under a wide range of 

economic, climatic and damage uncertainties. 

Time paths matter as much as the initial price level since much of the adjustment and mitigation 

efforts will have to take place through new investments and these depend on the trade-off between 

current costs and future prices. In addition, as investments in both carbon-intensive and green 

technologies are to a large extent irreversible, there are strong option arguments for announcing a 

growing path of carbon prices and for policy makers to stick to it so as to lower perceived volatility 

and thereby reducing the incentive to delay investment (Dixit and Pindyck, 1994). 

This price can be implemented as a carbon tax with the revenue rebated in lump-sum manner to the 

private sector. An alternative and increasingly popular method is to set up a competitive market for 

emission permits. Instead of the Pigouvian approach, one could also adopt a Coasian approach 

where property rights to emit or the right to a clean planet are allocated (Coase, 1960), with 

subsequent trade allowed. If there are other market failures, they should be dealt with using separate 

instruments. For example, learning by doing externalities in the production of green energy require 

early and direct subsidies of green energy. If this subsidy is lumped together with carbon prices, as 

is sometimes done in the literature (e.g. Daniel et al., 2019), this leads to an unwarranted early spike 

in carbon prices which may actually discourage investment in clean technology by rising input 

costs while not raising future prices commensurately. 

In climate economics the Pigouvian price is referred to as the social cost of carbon or the SCC. This 

is defined as the expected present discounted value of all present and future damages caused by 

emitting one additional ton of carbon today. Strictly speaking, the SCC is a more general concept 

than a Pigouvian tax as it can be evaluated along other paths than the optimal path. For example, 

the SCC evaluated along a business-as-usual path where global warming externalities are not 
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internalized, will be higher than along the optimal path if damages are convex enough (e.g. 

Olijslagers, 2020). Policy makers must evaluate the SCC under big uncertainties regarding the 

wealth of future generations and future global warming damages resulting from emissions today. 

This involves difficult trade-offs between consumption today and (the risks of) damages from 

global warming to consumption in the distant future. 

We thus focus on the main drivers for the growth, or decline, of the optimal carbon price. Our 

benchmark is the case where damages to aggregate production are linear in temperature. Given that 

recent insights in atmospheric science suggest that temperature is linear in cumulative emissions 

(Matthews et al., 2009, Allen et al., 2009; van der Ploeg, 2018; Dietz and Venmans, 2018), the 

function relating the percentage loss in aggregate production to cumulative emissions is then also 

linear.1 We then see that the optimal carbon price grows at the same rate of growth of the economy. 

The reason for this is that damages are proportional to aggregate production. We then consider step 

by step four generalizations of our benchmark and how they impact the qualitative pattern of the 

time path of optimal carbon prices. 

First, we show that if damages are a convex function of temperature as has been argued by 

Weitzman (2009) and Dietz and Stern (2015), the optimal carbon price will start at a higher level 

and will also grow faster than the economy. 

Second, we confirm an earlier result by Daniel et al. (2019) that if there is gradual resolution of 

uncertainty in the damage ratio, there is a component of the optimal carbon price which falls over 

time.2 But we also show that when there is sufficient growth of the economy, this component is 

outweighed by the growing component of the carbon price resulting from growing damages. The 

key insight is thus that gradual resolution of uncertainty slows down the rate of growth of the 

optimal carbon price but under plausible assumptions does not reverse it. Gerlagh and Liski (2016) 

also find that learning and resolution of uncertainty slows the rise in the optimal carbon price.3  

Third, we show that climatic and economic tipping points whose arrival rates increase in 

temperature boosts the carbon price. Once a climate tipping point occurs, it will suddenly increase 

 
1 This is related to Golosov et al. (2014), who take a different perspective. Their damage function is a convex 

function of temperature and their temperature relationship is a concave function of the stock of atmospheric 

carbon. They then notice that their exponential damage function is roughly a linear function of the stock of 

atmospheric carbon. 
2 Daniel et al. (2019) employ the workhorse recursive dynamic asset pricing model consisting of a discrete-

time decision tree with a finite horizon extended to allow for Epstein-Zin preferences (Epstein and Zin, 1989, 

1991) and generate optimal carbon dioxide (CO2) price paths based on probabilistic assumptions about 

climate damages. They argue that it is optimal to have a high price today that is expected to decline over time 

as the “insurance” value of mitigation declines and technological change makes emission cuts cheaper. 
3 For learning and optimal climate policy, see also Kelly and Kohlstad (1999) and Kelly and Tan (2015). 
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the sensitivity of temperature to cumulative emissions which in turn should prompt policy makers 

to boost carbon prices and abatement significantly right now. Immediately after the tip has 

occurred, climate policy is ramped up resulting in an instantaneous further upward jump in the 

carbon price and abatement. A temperature-dependent risk of an economic tipping point that 

abruptly leads to a percentage destruction of production also leads to a higher path of carbon prices 

and abatement ex ante, but immediately after the tip the carbon price and abatement jump down. 

Different types of tipping points thus have radically different implications.  

Fourth, although economists usually take a conventional welfare-maximizing approach, the 

International Governmental Panel on Climate Change (IPCC) and most countries have adopted the 

more pragmatic approach of agreeing that policy makers will do their utmost best to keep global 

mean temperature well below 2 degrees Celsius and aim for 1.5 degrees Celsius. A temperature 

cap which bites implies that the optimal carbon price should grow at a rate equal to the risk-adjusted 

interest rate (cf. Gollier, 2020).4 Once allowance is made for the risk premium, this Hotelling path 

for the carbon price is typically faster than the rate of growth of the economy (even when the safe 

return is below the economic growth rate). Hence, the initial carbon price and abatement will be 

lower upfront but higher in the future. We find that taking account of the risk and uncertainty 

climate policy is stepped up hugely as temperature gets closer to its cap. The reason is that policy 

makers must prevent temperature overshooting the cap. If policy makers adopt a tighter cap, they 

need to boost the carbon price and abatement. We also show that if policy makers take account of 

a temperature cap and internalize damages from global warming to aggregate production, the 

optimal carbon price will grow faster than if only damages are internalized but slower than if only 

a temperature cap is imposed.  

Overall, our results suggest that in face of a wide range of risks and uncertainties policy makers 

should commit to a gradually rising path of carbon prices. This has the added advantage that 

businesses get clear incentives to invest in long-term projects necessary to make the transition from 

carbon-intensive to carbon-free production  

Our framework of analysis is a simple endowment economy where the endowment is subject to 

normal economic shocks (modelled by a geometric Brownian motion) and by macroeconomic 

disasters as in Barro (2006, 2009) and Barro and Jin (2011). Temperature is driven by cumulative 

emissions, and the fraction of damages lost due to global warming is a power function of 

 
4 Gollier shows in his analysis of the optimal carbon price needed to ensure that a temperature cap is not 

violated that this rate equals the safe rate plus the beta (the regression coefficient if rate of change in marginal 

abatement costs is regressed on rate of growth in aggregate consumption) times the aggregate risk premium.  
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temperature and is subject to stochastic shocks with a distribution that is skewed and has mean 

reversion as in van den Bremer and van der Ploeg (2021). Our short-cut approach to modelling 

gradual resolution of damage uncertainty is slow release of information.5 We distinguish aversion 

to risk from aversion to intertemporal fluctuations, so we use recursive preferences (Epstein and 

Zin, 1989, 1991; Duffie and Epstein, 1992). This allows for a preference for early resolution of 

uncertainty when the coefficient of relative risk aversion exceeds the inverse of the elasticity of 

intertemporal substitution in accordance with empirical evidence. This is a precondition for our 

result that gradual resolution of uncertainty gives a declining component of the optimal carbon 

price. 

Our paper is closely related to a recent interesting contribution by Lemoine (2021) who also studies 

the effect of damage ratio uncertainty and uncertainty about the economic growth rate in an 

endowment economy and offers analytical insights into the deterministic, precautionary, damage 

scaling and growth insurance determinants of the optimal social cost of carbon (cf. van den Bremer 

and van der Ploeg) and crucially gives simulations that show these components of the optimal 

carbon price. Our model differs in that we distinguish relative risk aversion from the inverse of the 

elasticity of intertemporal substitution and that that we have more general forms of uncertainty, 

i.e., we allow for skewness and declining volatility of the shocks to the damage ratio (cf. Daniel et 

al., 2019), the risk of rare macroeconomic disasters, and both economic and climatic tipping risks. 

We also allow for learning-by-doing effects in mitigation and thus for the consequent need for 

renewable energy subsidies. Furthermore, another contribution of our study is that we analyse the 

effects of temperature caps under uncertainty (both with and without damages to the economy) on 

the time paths of the optimal carbon price under uncertainty. 

Our paper is also related to an extensive literature on optimal discounting under uncertainty (e.g. 

Gollier, 2002ab, 2008, 2011, 2012; Weitzman, 1998, 2007, 2009, 2011; Olijslagers and van 

Wijnbergen, 2020) and optimal climate policy under uncertainty (e.g. Crost and Traeger, 2013, 

2014; Jensen and Traeger, 2014, Traeger, 2020; van den Bremer and van der Ploeg, 2021). It also 

relates to a growing literature under optimal climate policy in the presence of climatic and economic 

tipping points (Lemoine and Traeger, 2014, 2016b; van der Ploeg and de Zeeuw, 2018; Cai et al., 

2016; Cai and Lontzek, 2019). Our contribution is to present a simple asset pricing model to answer 

many of the questions regarding uncertainty and tipping points in this literature. Our focus is, 

however, different in that we aim to understand the qualitative nature of the time path of the path 

 
5 A detailed analysis of the potential for learning and its implications for optimal policy is beyond the scope 

of this paper. But see van Wijnbergen and Willems (2015) on the implications for optimal climate policy. 
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of optimal carbon prices and abatement. A novel contribution of our approach is to also allow for 

temperature caps. Although Gollier (2020) has analysed these in a 2-period model, we study 

temperature caps in a continuous-time, infinite-horizon integrated assessment model of the 

economy and the climate. In the absence of damages from global warming to the economy, we 

show that the expected growth in the marginal abatement cost and the price of carbon equals the 

risk-free rate plus the insurance premium. Compared to Gollier (2020), we additionally consider 

the implementation of a temperature cap while at the same time internalizing the damages to 

aggregate production caused by climate change. This gives an expected growth of the carbon price 

that is in the between the growth rate of the economy and the risk-adjusted interest rate.  

The outline of our paper is as follows. Section 2 sets up our asset-pricing model of the economy 

and the climate. Section 3 discusses our calibration and presents our benchmark result for optimal 

carbon pricing and abatement. Section 4 discusses the four generalizations of our benchmark and 

how they impact the level and the growth rate of the optimal carbon price. Section 5 discusses our 

results and offers a more general perspective on why it is important for policy makers to credibly 

commit to a path growing carbon prices. Section 6 concludes. 

 

2. An integrated model for optimal climate policy evaluation under risk 

To make the trade-off between sacrifices in current consumption against less consumption due to 

global warming in the future, we use recursive preferences which recursively defines a value 

function giving the expected welfare from time t onwards, i.e. Vt (Epstein and Zin, 1989, 1991; 

Duffie and Epstein, 1992). This formulation distinguishes the coefficient of relative risk aversion, 

denoted by RA, from the inverse of the elasticity of intertemporal substitution, EIS.6 Policy makers 

prefer early (late) resolution of uncertainty if RA exceeds (is less than) 1/EIS. Econometric evidence 

on financial markets strongly suggests this separation and that RA exceeds 1/EIS (Vissing- 

Jørgensen and Attanasio, 2003; van Binsbergen et al., 2012). Hence, the risk-adjusted interest rate 

incorporates a so-called “timing premium” (Epstein et al., 2014). If RA = 1/EIS as with the power 

utility function, policy makers are indifferent about the timing of the resolution of uncertainty and 

there is no timing premium in interest rates. Mathematically, this is represented as follows. All 

 
6 1/EIS can also be interpreted as a coefficient measuring aversion to intertemporal fluctuations. 
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agents have identical preferences and endowments, so all the agents can be replaced by one 

representative agent. If RA =   and EIS = , preferences of this agent follow recursively from 

(1) 
0
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where (1 ) / (1 1/ )   − −  and  > 0 denotes the utility discount rate or rate of time impatience. 

If RA = 1/EIS, i.e.  = 1/,equation (1) boils down to the expected utility approach with no 

preference for early (or late) resolution of uncertainty. 

The endowment of the economy Yt follows a geometric Brownian motion with drift  and volatility 

Y and includes additional terms to allow for disaster shocks with constant mean arrival rate 𝜆1. 

The size of the shocks is a random variable with time-invariant distribution. The endowment thus 

follows the stochastic process 

(2) 𝑑𝑌𝑡 = 𝜇𝑌𝑡𝑑𝑡 + 𝜎
𝑌𝑌𝑡𝑑𝑊𝑡

𝑌 − 𝐽1𝑌𝑡𝑑𝑁1,𝑡 

where  is a standard Wiener process, 𝑁1,𝑡 is a Poisson process with mean arrival rate 𝜆1, and 𝐽1 

is a random variable and corresponds to the share of endowment destroyed if a disaster hits the 

economy. We assume that 𝑥 = 1 − 𝐽1 has a power distribution with probability density 𝑓(𝑥) =

 𝛼1𝑥
𝛼1−1, so 𝐸[𝑥𝑛] = 𝛼1/(𝑛 + 𝛼1) and 0 ≤ 𝐸[𝐽1] = 1/(1 + 𝛼1) ≤ 1. For all moments to exist, 

we assume that 𝛾 < 𝛼1. This process for the evolution of the economy thus incorporates both 

normal macroeconomic uncertainty (captured by the geometric Brownian motion) and 

macroeconomic disaster risks as in Barro (2006, 2009) and Barro and Jin (2011). 

Consumption equals 

(3) (1 ) / ,t t t tC A Y D= −  

where tA  denotes the fraction of output used for abatement and Dt is the damage ratio associated 

with global warming. The time path of business-as-usual emissions Et is assumed to be exogenous. 

Business-as-usual emissions Et grow at the decreasing rate 0 ,EtE E

tg g e −=  where 0 0Eg   and 

0E   are constants. Actual emissions are (1 )t tu E−  where ut denotes the abatement rate. Without 

carbon capture and sequestration (CCS), the upper bound of the abatement rate equals 1 in which 

case all emissions are fully abated and the economy effectively only uses renewable energy.  

The cost function for abatement is  

Y

tW
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(4) 𝐴𝑡 = 𝑐0𝑒
−𝑐1𝑋𝑡𝑢𝑡

𝑐2,  

where 𝑋𝑡 is the stock of knowledge and  is the parameter that controls how fast the costs decline 

over time due to technological progress. The future stock of knowledge is uncertain. We assume 

that 𝑐2 > 1, so abatement costs are a convex function of the abatement rate. We consider two 

different processes for the stock of knowledge. In the standard case the stock of knowledge grows 

linearly over time, so that 

(5a) 𝑑𝑋𝑡 = 1𝑑𝑡 + 𝜎𝑋𝑑𝑊𝑡
𝑋. 

Technological progress in this case is exogenous. In the absence of abatement cost uncertainty (i.e. 

when 𝜎𝑋 = 0), the cost function is identical to the cost function in the DICE model (Nordhaus, 

2017). In the alternative case we allow for learning by doing by assuming that the growth of the 

stock of knowledge is a function of the cumulative amount of emissions that have been abated or 

(5b) 𝑑𝑋𝑡 = 𝑢𝑡𝐸𝑡𝑑𝑡 + 𝜎𝑋𝑑𝑊𝑡
𝑋. 

Temperature is a linear function of cumulative carbon emissions and its dynamics are described by 

(6) 𝑑𝑇𝑡 = 𝜒(1 − 𝑢𝑡)𝐸𝑡𝑑𝑡,  

where  denotes the transient climate response to cumulative emissions or TCRCE. The damage 

ratio is a function of temperature and shocks that take some time to have their full impact and 

follow a skewed distribution to reflect “tail” risk. The damage ratio is given by 

(7)  

where t  follows a Vasicek (or Ornstein-Uhlenbeck) process with short-run volatility  mean 

reversion  and long-run mean  and  is a standard Wiener process (cf. van den Bremer and 

van der Ploeg, 2021). Here  controls the convexity with respect to temperature and  controls 

the skew of the shocks hitting the damage ratio. Linear (convex) damages in temperature 

correspond to =0 (or > 0). A novel feature of our analysis is that we use the specification 

(8)   

so that volatility starts with  and falls to zero after  years. This captures gradual resolution 

of damage uncertainty. Volatility is constant if  When a temperature cap is implemented, 

we impose the restriction 𝑇𝑡 ≤ 𝑇
𝑐𝑎𝑝. This is in our setup equivalent to the restriction that only 

renewable energy must be used once temperature is at or above its cap, i.e. 𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝. 

1c

11
   with   ( ) ,T
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Finally, we allow for the possibility of an economic tipping point. We assume that the probability 

of a tipping point increases in global mean temperature. The hazard rate equals 𝜆2𝑇𝑡 where 𝜆2 

indicates the rate at which the hazard rate increases with temperature. We assume that when the 

system tips, a share 𝐽2 of endowment is destroyed. 𝐽2 is a random variable which also follows a 

power distribution, but with parameter 𝛼2. The main difference between a tipping point and a 

disaster process is that the tipping point can only tip once, while the Barro-style macroeconomic 

disasters are recurring. We also consider a climatic tipping point for which the sensitivity of 

temperature to cumulative emissions suddenly increases after a tip. More specifically, we assume 

that before the tip the transient climate response to cumulative emissions is equal to 𝜒0 and after 

the tip it changes to 𝜒1. The hazard rate for this tipping points equals 𝜆3𝑇𝑡. We show that the two 

different specifications have very different implications for the optimal carbon price. 

2.1. Optimal climate policies and implementation in a decentralized economy 

We can solve the problem of maximizing expected welfare subject to equations (1) to (8) using the 

method of dynamic programming (see Appendix A). The resulting social optimum gives rise to the 

optimal SCC and can be sustained in a decentralized market economy when, for example, the 

carbon tax is set to the SCC and the revenue is rebated as lump sums (see Appendix B). The 

numerical implementation is discussed in Appendix C. 

The social cost of carbon (SCC) corresponds to the expected present discounted value of all present 

and future damages to the economy resulting from emitting one ton of carbon today. It equals the 

welfare loss of emitting one unit of carbon divided by the instantaneous marginal utility of 

consumption, i.e. 

(9) 𝑆𝐶𝐶𝑡 = Ω
𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡)  𝐶𝑡

1/𝜂
𝑌𝑡
1−1/𝜂

 . 

(cf. equation (A3) in Appendix A). The second part of equation (9) indicates that the optimal SCC 

is proportional to a weighted geometric average of aggregate consumption and the endowment with 

the weight to consumption equal to 1/EIS. The first part of equation (9) indicates that the optimal 

SCC depends on temperature, shocks to the damage ratio and cumulative learning by doing in 

renewable energy. The SCC corrected for growth of the economy only depends on the first 

component of (9) and is given by Ω𝑖,𝑗(𝑇𝑡, 𝜔𝑡, 𝑋𝑡 , 𝑡)  𝐶0
1/𝜂
𝑌0
1−1/𝜂

. 

We consider two cases for the abatement costs. In the benchmark case abatement costs decline 

exogenously over time. In the learning-by-doing case abatement costs are endogenous and increase 

in the stock of accumulated past abatements (i.e. the stock of knowledge). The social benefit of 
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learning corresponds to all the present and future marginal benefits in terms of lower mitigation 

costs resulting from using one unit of mitigation more today, i.e. 

(10) 𝑆𝐵𝐿𝑡 = Θ𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡) 𝐶𝑡
1/𝜂
𝑌𝑡
1−1/𝜂

. 

(cf. equation (A4) in Appendix A). Like the SCC, the SBL consists of two components. The second 

one is proportional to a weighted average of endowment and aggregate consumption and the first 

one depends on temperature, damage ratio shocks and cumulative learning by doing in abatement. 

In the benchmark case without learning by doing, the SBL is simply equal to zero. 

When choosing optimal abatement policy, policy makers must recognize that abatement serves two 

purposes in our set-up: 1) it reduces emissions and thus global warming, which leads to less climate 

damages in the future and 2) due to learning by doing, abatement reduces future abatement costs. 

But abatement is costly. Policy makers must sacrifice current consumption to make room for 

abatement if they want to curb global warming and increase (expected) future consumption. 

Optimal abatement 𝑢𝑡 thus follows from the condition that the marginal abatement cost (MAC) 

must equal the social cost of carbon (SCC) plus the social benefit of learning, i.e. 

(11)  𝑀𝐴𝐶𝑡 = 𝑆𝐶𝐶𝑡 + 𝑆𝐵𝐿𝑡  

where 𝑀𝐴𝐶𝑡 = −
𝜕𝐶𝑡/𝜕𝑢𝑡

𝐸𝑡
  (see (A) in Appendix A). The marginal abatement cost is the cost of 

abating one more unit of carbon emissions. It increases in the abatement rate 𝑢𝑡 since abatement 

costs are a convex function of the abatement rate. The economy increases abatement until the 

marginal abatement costs equal the benefits of abatement. If there is no learning by doing, the only 

benefit of abatement is the reduction of climate change damages. In that case the marginal 

abatement cost is equal to the SCC, which is the expected present discounted value of all current 

and future damages caused by emitting one more ton of carbon today. The learning-by-doing 

externality gives an additional incentive to reduce emissions. The marginal abatement cost thus 

equals the sum of the social cost of carbon and the social benefit of learning.  We denote the optimal 

abatement policy that solves the dynamic programming problem by 𝑢𝑡
∗. 

When the government implements a carbon tax which is set it to 𝜏𝑡 = 𝑆𝐶𝐶𝑡 and a renewable energy 

subsidy which is set to 𝑠𝑡 = 𝑆𝐵𝐿𝑡, and the net revenue of these policy instruments are rebated as 

lump sums, the social optimum can be replicated in a decentralized market economy (see Appendix 

B). Competitive energy producing firms will then choose the energy mix such that the amount of 

fossil fuel use equals 𝐹𝑡 = (1 − 𝑢𝑡
∗)𝐸𝑡 and the amount of renewable energy use equals 𝑅𝑡 = 𝑢𝑡

∗𝐸𝑡, 

where 𝐸𝑡 is the total amount of energy use in the economy (which we have previously referred to 



11 
 

as business-as-usual emissions).  

We have adapted the simple but widely used energy model of Nordhaus (2017) and extended it to 

allow for uncertainty and tipping points in the economy, the climate sensitivity, and damages from 

global warming. One drawback of this is that in our setting, taxing carbon is equivalent to 

subsidizing renewable energy since total energy use is not endogenously chosen by the energy 

producers and since fossil and green energy are perfect substitutes. Optimal policy could thus in 

such a framework also be replicated by setting a carbon tax equal to 𝜏𝑡 = 𝑆𝐶𝐶𝑡 +𝑀𝐴𝐶𝑡. However, 

it is important to stress that this is no longer the case in more general models. When fossil fuel and 

renewable energy use can be optimally chosen separately, replication of the command optimum 

can only be done by setting 𝜏𝑡 = 𝑆𝐶𝐶𝑡 and 𝑠𝑡 = 𝑆𝐵𝐿𝑡 (e.g. Rezai and van der Ploeg, 2017a). Taxing 

carbon then has different implications than subsidizing green energy. In a more general setting with 

directed technical change, it can be shown that when green and dirty inputs are sufficiently 

substitutable, a temporary green energy subsidy is optimal to fight climate change by kickstarting 

the economy in directions of green technical progress (e.g. Acemoglu et al., 2012).7 Although 

taxing carbon and subsidizing green energy are equivalent in our simple framework, we do interpret 

the social cost of carbon as the optimal carbon tax and the social benefit of learning as the optimal 

renewable energy subsidy, to stress that the two are in general not equivalent. 

We assume that negative emissions are not possible (or at least not at a competitive price) and 

therefore impose an upper bound on the abatement rate of 1. Hence, when it would be optimal to 

abate more than 100% of the emissions, the optimality condition (9) cannot be satisfied anymore. 

In this case the marginal abatement costs are smaller than the sum of the social cost of carbon and 

the renewable energy subsidy.  

2.2. Effects of a temperature cap on optimal abatement and carbon pricing 

Optimal policy in presence of a temperature cap still satisfies the first-order condition, but the social 

cost of carbon now must account for the temperature cap. A temperature cap in our model is 

equivalent to the restriction that 𝑢𝑡 = 1 when 𝑇𝑡 = 𝑇
𝑐𝑎𝑝. We show that in the case of a pure 

temperature cap (i.e. no effect of climate change on damages to aggregate production), 

intertemporal optimization implies that the expected growth rate of SCC and of the marginal 

abatement cost must equal the risk-free interest rate plus the risk premium (for a proof, see 

Appendix D). In this case, we thus have that expected growth in the marginal abatement cost and 

 
7 Bovenberg and Smulders (1995, 1996) offer early contributions on climate policy and endogenous growth. 

It has also been argued that subsidizing green energy technology is not effective to fight climate change, 

since it leads to higher energy use in total instead of substantially less fossil fuel use (Hassler et al., 2020). 



12 
 

in the optimal carbon price equals 

(12) 𝐸𝑡 [
𝑑𝑀𝐴𝐶𝑡

𝑀𝐴𝐶𝑡
] = 𝑟𝑡 + 𝑟𝑝𝑡 , 

where the risk-free interest rate is given by  

(13) 𝑟𝑡 = 𝛽 +
𝜇𝑐

𝜂
−
1

2
(1 +

1

𝜂
) 𝛾(𝜎𝑌)2 − 𝜆1 (

𝛼1

𝛼1−𝛾
− 1 −

𝛾−
1

𝜂

𝛼1+1−𝛾
) 

(cf. equation (D20)) and the risk premium is given by 

(14) 𝑟𝑝𝑡 = 𝐸𝑡 [−
𝑑[𝜋𝑡,𝑀𝐴𝐶𝑡]

𝜋𝑡𝑀𝐴𝐶𝑡
] = 𝐸𝑡 [−

𝑑[𝑌𝑡
−𝛾
,𝑌𝑡]

𝑌𝑡
1−𝛾 ] = 𝛾(𝜎𝑌)2 + 𝜆1(𝐸[(1 − 𝐽1)

−𝛾] +

               𝐸[1 − 𝐽1] − 𝐸[(1 − 𝐽1)
1−𝛾] − 1) = 𝛾(𝜎𝑌)2 + 𝜆1 (

𝛼1

𝛼1−𝛾
+

𝛼1

𝛼1+1
−

𝛼1

𝛼1+1−𝛾
− 1). 

(cf. equation (D22)). In expectation, the growth rate of marginal abatement costs is therefore equal 

to the risk-free rate plus the risk premium. This result echoes the result derived by Gollier (2020) 

for a two-period model. It follows from the assumption that temperature is a linear function of 

cumulative emissions. In that case, we get an equivalent of the celebrated Hotelling rule: the price 

path assures that temperature does not exceed the cap and achieves intertemporal efficiency. In 

other words, the risk-adjusted discounted marginal cost of abatement is the same for each period.  

 

3. The benchmark results 

We discuss our benchmark calibration and then present and discuss the corresponding optimal time 

path for respectively the carbon price, the learning-by-doing subsidy, abatement, and temperature. 

3.1. Calibration 

In our benchmark calibration, we choose RA =  = 7, EIS =  = 1.5 and the rate of impatience  = 

2% per year. These are values that are typically used in the asset pricing literature with Epstein-Zin 

preferences (e.g. Table 1, Cai and Lontzek, 2019) based on extensive empirical evidence. The 

details of our calibration are reported in Table 1.  

The initial endowment is set to world GDP of 80 trillion US dollars. We suppose this endowment 

is subject to normal shocks captured by geometric Brownian motion with a drift of 2% per year and 

an annual volatility of 3%. In addition, we have macroeconomic disaster shocks along the lines of 

Barro (2006, 2009) and Barro and Jin (2011). Here the mean size of the disaster shocks is 8.7% and 

the mean arrival rate of these shocks is 0.035 per year corresponding to a mean arrival time of 29 

years. This calibration yields a real risk-free interest rate of 0.75% and a risk premium of 2.65% if 
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we abstract from the adverse effects of climate change on the economy. Since in the past century 

climate change has arguably had no effect on interest rates, we can compare these numbers to 

historical averages.  

Table 1: Calibration details 

Preferences Market based: RA =  = 7, EIS =  = 1.5, impatience =  = 2%/year 

Economy Initial endowment: Y0 = 80 trillion US dollars 

Geometric Brownian motion: 

Drift in endowment =  = 2%/year (for no growth scenario, drift =  = 𝜆1𝐸[𝐽1] 
Volatility of shocks to endowment = Y = 3%/year 

Macroeconomic disasters: 

Mean arrival rate of disaster shocks =𝜆1 = 0.035/year, 

Mean size of disaster shocks: 𝐸[𝐽1] = 8.7%,  

Disaster shocks: shape parameter of gamma distribution 𝛼1= 10.5 

BAU emissions Initial flow of global emissions in BAU scenario: E0 = 10 GtC/year 

Initial growth of BAU emissions: = 1.8%/year 

Decline of the growth rate of BAU emissions: = 2.7%/year 

Abatement costs 

(benchmark 

case) 

Current cost of full decarbonization: = 7.41% of initial GDP  

Rate of technological progress: = 1.9%/year 

Convexity parameter of the cost function: = 2.6 

Abatement cost volatility parameter: 𝜎𝑋 = 1 

Maximum abatement (full de-carbonization corresponds to u = 1, so 𝑢 ≤ 1) 

Abatement costs 

(learning by 

doing case) 

Current cost of full decarbonization: = 7.41% of initial GDP  

Rate of technological progress: = 0.375%/unit of knowledge 

Convexity parameter of the cost function: = 2.6 

Abatement cost volatility parameter: 𝜎𝑋 = 5 

Maximum abatement (full de-carbonization corresponds to u = 1, so 𝑢 ≤ 1) 

Temperature Initial temperature: T0 = 1 C 

Transient climate response to cumulative emissions before tip: TCRCE = 𝜒0 = 1.8 

C/TtC 

Temperate cap: 𝑇𝑐𝑎𝑝 = 1.5° or 𝑇𝑐𝑎𝑝 = 2° or 𝑇𝑐𝑎𝑝 = ∞ 

Damage ratio Linear case: convexity parameter temperature 𝜃𝑇 = 0 

Convex case: convexity parameter temperature   

Skew parameter for shocks:  

Mean reversion of shocks:  = 0.2/year 

Initial and mean steady-state value of shocks:  

Variant with constant volatility: = 0.05,  

Variant gradual resolution of uncertainty:  = 0.05, = 100 years 

Economic 

tipping point 

Mean arrival rate of tipping point: 𝜆2 = 0.01𝑇𝑡  
Mean tipping damage level: 𝐸[𝐽2] = 2.5%, 

Tipping damage level: shape parameter of gamma distribution 𝛼2 = 39 

Tipping point in 

the TCRCE  

Mean arrival rate of tipping point: 𝜆3 = 0.006𝑇𝑡 
Level of TCRCE after tipping: TCRCE = 𝜒𝑝𝑜𝑠𝑡  = 2.5C/TtC  

 

Dimson et al. (2011) calculate that the global real risk-free rate has been on average 1% and the 

risk premium 4% over the period 1990-2010. We are currently in a low interest environment and 

0
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in the long run it is questionable whether interest rate will return to their old average levels, which 

makes 0.75% a reasonable real risk-free interest rate. Our risk premium is lower than the historical 

average, but our main purpose is not to solve the equity premium puzzle. Furthermore, a risk 

premium of 2.65% is more realistic compared to most other climate-economy models in which the 

risk premium is often small or non-existent. These numbers are also close to Gollier (2020) who 

calibrates the risk-free rate at 1% and the risk premium at 2.5%. This calibration implies that in the 

case of a temperature cap without damages, the optimal carbon price grows in expectation at a rate 

equal to the risk-free rate plus the risk premium, i.e. 0.75%+2.65%=3.4%. 

Parameters for business-as-usual (BAU) emissions are chosen to match the baseline emissions 

scenario in Nordhaus (2017) over the first century of the simulation period and afterwards BAU 

emissions stabilize. The parameters 𝑐0, 𝑐1 and 𝑐2 of the abatement cost function in the benchmark 

case are taken from the DICE calibration (Nordhaus, 2017). For the learning by doing calibration, 

we take the same value for 𝑐0 (cost of full abatement in initial period) and for 𝑐2 (convexity of 

abatement costs in abatement rate 𝑢𝑡). The parameter 𝑐1 now represents the decline in abatement 

costs when one additional GtC of carbon emissions is abated and is set to 𝑐1 = 0.375% (cf. Rezai 

and Van der Ploeg, 2017a). With the learning by doing in renewable energy production, future 

abatement costs depend on cumulative past abatement efforts and thus also depend on the damage 

calibration. Figure 1 compares abatement costs of the benchmark case with the learning-by-doing 

case, both when damages from global warming are linear and when they are convex.    

Figure 1: Costs of full abatement (𝒖𝒕 = 𝟏) in the benchmark and in the learning-by-doing 

case for two different damage specifications (linear and convex) 
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We take a transient climate response to cumulative emissions (TCRCE) of 1.8 C/TtC (cf. 

Matthews et al., 2009; Hambel et al., 2020). The parameters of the uncertain damage shock and of 

the convexity parameter 𝜃𝑇 are taken from van den Bremer and van der Ploeg (2021). For the 

variant with gradual resolution of damage uncertainty, we assume that the volatility of the damage 

shock is linearly declining to 0 over a period of 100 years as in equation (8). 

Finally, we assume that initially an economic tipping point tips on average after 100 years. When 

temperature increases to two (four) degrees Celsius, this becomes on average after 50 (25) years. 

The size of the damages caused by the tipping disaster is assumed to be on average 2.5%. For the 

climate tipping point, it takes initially on average 167 years for the climate system to tip. With 2 

degrees Celsius warming the average time reduces to 83 years. When the system tips, the TCRCE 

jumps from 1.8 C/TtC to 2.5C/TtC. Overall, the main message of the two tipping point 

calibrations is that the probability of tipping in both cases is quite small, but we will show that the 

impact on optimal carbon prices is nevertheless considerable. 

3.2. The benchmark optimal carbon prices 

With this calibration, the benchmark SCC (with no learning by doing and no temperature cap) is 

shown in Figure 2. The SCC corresponds to the optimal carbon price. The most striking feature of 

the top two panels is that the ex-ante mean and median paths of the optimal carbon price start at 

almost $50/tC and then grow almost in tandem with the growth of the economy. 

In fact, there is a modest decline in carbon price corrected for the growth of the economy as can be 

seen from the top right panel. The median carbon price path lies below the mean carbon price path, 

and the 5% and 95% bounds become wider for carbon prices that are further in the future as one 

should expect given that a function of GBM processes is a GBM process itself. As a result of the 

technological progress in abatement technology, there is a gradual rise in abatement efforts over 

time. Due to the rise in business-as-usual emissions, temperature rises to around 3 degrees Celsius 

in the next century but by rather less than in the absence of abatement efforts. The plots also indicate 

a sample run in blue. This suggests that for individual sample paths of the optimal carbon price 

there may be substantial volatility, which does not show up in the ex-ante time path for the mean 

(or median) optimal carbon price. Since we abstracted from stochastic shocks to temperature and 

abatement efforts are much less volatile, the temperature path itself shows hardly any volatility. 

When we allow for uncertain tipping points in the sensitivity of temperature to cumulative 

emissions, this will change (see section 4.3 below). 
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Figure 2: Benchmark with linear damages, no learning by doing, no gradual resolution of 

uncertainty, no tipping points, and no temperature cap 

 

 

 

4. Four generalizations of the benchmark 

We now discuss four generalizations of the benchmark. For expositional reasons, we discuss these 

generalizations one by one. In practice, all these generalizations may be relevant at the same time. 

We discuss first the effects of convex damages, then present the effects of learning by doing and a 

combination of convex damages and learning by doing. After that we discuss the implications of 

gradual resolution of damage uncertainty and then show the differential impacts of climatic and 

economic tipping points. Finally, we analyse the effects on the time path of carbon prices of 

temperature caps. 

4.1.  Convex damages 

Figure 3 presents the effects of convex damages captured by the proportion of output lost due to 

global warming being a convex rather than a linear function of temperature. Following van den 

Bremer and van der Ploeg (2021), we let this function be proportional to temperature to the power 
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of 1.56. This is slightly less convex than the damage function of Nordhaus (2018) but serves to 

illustrate the effects of convex damages.  

The most striking effect of convex damages is that the carbon price starts at a higher level, $91/tC 

instead of $44/tC, and then grows in expectation at a faster pace than in the benchmark. We can 

see this most strikingly by comparing the top right panel of Figure 1 with the left panel of Figure 

2. This shows that with convex damages, the path of optimal carbon price corrected for growth of 

the economy rises whilst with linear damages, this path declined mildly. Hence, the abatement 

efforts are much stronger. The average mitigation rate now rises in a century to 92% instead of 53% 

in the benchmark. We thus confirm the Monte-Carlo results of Dietz and Stern (2015) in our fully 

stochastic framework: climate policies get intensified if damages are convex. 

Figure 3: Convex damages 

   

 

4.2. Learning by doing in abating emissions 

Including learning by doing into the analysis gives an additional reason for abatement. The 

marginal abatement cost is now equal to the social cost of carbon plus the social benefit of learning. 

The social cost of carbon adjusted for economic growth is almost identical to the base situation, so 

changing the abatement cost structure has no significant effect on optimal carbon prices. Hence, 

optimal carbon prices still grow in tandem with the economy (see top left panel).  

The social benefit of learning shown in the top right panel of Figure 4 has a very different shape. It 

grows faster than the economy in the first 50 years8, but after that time abatement costs have been 

reduced substantially because of   learning by doing to such an extent that even lower abatement 

costs do not give much additional benefit anymore. The SBL is therefore sharply declining towards 

 
8 Note that the panel displays the growth-adjusted SBL. Hence, an upward-sloping time path of this SBL 

implies that the SBL grows at a higher rate than the economy. 
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zero at the end of the century. Compared to the benchmark case, the optimal abatement rate is much 

higher initially, only to decline later on. But at the end of the century, it is still optimal to abate 

around 85% of emissions, which is much higher than the 53% abatement rate in the benchmark. 

Figure 4: Learning by doing in abating emissions 

   

  

4.3. Convex damages and learning by doing in abatement 

Figure 5 shows that combining convex damages and learning by doing leads to an even stronger 

incentive for abating energy. The optimal carbon price is again very similar to the optimal carbon 

price without learning by doing. The social benefit of learning has a similar shape to the SBL in 

the linear case. However, it starts much higher and declines towards zero faster. Since damages are 

more severe, more abatement is optimal and lowering abatement costs by investing in knowledge 

is even more beneficial, which explains the higher initial level of the SBL. In this scenario it is 

optimal to fully decarbonize the economy around 2075, much earlier than in the previous scenarios. 

The main takeaway from the learning-by-doing simulations is that optimal abatement of emissions 

is understated if learning-by-doing externalities are not internalized.  
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Figure 5: Convex damages and learning by doing 

  

  

4.4. Gradual resolution of damage uncertainty 

Our third generalization is to allow for gradual resolution of damage uncertainty. More precisely, 

we let the annual volatility of the damage ratio fall to zero linearly in a century. This is a shortcut 

to capturing slow resolution of uncertainty without delving into the intricacies of learning. The left 

panel of Figure 6 indicates that the expected optimal path of carbon prices corrected for growth of 

the economy now falls over time, much more strongly than the modest decline shown in the 

benchmark (see top right panel of Figure 1). We find that the carbon price does not only grow much 

more slowly than the economy, but also starts at only $33/tC instead of $44/tC. The fact there is a 

declining uncertainty about the damage ratio means that policy makers can pursue a less vigorous 

climate policy than in the benchmark. Declining volatility in the future already has an impact on 

the optimal carbon price today. This implies that the mitigation rate rises in a century to only 38% 

compared to 53% in the benchmark. Note that if there is no or very little growth in the economy, 

the optimal carbon price would decline over time as found by Daniel et al. (2019) for a 7-period 

model for integrated assessment of economy and the climate. The general point is that gradual 

resolution of damage uncertainty slows down the rate of growth of the optimal carbon price. In a 
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more formal context of learning and resolution of uncertainty, Gerlagh and Liski (2016) show that 

this also tends to slow down the rise in optimal carbon prices. We should note that the impact of 

earlier resolution of uncertainty is reversed when ε, the IES parameter, is smaller than the inverse 

of the risk aversion parameter γ. But there is strong empirical support for our assumption ε >> 1/ γ. 

Figure 6: Gradual resolution of damage uncertainty 

   

4.5. Climatic and economic tipping points 

Our fourth generalization is to allow for climatic and economic tipping points. There is a growing 

literature on the effects of various stochastic tipping points on optimal climate policy (e.g. Lemoine 

and Traeger, 2014, 2016b; van der Ploeg and de Zeeuw, 2018; Cai and Lontzek, 2019). Most of 

these studies are quite challenging from a numerical point of view. Here we simply present the 

effects (relative to our benchmark) of two illustrative tipping points.  

We first present a single climatic tipping point for which we assume that there is a risk of a regime 

shift in which the transient temperature response to cumulative emissions suddenly jumps up from 

1.8 C/TtC to 2.5 C/TtC. Moreover, we assume the arrival rate to be higher at higher temperatures: 

the initial hazard of this tip at the initial temperature of 1 C is 0.006, which implies an expected 

arrival time of 167 years, but for every increase in temperature by 1 C we let the hazard rate rise 

by a further 0.006. This means that at 3 C the hazard is 0.018 and the mean arrival time for the 

catastrophe is only 56 years. Although these small risks are likely to occur in the very distant future, 

they have consequences on optimal climate policy now already, as can be seen by comparing Figure 

7 with Figure 1. We see that the mitigation rate in a century time increases from 53% to 60%. 

Furthermore, the mean optimal carbon price now starts somewhat higher at $48/tC than in the 

benchmark and then rises over time. Hence, the mitigation rate ends up higher after a century, at 

60% instead of 53%. The blue lines indicate a sample path with the tipping point occurring in 2045. 

At that time, the carbon price jumps up substantially because of the bigger climate challenge 
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resulting from the increased sensitivity of temperature to cumulative emissions. 

Figure 7: Risk of a climatic tipping point 

    

Figure 8 gives the optimal policy simulations for a different type of tipping point, namely one that 

leads to a higher effect of global warming on damages instead of increased temperature sensitivity. 

We assume that the size of the economy drops abruptly by 2.5% once this tipping point occurs. The 

initial hazard of this tip at initial temperature is 0.01, which implies an expected arrival time of 100 

years. For each increase in temperature by 1 C, the hazard rate is assumed to rise by 0.01. Hence, 

at 3 C the hazard is 0.03 and the mean arrival time for the tipping point goes down to 33 years. 

This economic tipping point is thus expected to occur more rapidly than the climate tipping point. 

The most striking feature is that for this tipping point, the initial carbon price is much higher than 

in the benchmark, i.e., $78/tC instead of $44/tC, but that the mean and median paths of the optimal 

carbon price corrected for growth of the economy fall strongly over time. The blue line indicates a 

sample run where the tipping point occurs in 2045. At that time, the carbon price drops down 

instantaneously and, as a result, the mitigation rate drops down at that time too. The intuition behind 

this drop is obvious: initially, a large fraction of the carbon price is reflecting the urgency of 

preventing the tipping point. A higher carbon price leads to more mitigation efforts and therefore a 

lower probability of the tipping. But when despite these additional abatement efforts, the system 

tips eventually, there are no further tipping points to prevent. Moreover, after the tip has occurred 

the economy is smaller because of the sudden increase in damages. Furthermore, the social costs 

of carbon are proportional to output, which is another factor behind the drop in the SCC after the 

damage catastrophe occurs. The benefit of carbon reduction after the tip is the same as the benefit 

in the benchmark model without the tipping point for the same level of output. 

This is an important point: a tipping point in the climate system that speeds up warming or leads to 

a slower decay of carbon emissions has very different implications than a tipping point that directly 

affects the economy. In the former case abatement efforts can be higher before the tip to prevent 
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tipping, but when the system tips eventually abatement efforts jump up even further since one unit 

of emissions now leads to more global warming. The expected growth adjusted carbon price is 

therefore growing faster than economic growth. In the latter case if an economic tipping point, 

abatement efforts before tipping are also higher than in the absence of a tipping point to prevent 

tipping, but once the damage tipping point has happened, the economy is actually smaller in the 

future and the carbon price jumps down since damages are still proportional to the economy. 

Figure 8: Risk of a tipping point affecting the size of the economy 

    

We can also combine both types of tipping points in a single simulation. Figure 9 shows a sample 

path in which the climate tipping point tips very early and in which the economic tipping point tips 

around 2055. The initial carbon price is equal to 80 $/tC. The left panel indicates that the declining 

effect of the economic tipping point dominates the increasing effect of the climate tipping point. 

However, the growth-adjusted carbon price or social cost of carbon is now much flatter compared 

to the left panel of Figure 8. Abatement efforts are higher when both tipping points are present; the 

optimal abatement rate is 63% after a century. 

Figure 9: Risk of two tipping points affecting respectively the climate system and the size of 

the economy 
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Of course, in practice, the impact of a tipping point may take a long time to materialize (e.g. van 

der Ploeg and de Zeeuw, 2018; Cai and Lontzek, 2019). We have abstracted from this, but 

protracted effects of tipping points are clearly important in terms of the resulting time path of 

optimal policy, which will change more gradually. It is also important to allow for cascading tipping 

points where the onset of one tip might increase the likelihood of another tipping point occurring, 

by more than implied by the temperature-dependence of the hazard rate (Lemoine and Traeger, 

2016b; Cai et al., 2016). In particular, the downward jump after the damage tip occurs will be 

smaller in that case since there is the remaining incentive to delay future tipping points. 

4.6. Temperature caps 

Although most economists have adopted a welfare-maximizing approach where policymakers 

internalize the global warming externalities, many governments (as well as central banks and the 

Network of Greening the Financial System) have followed the IPCC and have decided that the best 

way to deal with global warming is to have a ceiling on global mean temperature.  

Figure 10: Effects of temperature cap and no damages of 2 degrees Celsius 

    

   

Given that temperature increases with cumulative emissions, the optimal carbon price must then 
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grow at a rate that is equal to the risk-adjusted interest rate which is in our calibration equal to 

3.4%.9 In Figure 10 we show the optimal climate policies when a cap on global mean temperature 

of 2 C is implemented and where we abstract from damages to global warming. The top left panel 

indicate a rapid rise in both the median carbon price and in the median carbon price even when 

adjusted for growth rate of the economy. The initial carbon price is about a fifth higher than in the 

benchmark, but the carbon price grows much faster than the growth of the economy. In fact, we 

numerically confirm result (12)-(14) that the expected growth rate of the carbon price and the 

marginal abatement cost indeed equals the risk-free interest rate plus the risk premium. This steep 

growth in carbon prices ensures a rapid rise in the abatement rate and quick decarbonization of the 

economy (top right panel). Hence, temperature is much lower in a century: 2 C instead of 3 C 

(bottom left panel).  With a tighter cap of say 1.5 C, abatement efforts must be stepped a lot more, 

which is induced via much higher carbon prices, and as a result the transition to the carbon-free 

economy occurs more rapidly (see Appendix E).  

Figure 11: Optimal policy functions for the abatement rate as function of temperature 

 

Figure 11 shows the optimal policy function for the abatement rate in state space, so as a function 

of temperature. The solid line shows that the abatement rate increases more and more rapidly in the 

direction of 100% mitigation as the temperature of cap of 2 degrees Celsius is approached. This 

very nonlinear feature is necessary to ensure that temperature stays below its cap. One can see that 

the corresponding optimal policy function for the benchmark case of linear damages (section 3) is 

flat. The optimal policy function for the case of convex damages (section 4.1) is, of course, much 

 
9 This is close to the 3.5% per year recommended by Gollier (2020) for the risk-adjusted interest rate. 
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higher and slopes gently upwards as the convexity of damages kicks in. Although the policy 

function with convex damages starts higher than the one with a temperature cap, it rapidly is 

overtaken as temperature increases. 

Figure 12 plots the optimal climate policies under a 2 C cap when there are also linear damages 

from global warming to aggregate production. We then find that the growth rate of the optimal 

path of carbon prices is somewhere in between the risk-adjusted rate of interest and the rate of 

economic growth (cf. van der Ploeg, 2018). Postponing abatement can be more cost-efficient due 

to discounting and technological progress in abatement technology, but that also leads to more 

warming and therefore more damages. The initial price, with both a temperature cap and 

damages, is therefore higher (90$/tC compared to 60$/tC without damages) and the growth rate 

lower. 

Figure 12: Effects of a 2 degrees Celsius temperature cap with damages 

    

Finally, we calculate the welfare losses relative to business as usual. The welfare loss of business 

as usual relative to the optimum outcome for the benchmark case of linear damages (section 3) is 

0.2%. The welfare loss of enforcing a temperature cap of 2 degrees Celsius relative to the optimal 

outcome is also 0.2%. However, with convex damages (section 4.1), the welfare loss of business 

as usual relative to the optimal outcome rises to 0.8%. As a result, the welfare loss of a 2 degrees 

Celsius temperature cap is only 0.1%. Hence, in the benchmark case with linear damages, the 

damages are so small that business usual and a temperature cap give roughly the same welfare loss. 

In the more realistic scenario with convex damages the ambitious climate policy of enforcing a 2 

degrees Celsius cap is a lot less costly than doing nothing as under business as usual. If we would 

also take account of tipping points (section 4.5), the difference will be even bigger. Hence, we 

conclude that it is better to undertake too much climate action than too little or not at all.  
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5. Discussion 

Overall, most cases discussed in section 4 imply that the growth rate of the carbon price should be 

at least as high as the rate of economic growth. Combining knowledge from all simulations we 

conclude that as a rule of the thumb the optimal carbon price should grow at a rate that is in between 

the growth rate of the economy and the risk-free rate plus the risk premium. In this penultimate 

section, we wish to go beyond our formal modelling. We first discuss some other arguments that 

have been made in favour of frontloading carbon prices and then discuss the wider implications of 

commitment to a growing carbon price for business.  

Our optimal policy simulations under a wide range of uncertainties and tipping points suggest that 

it is a best to have a steadily rising path of carbon prices. However, it has been argued that there 

may be the need for an upfront carbon spike in carbon prices followed by a decline in carbon prices 

if there are learning-by-doing effects in the production of renewable energies (e.g. Daniel et al., 

2019). This is not strictly right, since the carbon price that is put forward is, in fact, a combination 

of a gradually rise in carbon prices and a temporary spike in renewable energy subsidies. To get 

the right economic incentives, we need to separate these two policies, since they each deal with 

different market failures, namely the global warming externality and the learning-by-doing 

externality. Hence, even though learning by doing externalities in the production of renewable 

energies warrant an upfront subsidy to speed up the green transition, they do not require a spike in 

carbon prices (cf. Bovenberg and Smulders, 1996; Goulder and Mathai, 2000; Popp, 2004; 

Acemoglu et al., 2012; Rezai and van der Ploeg, 2017a). 

In models with fixed reserves of exhaustible fossil fuel, intertemporal arbitrage implies that a 

constant tax on carbon emissions, squeezes rents of the fossil fuel barons and has no effects 

whatsoever on the time profile of emissions. However, it has been argued that expectations of 

falling carbon taxes do postpone emissions and limit damages from global warming (Sinclair, 1992; 

Daniel et al., 2019). However, this result relies on some implausible features and the optimal carbon 

prices typically either rise all the way or rise before they fall (Ulph and Ulph, 1994). 

The pattern of a rising optimal carbon price occurs in almost every integrated assessment of the 

economy and global warming. If on top of the normal growth uncertainty, risk of macroeconomic 

disasters and uncertainty about the damage ratio highlighted in our model, account is taken of 

climatic forms of uncertainty such as in the carbon stock and temperature dynamics (e.g. van den 

Bremer and van der Ploeg, 2021) or about tipping of the Greenland or Antarctic Ice Sheet or 

reversal of the Gulf Stream (e.g. Cai and Lontzek, 2020), the optimal response is a rising path of 

carbon prices. If integrated assessment models are extended to allow for long-run risk in economic 
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growth with temperature-induced tail risks, the temperature risk premium increases with 

temperature (Bansal and Yaron, 2004; Bansal et al., 2016) and it is even more difficult to get a 

declining carbon price. Adding to all this, Olijslagers and van Wijnbergen (2019) show that 

ambiguity aversion (i.e. the aversion of unmeasurable or Knightian uncertainty) has a major impact 

on the optimal carbon price: the direct effect on the aversion-adjusted valuation of future income 

flows substantially exceeds the effect ambiguity aversion also has in the opposite direction because 

it also increases the appropriate discount rate. As one might have expected given the worst-case 

assumption that optimality requires one to take when faced with the multiple-priors framework 

(Gilboa et al., 1989). If one allows for learning after a tipping point upon which it becomes known 

that the climate sensitivity has increased or carbon sinks have been weakened, it has been shown 

that the optimal response is to have a rising path of carbon prices before and a rising but higher 

path after the tipping point (Lemoine and Traeger, 2014, Figure 4, Panel D). 

Finally, we want to stress from another angle the importance of policy makers very clearly 

committing to the right carbon price time path early on; any uncertainty about future carbon prices 

in the presence of irreversible capital accumulation is an incentive to postpone investment by 

conferring an option value to waiting strategies (Dixit and Pindyck, 1994) 

 

6. Conclusion 

We have shown that convex damages, tipping points and temperature caps all argue in favour of a 

rising path of carbon prices. Only if there is gradual resolution of uncertainty will there be a 

declining component in the optimal carbon price, but this effect is dominated by rising components 

if damages and the economy are growing at empirically plausible rates. Furthermore, convex 

damages and especially temperature caps require that the carbon prices grow at a faster rate than 

the economy. Our policy recommendation is therefore that decision makers should start with a 

significant carbon price and at the same time commit to a steadily rising path of carbon prices. This 

rising path of carbon prices can, if required by learning-by-doing externalities, be supplemented 

with a temporary upfront spike in renewable energy subsidies. These two policies give the best 

guarantee for redirecting investments from carbon-intensive to green technologies.  

Only by credibly committing to such a path are corporations going to make the long run and 

irreversible investments that are needed to transition to the carbon-free economy. Uncertainty about 

future prices and about the timing of a transition will cause corporations to hold back investments 

as carbon-intensive capital stock then acquires an option value in the likely case that capital 
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investment is irreversible so avoiding unnecessary volatility is extremely important. A practical 

problem that must be dealt with is that politicians tend to procrastinate and postpone carbon pricing 

and prefer subsidies to higher carbon prices as they fear of losing office. This can lead to adverse 

Green Paradox effects, where the anticipation of a stepping up of climate policy induces owners of 

fossil fuel reserves to extract more quickly and accelerate emissions and global warming rather 

than slowing it down (Sinn, 2012; van der Ploeg and Withagen, 2015; Rezai and van der Ploeg, 

2017b). Such political distortions might prevent the path of carbon prices be not high enough 

upfront. Credible commitment to a steadily rising path of prices is thus of paramount importance. 
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Appendix A: Solving for optimal climate policy 

Since we include two tipping points each of which can only tip once, we must solve four sub-

problems. Define by 𝑉𝑡
1,1

 the value function for the problem where both tipping points have already 

taken place. 𝑉𝑡
1,0

 is the value function for the problem where the economic (or more precisely the 

endowment) tipping point has tipped but the climate tipping point has not tipped yet. 𝑉𝑡
0,1

 is defined 

similarly. Lastly, 𝑉𝑡
0,0

 is the value function before any of the two tipping points have taken place. 

Each of the four sub-problems satisfies its own Hamilton-Jacobi-Bellman (HJB) equation. The 

HJB-equation for 𝑉𝑡
𝑖,𝑗

, 𝑖 ∈ {0,1}, 𝑗 ∈ {0,1} equals: 

0 = max
𝑢𝑡

{
 
 
 
 
 

 
 
 
 
 𝑓(𝐶𝑡 , 𝑉𝑡

𝑖,𝑗
) + 𝑍𝑌

𝑖,𝑗
𝜇𝑌𝑡 +

1

2
𝑍𝑌𝑌
𝑖,𝑗(𝜎𝑌𝑌𝑡)

2 + 𝑍𝑡
𝑖,𝑗
+ 𝑍𝑇

𝑖,𝑗
𝜒𝑗(1 − 𝑢𝑡)𝐸𝑡 + 𝑍𝜔

𝑖,𝑗
𝜐(𝜔 − 𝜔𝑡)
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+
1
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𝑖,𝑗((1 − 𝐽1)𝑌𝑡, 𝑇𝑡 , 𝜔𝑡 , 𝑋𝑡 , 𝑡) − 𝑍

𝑖,𝑗(𝑌𝑡 , 𝑇𝑡, 𝜔𝑡 , 𝑋𝑡 , 𝑡)]

+𝕝𝑖=0𝜆2𝑇𝑡𝐸[𝑍
𝑖+1,𝑗((1 − 𝐽2)𝑌𝑡, 𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡) − 𝑍
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(A1) 

subject to  𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝, where the value function 𝑉𝑡

𝑖,𝑗
= 𝑍𝑖,𝑗(𝑌𝑡 , 𝑇𝑡, 𝜔𝑡, 𝑋𝑡 , 𝑡) depends on 

the three state variables and time and its partial derivatives are denoted by subscripts. The term 𝜇𝑋 

is equal to 1 in the benchmark case and equal to 𝑢𝑡𝐸𝑡 if there is learning by doing in abatement. 

We conjecture and have verified that for each i and j the value function is of the form 𝑉𝑡
𝑖,𝑗
=

𝑔𝑡
𝑖,𝑗
𝑌𝑡
1−𝛾/(1 − 𝛾) with 𝑔𝑡

𝑖,𝑗
= ℎ𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡) and rewrite equation (A1) accordingly as, 
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(A2) 

subject to  𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝. We define the social cost of carbon as the welfare loss of emitting 

one unit of carbon divided by the instantaneous marginal utility of consumption, i.e. 
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(A3) 𝑆𝐶𝐶𝑡 = −𝜒
𝜕𝑍𝑡/𝜕𝑇𝑡

𝑓𝐶(𝐶𝑡,𝑉𝑡)
= Ω𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡)𝐶𝑡

1/𝜂
𝑌𝑡
1−1/𝜂

,  

where Ω𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡) (
𝜒

(1−𝛾)𝛽

ℎ𝑇
𝑖,𝑗

(𝑔𝑡
𝑖,𝑗
)1−1/𝜁

). The first part of equation (A3) indicates that the 

optimal SCC depends on the shape of the reduced-form value function. The second part indicates 

that it is proportional to the size of the economy. 

The SBL corresponds to all the present and future marginal benefits in terms of lower mitigation 

costs resulting from using one unit of mitigation more today, i.e. 

(A4) 𝑆𝐵𝐿𝑡 = 
𝜕𝑍𝑡/𝜕𝑋𝑡

𝑓𝐶(𝐶𝑡,𝑉𝑡)
= Θ𝑖,𝑗(𝑇𝑡 , 𝜔𝑡, 𝑋𝑡 , 𝑡) 𝐶𝑡

1/𝜂
𝑌𝑡
1−1/𝜂

, 

where Θ𝑖,𝑗(𝑇𝑡 , 𝜔𝑡 , 𝑋𝑡 , 𝑡)  (
𝜒

(1−𝛾)𝛽

ℎ𝑇
𝑖,𝑗

(𝑔𝑡
𝑖,𝑗
)1−1/𝜁

). 

The optimality of the abatement rate implies that 𝑢𝑡 is chosen such that the MAC is equal to the 

sum of the SCC and the SBL. Abatement on the one hand leads to lower emissions and on the other 

hand lowers the costs for future abatement, which implies that  𝑆𝐶𝐶𝑡 + 𝑆𝐵𝐿𝑡 = 𝑀𝐴𝐶𝑡, where 

(A5) 𝑀𝐴𝐶𝑡 = −
𝜕𝐶𝑡/𝜕𝑢𝑡

𝐸𝑡
=

𝑌𝑡
1+𝐷𝑡

𝐸𝑡

𝜕𝐴𝑡

𝜕𝑢𝑡
=

𝑌𝑡
1+𝐷𝑡

𝐸𝑡
𝑐0𝑒

−𝑐1𝑋𝑡𝑐2𝑢𝑡
𝑐2−1. 

The relation 𝑆𝐶𝐶𝑡 + 𝑆𝐵𝐿𝑡 = 𝑀𝐴𝐶𝑡 holds if the restriction 𝑢 ≤ 1 is not binding. If 𝑢 = 1, then the 

sum of the SCC and the SBL will be larger than MAC, but it is not possible to abate more. The 

single control variable 𝑢𝑡 thus tackles both externalities.  

The main insight is that in more disaggregated models of energy use two separate policy 

instruments should be included. In that case carbon emissions should be priced at the SCC whilst 

mitigation should be subsidized at the SBL. We also refer to the SCC as the optimal carbon price 

and to the SBL as the optimal mitigation subsidy, while we note that this relation only holds as long 

as there is an interior solution to optimal abatement. 

We also report the growth-adjusted quantities of the SCC, SBL and MAC to analyse the 

determinants of these variables other than economic growth. We define the growth-adjusted social 

cost of carbon by 𝑆𝐶𝐶𝑡
𝐶0
1/𝜂

𝑌0
1−1/𝜂

𝐶𝑡
1/𝜂

𝑌𝑡
1−1/𝜂. This implies that the growth-adjusted social cost of carbon equals 

the first term of equation (A3): 
𝜒

(1−𝛾)𝛽

−ℎ𝑇

𝑔𝑡
1−1/𝜁, but scaled with 𝐶0

1/𝜂
𝑌0
1−1/𝜂

 to make the initial social 

cost of carbon equal to the actual initial social cost of carbon. The growth adjusted SBL and MAC 

are defined in the same way. 
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Appendix B: A decentralized market economy 

In the decentralized market economy, we need to consider energy producers, households, and the 

government separately. We assume that the households own the energy producers. We denote the 

consumer price for fossil fuel by 𝑝𝑡. Since fossil fuel and renewable energy are perfect substitutes, 

the consumer price for renewable energy is also equal to 𝑝𝑡. We let 𝜏𝑡 and 𝑠𝑡 denote the specific 

tax on fossil fuel and the subsidy on renewable energy, respectively. Fossil fuel use is denoted by 

𝐹𝑡 and renewable energy use by 𝑅𝑡, so that the mitigation rate is defined by 𝑢𝑡 =
𝑅𝑡

𝐹𝑡+𝑅𝑡
. Total energy 

use is exogenous and equal to 𝐸𝑡.  Profits of and lump-sum rebates to energy producers are denoted 

by Π𝑡 and 𝑆𝑡, respectively. Profits of energy firms, the household budget constraint and the 

government budget constraint are given by 

(B1) Π𝑡 = 𝑝𝑡𝐹𝑡 + 𝑝𝑡𝑅𝑡 − 𝜏𝑡𝐹𝑡 + 𝑠𝑡𝑅𝑡 − 𝐴(𝑢𝑡, 𝑋𝑡)
𝑌𝑡

1+𝐷𝑡
,     

(B2) C𝑡 =
𝑌𝑡

1+𝐷𝑡
+ Π𝑡 − 𝜏𝑡𝐹𝑡 − 𝑝𝑡𝐹𝑡 − 𝑝𝑡𝑅𝑡 ,     

(B3) S𝑡 = 𝜏𝑡𝐹𝑡 − 𝑠𝑡𝑅𝑡 . 

Provided that it is not optimal to fully decarbonize the economy, the first-order optimality 

conditions for fossil fuel and renewable energy use are 

(B4) 𝑝𝑡 = 𝜏𝑡 − 𝐴𝑢(𝑢𝑡, 𝑋𝑡)𝑢𝑡(1 − 𝑢𝑡)
𝑌𝑡

𝐹𝑡(1+𝐷𝑡)
,   

(B5) 𝑝𝑡 = −𝑠𝑡 + 𝐴𝑢(𝑢𝑡, 𝑋𝑡)𝑢𝑡(1 − 𝑢𝑡)
𝑌𝑡

𝑅𝑡(1+𝐷𝑡)
. 

Now use that 𝐹𝑡 = (1 − 𝑢𝑡)𝐸𝑡 and 𝑅𝑡 = 𝑢𝑡𝐸𝑡 to obtain 

(B6) 𝑝𝑡 = 𝜏𝑡 − 𝐴𝑢(𝑢𝑡, 𝑋𝑡)𝑢𝑡
𝑌𝑡

𝐸𝑡(1+𝐷𝑡)
, 

(B7) 𝑝𝑡 = −𝑠𝑡 + 𝐴𝑢(𝑢𝑡, 𝑋𝑡)(1 − 𝑢𝑡)
𝑌𝑡

𝐸𝑡(1+𝐷𝑡)
. 

Combining equations (B6) and (B7) gives  

(B8) 𝜏𝑡 + 𝑠𝑡 = 𝐴𝑢(𝑢𝑡, 𝑋𝑡)
𝑌𝑡

𝐸𝑡(1+𝐷𝑡)
. 

Note that 𝑀𝐴𝐶𝑡 = 𝐴𝑢(𝑢𝑡, 𝑋𝑡)
𝑌𝑡

𝐸𝑡(1+𝐷𝑡)
. Imposing a carbon tax and a renewable energy subsidy 

implies that optimal policy is chosen such that the marginal abatement cost equals the sum of the 

carbon tax and the renewable energy subsidy. We can therefore replicate optimal policy of the 

command optimum by setting 𝜏𝑡 = 𝑆𝐶𝐶𝑡 and 𝑠𝑡 = 𝑆𝐵𝐿𝑡. In our setting, both the learning-by-doing 

and the climate-change externality are tackled by one policy instrument, i.e. the abatement rate 𝑢𝑡.  
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Appendix C: Numerical implementation 

The HJB-equation is a set, of partial differential equations. We solve this system of partial 

differential equations using a finite-difference method. We can solve the model analytically when 

there are no climate damages. We use this as our initial guess at time 𝑡𝑚𝑎𝑥 = 500, and from there 

solve the system backwards with time step 𝛿𝑡 = 1. The three-dimensional grid is equally spaced 

with boundaries [
𝑇𝑚𝑎𝑥

𝜔𝑚𝑎𝑥

𝑋𝑚𝑎𝑥
] = [

𝑇𝑐𝑎𝑝

0.7
1000

] and [
𝑇𝑚𝑖𝑛

𝜔𝑚𝑖𝑛

𝑋𝑚𝑖𝑛
] = [

0.75
0
−25

]. Without a temperature cap, 𝑇𝑚𝑎𝑥 is set 

to 6 degrees Celsius. Specifically, we use an upwind semi-implicit finite-difference scheme. 

Optimal policy is calculated every period by solving for 𝑢𝑡 such that the SCC is equal to the 

marginal abatement cost. If this requires 𝑢𝑡 > 1, we set 𝑢𝑡 = 1. The restriction of the temperature 

cap is implemented by imposing 𝑢𝑡 = 1 on the boundary 𝑇𝑡 = 𝑇
𝑚𝑎𝑥. The restriction at the 

boundary also affects optimal policy at all interior grid points of temperature since it will affect the 

derivative of the value function with respect to temperature. A temperature cap will thus lead to a 

higher social cost of carbon and to a higher emissions control rate 𝑢𝑡. More details on the finite-

difference method for a more general problem are given in Olijslagers (2021).  

The reduce the computation time, we apply the sparse-grid combination method. The idea behind 

this method is to solve the problem on multiple smaller regular grids and then combine the results 

to obtain a solution on a sparse grid. Compared to applying a finite-difference method on an actual 

sparse grid directly, the combination method has several advantages. First, standard finite-

difference methods on regular grids can be applied and hence this method is easier to implement. 

Second, all subproblems can efficiently be solved in parallel which significantly speeds up the 

computation.  

Define the `level’ of the grid for dimension 𝑖 by 𝐿𝑖, 𝑖 ∈ {𝑇, 𝜔, 𝑋}. The number of grid points on the 

edge of the sparse grid in dimension 𝑖 is equal to 2𝐿𝑖 + 1. The level therefore controls the amount 

of grid points and the accuracy in dimension 𝑖. When the value function is non-linear in a specific 

dimension it is possible to have more grid points in that dimension. This is for example useful when 

we solve the problem with a temperature cap, since in this case the value function becomes quite 

non-linear in the temperature dimension. 

Let ℒ = {𝑙:
𝑙𝑇−1

𝐿𝑇−1
+

𝑙𝜔−1

𝐿𝜔−1
+

𝑙𝑋−1

𝐿𝑋−1
≤ 1} be the set of all admissible sub-grids where 𝑙 = (𝑙𝑇 , 𝑙𝜔, 𝑙𝑋). 

The weight of sub-grid 𝑙 is equal to 𝑤𝑙 = ∑ ∑ ∑ (−1)𝑖𝑇+𝑖𝜔+𝑖𝑋𝕀(𝑙𝑇+𝑖𝑇,𝑙𝜔+𝑖𝜔,𝑙𝑋+𝑖𝑋)∈ℒ
1
𝑖𝑋=0

1
𝑖𝜔=0

1
𝑖𝑇=0

. 

We solve for 𝑔 on all subgrids that have a non-zero weight 𝑤𝑙. Note that all grids have different 

grid points. To find the approximation 𝑔𝑙 on sub-grid 𝑙 in a specific point, we use linear 
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interpolation. We then combine the solutions on all sub-grids by summing over the product of the 

weight and the solutions:  𝑔 = ∑ 𝑤𝑙𝑙∈ℒ 𝑔𝑙. 

Figure C1 shows an example of the sparse-grid combination method in two dimensions. In the 

example 𝐿1 = 3 and 𝐿2 = 4, so the sparse grid will be denser in the second dimension. First, the 

set ℒ is constructed, which in this example consists of the following grids: 

(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (3,1). Of all grids within this set, the grids (1,4), (2,2), (3,1) 

all have weight +1 and the grids (1,2), (2,1) have weight -1. The other two grids have weight zero 

and therefore these do not have to be evaluated.  

Figure C1: The sparse grid combination method 

 

 

Appendix D: Derivation of the growth rate of marginal abatement costs with a temperature 

cap and no damages 

If climate damages are not taken account of and a temperature cap is in place instead, it does not 

matter for the time at which the temperature cap is reached whether a unit of emissions is abated 

today or in some period in the future before that time, at least as long as the relationship between 

temperature and cumulative emissions is linear. Therefore, along the optimal path, a marginal 

increase of abatement today combined with a marginal decrease of abatement in the future should 

not lead to a change in welfare. The cost of a marginal increase of abatement today equals 𝑀𝐴𝐶0, 

while the benefit of a marginal decrease of abatement in time t equals 𝑀𝐴𝐶𝑡. Optimal behaviour 

therefore implies that 𝜋0𝑀𝐴𝐶0 = 𝐸0[𝜋𝑡𝑀𝐴𝐶𝑡] where 𝜋𝑡 = exp (∫ 𝑓𝑉(𝐶𝑠, 𝑉𝑠)𝑑𝑠
𝑡

0
) 𝑓𝐶(𝐶𝑡, 𝑉𝑡) is the 

stochastic discount factor (Duffie and Epstein, 1992). We therefore must have that the product 

𝜋𝑡𝑀𝐴𝐶𝑡 is a martingale. Now calculate 
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(D1) 
𝑑𝜋𝑡𝑀𝐴𝐶𝑡

𝜋𝑡𝑀𝐴𝐶𝑡
=

𝑑𝜋𝑡

𝜋𝑡
+
𝑑𝑀𝐴𝐶𝑡

𝑀𝐴𝐶𝑡
+
𝑑[𝜋𝑡,𝑀𝐴𝐶𝑡]

𝜋𝑡𝑀𝐴𝐶𝑡
. 

Applying the martingale property and rearranging gives 

(D2) 𝐸𝑡 [
𝑑𝑀𝐴𝐶𝑡

𝑀𝐴𝐶𝑡
] = 𝐸𝑡 [−

𝑑𝜋𝑡

𝜋𝑡
] + 𝐸𝑡 [−

𝑑[𝜋𝑡,𝑀𝐴𝐶𝑡]

𝜋𝑡𝑀𝐴𝐶𝑡
], 

where [𝜋𝑡,𝑀𝐴𝐶𝑡] denotes the quadratic covariation for the processes 𝜋𝑡 and 𝑀𝐴𝐶𝑡. Note that the 

first term 𝐸𝑡 [−
𝑑𝜋𝑡

𝜋𝑡
] is exactly equal to the real risk-free interest rate, while the second term is a 

risk premium related to the correlation between the stochastic discount factor and the marginal 

abatement costs. Equation (D2) implies that the optimal carbon price must grow at a rate equal to 

the sum of the real risk-free interest rate plus an interest premium to be determined (cf. Gollier, 

2020). In the following we derive the risk-free rate and the risk premium in equation (D2). 

Derivation of the risk-free rate (D20) and the risk premium (D22) for equation (D2) 

We can work out the stochastic discount factor 𝜋𝑡 and the marginal abatement cost function 𝑀𝐴𝐶𝑡. 

The model without climate damages can be written as follows. The endowment follow from 

(D3)  𝑑𝑌𝑡 = 𝜇𝑌𝑡𝑑𝑡 + 𝜎
𝑌𝑌𝑡𝑑𝑊𝑡

𝑌 − 𝐽1𝑌𝑡𝑑𝑁1,𝑡 . 

Consumption is equal to endowment minus abatement expenditure: 𝐶𝑡 = (1 − 𝐴𝑡)𝑌𝑡, where the 

abatement cost function 𝐴𝑡 = 𝑐0𝑒
−𝑐1𝑋𝑡𝑢𝑡

𝑐2. Define the consumption-endowment ratio 𝜉𝑡 = 1 −

𝐴𝑡 = 𝜈(𝑇𝑡, 𝑋𝑡 , 𝑡), which depends on the two state variables and time. The two state variables 𝑋𝑡 

(abatement cost variable) and 𝑇𝑡 (temperature) follow from  

(D4)  
𝑑𝑋𝑡 = 𝜇𝑋𝑑𝑡 + 𝜎𝑋𝑑𝑊𝑡

𝑋,

𝑑𝑇𝑡 = 𝜒(1 − 𝑢𝑡)𝐸𝑡𝑑𝑡.
 

The temperature cap adds the restriction 𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝. The HJB-equation corresponding to 

the value function 𝑉𝑡 for this problem is thus given by  

0 = max
𝑢𝑡

{
𝑓(𝐶𝑡, 𝑉𝑡) + 𝑍𝑌𝜇𝑌𝑡 +

1

2
𝑍𝑌𝑌(𝜎

𝑌𝑌𝑡)
2 + 𝑍𝑡 + 𝑍𝑇𝜒(1 − 𝑢𝑡)𝐸𝑡

+𝑍𝑋𝜇𝑋 +
1

2
𝑍𝑋𝑋𝜎𝑋

2 + 𝜆1𝐸[𝑍((1 − 𝐽1)𝑌𝑡 , 𝑇𝑡, 𝑋𝑡 , 𝑡) − 𝑍(𝑌𝑡 , 𝑇𝑡 , 𝑋𝑡 , 𝑡)]

} 

(D5) 

subject to  𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝, where the value function 𝑉𝑡 = 𝑍(𝑌𝑡 , 𝑇𝑡, 𝑋𝑡 , 𝑡) depends on two state 

variables and time and its partial derivatives are denoted by subscripts. We conjecture and have 

verified that the value function is of the form 𝑉𝑡 = 𝑔𝑡𝑌𝑡
1−𝛾/(1 − 𝛾) with 𝑔𝑡 = ℎ(𝑇𝑡 , 𝑋𝑡 , 𝑡) and 

rewrite equation (D5) accordingly as, 
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 0 = min
𝑢𝑡

{
𝛽𝜁 (𝑔𝑡

−
1

𝜁 (
𝐶𝑡

𝑌𝑡
)
1−

1

𝜂
− 1)𝑔𝑡 + (1 − 𝛾) (𝜇 −

1

2
𝛾(𝜎𝑌)2 + 𝜆1

𝐸[(1−𝐽1)
1−𝛾]−1

1−𝛾
)𝑔𝑡

+ℎ𝑡 + ℎ𝑇𝜒(1 − 𝑢𝑡)𝐸𝑡 + ℎ𝑋𝜇𝑋 +
1

2
ℎ𝑋𝑋𝜎𝑋

2

} 

(D6) 

subject to  𝑢𝑡 = 1 if 𝑇𝑡 = 𝑇
𝑐𝑎𝑝. 

The derivatives of instantaneous utility 𝑓(𝐶𝑡, 𝑉𝑡) can be calculated as 

(D7) 

𝑓𝐶(𝐶𝑡, 𝑉𝑡) =
𝛽𝐶𝑡

−1/𝜂

((1−𝛾)𝑉𝑡)
1
𝜁
−1
,

𝑓𝑉(𝐶𝑡, 𝑉𝑡) = 𝛽𝜁 ((1 −
1

𝜁
)𝐶𝑡

1−
1

𝜂
((1 − 𝛾)𝑉𝑡)

−
1

𝜁 − 1) .

 

Now substitute in 𝑉𝑡 =
𝑔𝑡𝑌𝑡

1−𝛾

1−𝛾
 and 𝜉𝑡 =

𝐶𝑡

𝑌𝑡
 to obtain  

(D8) 

𝑓𝐶(𝐶𝑡, 𝑉𝑡) = 𝛽𝜉𝑡
−1/𝜂

𝑔𝑡
1−1/𝜁

𝑌𝑡
−𝛾
,   

𝑓𝑉(𝐶𝑡, 𝑉𝑡) = 𝛽𝜁 ((1 −
1

𝜁
) 𝜉𝑡

1−
1

𝜂𝑔𝑡
−
1

𝜁 − 1) .
 

Substituting this into the stochastic discount factor gives 

(D9)  𝜋𝑡 = exp(∫ 𝛽𝜁 ((1 −
1

𝜁
) 𝜉𝑠

1−
1

𝜂𝑔𝑠
−
1

𝜁 − 1)𝑑𝑠
𝑡

0
)𝛽𝜉𝑡

−
1

𝜂𝑔𝑡
1−

1

𝜁𝑌𝑡
−𝛾
. 

Writing 𝜋𝑡 as a differential equation gives  

(D10)  
𝑑𝜋𝑡

𝜋𝑡
= 𝛽𝜁((1 −

1

𝜁
) 𝜉𝑡

1−
1

𝜂𝑔𝑡
−
1

𝜁 − 1)𝑑𝑡 +
𝑑𝑌𝑡

−𝛾

𝑌𝑡
−𝛾 +

𝑑𝑔𝑡
1−1/𝜁

𝑔𝑡
1−1/𝜁 +

𝑑𝜉𝑡
−1/𝜂

𝜉𝑡
−1/𝜂 +

𝑑[𝑔𝑡
1−1/𝜁

, 𝜉𝑡
−1/𝜂

]

𝑔𝑡
1−1/𝜁

𝜉𝑡
−1/𝜂 . 

Applying Ito’s lemma to 𝑌𝑡 gives 

(D11)  
𝑑𝑌𝑡

−𝛾

𝑌𝑡
−𝛾 = −𝛾 (𝜇 −

1

2
(𝛾 + 1)(𝜎𝑌)2) 𝑑𝑡 − 𝛾𝜎𝑌𝑑𝑊𝑡

𝑌 + ((1 − 𝐽1)
−𝛾 − 1)𝑑𝑁1,𝑡. 

Similarly, we apply Ito’s lemma to 𝑔𝑡 to get   

(D12)   
𝑑𝑔𝑡

𝑔𝑡
= (

ℎ𝑡

𝑔𝑡
+
ℎ𝑇

𝑔𝑡
𝜒(1 − 𝑢𝑡)𝐸𝑡 +

ℎ𝑋

𝑔𝑡
𝜇𝑋 +

1

2

ℎ𝑋𝑋

𝑔𝑡
𝜎𝑋
2) 𝑑𝑡 +

ℎ𝑋

𝑔𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋. 

Define 𝜇𝑔 =
ℎ𝑡

𝑔𝑡
+
ℎ𝑇

𝑔𝑡
𝜒(1 − 𝑢𝑡)𝐸𝑡 +

ℎ𝑋

𝑔𝑡
𝜇𝑋 +

1

2

ℎ𝑋𝑋

𝑔𝑡
𝜎𝑋
2. Then we can calculate 

(D13) 
𝑑𝑔𝑡

1−1/𝜁

𝑔𝑡
1−1/𝜁 = (1 −

1

𝜁
) (𝜇𝑔 −

1

2

1

𝜁

ℎ𝑋
2

𝑔𝑡
2 𝜎𝑋

2) 𝑑𝑡 + (1 −
1

𝜁
)
ℎ𝑋

𝑔𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋. 

Using a similar derivation, we calculate that  
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(D14) 
𝑑𝜉𝑡

−1/𝜂

𝜉𝑡
−1/𝜂 = −1/𝜂 (𝜇𝜉 −

1

2
(1 +

1

𝜂
)
𝜈𝑋
2

𝜉𝑡
2 𝜎𝑋

2)𝑑𝑡 − 1/𝜂
𝜈𝑋

𝜉𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋,  

where 𝜇𝜉 =
𝜈𝑡

𝜉𝑡
+
𝜈𝑇

𝜉𝑡
𝜒(1 − 𝑢𝑡)𝐸𝑡 +

𝜈𝑋

𝜉𝑡
𝜇𝑋 +

1

2

𝜈𝑋𝑋

𝜉𝑡
𝜎𝑋
2.  The cross terms are equal to 

(D15) 
𝑑[𝑔𝑡

1−1/𝜁
, 𝜉𝑡
−1/𝜂

]

𝑔𝑡
1−1/𝜁

𝜉𝑡
−1/𝜂 = −1/𝜂 (1 −

1

𝜁
)
ℎ𝑋𝜈𝑋

𝑔𝑡𝜉𝑡
𝜎𝑋
2𝑑𝑡.  

Putting everything together yields 

(D16)  
𝑑𝜋𝑡

𝜋𝑡−
= {𝛽𝜁 ((1 −

1

𝜁
) 𝜉𝑡

1−
1

𝜂𝑔𝑡
−
1

𝜁 − 1) − 𝛾 (𝜇 −
1

2
(𝛾 + 1)(𝜎𝑌)2) + (1 −

1

𝜁
) (𝜇𝑔 −

1

2

1

𝜁

ℎ𝑋
2

𝑔𝑡
2 𝜎𝑋

2) − 1/𝜂 (𝜇𝜉 −
1

2
(1 +

1

𝜂
)
𝜈𝑋
2

𝜉𝑡
2 𝜎𝑋

2) − 1/𝜂 (1 −
1

𝜁
)
ℎ𝑋𝜈𝑋

𝑔𝑡𝜉𝑡
𝜎𝑋
2}𝑑𝑡 − 𝛾𝜎𝑌𝑑𝑊𝑡

𝑌 +

(1 −
1

𝜁
)
ℎ𝑋

𝑔𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋 − 1/𝜂
𝜈𝑋

𝜉𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋 + ((1 − 𝐽1)
−𝛾 − 1)𝑑𝑁1,𝑡. 

We now substitute this in the HJB-equation. The HJB-equation is equivalent to  

(D17)   𝜇𝑔 = −𝛽𝜁 (𝑔𝑡
−
1

𝜁𝜉𝑡
1−

1

𝜂 − 1) − (1 − 𝛾) (𝜇 −
1

2
𝛾(𝜎𝑌)2 + 𝜆1

𝐸[(1−𝐽1)
1−𝛾]−1

1−𝛾
).  

Substituting this into the stochastic discount factor gives  

(D17)  
𝑑𝜋𝑡

𝜋𝑡−
= {−𝛽 −

𝜇

𝜂
+
1

2
(1 +

1

𝜂
) 𝛾(𝜎𝑌)2 + (𝛾 −

1

𝜂
)𝜆1

𝐸[(1−𝐽1)
1−𝛾]−1

1−𝛾
− 1/𝜂 (𝜇𝜉 −

1

2
(1 +

1

𝜂
)
𝜈𝑋
2

𝜉𝑡
2 𝜎𝑋

2) −
1

2

1

𝜁
(1 −

1

𝜁
)
ℎ𝑋
2

𝑔𝑡
2 𝜎𝑋

2 − 1/𝜂 (1 −
1

𝜁
)
ℎ𝑋𝜈𝑋

𝑔𝑡𝜉𝑡
𝜎𝑋
2} 𝑑𝑡 − 𝛾𝜎𝑌𝑑𝑊𝑡

𝑌 + (1 −
1

𝜁
)
ℎ𝑋

𝑔𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋 −

1/𝜂
𝜈𝑋

𝜉𝑡
𝜎𝑋𝑑𝑊𝑡

𝑋 + ((1 − 𝐽1)
−𝛾 − 1)𝑑𝑁1,𝑡. 

We can thus define 𝜇𝜋 and 𝜎𝜋 such that 

(D18) 
𝑑𝜋𝑡

𝜋𝑡−
= 𝜇𝜋𝑑𝑡 − 𝛾𝜎𝑑𝑊𝑡

𝑌 + 𝜎𝜋𝑑𝑊𝑡
𝑋 + ((1 − 𝐽1)

−𝛾 − 1)𝑑𝑁1,𝑡. 

We can now first calculate the risk-free rate  

(D19)  𝑟𝑡 = 𝐸𝑡 [−
𝑑𝜋𝑡

𝜋𝑡
] = −𝜇𝜋 − 𝜆1(𝐸[(1 − 𝐽1)

−𝛾] − 1) = 𝛽 +
𝜇+𝜇𝜉

𝜂
−
1

2
(1 +

1

𝜂
) 𝛾(𝜎𝑌)2 −

𝜆1 (𝐸[(1 − 𝐽1)
−𝛾] − 1 + (𝛾 −

1

𝜂
)
𝐸[(1−𝐽1)

1−𝛾]−1

1−𝛾
) −

1

2

1

𝜂
(1 +

1

𝜂
)
𝜈𝑋
2

𝜉𝑡
2 𝜎𝑋

2 −
1

2

1

𝜁
(
1

𝜁
− 1)

ℎ𝑋
2

𝑔𝑡
2 𝜎𝑋

2  −

1/𝜂 (
1

𝜁
− 1)

ℎ𝑋𝜈𝑋

𝑔𝑡𝜉𝑡
𝜎𝑋
2 . 
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The effect of abatement uncertainty 𝜎𝑋 on the interest rate is negligible compared to the effect of 

economic uncertainty 𝜎𝑌 and jump risk. We can simplify the interest rate if we leave out the 

terms related to abatement uncertainty. Additionally, we can calculate the expectations of the 

jump variable 𝐽1, since 𝐽1 follows a power distribution. Lastly, note that the growth rate of 

consumption, which we call 𝜇𝑐, is equal to 𝜇 + 𝜇𝜉. The real risk-free rate is thus given by 

(D20) 𝑟𝑡 = 𝛽 +
𝜇𝑐

𝜂
−
1

2
(1 +

1

𝜂
) 𝛾(𝜎𝑌)2 − 𝜆1 (

𝛼1

𝛼1−𝛾
− 1 −

𝛾−
1

𝜂

𝛼1+1−𝛾
). 

Marginal abatement costs are given by:  

(D21) 𝑀𝐴𝐶𝑡 = −

𝜕𝐶𝑡
𝜕𝑢𝑡

𝐸𝑡
=

𝑌𝑡

𝐸𝑡

𝜕𝐴𝑡

𝜕𝑢𝑡
=

𝑌𝑡

𝐸𝑡
𝑐0𝑒

−𝑐1𝑋𝑡𝑐2𝑢𝑡
𝑐2−1. 

If we again assume that abatement uncertainty has a negligible effect on the risk premium, we 

obtain the risk premium  

(D22)  𝑟𝑝𝑡 = 𝐸𝑡 [−
𝑑[𝜋𝑡,𝑀𝐴𝐶𝑡]

𝜋𝑡𝑀𝐴𝐶𝑡
] = 𝐸𝑡 [−

𝑑[𝑌𝑡
−𝛾
,𝑌𝑡]

𝑌𝑡
1−𝛾 ] = 𝛾(𝜎𝑌)2 + 𝜆1(𝐸[(1 − 𝐽1)

−𝛾] + 𝐸[1 − 𝐽1] −

𝐸[(1 − 𝐽1)
1−𝛾] − 1) = 𝛾(𝜎𝑌)2 + 𝜆1 (

𝛼1

𝛼1−𝛾
+

𝛼1

𝛼1+1
−

𝛼1

𝛼1+1−𝛾
− 1). 

In expectation, the growth rate of marginal abatement costs is therefore equal to the risk-free rate 

plus the risk premium. 

 

Appendix E: Simulation results with a temperature cap of 1.5 degrees Celsius 

Figure E1 and E2 shows the effects on the optimal time path of the carbon price and the growth-

corrected carbon price, the abatement rate and temperature for the situation when policy makers 

face a 1.5 cap and no damages to the economy from global warming and when they a cap with 

damages from global warming, respectively. In addition, Figure E1 shows the policy function for 

carbon prices against temperature. 
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Figure E1: Effects of temperature cap and no damages of 1.5 degrees Celsius 
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Figure E2: Effects of a 1.5 degrees Celsius temperature cap with damages 

  

  

 

  

 

 


