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 Abstract 
Two family-specific lotteries take place during conception— a social lottery that determines who our 

parents are and which environment we grow up in, and a genetic lottery that determines which part 

of their genomes our parents pass on to us. The outcomes of these lotteries create inequalities of 

opportunity that can translate into disparities in health and socioeconomic status. Here, we estimate 

a lower bound for the relevance of these two lotteries for differences in education, income and body 

mass index in a sample of  38,698 siblings in the UK who were born between 1937 and 1970. Our 

estimates are based on models that combine family-specific effects with gene-by-environment 

interactions. We find that the random differences between siblings in their genetic endowments 

clearly contribute towards inequalities in the outcomes we study. Our rough proxy of the 

environment people grew up in, which we derived from their place of birth, are also predictive of the 

studied outcomes, but not beyond the relevance of family environment. Our estimates suggest that 

at least 13 to 17 percent of the inequalities in education, wages and BMI in the UK are due to 

inequalities in opportunity that arise from the outcomes of the social and the genetic lottery.  

1. Introduction 
It has long been recognized that parent’s health and socio-economic status (SES) are strong 

predictors for their children’s health, educational attainment and income later in life. Furthermore, 

health, educational attainment, and income are all heritable to some degree (Benjamin et al., 2012; 

de Vlaming et al., 2017; Polderman et al., 2015; Taubman, 1976). Thus, parents do not only influence 

their children via the rearing environment they provide for them, but also by the random 

combination of the genes they pass on to their offspring. This creates two major sources of 

differences in opportunities at conception in the form of exogenously determined environmental 

and genetic endowments. Disparities in important life outcomes that arise from differences in 

opportunity are often viewed as unfair and less desirable than inequality that is created by active 

choices and agency (e.g. due to hard work). This may have policy implications because people tend 

to favour redistribution policies more when inequalities in opportunity and luck are major drivers of 

inequality (Alesina & La Ferrara, 2005; Alesina, Stantcheva, & Teso, 2018; Almås, Cappelen, 

Sørensen, & Tungodden, 2010; Cappelen, Konow, Sørensen, & Tungodden, 2013; Clark & 

D’Ambrosio, 2015; Gromet, Hartson, & Sherman, 2015). Thus, studying the relative importance of 

inequalities of opportunity for important life outcomes is of fundamental importance to discussions 

about fairness and policy.  

mailto:koellinger@wisc.edu
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Genetic factors that are linked to socio-economic status are a reflection of social realities. For 

example, societies that value high cognitive performance in schools and labour markets will tend to 

exhibit that genetic factors that are linked with cognitive health are also related to socio-economic 

outcomes such as educational attainment or income. Thus, genes do not operate in a vacuum – their 

effects are partially contingent on environmental factors. Furthermore, specific environments and 

genes may also interact with each other (Barcellos, Carvalho, & Turley, 2018, 2020; Schmitz & 

Conley, 2017a, 2017b), potentially further exacerbating the importance of the genetic and the social 

lottery as a source of inequality.  

Recent advances in genetics have made it possible to measure genetic differences between people 

comprehensively, providing researchers with new opportunities to study the potential relevance of 

genetic luck and to investigate how exogenously given genetic and environmental endowments can 

interact to cause inequalities (Harden & Koellinger, 2020). Moreover, increases in sample size have 

led to publicly available summary statistics from large-scale genome-wide association studies 

(GWAS) for many outcomes related to SES and health, such as educational attainment (Lee et al., 

2018), household income (Hill et al., 2019), occupational wages (Kweon et al., 2020), body fat 

percentage (Lu et al., 2016), and body mass index (BMI) (Locke et al., 2015). The estimated effects of 

these GWAS can be summarized in linear indices that are called polygenic indices (PGIa) (Daetwyler, 

Villanueva, & Woolliams, 2008; Dudbridge, 2013). Although PGI capture only a part of the heritability 

of a trait because they are measured with error (Daetwyler et al., 2008; DiPrete, Burik, & Koellinger, 

2018; Dudbridge, 2013), they nevertheless provide a valuable new tool to analyse genetic 

contributions to inequality and to study potential interactions between genetic endowments and 

specific environmental conditions (Barcellos et al., 2018; Harden & Koellinger, 2020).  

The goal of this study is to estimate a lower bound for the relevance of environmental and genetic 

luck and their interactions for important life outcomes. We employ data from the UK Biobank, which 

is currently the largest publicly available sample of genotyped siblings in the world (38,698 

individuals). Genetic differences between biological siblings are due to the natural experiment of 

meiosis. During meiosis, the two copies of each parental chromosome are randomly combined and 

then separated to create a set of two gametes (e.g., two eggs or two sperm), each of which contains 

only one new, resampled copy of each chromosome. The resulting genetic differences between full 

siblings are therefore random and independent from family-specific ancestry and environmental 

factors that vary between families.  

Our choice of outcome variables was specified in a pre-registered analysis planb and driven by 

considerations about data availability and statistical power. In the socioeconomic domain, we focus 

on educational attainment (EA) and hourly wages. Both are key components of socio-economic 

status, and both are linked to happiness (Boyce, Brown, & Moore, 2010; Frijters, Haisken-DeNew, & 

Shields, 2004), health, and longevity (Adler & Rehkopf, 2008; Stringhini et al., 2017; Wilkinson & 

Marmot, 2003). In the health domain, we focus on BMI as a proxy for morbidity that is also linked to 

 
a Here we follow the recent change proposed in Becker et al. (2021) from polygenic (risk) score to polygenic 
index to make it less likely to be wrongly interpreted as a value judgement. 
b Our pre-registered analysis plan can be accessed here: https://osf.io/wf56h/ 
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mortality (Mokdad et al., 2003) and many other health outcomes. Importantly, for all three 

outcomes, large-scale GWAS results are available that allow constructing PGI that capture a 

substantial part of the heritability of these traits (Kweon et al., 2020; Lee et al., 2018; Locke et al., 

2015). 

We extracted measures of potentially relevant environmental factors during early childhood from 

available information about place of birth. Chetty and Hendren (2018a, 2018b) show childhood 

neighbourhood affects later-life outcomes like educational attainment and income. Amongst other 

factors, they find that school quality has a positive effect. Furthermore, neighbourhood SES has been 

shown to be related to infant health and infant mortality rate in the UK (Weightman et al., 2012). In 

this study, we used the local average school leaving age and the district mortality rate at the place of 

birth as measures of childhood environment.  

Importantly, our genetic and environmental variables only capture a part of the ways in which the 

outcomes of the genetic and the social lottery may influence outcomes later in life, and all our 

variables are subject to substantial measurement error, which attenuates the estimated effects of 

these two lotteries towards zero. Thus, our study estimates a conservative lower bound for the 

potential relevance of these two sources of luck on lifetime outcomes.  

In addition to the linear effects of PGI and childhood environments, we also investigate potential 

interaction effects between them. Numerous studies have begun identifying relevant gene-by-

environment interactions both on SES and health outcomes. One example of a study on inequality 

and gene-by-environment interaction is Belsky et al. (2018), who study social mobility in several 

cohorts using a PGI based on GWAS results for educational attainment (EA) from Lee et al. (2018). 

They find that both parental SES and the genetic endowment of the child contribute to social 

mobility. In analyses that control for family fixed effects, the sibling with the higher PGI for EA is 

found to be more likely to have higher SES later in life, suggesting that random genetic differences 

between siblings contribute towards social mobility. While Belsky et al. also investigate gene-by-

environment interactions and conduct analyses within-families, they do not combine the two 

approaches. This makes their results of the gene-by-environment analyses more difficult to interpret 

because they may be confounded by unobserved family-specific environments that correlated with 

genetic endowments (Harden & Koellinger, 2020; Schmitz & Conley, 2017a).  

Similar to the study of Belsky et al. (2018), many gene-by-environment studies are difficult to 

interpret due to sensitivity to confounding from unobserved family-specific environments and 

population structure that are correlated with both the environmental measure and the underlying 

genetic factors (Harden & Koellinger, 2020; Schmitz & Conley, 2017a).  

One of the solutions proposed in the literature is the use of natural experiments (Schmitz & Conley, 

2017a), for instance using policy interventions (Schmitz & Conley, 2017b). Barcellos et al. (2018) take 

this approach and study the effects of genes and education on health outcomes in the UK Biobank. 

They make use of a well-known compulsory schooling age reform in the United Kingdom in in 1972 

as a quasi-experiment and find that an increase in education can reduce health differences related 

to genetic risk of obesity. Furthermore, Barcellos et al. (2020) use a similar approach to Barcellos et 
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al. (2018) to investigate the effects of the same schooling reform on education and wages later in life 

as well as the interaction between birth place effects and PGI. They found that the schooling reform 

reduced differences in educational attainment across birth places, but benefitting those with high 

PGI for EA the most. The effect of education on wage was twice as high in the top tercile of the PGI, 

compared to the bottom and middle terciles. While policy reforms that induce as-good-as-random 

variation in education are a common method to identify causal effects, the results are often specific 

to the policy and context that is being studied (Rosenzweig & Wolpin, 2000). 

Our study investigates the effects of environmental and genetic luck and their possible interactions 

for important life outcomes using a novel approach. We combine measures of early childhood 

environment with random genetic differences between siblings in a within-family design. The 

random genetic differences between siblings are by definition independent from shared 

environments that are not captured by our early life exposures of interest, thereby circumventing 

the endogeneity problem that most gene-environment studies suffer from. Furthermore, we 

investigate different gene-environment interactions than those investigated in earlier work.  

2. Materials 

Sample 

The UK Biobank is a large population-based longitudinal study, designed to study health in middle 

aged and older UK citizens (Fry et al., 2017; Sudlow et al., 2015). The participants were between 40 

and 69 years old when they entered the study between 2006 and 2010. Participants answered a 

wide array of survey questions about their life and health and various physical measurements and 

biological samples (saliva, blood and urine) were taken during an assessment centre visit. Almost all 

participants were genotyped and all participants gave broad consent for research related to health 

and well-being. We restrict our analyses to individuals of European descent to limit possible 

confounding due to population structure. Identification of European ancestry was done by the UK 

Biobank based on principal component analysis with the 1000 Genomes project reference panel 

(1000 Genomes Project Consortium et al., 2015). 

Early Childhood Environment 

The UK Biobank does not contain direct measures of early childhood environment that are pertinent 

to our research question. To obtain proxies of socio-economic environment during childhood, we 

used birth place coordinates. We matched these coordinates to district-level early-childhood 

exposures that we obtained from historical data made available by Vision of Britain (Southall, 2011)c. 

Specifically, we use the local average school leaving age and the infant mortality rate at the district 

level (see SI section 2 for details).  

Outcomes 

Following prior literature, we measured educational attainment in years of schooling (see SI section 

5). To obtain a proxy for individual income, we imputed occupational wages from standardized 

 
c www.visionofbritain.org.uk 

http://www.visionofbritain.org.uk/
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occupation codes using an algorithm developed by Kweon et al. (2020). The imputed values reflect 

the logarithm of the typical wage per hour for each occupation, adjusted for demographic 

characteristics such as sex and age. The imputation algorithm utilizes wage data provided by the UK 

Office of National Statistics, using the British Household Panel Survey to estimate model parameters 

and the Labour Force Survey for external validation. This procedure primarily captures wage 

differences between occupations and captures R2 ≈ 0.50 of the total variance of hourly wages. 

Finally, body mass index (BMI) -- our proxy for health -- is based on physical measures taken in the 

UK Biobank assessment centre.  

Polygenic Indices 

We constructed PGI using the results of the largest GWAS publicly available for educational 

attainment, occupational wages, and BMI, which are Lee et al. (2018), Kweon et al. (2020), and Locke 

et al. (2015) respectively. Furthermore, we used multi-trait analysis of genome-wide association 

summary statistics (MTAG; Turley et al., 2018) to increase the accuracy of the PGI by including 

summary statistics of genetically correlated traits. To account for linkage-disequilibrium, we 

constructed PGI using LDpred (Vilhjálmsson et al., 2015). SI section 3 provides further detail. 

3. Methods 
First, we mapped the relationships of the outcomes in adulthood with early childhood environment 

and genetic endowments. We divided the sample into different terciles of the early childhood 

environment and PGI distributions. We then compared the means of our outcome variables across 

terciles to visualize how SES and BMI differ based on place of birth and genetic endowments.  

We then regressed our outcomes on the PGI, dummy variables for the district terciles, and 

interaction terms between the two as well as other control variables: 

𝑦𝑖 = 𝛽0 + 𝛽1𝐺𝑖 + 𝑫𝒊𝜷𝟐 + (𝐺𝑖 × 𝑫𝒊)𝜷𝟑 + 𝑷𝑪𝒊𝜸 + 𝒁𝒊𝜹 + 𝜖𝑖  

 

(1) 

where 𝑦𝑖  is the outcome of individual 𝑖 (educational attainment, imputed log hourly wage or BMI), 

𝐺𝑖  is the PGI for the respective outcome, 𝑫𝒊 is a vector with two dummy variables for the middle and 

top terciles of the distribution of our environmental variable (local average school leaving age or 

local infant mortality rate), 𝑷𝑪𝒊 is a vector of principle components of the genetic data to control for 

population stratification, 𝒁𝒊 is a vector of other control variables (including year of birth, year of 

birth squared, year of birth cubed, gender, gender interacted with the year of birth variables and 

genotyping batch), and 𝜖𝑖 is the error term. It should be noted that while our primary interest lies in 

the estimates for 𝛽1, 𝜷𝟐 and 𝜷𝟑, the covariates included in 𝒁𝒊 are also the result of luck in the sense 

that nobody has an influence of their time and place of birth or their biological sex, either. Thus, all 

of the variance explained by model (1) can be attributed to luck defined as exogenously given 

resources that are outside of one’s control.   

Next, we re-estimate equation (1) adding family fixed effects. By using family fixed effects, we utilize 

the random genetic differences between siblings that are by definition independent from shared 

environments that are not captured by our early life exposures of interest, thereby circumventing 
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endogeneity problems caused by inadequately controlling for unobserved gene-environment 

correlations. Since our environmental exposures are local-level measures at the birth location, it is 

plausible that these exposures are not dependent on own genetic effects but only on parental 

genetic effects and pre-birth family characteristics, which are captured by the family fixed effects. 

Therefore, these family fixed effects also adjust for potential biases in the estimates of 𝛽1 that result 

from indirect genetic effects such as genetic nurture (Kong et al., 2018) or any population 

stratification that is not captured by the principal components of the genetic data. 

While the family fixed effects capture many possible biases, it can fail to deliver a within-family 

estimator for the interaction term, as the interaction term is not guaranteed to be independent of 

between-family variation (Giesselmann & Schmidt-Catran, 2018, 2020).  Therefore, we extend our 

analyses to control for those sources of between-family variation by adding additional control 

variables for between-family variation to a random effects model based on Mundlak’s work 

(Mundlak, 1978), extended to account for interaction terms: 

 

  𝑦𝑖𝑗 = 𝛽1𝐺𝑖𝑗 + 𝛽2𝐸𝑖𝑗 + 𝛽3(𝐺𝑖𝑗 × 𝐸𝑖𝑗) + 𝜃1𝐺�̅� + 𝜃2𝐸�̅� + 𝜃3(𝐺�̅� × 𝐸𝑖𝑗) + 𝜃4(𝐺𝑖𝑗 × 𝐸�̅�) + 𝒁𝑖𝑗
′ 𝜹𝟏

+ �̅�𝑗
′𝜹𝟐 + (𝑢𝑗 + 𝜀𝑖𝑗) 

(2) 

where 𝑋�̅� indicates the family-specific mean of the variable 𝑋𝑖𝑗  and (𝑢𝑗 + 𝜀𝑖𝑗) is the error 

component, with 𝑢𝑗 as the family-level random effect. All other variables are defined as above. Every 

variable in this regression was mean-centred, so that the estimated coefficients of the model 

provide the effect size at the means of all variables. 

Estimating this model as a random-effects framework gives within-family estimate for 𝛽1 , 𝛽2, and 

𝛽3. The key components of this model are 𝐺�̅�, 𝐸�̅�, (𝐺�̅� × 𝐸𝑖𝑗), and (𝐺𝑖𝑗 × 𝐸�̅�) which control for the 

unobserved between-family differences in the PGI, the environment measure, and the gene-

environment interaction; thereby yielding within-family estimates for 𝛽1 , 𝛽2, and 𝛽3. The within-

family means are designed to capture more dimensions of the between family variation than the 

family fixed effects model. Therefore, a within-family estimate for the gene-environment interaction 

of this model will not represent a spurious gene-environment interaction (Giesselmann & Schmidt-

Catran, 2018, 2020). While the model accounts for many possible sources of bias by including family 

specific effects and other control variables, it cannot control for all possible sources of omitted 

variable bias, especially those due to potential indirect genetic effects from siblings on each other, 

which may limit the causal interpretation of our estimates. However, indirect genetic effects from 

siblings would lead to a bias towards zero for the estimated effect of the PGI and the interaction 

term due to possible spill-over effects from the sibling with the higher PGI to the sibling with the 

lower PGI, decreasing the within-sibling differences in outcomes. Therefore, if sibling effects are 

present, our estimates are likely to underestimate the direct genetic effects.  
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4. Results 
Figure 1 shows the mean educational attainment of the UK Biobank participants, divided into terciles 

of the distribution of mean local school leaving age in their neighborhood of birth (left panel) and 

the terciles of the EA PGI distribution (right panel). Participants born in neighborhoods in the top 

educational attainment terciles have on average 1.7 years more education compared to those in the 

bottom tercile. Inequality reflected by genetic differences are even larger, with those in the top 

tercile of the PGI distribution having on average 3.5 years more education than those in the bottom 

tercile. 

Figure 2 shows the results for imputed log hourly wages. Participants in the top local schooling 

terciles have 1.07 pounds per hour higher wages than those in the bottom, and those born with a 

genetic endowment in the top tercile have 2.49 pounds per hour higher wages than those in the 

bottom.  

Finally, Figure 3 shows the results for BMI. Participants in the top local schooling tercile have a mean 

BMI that is 0.53 lower than those in the bottom. The difference between the top and bottom BMI 

PGI terciles is 3.58 BMI points. For a person that is 180 cm tall, a difference of 3.58 BMI points would 

be equivalent to 11.6 kilograms.  

SI Figure 1 shows the mean educational attainment, hourly wage and BMI by terciles of the infant 

mortality rate distribution. Those results show a similar pattern where persons born in the top 

tercile have more favorable outcomes than those in the bottom.  

Figure 1. Mean of educational attainment for different terciles of the local school leaving age and 

PGI distribution 

 
This figure shows the mean of educational attainment (EA), measured in years of schooling, by the different terciles of 

the average local school leaving age distribution (left panel) and the PGI for EA (right panel). 
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Figure 2. Mean hourly wage for different terciles of the local school leaving age and PGI 

distribution 

 
This figure shows the mean of imputed occupational wages, measured in pounds per hour, by the different terciles of 

the average local school leaving age distribution (left panel) and the PGI for occupational wages (right panel). 

 

 

Figure 3. Mean BMI for different terciles of the local school leaving age and PGI distribution  

 

 

This figure shows the mean body mass index (BMI), by the different terciles of the average local school leaving age 

distribution (left panel) and the PGI for BMI (right panel). 

 

 

We illustrate the regression results from model (1) for EA in Figure 4. The panels show the 

scatterplots of EA and the EA PGI for the bottom, middle, and top terciles of the local school leaving 

age distribution, after residualizing both axis on control variables. The mean of both EA and the EA 

PGI vary across environments, an ANOVA mean comparison test shows that they significantly differ 

from each other (𝑝 ≤ 0.0001). The difference in means show that being born in a district in the top 

tercile of the local school leaving age distribution is associated with approximately 1.1 years more 

education compared to being born in the bottom tercile. There is also difference in the effect of the 

EA PGI on EA between the three local school leaving age terciles, as indicated by a difference in 

slopes of the regression line. The slope indicates that that a 1 standard deviation (SD) increase in the 

PGI is associated with an increase in education of approximately 1.4 years in the bottom tercile and 
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1.51 or 1.74 for the middle or top tercile. The effect of the PGI is stronger for individuals from 

districts  with a higher average school leaving age. Thus, the interaction between the PGI and the 

district of birth exacerbates the inequalities from each of the two sources of luck. Finally, the mean 

PGI also varies by the district terciles and its mean is 0.26 higher in the in the top tercile compared to 

the bottom (𝑝 ≤ 0.0001). Thus, the social and genetic sources of luck that we investigated are 

positively correlated with each other, which further increases inequalities that arise from them. The 

results of this regression are also reported in column (1) of table 1. Here, the effects of the EA PGI, 

the tercile dummies, as well as their interactions are all statistically significant with  𝑝-values below 

0.05. 

Figure 4. Educational attainment by terciles of the local school leaving age 

 

This figure shows the effect of the EA PGI on educational attainment for different terciles of the local school leaving age 

distribution. We residualized educational attainment and the EA PGI by regressing them on year of birth, year of birth 

squared, year of birth cubed, gender, gender interacted with the year of birth variables, twenty principal components and 

genotyping batch.  

 

Column (2) of table 1 reports regression results including family fixed effects. The family fixed effects 

absorb a substantial part of the signal from the other variables. The district terciles are designed to 

capture early childhood environmental effects, but the results show that they are not predictive 

beyond the family environment. It should be noted that the family-fixed effects may capture most of 

the variation in the terciles and the variation in the local average school leaving age between siblings 

is typically small, which decreases power. The coefficient for the PGI remains statistically significant 

(𝑝 ≤ 0.001), but with a lower coefficient. This is in line with previous findings, and may be attributed 

to genetic nurture effects (Kong et al., 2018; Lee et al., 2018), which are indirect effects from 

parental genotypes on the offspring through the environment they provide. Parental genotypes are 

correlated with the genotypes of their offspring, and may also be correlated to environment they 

provide for their offspring. This induces an unobserved variable bias in the estimated effect of the 

PGI when there are no controls for parental genotype or family fixed effects. Another possibility is 

that the PGI also captures some population stratification (Hamer & Sirota, 2000), which is a term 

that describes the systematic differences in allele frequencies between subpopulations. This could 

cause an inflation of the coefficient for the PGI the coefficient before controlling for family-fixed 

effects, if there are environmental differences between the subpopulations that are correlated with 
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the PGI and the outcome, even though twenty principal components of the genetic data were added 

as control variables (Price et al., 2006). While these two potential sources of the decrease in PGI are 

not indicative of luck due to direct genetic effects, both still refer to luck due to exogenously given 

endowments that our outside of one’s control (i.e. parental environment and population effects). 

Nevertheless, our results indicate that direct genetic luck still plays an important role in educational 

attainment, even when family fixed effects are controlled for: A one standard deviation increase in 

the PGI implies an increase of 0.8 years of education.  

Figure 5 shows the results for imputed log hourly wage and its respective PGI. The regression 

coefficients are reported in column (3) of table 1. When comparing the bottom to the middle tercile, 

we see that being born into a middle tercile SES district does not affect hourly wages compared to 

the bottom tercile. Being born in the top tercile does have an impact on hourly wages and the 

coefficient in column (3) of table 1 shows that it is associated with 5.0% higher wages. The 

coefficient for the PGI in column (3) is significant (𝑝 ≤ 0.001) and indicates an increase in wages of 

approximately 7.2% per SD of the PGI, which is in line with previous findings (Kweon et al., 2020). 

The relationship between the PGI and mean log hourly wages is identical across terciles, which can 

be seen from the identical slope of the regression line across terciles in figure 5 and interaction 

coefficients in column (3).  Again, the mean PGI is higher in the highest tercile (𝑝 ≤ 0.0001), 

indicating a positive correlation between genetic and social luck. 

Figure 5. Log hourly wage by terciles of the local school leaving age 

 

This figure shows the effect of the PGI for log hourly wage on imputed log hourly wage for different terciles of the local 

school leaving age distribution. We residualized log hourly wages and the income PGI by regressing them on year of birth, 

year of birth squared, year of birth cubed, gender, gender interacted with the year of birth variables, twenty principal 

components and genotyping batch.  

 

When adding family-fixed effects to the model in column (4), the coefficient of the PGI decreases 

compared to the model without family-fixed effects, but remains an important predictor of hourly 

wages. A one standard deviation increase in the PGI is associated with a 5.1% increase in hourly 

wages. Similar to the effects for EA, the district terciles are not predictive when controlling for 

family-fixed effects.  
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The regression results for BMI are visualized in a similar fashion in figure 6. The top tercile of the 

local school leaving age distribution exhibits a substantially lower average BMI of 0.41 points (𝑝 ≤

0.001). Furthermore, the BMI PGI is associated with a 1.5 point increase in BMI per standard 

deviation of the PGI (𝑝 ≤ 0.001). Similar to the results for hourly wages, the relationship between 

the PGI and BMI does not vary by district tercile.  

Comparing the results of column (5) to column (6) in table 1, the coefficient of the BMI PGI barely 

changes when family fixed-effects are controlled for, which indicates that genetic nurture is less 

important for BMI than for socio-economic outcomes. This is consistent with the findings reported 

by Kong et al. (2018) However, controlling for family-fixed effects again absorbs the effects of the 

local school leaving age on BMI.  

We obtained qualitatively similar results when we used the local infant mortality rate terciles as 

proxies of early childhood environment (SI Table 3). One notable difference is that we observe an 

interaction effect between the BMI PGI and the local infant mortality rate on BMI in adulthood: The 

BMI PGI is more strongly associated with BMI in districts with low infant mortality rate. This 

interaction effect remains even after family-fixed effects are controlled for, indicating that the infant 

mortality rate may capture health-relevant environmental effects that are not captured by the local 

average schooling leaving age.  

Figure 6. BMI by terciles of the local school leaving age 

 

This figure shows the effect of the PGI for BMI on BMI for different terciles of the local school leaving age distribution. We 

residualized BMI and the BMI PGI by regressing them on year of birth, year of birth squared, year of birth cubed, gender, 

gender interacted with the year of birth variables, twenty principal components and genotyping batch.  

 

Finally, the results of our random effects models (equation 2) are shown in Table 2. The estimates 

for EA, log hourly wage and BMI are shown in columns (1), (2), and (3), respectively. The results are 

very similar to the models with family fixed effects in Table 1. We see that genetic luck, measured by 

the respective PGI, remains an important factor even after controlling for non-genetic confounds 

such as population stratification and environmentally mediated indirect genetic effects from parents 

on their children. Thus, we find that genetic luck in the form of random genetic differences between 
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siblings is an important factor that contributes to inequalities in socio-economic outcomes and BMI. 

Specifically, a one standard deviation increase in the PGI for EA is associated with a 0.8 year increase 

in EA. Similarly, a one standard deviation increase in the PGI for hourly wage is associated with a 

4.7% wage increase. Finally, a one standard deviation increase in the PGI for BMI is associated with a 

1.6 point increase in BMI. Similar to the family-fixed effects models in table 1, the local school 

leaving age and the interaction terms lose their predictiveness when all the controls for between-

family differences are added.  

The overall variance explained in outcomes by our models in Table 2 can be interpreted as a lower 

bound of the effects of luck because all covariates measure exogenously given endowments that are 

out of the control of the individual. This includes the outcomes of the social lottery (i.e. the identity 

of one’s parents, the family one is born into, the neighborhood the family lives in) as well the 

outcomes of the genetic lottery (i.e. one’s biological sex and values of the polygenic indices).  

Although one does not have any control over their year of birth, it could be argued that year of birth 

effects should not be counted as luck, as our outcomes may partly be determined by the process of 

aging. For instance, older employees may have more experience, which may increase their wages. 

Furthermore, biological processes in our body change due to aging which may affect our BMI. As 

everyone will go through the process of aging in their life, it could be argued that this should not be 

attributed to luck. However, it should be noted that the UK Biobank participants are past the typical 

schooling age, as the participants were between 40 and 69 when they entered the study. Thus, if 

birth year has an effect on educational attainment, it could very well be due to the luck of the social 

circumstances one is born in, as different schooling regulations were in place depending on the exact 

age of the participants.  

To re-evaluate the amount of variance explained in our outcomes that can be attributed to sources 

of luck, we re-estimate our models from Table 2 by first removing all birthyear effects. Here, we first 

regress our outcomes and all covariates on birth year, birth year squared and birth year cubed and 

take the residuals. In these models approximately 14 percent of educational attainment can be 

attributed to luck, 17 percent of occupational wages and 13 percent of BMI.  When comparing these 

numbers to the overall 𝑅2 measures in Table 2, we see that the change in the share of variation that 

can be attributed to luck does not change much. The largest change is for educational attainment, 

where the share of luck drops by approximately 2 percent.  

SI table 4 shows the results of the random effects models using the local infant mortality rate as an 

early life exposure. The results are very similar to those reported in table 2. For each of the 

outcomes, the PGI has a similar effect size to those reported in table 2, and the local infant mortality 

rate and interaction terms are not predictive of the outcomes.  
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Table 1. Regression of the outcomes on PGI, local school leaving age terciles and 
interactions 

 EA 
Log Hourly 

Wage BMI 

 (1) (2) (3) (4) (5) (6) 

Family Fixed Effects No Yes No Yes No Yes 

PGI 1.384 0.799 0.072 0.051 1.584 1.561 

S.E. 0.043 0.068 0.004 0.008 0.040 0.066 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

Middle Tercile 0.190 -0.072 0.006 -0.018 -0.045 0.173 

S.E. 0.062 0.139 0.006 0.016 0.060 0.154 

p-value 0.002 0.606 0.375 0.272 0.453 0.261 

Top Tercile 1.123 -0.139 0.050 -0.003 -0.412 0.074 

S.E. 0.065 0.144 0.007 0.016 0.063 0.150 

p-value 0.000 0.334 0.000 0.838 0.000 0.619 

PGI x Middle Tercile 0.124 0.033 0.002 -0.009 0.057 0.126 

S.E. 0.061 0.092 0.006 0.011 0.059 0.095 

p-value 0.043 0.719 0.713 0.409 0.328 0.185 

PGI x Top Tercile 0.360 0.060 0.003 -0.005 0.077 0.033 

S.E. 0.061 0.092 0.006 0.010 0.059 0.091 

p-value 0.000 0.511 0.573 0.654 0.191 0.717 

𝑅2 (Overall) 0.161 0.107 0.175 0.144 0.137 0.126 

𝑅2 (Between) 
 0.136  0.145  0.146 

𝑅2 (Within) 
 0.039  0.143  0.092 

N 32474 32474 16175 16175 32942 32942 

Sibling Groups  15787 
 

7894 
 

16013 

This table shows Ordinary Least Squares (OLS) regression results for regressing each of the outcomes 
(Educational Attainment (EA), Imputed log hourly wages and Body Mass Index (BMI)), on their respective 
polygenic indices (PGI), local school leaving age terciles and interactions. Columns 1 and 2 show results for EA, 
columns 3 and 4 for log hourly wage, and columns 5 and 6 for BMI. Columns 2, 4 and 6 include family fixed 
effects. All regressions included the following control variables: age, age squared, age cubed, gender, gender 
interacted with age variables, twenty principal components of the genetic data and dummies for genotyping 
batches. In the family fixed effects models some control variables had to be dropped due to multi-collinearity. 
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Table 2. Random Effects Models 

 EA 
Log Hourly 

Wage BMI 

 (1) (2) (3) 

PGI 0.823 0.047 1.612 

S.E. 0.043 0.005 0.042 

p-value 0.000 0.000 0.000 

Local School Leaving Age -0.031 0.010 -0.065 

S.E. 0.085 0.009 0.087 

p-value 0.712 0.260 0.454 

PGI x Local School Leaving Age -0.133 0.012 -0.018 

S.E. 0.112 0.029 0.112 

p-value 0.238 0.684 0.872 

𝑅2 (Overall) 0.163 0.168 0.132 

𝑅2 (Between) 0.216 0.188 0.156 

𝑅2 (Within) 0.036 0.140 0.090 

N 32474 16175 32942 

Sibling Groups 15787 7894 16013 

This table shows the results of the random effects models based on a Mundlak 
formulation. Column (1) shows results for educational attainment (EA), column (2) for 
imputed log hourly wages, column (3) for body mass index (BMI). The outcomes were 
regressed on the PGI, Local School Leaving age, their interaction and control variables 
(gender, year of birth and year of birth squared). For each variable within-family means 
were added to control for between family variation. See equation 2 for the full model. 

 

5. Discussion 
We investigated the effects of inequalities in opportunity that are due to social and genetic luck on 

educational attainment, occupational wages and BMI. We tested potential interaction effects 

between genes and environment in a novel within-family study design that uses the random genetic 

differences between siblings to break the link between family-environments and genes. This 

approach allowed us to obtain estimates of gene-environment interactions that do not suffer from 

endogeneity bias, which is a common concern in gene-environment studies (Harden & Koellinger, 

2020; Schmitz & Conley, 2017a).  

Our results illustrate that both social and genetic luck contribute towards inequalities in socio-

economic status and BMI. Our estimates suggest that at least 13 to 17 percent of the inequalities in 

education, wages and BMI in the UK are due to inequalities in opportunity that arise from the 

outcomes of the social and the genetic lottery. This estimate is likely to be strongly attenuated by 

measure error both in the polygenic indices and the proxies of childhood environment that we had 

available. Thus, the true influence of social and genetic luck on inequalities in the UK is likely to be 

substantially higher in reality. Future investigations on this would benefit from more precise 

polygenic indices as well as better measures of relevant environments during childhood.  
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Our results also showed that social and genetic luck are correlated, which exacerbates their 

influence on disparities on socioeconomic and health outcomes. This type of Matthew effect had 

previously been identified in large-scale, genetically informed study designs. For example, children 

who grew up in high-SES households also tended to have higher polygenic indices for educational 

attainment in Belsky et al. (2018). In Abdellaoui et al. (2019), polygenic index values for educational 

attainment where on average lower in regions of the UK that had overall lower SES (e.g. former coal 

mining areas). Furthermore, the indirect genetic effects for educational attainment reported by 

Kong et al. (2018) are another example for how tightly intertwined genetic and environmental 

factors are that contribute towards SES.  

Our results further emphasize the importance of both social and genetic luck as drivers of 

inequalities in socio-economic status and BMI. In particular, we found that genetic luck is a strong 

predictor for our outcomes in all our model specifications, including those that rely on the random 

genetic differences between siblings for identification (e.g. models in which genetic effects have a 

causal interpretation). In contrast, we find that the early childhood environmental exposures lose 

their predictiveness when we control for family-fixed effects. Similarly, we find some evidence for 

gene-by-environment interactions, but not when controlling for family-specific effects.  

However, this does not imply that social luck is less important than genetic luck. Rather, the 

environmental exposures we studied are based on noisy neighbourhood proxies that are unlikely to 

capture all facets of the environment that are relevant. Moreover, siblings are typically born in 

similar socio-economic environments and are on average 50% genetically identical. This implies that 

the differences between siblings tend to be smaller than differences between unrelated individuals, 

which decreases statistical power to detect true effects in study designs such as ours that use the 

random differences between siblings for identification.  Even larger samples of genotyped siblings 

would be desirable to identify relevant environment and gene-by-environment interactions in such 

study designs. Thus, our study illustrates some of the challenges for identifying robust, non-

endogenous gene-environment interactions.  

The relative importance of social and genetic luck that we studied here has policy relevance because 

the extent to which people are willing to tolerate or endorse inequality partially depends on 

whether they perceive that disparity originates from differences in effort and choice (e.g., working 

hard) or from differences in circumstances that are outside of one’s control (e.g., luck in the social or 

genetic lotteries). The existing empirical evidence suggests that inequality that can ultimately be 

traced back to luck may be perceived as unfair and people may favor redistributive policies more 

strongly if inequality is the result of luck rather than agency (Alesina & La Ferrara, 2005; Alesina et 

al., 2018; Almås et al., 2010; Cappelen et al., 2013; Clark & D’Ambrosio, 2015; Gromet et al., 2015). 

Furthermore, policies that aim at providing broad access to education and health care are desirable 

if policies aim at providing people with equal opportunities. However, more equal opportunities do 

not necessarily translate into equalities in outcomes. For example, previous studies have indicated 

that schooling reforms can reduce disparities in education and health that are rooted in genetic 

effects, but these reforms may not decrease inequalities in wages (Barcellos et al., 2018, 2020). 

Thus, it is important for science and policy to better understand the extent to which genetic and 
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social luck contribute to inequality, the mechanisms that are at work, and whether and how the 

consequences of exogenously given endowments can be altered.  
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2. Measures of early-childhood environment 
As early-childhood environmental exposures, we derived the local average school leaving age and 

the infant mortality rate at the district level by exploiting the birth locations provided by the UKB. 

We obtained the historical local-level data from Vision of Britain (www.visionofbritain.org.uk), which 

covers the period from the early 20th century to the 1970s. Using boundary data for local 

government districts as of 1931, 1951, 1961, and 1971, we first coded the birth locations in terms of 

local government district. Based on this information, we constructed childhood local environment 

measures by matching the birth places to the local-level data.  

We derived the local average school leaving age as of 1961 by using district-level data provided as 

fractions of pupils in the district who left school at the age of under-15, 15, 16, 17 to 19, and above-

20. To these fractions, we multiplied the values of 10, 15, 16, 18, and 20, respectively, to compute 

the average school leaving age of the district. This data was only available for 1961.1 We used the 

boundary data for local government districts as of 1961 to match the local average school leaving 

age to each participant.   

The local infant mortality rates were available at the district level annually. To reduce the noise in 

the data, we smoothed the infant mortality rate time series for each district by using the Hodrick-

Prescott filter with the smoothing parameter of 100 (Hodrick & Prescott, 1997). We also dropped 

observations if the number of births in the district was fewer than 50 in that year. The boundary 

data was only available for 1931, 1951, 1961, and 1971 while the local infant mortality data was 

available annually. Therefore, we used the boundary data from the year nearest to the birth year for 

each participant.   

3. Polygenic indices 
We constructed polygenic indices (PGI) using the results of the largest GWAS that are currently 

publicly available for educational attainment (Lee et al., 2018), occupational wages (Kweon et al., 

2020), and BMI (Locke et al., 2015). We further improved the accuracy of these PGI with MTAG 

(Turley et al., 2018), which is a multivariate statistical method that increases the statistical power of 

GWAS by including GWAS summary statistics from genetically correlated phenotypes. 

MTAG analyses included GWAS summary statistics of phenotypes that pass the following criteria: 

1. The phenotype belongs to the same scientific domain as the outcome variable of interest. 

This limits the possibilities of spurious associations when covariates are genetically 

correlated to the outcome.  

2. The phenotype has been included in a previously published GWAS, as GWAS for novel 

phenotypes would go beyond the scope of this paper.  

3. Genetic correlation (r(G)) between the phenotypes is at least 0.6 Here we follow the genetic 

correlation threshold of Becker et al. (2020) Where the authors conduct many MTAG 

analyses to construct a repository of PGI.   

 
1 In 1951, this data was only available for men. Therefore, we only used the 1961 data. 

http://www.visionofbritain.org.uk/
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4. The heritability of the trait is significantly different from 0. Adding traits with little genetic 

signal would only add noise to our PGI.  

5. The GWAS had a sample size of at least 20,000. So that the phenotype contributes 

significantly to the predictiveness of the PGI.  

SI Table 1 gives an overview of all included GWAS summary statistics that meet these criteria. These 

studies were found via a systematic literature review and genetic correlations provided by LD Hub 

(Zheng et al., 2017) and Becker et al. (2020) If the phenotype was available in the UK Biobank, we 

conducted GWAS on a subsample of the UK Biobank that excluded siblings and their genetic relatives 

(see section 3). Genetic relatives were identified using relatedness coefficients provided by the UK 

Biobank. We meta-analysed these results with the publicly available GWAS summary statistics that 

excluded the UK Biobank. SI Table 1 provides an overview of the GWASs run in the UK Biobank.  

SI Table 2 gives an overview of phenotypes that meet the above criteria, but had to be dropped 

during our preliminary analyses. The table also provides the reason for their dismissal.  

To adjust for linkage-disequilibrium, we constructed PGI using LDpred (Vilhjálmsson et al., 2015). The 

Haplotype Reference Consortium (McCarthy et al., 2016) panel was used as LD reference and we 

employed the recommended LD window, (number of SNPs divided by 3000) and set the fraction of 

causal markers to 1. We limited the number of SNPs that we included in the PGI to those that are 

directly genotyped or are present in the HapMap3 reference panel (International HapMap 3 

Consortium et al., 2010). This set of SNPs provides a good coverage of common genetic variants and 

it tends to yield PGI that perform well empirically (Lee et al., 2018). The number of SNPs included in 

each PGI is further limited by the fact that MTAG only considers SNPs that are present in all 

summary statistics. The remaining number of SNPs are 1,209,700; 1,209,700; and 1,188,098 for EA, 

Occupational wages and BMI respectively. 
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SI Table 1. Overview of GWAS Summary Statistics 

Phenotype Target r(G) N Source 

Hardest Math Class EA, Occ. Wages 0.81, 0.78 430,439 (Lee et al., 2018) 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 35,298 (Trampush et al., 2017) 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 129,048 UKB Data Field: 20016 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 101,205 UKB Data Field: 20191 

Household Income EA, Occ. Wages 0.74, 0.91 340,935 (Kweon et al., 2020) 

Regional Income EA, Occ. Wages 0.81, 0.83 359,437 (Kweon et al., 2020) 

Body fat percentage BMI 0.84 390,601 UKB Data Field: 23099 

Hip Circumference BMI 0.87 224,459 (Shungin et al., 2015) 

Hip Circumference BMI 0.87 397,156 UKB Data Field: 49 

Waist Circumference BMI 0.90 224,459 (Shungin et al., 2015) 

Waist Circumference BMI 0.90 397,197 UKB Data Field: 48 

This table gives an overview of GWAS summary statistics from previous studies used to improve the accuracy of the PGI. 
The first column states the phenotype of the GWAS. The second column indicates for which outcome the summary 
statistics were used. The third column gives the genetic correlation between the phenotype and target outcome. The 
genetic correlation was calculated using the meta-analysed results if there were multiple sources for that phenotype. The 
reported correlation was calculated during our preliminary MTAG analyses.  The fourth column gives the size of the 
GWAS. The fifth column gives a reference to the study where the GWAS was published or the UKB Data-Field. 

 

 

SI Table 2. Overview of Dismissed GWAS Summary Statistics 

Phenotype Target Source Reason for dismissal 

College Completion EA, Occ. Wages (Rietveld et al., 2013) A 

Body fat percentage BMI (Lu et al., 2016) B 

Obesity Class 1 BMI (Berndt et al., 2013) A 

Obesity Class 2 BMI (Berndt et al., 2013) A 

Obesity Class 3 BMI (Berndt et al., 2013) A 

Overweight BMI (Berndt et al., 2013) A 

Leptin BMI (Kilpeläinen et al., 2016)  C 

HOMA-IR BMI (Dupuis et al., 2010) D 

This table gives an overview of GWAS summary statistics but were dropped in preliminary analyses. The first column states 
the phenotype of the GWAS. The second column indicates for which outcome the summary statistics were used. The third 
column  gives a reference to the study where the GWAS was published. The fourth column gives the reason code for the 
dismissal. Where the codes are as follows: A: the phenotype is a binary measure of another included phenotype and the 
sample is completely overlapping with it. B: the results are from mixed ancestry. C: The phenotype greatly reduced the 
number of overlapping SNPs used by MTAG. D: the phenotype had no reported number of samples per SNP.  
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4. GWAS in the UKB 
For the phenotypes indicated with the UKB as the source in Table 1, we conducted GWAS on the 

UKB participants of European ancestry excluding those in the sibling sample and their close relatives 

(up to the third degree).  

We followed the standard phenotype definitions in the literature except for the income outcomes. 

We coded household income as the natural log of the midpoint income of each income bracket, 

where 3/4 times the upper bound and 4/3 times the lower bound were used as the midpoint 

respectively for the lowest and highest brackets, which are open-ended. Regional income (local 

average weekly household income in 2011) was derived from home locations coded in Middle-layer 

Super Output Areas. We obtained the income data from the UK’s Office for National Statistics, which 

was available for England and Wales only. 

For the non-income outcomes, the control variables included dummy variables for sex, age, year of 

observation, and assessment centre, and their interaction with sex dummy as well as genotyping 

arrays and batches and 40 top genetic principal components. For the income outcomes, we 

conducted GWAS on male and female samples separately and meta-analysed the male and female 

results of each measure by relying on the meta-analysis version of MTAG to address possible sex 

heterogeneity in economic outcomes. In the GWAS of the income outcomes, dummy variables for 

employment status were additionally included.  

Each GWAS was run based on a linear mixed model, estimated with BOLT-LMM (Loh et al., 2015). 

We then applied standard quality control filters to exclude SNPs that are problematic, which we 

implemented with EasyQC (Winkler et al., 2014). These filters removed SNPs that had missing or 

incorrect numerical values for output statistics (a p-value outside of [0,1], for example); duplicate 

SNPs; imputation accuracy below 0.7; a minor allele frequency lower than 0.1%;  an allele other than 

“A,” “C,” “G,” or “T”; or had an allele frequency that deviates 0.2 or more from the allele frequency 

in the reference panel (Haplotype Reference Consortium v1.1 (McCarthy et al., 2016)). 

5. Measuring educational attainment 
We measured educational attainment in years of schooling, using a transformation from the highest 

achieved diploma to a set number of years such that it retains the rank order of lowest to highest 

degree as much as possible (see SI Table 3). Because the participants could report more than one 

qualifications, each reported qualification was converted to years of schooling and the maximum 

value was retained. 
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SI Table 3. Transformation Qualification to Years of Schooling  

Qualification Years of schooling 

College or University degree 20 

A levels/AS levels or equivalent 13 

O levels/GCSEs or equivalent 10 

CSEs or equivalent 10 

NVQ or HND or HNC or equivalent  Age when left full-time education – 5  

Other professional qualifications e.g.: nursing, teaching 15 

None of the above 7 

This table shows the conversion for each type of diploma to a set years of schooling 

 

6. Results for infant mortality rate  
This section shows the results when using infant mortality rate as early childhood environmental 

exposure. SI Figure 1 shows the mean of EA, hourly wages and BMI of the UK Biobank participants 

when divided into terciles of the infant mortality rate distribution. Infant mortality rate was reverse 

coded such that higher numbers are better to ease the comparison to the results using local school 

leaving age, as discussed in the main text. The results for EA and BMI are similar to the results using 

local school leaving age. For hourly wages, we note the differences in sample sizes for the different 

terciles of the distribution. There are many more missing observations for hourly wages in the 

bottom tercile of the distribution, indicating attrition in our sample. Thus, the results for hourly 

wages cannot be interpreted in any meaningful way.  

SI Table 3 shows the equivalent results of table 1 in the main text using local infant mortality rate 

terciles instead of local school leaving age. The results are in line with those of table 1. One notable 

difference is the interaction effects for BMI. There we do find that the PGI is more strongly 

associated with BMI in neighbourhoods with low infant mortality rate. The interaction effect remains 

for the middle tercile, even when controlling for family fixed effects. Again, due to attrition in the 

sample the results for hourly wages cannot be interpreted in any meaningful way.  

SI table 4 shows the results for the random effects models using the local infant mortality rate as an 

early life exposure. The results are very similar to that of table 2 in the main text. 
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SI Figure 1. Outcomes by infant mortality rate terciles 

 

This figure shows each of the outcomes plotted by the district infant mortality rate terciles. Infant mortality rate is reverse coded such that higher numbers are good.  The left panel shows 

educational attainment, the middle hourly wages and the right BMI.  
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SI Table 4. Regression of the outcomes on PGI, infant mortality rate terciles and 
interactions 

 EA 
Log Hourly 

Wage BMI 

 (1) (2) (3) (4) (5) (6) 

Family Fixed Effects No Yes No Yes No Yes 

PGI 1.483 0789 0.082 0.071 1.461 1.512 

S.E. 0.049 0.071 0.008 0.012 0.046 0.068 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

Middle Tercile 0.644 0.034 0.016 0.014 -0.082 0.122 

S.E. 0.087 0.113 0.011 0.015 0.084 0.115 

p-value 0.002 0.003 0.138 0.346 0.330 0.286 

Top Tercile 0.706 -0.026 0.025 0.007 -0.504 0.029 

S.E. 0.124 0.177 0.014 0.020 0.120 0.181 

p-value 0.000 0.883 0.069 0.714 0.000 0.875 

PGI x Middle Tercile 0.107 0.136 -0.014 -0.025 0.242 0.171 

S.E. 0.067 0.084 0.009 0.013 0.065 0.087 

p-value 0.117 0.105 0.121 0.042 0.000 0.049 

PGI x Top Tercile 0.065 0.007 -0.006 -0.028 0.271 0.151 

S.E. 0.068 0.092 0.009 0.013 0.065 0.095 

p-value 0.340 0.936 0.468 0.028 0.000 0.113 

𝑅2 (Overall) 0.147 0.103 0.166 0.136 0.133 0.122 

𝑅2 (Between)  0.129  0.126  0.138 

𝑅2 (Within)  0.042  0.151  0.093 

N 26612 26612 13102 13102 26898               27034 

Sibling Groups  12933  6395  13136 

This table shows Ordinary Least Squares (OLS) regression results for regressing each of the outcomes 
(Educational Attainment (EA), Imputed log hourly wages and Body Mass Index (BMI)), on their respective 
polygenic indices (PGI), infant mortality terciles and interactions. Infant mortality is reverse coded such that 
higher numbers are good. Columns 1 and 2 show results for EA, columns 3 and 4 for log hourly wage, and 
columns 5 and 6 for BMI. Columns 2, 4 and 6 include family fixed effects. All regressions included the following 
control variables: age, age squared, age cubed, gender, gender interacted with age variables, twenty principal 
components of the genetic data and dummies for genotyping batches. In the family fixed effects models some 
control variables had to be dropped due to multi-collinearity. 
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SI Table 5. Random Effects Models 

 EA 
Log Hourly 

Wage BMI 

 (1) (2) (3) 

PGI 0.833 0.048 1.612 

S.E. 0.048 0.005 0.046 

p-value 0.000 0.000 0.000 

Infant mortality rate 6.413 -0.148 -6.207 

S.E. 7.675 1.088 7.972 

p-value 0.403 0.892 0.436 

PGI x Infant mortality rate 1.267 -0.693 -8.231 

S.E. 5.474 0.740 5.218 

p-value 0.817 0.349 0.115 

𝑅2 (Overall) 0.147 0.157 0.132 

𝑅2 (Between) 0.194 0.165 0.157 

𝑅2 (Within) 0.037 0.145 0.090 

N 26612 13102 27034 

Sibling Groups 12933 6395 13136 
This table shows the results of the random effects models based on a Mundlak 
formulation. Column (1) shows results for educational attainment (EA), column (2) for 
imputed log hourly wages, column (3) for body mass index (BMI). The outcomes were 
regressed on the PGI, infant mortality rate, their interaction and control variables 
(gender, year of birth and year of birth squared). Infant mortality rate is reverse coded 
such that higher numbers are good. For each variable within-family means were added 
to control for between family variation. See equation 2 for the full model. 
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