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Abstract

Macroeconomic disasters (wars, pandemics, depressions) are characterized by drastic shifts and

increased volatility of the aggregate consumption to income ratio (or, conversely, the saving ratio).

By standard intertemporal budget constraint logic, this ratio is linked to future income and con-

sumption growth rates and therefore should have predictive power for these variables. We investigate

whether this predictive ability changes during macroeconomic disasters as this can signal changes in

consumption behavior. Through the estimation of panel data regressions for industrial economies

using historical annual data, we find that rare macroeconomic disasters increase the predictive ability

of this ratio for both future income and consumption growth rates. While we also find evidence of

increased predictability for the ongoing Covid-19 pandemic, this is not the case for more conventional

postwar recessions. Our results point to a significant reduction in consumption smoothing during

disasters. Using a savers-spenders model, we argue that this reduction stems from increased rule-of-

thumb consumer behavior during disasters as well as from a larger precautionary saving motive of

those consumers who do optimize.
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1 Introduction

The Covid-19 pandemic and the lockdown measures implemented to contain it in countries around the

world have triggered significant changes in the consumption and saving behavior of households. Large

upward shifts have been reported in the propensities to save of US and European households during

2020 (see e.g., Lee Smith, 2020; Dossche and Zlatanos, 2020; Vandenbroucke, 2021). Currently, while the

Russian invasion of Ukraine and the imposed international sanctions on Russia have a tremendous impact

on income, consumption and saving of the Ukrainian and Russian populations, these events will also have

severe global consequences that will negatively impact global GDP and consumption, i.e., ever-increasing

prices, supply chain disruptions, energy crises and even famines. As rare macroeconomic disaster episodes

- i.e., pandemics, wars and depressions - are characterized by drastic declines in GDP, private consumption

or both (see Barro and Ursúa, 2008), it is not surprising that the changes in consumption and income that

occur during these periods of turmoil potentially imply large movements in the propensity to consume

and to save out of income.

This paper therefore focuses on the propensity to consume out of income - as captured by the con-

sumption to income ratio - during macroeconomic disaster episodes.1 More specifically, we investigate the

predictive ability of this ratio and the implications of this predictability for welfare-optimizing consump-

tion smoothing opportunities during normal times and disaster episodes. We start from the observation

that rare macroeconomic disaster periods, defined by Barro and Ursúa (2008) as peak-to-trough cumula-

tive declines in GDP and/or private consumption of at least 10%, are characterized by drastic shifts and

increased volatility of the log consumption-income ratio. As standard intertemporal budget constraint

(IBC) logic implies that the log consumption-income ratio is linked to future income and consumption

growth rates, we investigate whether this ratio has predictive power for these growth rates. More specifi-

cally, given the different behavior of the log consumption-income ratio during disaster episodes, we check

whether the predictive power of this ratio differs between normal times and disaster periods. Changes

in the predictive power of the log consumption-income ratio for future income and consumption growth

rates have implications for the IBC-implied long-run equilibrium between consumption and income, i.e.,

increases (decreases) in the predictive impact of this ratio imply that consumption and income are less

(more) decoupled in the long run. Such changes then imply changes in the degree of consumption smooth-

ing during disaster periods versus normal times. The predictive power of the consumption-income ratio

during normal times and disasters is investigated by estimating cross-country panel predictive regres-

sions where our main dataset consists of historical annual data over the period 1870 − 2016 for sixteen

1We focus on the consumption-income ratio instead of the saving rate to which it is inversely related as, in the theory

outlined in Sections 3 and 5 below, we derive expressions for the log consumption-income ratio.
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industrial economies. Additionally, recent quarterly data for twenty industrial countries over the period

1995Q1 − 2021Q4 are used to look at predictability during the ongoing Covid-19 pandemic. The es-

timations are conducted using a variety of mean-group (MG) estimators that allow for full parameter

heterogeneity to obtain estimates for the average predictive effects across countries (see e.g., Pesaran and

Smith, 1995; Pesaran, 2006; Chudik and Pesaran, 2015).

Our findings suggest that the predictive ability of the log consumption-income ratio for future income

and consumption growth rates is significantly higher during macroeconomic disaster episodes. This

result survives a battery of robustness checks and holds both for historical disaster episodes and for the

ongoing Covid-19 pandemic, though not for more conventional postwar recessions. Interpreted through

the lens of the theory, it implies that the IBC holds more strictly and that consumption and income are

significantly less decoupled during disaster episodes. This, in turn, points to a reduction in consumption

smoothing opportunities during disasters. We propose a savers-spenders model of the type suggested by

Mankiw (2000) to interpret our predictability results. We argue that the increased predictive power of

the log consumption-income ratio during disasters can be attributed to a higher number of rule-of-thumb

consumers, i.e., the spenders, who consume according to their current income - for instance, because they

face more binding liquidity constraints - and to a higher precautionary saving motive of the optimizing

consumers, i.e., the savers. We then provide additional empirical evidence to support this interpretation.

While there is a large literature that focusses on the asset-pricing implications of macroeconomic

disasters (see e.g., Rietz, 1988; Barro, 2006, 2009; Barro and Ursúa, 2012; Nakamura et al., 2013; Gillman

et al., 2015; Farhi and Gabaix, 2016), our paper contributes to a growing literature that looks at the

behavior of consumption and saving during crises - mostly, conventional recessions - and at the channels

through which these crises affect the propensity to consume and save. Peersman and Pozzi (2008)

document a countercyclical correlation between consumption and current income growth for the US over

the period 1965−2000 which points to a reduction in consumption smoothing occurring during recessions.

Mody et al. (2012) report large increases in the saving rates of advanced economies during the Great

Recession (2007-2009) and attribute these increases to changes in variables that capture precautionary

saving, i.e., unemployment risk and GDP volatility. Alan et al. (2012) find that increased uncertainty

explains the rise in the saving rate of UK households during recessions. Using data covering multiple

recessions in OECD countries, Adema and Pozzi (2015) present evidence that household saving ratios

increase during recessions, i.e., behave countercyclically, which they attribute to higher unemployment

risk, lower household wealth and tighter credit constraints. Carroll et al. (2019) report that the saving

rate across the business cycle in the US is largely driven by the degree of labor income uncertainty and

credit availability. Recently, the existing literature looks beyond conventional recessions to explore the
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effects of the Covid-19 pandemic on saving. Jordà et al. (2020) use European data going back to the 14th

century and argue that pandemics, current and historical, induce shifts to greater precautionary saving.

Coibion et al. (2020) use US survey data to investigate how local lockdown measures implemented in

reaction to Covid-19 affect consumer spending and the macroeconomic expectations of households.

The outline of the paper is as follows. Section 2 graphically looks at the behavior of the log con-

sumption to income ratio during macroeconomic disaster episodes. Section 3 shows how the validity of

the IBC implies that the log consumption-income ratio has predictive power for future income and/or

consumption growth rates. It also discusses how predictability is related to consumption smoothing.

Section 4 presents the results of the estimation of cross-country panel data regressions that investigate

the predictive power of the log consumption income ratio, both during normal times and during disaster

episodes. Section 5 proposes a savers-spenders type of model to give a theoretical interpretation to our

predictability findings and provides additional empirical evidence to support this interpretation. Section

6 concludes.

2 Macroeconomic disasters and the consumption-income ratio

Figure 1 presents historical annual time series over the period 1870 − 2016 for the log consumption to

GDP ratio for sixteen industrial economies for which these data are available. The figure also shows the

macroeconomic disaster episodes as identified by Barro and Ursúa (2008) of which the most prominent are

(in chronological order) World War I, the Spanish flu pandemic of the late 1910s/early 1920s, the Great

Depression and World War II. Details on the sources and the construction of these data are provided

in Section 4.1 and Appendix B. From the figure, we note that the volatility of the log consumption-

income ratio is considerably higher during disaster episodes with multiple, often drastic, shifts occurring

during these periods. Many times, these shifts in the consumption-income ratio take the form of large

initial drops, followed by sharp increases (e.g., France during World War II). In other instances, however,

disaster episodes are characterized by temporary upward jumps (e.g., Denmark during World War I).

It is instructive to investigate whether the ratio of consumption to after-tax income is also character-

ized by large shifts during disaster episodes. Historical data on after-tax income are not widely available

however. In Figure 2, we present the consumption to disposable (after-tax) national income ratio over

the period 1870− 2016 which can be constructed for only four out of the sixteen countries considered in

Figure 1. From the figure, we note that this ratio is also typically characterized by large shifts and higher

volatility during the disaster periods identified by Barro and Ursúa (2008).

With respect to the ongoing Covid-19 pandemic, Figure 3 then presents recent quarterly time series
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over the period 1995Q1− 2021Q4 for the log consumption-income ratio for twenty industrial economies.

Again, for many countries, we notice a drastic - often downward - shift and increased volatility in the

consumption-income ratio during the Covid-19 part of the sample (i.e., the period 2020Q1 − 2021Q4).

Finally, in Figure 4, we present the consumption to disposable income ratio over the same period which, at

the quarterly frequency, can be constructed for seven out of the twenty countries considered in the previous

figure. Unsurprisingly, the (downward) shifts observed during the Covid-19 part of the sample are more

pronounced when we look at the consumption to disposable income ratio as household disposable incomes

have decreased less than pre-tax incomes during the Covid-19 pandemic due to the implementation in

many countries of a variety of tax and transfer measures (see e.g., Blanchard, 2020).

Figure 1: The log consumption-income ratio during historical disaster episodes
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Notes: The blue line denotes the log consumption to GDP ratio. Shaded areas correspond to disaster episodes as

identified by Barro and Ursúa (2008). We note that since consumption and GDP (in per capita real terms) are expressed

as indices with baseyear 2005 = 100, the log of the ratio between both equals zero in 2005. We refer to Section 4.1 for

more details on the data used in this figure.

5



Figure 2: The log consumption to disposable income ratio during historical disaster episodes
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Notes: The blue line denotes the log consumption to disposable national income ratio. Shaded areas correspond to

disaster episodes as identified by Barro and Ursúa (2008). We note that since consumption and disposable national

income (in per capita real terms) are expressed as indices with baseyear 2005 = 100, the log of the ratio between both

equals zero in 2005. We refer to Section 4.1 for details on the data used in this figure.

Figure 3: The log consumption-income ratio during the Covid-19 pandemic
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Notes: The blue line denotes the log consumption to GDP ratio. The shaded area on the far right corresponds to the

Covid-19 pandemic period (2020Q1 − 2021Q4). We refer to Section 4.7 for details on the data used in this figure.
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Figure 4: The log consumption to disposable income ratio during the Covid-19 pandemic

1995 2000 2005 2010 2015 2020

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

Australia

1995 2000 2005 2010 2015 2020

−0.3

−0.2

−0.1

0

0.1

Canada

1995 2000 2005 2010 2015 2020
−0.35

−0.3

−0.25

−0.2

−0.15

France

1995 2000 2005 2010 2015 2020

−0.2

−0.15

−0.1

−5 · 10−2

Germany

1995 2000 2005 2010 2015 2020
−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

Japan

1995 2000 2005 2010 2015 2020
−0.3

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

UK

1995 2000 2005 2010 2015 2020

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

US

Notes: The blue line denotes the log consumption to disposable income ratio. The shaded area on the far right corresponds

to the Covid-19 pandemic period (2020Q1 − 2021Q4). We refer to Section 4.7 for details on the data used in this figure.

In what follows, we investigate whether these reported shifts and increased volatility of the log

consumption-income ratio during macroeconomic disasters are indicative of fundamental changes in con-

sumer behavior. From the intertemporal budget constraint, we note that drastic movements in the log

consumption-income ratio coincide with a higher covariance between the current log consumption-income

ratio and future income and consumption growth rates. Hence, we investigate whether the predictive

ability of the current log consumption-income ratio for future income and consumption growth rates

increases during disasters. We argue that such changes point to significant reductions in consumption

smoothing opportunities occurring during times of turmoil.

3 The predictive power of the consumption-income ratio

In this section, we discuss the predictive ability of the log consumption-income ratio as implied from the

intertemporal budget constraint (IBC) and we discuss what different degrees of predictability can reveal

about consumption smoothing.

3.1 The intertemporal budget constraint and the predictive ability of the

consumption-income ratio

If the intertemporal budget constraint (IBC) of a consumer holds, we can write the period t log consump-

tion to income ratio ct − yt (up to a constant and an approximation error) as,

ct − yt =

∞∑
j=1

ρj [Et(∆yt+j)− Et(∆ct+j)] (1)

(see Campbell and Mankiw, 1989) where ρ is the discount factor (with 0 < ρ < 1), where Et is the

expectations operator conditional on period t information, where ct is the log of real consumption Ct,
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where yt is the log of real total income Yt which equals the sum of labor and capital income. We refer

to Appendix A for the derivation.2 The intuition behind eq.(1) is straightforward. In ex-post form (i.e.,

without the expectations operator Et), the budget constraint tells us that a high current consumption-

income ratio coincides with high future income growth rates and/or low future consumption growth rates

while a low current consumption-income ratio coincides with low future income growth rates and/or high

future consumption growth rates. In ex ante form, the budget constraint tells us that expected future

income decreases and expected future consumption increases lower the current consumption-income ratio

(or, conversely, augment the saving ratio) while expected future income increases and expected future

consumption decreases augment the current consumption-income ratio (or, conversely, lower the saving

ratio).

Importantly, eq.(1) implies that the log consumption-income ratio ct − yt may have predictive ability

for future income and consumption growth rates. To see this, we first write eq.(1) in ex-post form (i.e.,

without the expectations operator Et) and then write the variance of ct − yt as,

V (ct − yt) =

∞∑
j=1

ρj [cov(ct − yt,∆yt+j)− cov(ct − yt,∆ct+j)] (2)

where V(.) denotes the variance and cov(.) denotes the covariance. This equation shows that if the IBC

holds then, unless ct− yt is constant so that V (ct− yt) = 0, ct− yt has predictive power for either future

income growth rates, future consumption growth rates or both. We refer to Cochrane (2005, pages 398-

399) for a similar argument in the context of asset pricing.3 We can therefore write down the following

predictive equations for ∆yt+j and ∆ct+j ,

∆yt+j = φyj (ct − yt) + ηyt+j (3)

∆ct+j = φcj(ct − yt) + ηct+j (4)

with error terms ηyt+j and ηct+j . The IBC itself does not impose restrictions on the coefficients φyj and φcj

for particular horizons j. In general, however, the predictive ability is expected to be positive for future

income growth rates and/or negative for future consumption growth rates, i.e., we generally expect φyj > 0

and/or φcj < 0. Moreover, we expect that, in absolute value, the coefficients φyj and φcj are decreasing

with the horizon j. These expectations are confirmed by our empirical evidence reported below.

We note that by subtracting eq.(4) from eq.(3), we obtain a predictive equation for the income-

2The derivation includes a more general expression for ct − yt that includes expected real rates of return on wealth. We

note that the IBC-based link between the current log consumption-income ratio and expected future returns is ambiguous

and not substantial if the discount factor for future income growth rates is close to that of future consumption growth rates.
3I.e., concerning the predictive ability of the equity price-dividend ratio.
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consumption growth differential ∆yt+j −∆ct+j ,

∆yt+j −∆ct+j = φj(ct − yt) + ηt+j (5)

where φj = φyj − φcj and ηt+j = ηyt+j − ηct+j . For φyj > 0 and/or φcj < 0, we generally expect φj > 0.

3.2 Predictability and consumption smoothing

The magnitude of the coefficients φyj and φcj is informative about the horizon over which the IBC holds.

When φyj and φcj are close to zero, the current consumption-income ratio coincides with relatively small

future adjustments in income and consumption, i.e., the IBC holds more loosely over a longer horizon.

Hence, the decoupling episodes between ct and yt, i.e., the deviations from the long-run equilibrium

implied by the IBC, are more prolonged. More prolonged saving and dissaving episodes, in turn, suggest

more consumption smoothing. On the other hand, when the coefficients φyj are more positive or when the

coefficients φcj are more negative, the current consumption-income ratio coincides with relatively large

future adjustments in income and consumption, i.e., the IBC holds more strictly over a shorter horizon.

Hence, the decoupling episodes between ct and yt, i.e., the deviations from the long-run equilibrium

implied by the IBC, are less prolonged. Less prolonged saving and dissaving episodes, in turn, suggest

less consumption smoothing.4

In the next section, we empirically investigate how macroeconomic disasters affect the predictive

power of ct−yt for future income and consumption growth rates. Our main finding is that, during macro

disasters, the log consumption-income ratio has a more positive predictive impact on future income growth

rates while it has a more negative predictive impact on future consumption growth rates. This points to a

reduction in consumption smoothing opportunities during macro-economic disaster episodes. In Section

5, we impose additional theoretical structure on our set-up by explicitly specifying consumption behavior

and we give a model-based interpretation to the reduction in consumption smoothing observed during

these episodes.

4An alternative way to look at our set-up is by noting that if ∆yt+1 and ∆ct+1 are stationary, then, given eq.(1), ct−yt
is also stationary and ct and yt are cointegrated. By Engle and Granger (1987), there then exists an error correction model

between ct and yt where deviations from the long-run equilibrium relationship between ct and yt implied by the IBC affect

next period’s values of ct and yt. Hence, our eqs.(3)-(4) written for j = 1 can be considered an error correction model

with the predictability parameters φy1 and φc1 reflecting the speed of adjustment towards equilibrium. A more positive

predictability parameter φy1 or a more negative parameter φc1 implies a faster adjustment towards equilibrium, i.e., less

prolonged saving and dissaving episodes.
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4 Empirical results

In this section, we estimate cross-country panel data regressions to empirically investigate the impact

of disaster episodes on the predictive ability of the log consumption-income ratio for future income and

consumption growth rates.

4.1 Data

For most estimations, we use long-term historical macro data over the period 1870 − 2016. These are

available at the annual frequency. Data availability determines the countries included in the dataset and

the periods considered per country.5 Our sample consists of sixteen economies, i.e., N = 16. These

are Australia, Belgium, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland, the UK and the US. For ct, we use the log of per capita real

consumption, while for yt we use the log of per capita real GDP. Per capita real personal consumer

expenditures and per capita real GDP are taken from the Jordà-Schularick-Taylor macro-history Database

(Jordà et al., 2016).6

To investigate the impact of macroeconomic disasters on the predictive ability of the log consumption-

income ratio, we construct country-specific disaster dummies that take on the value of one during disaster

episodes. They are constructed from the macroeconomic disaster episodes identified by Barro and Ursúa

(2008). The authors define a disaster as a peak-to-trough cumulative decline in real per capita GDP

and/or real per capita personal consumer expenditure of at least 10%. We construct a general dummy

that contains all identified disaster episodes over the sample period. Additionally, we also consider specific

disaster episodes. In particular, we construct dummies for each of the four principal world economic crises

identified by Barro and Ursúa (2008), i.e., World War I (WW1), the Spanish flu pandemic of the late

1910s/early 1920s (PAN), the Great Depression (GRD) and World War II (WW2). More details on the

construction of the disaster dummies are provided in Appendix B.

4.2 Baseline results

Our discussion in the previous sections suggests that the current log consumption-income ratio may

have predictive power for future income and consumption growth rates and that this predictive ability

may be different during disaster episodes. To check this empirically, we estimate the following baseline

5For some countries and variables, a number of data points are missing at the beginning of the sample period which

renders the panel unbalanced.
6The website is http://www.macrohistory.net/data. The series have codes ’rconpc’ and ’rgdppc’. We note that the series

that we use are both expressed as indices with baseyear 2005 = 100 (see also Figure 1 above).

10



specification,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + εi,t+1 (6)

where xi,t+1 is the predicted variable in period t+1 in country i (with i = 1, ..., N), where µi is a country

fixed effect, where dit is a country-specific dummy variable that is equal to zero in normal times and

equal to one during disaster episodes, where cit − yit is the log consumption-income ratio, and where

εi,t+1 is the error term. Given the relatively long time series at our disposal for every country i, we allow

for heterogeneity across countries in all slope coefficients.

With respect to the regressors of interest, from Section 3, we expect that the current log consumption-

income ratio cit − yit has a positive impact on next period’s income growth rate ∆yi,t+1. If during

macroeconomic disaster episodes consumption and income are less decoupled and consumption smoothing

opportunities reduced, we further expect that this predictive ability is higher - i.e., more positive - during

such episodes. As such, for xi,t+1 = ∆yi,t+1, we expect βi > 0 and γi > 0. On the other hand, we

expect that the current log consumption-income ratio cit − yit has a negative impact on next period’s

consumption growth rate ∆ci,t+1. If during macroeconomic disaster episodes consumption and income are

less decoupled and consumption smoothing opportunities reduced, we further expect that this predictive

ability is higher - i.e., more negative - during such episodes. As such, for xi,t+1 = ∆ci,t+1, we expect

βi < 0 and γi < 0. We further add the disaster dummy separately to eq.(6) to control for a potential

predictive impact of disasters on the dependent variable that is unrelated to the predictive impact of the

consumption-income ratio.

The error term εi,t+1 is a prediction error that should, in principle, be unpredictable based on period

t information. It is nonetheless possible that it is autocorrelated, however, where the autocorrelation is

of the moving average (MA) type. For example, it could follow an MA(1) process due to measurement

error or time aggregation in the data.7,8 Further complications include the possibility that the error term

is correlated across countries (cross-sectional dependence) and that it is correlated with the included

regressors. These issues are dealt with in the robustness checks discussed below.

For the baseline results reported in this section, we estimate eq.(6) country-by-country using OLS.9

Pesaran and Smith (1995) then show that for a heterogeneous (dynamic) panel with country-specific

parameter vector Ψi and with a sufficiently large T and N , consistent estimates of the average effects

7See e.g., Sommer (2007) for measurement error in aggregate consumption data and its implications.
8The error term εi,t+1 can also be conditionally heteroskedastic (see e.g., Hamilton, 2008; Nakamura et al., 2017, who

document changes over time in the volatilities of macroeconomic variables like GDP growth).
9We note that all estimation methods considered in the paper require that the estimated equations contain variables

that are stationary. The only variable considered in the paper for which stationarity is not immediately evident is the log

consumption-income ratio cit − yit. In Appendix C, we report the results of panel unit root tests applied to this variable

from which we conclude that, over the historical period 1870 − 2016, cit − yit is stationary.
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Ψ = N−1
∑N
i=1 Ψi can be obtained by averaging over the country-specific coefficient estimates, i.e.,

Ψ̂ = N−1
∑N
i=1 Ψ̂i. The average over the N country-specific OLS estimates is referred to as the mean-

group (MG) estimator. It is consistent provided that the country-specific coefficients are consistently

estimated by OLS. Following Pesaran et al. (1996), the asymptotic covariance matrix Σ for the mean-

group estimator is consistently estimated nonparametrically by,

Σ̂ =
1

N − 1

N∑
i=1

(
Ψ̂i − Ψ̂

)(
Ψ̂i − Ψ̂

)′
(7)

Table 1 (columns 2-4) presents the baseline results from estimating eq.(6) for the sixteen economies

in our sample over the period 1870−2016 with xi,t+1 = ∆yi,t+1, xi,t+1 = ∆ci,t+1 and xi,t+1 = (∆yi,t+1−

∆ci,t+1). The table reports the OLS-based mean-group estimates of the coefficients αi, βi and γi and

their corresponding standard errors calculated from eq.(7). The country-specific coefficient estimates βi

and γi that are used in the calculation of the mean-group coefficient estimates for the regressors cit − yit

and (cit − yit)dit are reported in Appendix D. Table 1 further reports the average Cumby and Huizinga

(1992) autocorrelation test and its corresponding p-value which tests the null hypothesis that there is no

autocorrelation in the error term.10,11

From the baseline results reported in the table, we note the following. First, a look at Cumby and

Huizinga (1992)’s test for autocorrelation shows that for none of the conducted regressions the null

hypothesis of no autocorrelation is rejected. Second, while it can be expected that the disaster dummy

d negatively affects income and consumption growth in the same period, the reported results show that

it also negatively affects next period’s income growth. It has no predictive impact for consumption

growth however. Third, in accordance with the discussion in Section 3 of the IBC and its predictability

implications, the log consumption-income ratio c − y has significant positive predictive ability for next

period’s income-consumption growth differential. The separate results for ∆y and ∆c as dependent

variables then show that this stems mainly from the significant predictive power that c − y has for the

consumption growth rate where the sign of the coefficient on c− y is in accordance with IBC logic, i.e., a

high consumption-income ratio today is followed by future decreases in consumption growth.12 Finally,

from the estimated coefficients on the regressor (c− y)d, we note that the predictive ability of c− y for

10More specifically, it tests the null hypothesis that the error term follows a moving average process of known order

q ≥ 0 against the alternative that the autocorrelations of the error term are nonzero at lags greater than q. Most statistics

reported in this paper are for q = 0. We note that this test is particularly suitable as, besides allowing to test for MA

errors, it provides an autocorrelation test that is valid also if the errors are conditionally heteroskedastic. Moreover, it can

also be applied when using estimators other than OLS, such as IV (see Cumby and Huizinga, 1992, for details).
11We calculate the statistic per country and then average it across countries. The Cumby and Huizinga (1992) test

statistic follows a χ2 distribution. Assuming that the country-specific test statistics are independent, the average Cumby

and Huizinga (1992) test still follows a χ2 distribution with the same number of degrees of freedom as its country-specific

counterparts.
12The coefficient on the regressor c − y is a semi-elasticity. For example, for the coefficient of ∆y on c − y, we have
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both ∆y and ∆c is significantly higher during disasters as opposed to normal times, i.e., during disasters

c − y has a positive predictive impact on ∆y and a more negative predictive impact on ∆c. Whereas

during normal times a one percent increase in C
Y implies a next period increase in ∆y of only one basis

point on average (across time and countries) and a next period decrease in ∆c of only three basis points,

these numbers equal twelve, respectively seventeen basis points during disaster episodes. Interpreted

through the lens of the intertemporal budget constraint, these findings suggest that the IBC holds more

strictly and that there is substantially less decoupling between consumption and income during disaster

episodes. This, in turn, points to a reduction in consumption smoothing during disasters.

Table 1: Predictive results: OLS-based mean-group estimates

Baseline results With lagged dependent variable

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.043∗∗∗ -0.014 -0.029 -0.036∗∗ -0.010 -0.023

( 0.014 ) ( 0.016 ) ( 0.022 ) ( 0.016 ) ( 0.016 ) ( 0.023 )

(cit − yit) 0.014 -0.035∗ 0.049∗∗∗ 0.013 -0.038∗ 0.052∗∗∗

( 0.026 ) ( 0.020 ) ( 0.014 ) ( 0.027 ) ( 0.020 ) ( 0.013 )

(cit − yit)dit 0.111∗ -0.136∗ 0.247∗∗∗ 0.115∗ -0.158∗∗ 0.270∗∗∗

( 0.058 ) ( 0.078 ) ( 0.062 ) ( 0.066 ) ( 0.081 ) ( 0.060 )

xit 0.048 0.030 0.096∗∗

( 0.045 ) ( 0.049 ) ( 0.047 )

Cumby-Huizinga AC 2.503 3.902 2.243 2.320 2.502 2.244

[ 0.286 ] [ 0.142 ] [ 0.326 ] [ 0.314 ] [ 0.286 ] [ 0.326 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) (baseline results) and eq.(8) (results with lagged

dependent variable). Estimation is based on panel data for sixteen countries over the period 1870 − 2016. Standard errors are

in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The

Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing

the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags

greater than zero (with maximum lag equal to two).

To conclude, our baseline results suggest that the predictive ability of the consumption-income ratio

for next period’s income and consumption growth rates is significantly higher during disaster episodes.

In the following section, we first conduct a number of robustness checks to more firmly establish our

empirical finding. In Section 4.4, we then check to what extent our results hold up at longer horizons

while in Section 4.5, we investigate whether we can draw the same conclusions when looking at ordinary

recessions. Finally, we look at the predictive impact of the log consumption-income ratio during specific

∂∆y
∂(c−y)

= ∂∆y

∂ ln(C
Y

)
, i.e., the coefficient equals the change in ∆y divided by the percentage change in C

Y
. A coefficient equal

to 0.1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%), then ∆y increases with 0.1 percentage points

(e.g., from 1% to 1.1%). A coefficient equal to 1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%), then

∆y increases with 1 percentage point (e.g., from 0.5% to 1.5%).
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disaster episodes, i.e., we look at major historical disaster periods in Section 4.6 and at the current

Covid-19 pandemic in Section 4.7.

4.3 Robustness checks

This section checks the robustness of our baseline results with respect to the regression equation specifi-

cation, estimation methodology and variables included in the regression equation.

Lagged dependent variable

Our first robustness check consists of looking at a dynamic panel setting where the regression equation

includes a lag of the dependent variable under consideration. Controlling for the lagged dependent variable

is useful to make sure that, when detecting a relationship between cit − yit and the dependent variable

xi,t+1, this relationship is not driven solely by the combination of an autocorrelated xi,t+1 variable and

the possible covariance between cit − yit and xit, i.e., cit − yit only affects xi,t+1 because it is correlated

with xit and xit has predictive power for xi,t+1. To deal with this, we estimate an extended version of

eq.(6) where one lag of the dependent variable is added as a control variable, i.e., we have,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + δixit + εi,t+1 (8)

where xi,t+1 = ∆yi,t+1,∆ci,t+1, (∆yi,t+1 − ∆ci,t+1). We add only one lag of the dependent variable

because, when conducting estimations with more lags, we find that the coefficient estimates on additional

lags are not significant.

Table 1 (columns 5-7) presents the OLS-based mean-group estimates obtained from estimating eq.(8)

using our historical sample.13 While the significance of the impact of the regressors c − y and (c −

y)d is somewhat higher compared to our baseline results, our findings are generally not affected much

when including a lagged dependent variable to the regression equation (which itself enters the regression

equation significantly only in column 7).

Cross-sectional dependence

Our baseline estimations do not control for cross-sectional dependence in the regression error term.14

The latter may be caused by unobserved factors that are common across countries. Examples of common

factors are international business or financial cycles or changes in trade or financial integration that

occur simultaneously in most or all countries of the sample. Ignoring these common factors may imply

13Since T is large, the time series bias in OLS - and, therefore, in MG - that results from including the lagged dependent

variable to the specification can be considered negligible.
14When testing explicitly for cross-sectional dependence in the error terms of our baseline specification, we reject cross-

sectional independence. These results are not reported but are available upon request.
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less efficient estimation and, more seriously, may lead to biased and inconsistent OLS estimates if the

unobserved common factors are correlated with the regressors. To control for unobserved common factors,

we consider the following specification,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + κift+1 + εi,t+1 (9)

where xi,t+1 = ∆yi,t+1,∆ci,t+1, (∆yi,t+1 − ∆ci,t+1) and where the regression equation now includes a

vector of unobserved common factors ft+1 with a corresponding vector of country-specific factor loadings

κi. To estimate eq.(10), we follow Pesaran (2006) and use cross-sectional averages of the dependent

variable and all regressors as proxies for ft+1. After replacing ft+1 by these cross-sectional averages, we

estimate eq.(9) country-by-country using OLS. This is the common correlated effects (CCE) estimator.

The average over the N country-specific CCE estimates is referred to as the common correlated effects

mean group (CCEMG) estimator. For a dynamic setting such as ours, Chudik and Pesaran (2015) propose

to additionally include lagged cross-sectional averages of the dependent variable and the regressors. In

this case, we obtain N country-specific dynamic CCE estimates from which we calulate the dynamic

CCEMG estimator. Standard errors of both mean-group estimators are calculated from eq.(7).

Table 2: Predictive results: CCE-based mean-group estimates

CCEMG estimator dynamic CCEMG estimator

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.066∗∗∗ -0.003 -0.052∗∗ -0.065∗∗∗ -0.020 -0.035

( 0.018 ) ( 0.016 ) ( 0.022 ) ( 0.018 ) ( 0.023 ) ( 0.028 )

(cit − yit) 0.076∗ -0.149∗∗∗ 0.216∗∗∗ 0.047 -0.181∗∗∗ 0.213∗∗∗

( 0.039 ) ( 0.030 ) ( 0.057 ) ( 0.029 ) ( 0.047 ) ( 0.062 )

(cit − yit)dit 0.150∗∗ -0.134∗∗ 0.290∗∗∗ 0.157∗∗ -0.117∗ 0.270∗∗∗

( 0.065 ) ( 0.060 ) ( 0.066 ) ( 0.067 ) ( 0.071 ) ( 0.081 )

Cumby-Huizinga AC 2.465 2.518 3.510 2.639 3.062 4.975

[ 0.292 ] [ 0.284 ] [ 0.173 ] [ 0.267 ] [ 0.216 ] [ 0.083 ]

Notes: Reported are the mean-group results based on static CCE estimation (see Pesaran, 2006) and dynamic CCE estimation

(see Chudik and Pesaran, 2015) of eq.(9). In the former case, we proxy the unobserved common factors ft+1 by adding the

cross-sectional averages of the dependent variable and all regressors into the regression equation. In the latter case, we proxy

the unobserved common factors ft+1 by adding contemporaneous values as well as lags of the cross-sectional averages of the

dependent variable and all regressors into the regression equation. Given the sample size, we add five lags of each cross-sectional

average. We refer to Chudik and Pesaran (2015) for details. Estimation is based on panel data for sixteen countries over the

period 1870−2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%,

5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations

of the error term are nonzero at lags greater than zero (with maximum lag equal to two).

The results of estimating eq.(9) using the standard and the dynamic CCEMG estimator for the sixteen
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economies in our sample over the period 1870−2016 are presented in Table 2. The estimation results are

in accordance with our baseline results as we find that the predictive ability of the consumption-income

ratio for future income and consumption growth rates is significantly higher during disasters, i.e., more

positive for income growth and more negative for consumption growth.

Measurement error

The estimations so far have been conducted under the assumption that the regressors are uncorrelated

with the error term. The lack of autocorrelation implied by the results of the Cumby-Huizinga tests

reported in Table 1, for instance, suggests that the error term εi,t+1 in eqs.(6) or (8) is indeed iid, so

uncorrelated with period t variables. However, if a potential correlation between regressors and error

term renders OLS estimation inconsistent, then the results of autocorrelation tests based on these OLS

results may also be flawed. Hence, more scrutiny is needed here. We focus in particular on the case of

measurement error. Measurement error most likely is present in our historical dataset and may be more

important during macroeconomic disasters as it may be harder to construct GDP and its components

during wars and swift economic declines. It is easy to show that if the variables yit and cit are mea-

sured with noise, this leads to correlation between the regressors and the error term in our regression

specifications.15 In this case, an instrumental variables (IV) approach is necessary. Using our historical

sample, we therefore estimate eq.(6) country-by-country using IV and calculate the mean-group results,

i.e., the average of the country-specific IV estimates across countries. Standard errors of the mean-group

estimates are calculated from eq.(7). Given the high persistence in the log consumption-income ratio, it

makes sense to use lags of the regressors as instruments.16 To make sure our findings are robust across

instrument sets, we consider two instrument sets, one with four lags of each regressor (instrument set

1) and one with two lags of each regressor (instrument set 2). We calculate the Sargan-Hansen overi-

dentifying restrictions statistic that tests the null hypothesis that the instruments are orthogonal to the

error term. We also calculate the Cragg-Donald statistic of instrument strength which tests the null

hypothesis that the instruments are weak, i.e., that the instruments used are not sufficiently correlated

with the potentially endogenous regressors. The latter test is a multivariate extension of the first-stage

15To see this, assume that the observed log income and log consumption variables are given by yt = ȳt+νyt and ct = c̄t+νct

with ȳt and c̄t denoting true log income and true log consumption and with νyt and νct denoting noise terms. If for the

true data we have ∆ȳt+j = ψy
j (c̄t − ȳt) + eyt+j and ∆c̄t+j = ψc

j (c̄t − ȳt) + ect+j with Et(e
y
t+j) = 0 and Et(ect+j) = 0,

then the corresponding empirical specifications based on observed data are given by ∆yt+j = ψy
j (ct − yt) + εyt+j and

∆ct+j = ψc
j (ct − yt) + εct+j where εyt+j = eyt+j + ∆νyt+j +ψy

j ν
y
t −ψy

j ν
c
t and εct+j = ect+j + ∆νct+j +ψc

jν
y
t −ψc

jν
c
t . As such,

there is correlation between the regressor ct − yt and the error terms εyt+j and εct+j (irrespective of the horizon j > 0).
16The OLS-based mean-group AR parameter of an AR(1) process estimated for cit − yit equals 0.918 (with standard

error 0.020). While persistent, the variable cit − yit does not contain a unit root, however, as can be concluded from the

panel unit root tests reported in Appendix C.
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F statistic used to evaluate instrument strength in the case of one endogenous regressor.

Table 3: Predictive results: IV-based mean-group estimates

Instrument set 1 Instrument set 2

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.039∗∗ 0.004 -0.043 -0.034∗ 0.024 -0.058

( 0.016 ) ( 0.021 ) ( 0.030 ) ( 0.018 ) ( 0.031 ) ( 0.037 )

(cit − yit) 0.000 -0.026 0.026∗∗∗ -0.002 -0.025 0.023∗∗

( 0.021 ) ( 0.021 ) ( 0.010 ) ( 0.023 ) ( 0.021 ) ( 0.011 )

(cit − yit)dit 0.195∗∗∗ -0.185∗∗ 0.380∗∗∗ 0.270∗∗ -0.210∗∗ 0.480∗∗∗

( 0.072 ) ( 0.092 ) ( 0.082 ) ( 0.113 ) ( 0.107 ) ( 0.095 )

Cumby-Huizinga AC 2.735 3.105 1.839 3.004 2.443 2.076

[ 0.255 ] [ 0.212 ] [ 0.399 ] [ 0.223 ] [ 0.295 ] [ 0.354 ]

Sargan-Hansen OR 10.335 9.573 9.065 5.310 4.470 3.895

[ 0.324 ] [ 0.386 ] [ 0.431 ] [ 0.150 ] [ 0.215 ] [ 0.273 ]

Cragg-Donald WI 9.577 15.537

Notes: Reported are the mean-group results based on IV estimation of eq.(6). Estimation is based on panel data for sixteen

countries over the period 1870 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate

significance at the 10%, 5% and 1% level respectively. Instrument set 1 consists of a constant and lags one to four of the

regressors dit, (cit − yit) and (cit − yit)dit. Instrument set 2 consists of a constant and lags one to two of the regressors dit,

(cit − yit) and (cit − yit)dit. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of

the error term are nonzero at lags greater than zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is

the average of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint

validity of the instruments used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-

specific Cragg-Donald weak instrument test statistics (see Cragg and Donald, 1993). Stock and Yogo (2004) in their Table 1

provide the 5% critical values for the null hypothesis that the bias of the IV estimator relative to the bias of the OLS estimator

exceeds the threshold of x%. Assuming all three regressors in eq.(6) are measured with noise and are therefore potentially

endogenous, these critical values are 10.01 (for x = 10%), 5.90 (for x = 20%) and 4.42 (for x = 30%) for instrument set 1 (which

contains twelve instruments excluding the constant) and 7.77 (for x = 10%), 5.35 (for x = 20%) and 4.40 (for x = 30%) for

instrument set 2 (which contains six instruments excluding the constant).

The results presented in Table 3 confirm our baseline findings that macroeconomic disasters magnify

the predictive impact of the log consumption-income for both future income and consumption growth

rates. We further note that the magnitude and significance of the estimates is generally higher compared

to the baseline results and that our findings are robust across both instrument sets. The reported statistics

support the validity and quality of the instruments used. First, based on the Sargan-Hansen OR test,

we cannot reject orthogonality of instruments and error term.17 Second, based on the Cragg-Donald WI

17Establishing the validity of the instrument sets through this test is important as this validity is not necessarily guaranteed

a priori. For example, if measurement error in cit or yit takes the form of an autocorrelated MA process instead of an iid

process, then some lagged instruments (e.g., for period t − 1 in case of an MA(1) process) may be invalid and it may be

necessary to start with deeper lags (e.g., starting from t− 2 in case of an MA(1) process). This typically is detrimental to

instrument quality.
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test, we do reject the null hypothesis that the used instruments are weak.18

Alternative disaster dummy

Our results so far have been based on disaster dummies constructed from the consumption and GDP

disaster episodes identified by Barro and Ursúa (2008). More recently, Nakamura et al. (2013) estimate a

model of consumption disasters that generates endogenous estimates of the timing and length of disasters.

We use the start and end dates of their identified disaster episodes (see Table 2 in Nakamura et al., 2013)

to construct an alternative disaster dummy.

Table 4 then presents our predictability results when estimating eqs.(6) and (8) with this alternative

dummy variable for d. We report results both without and with a lagged dependent variable included in

the equation as, in contrast to the results obtained with our standard disaster dummy which are reported

in Table 1, the lagged dependent variable is now significant in all regressions. The reported results - in

particular, those obtained from the equation that includes the lagged dependent variable - confirm our

main finding that the predictive power of c− y is higher for both future income and consumption growth

rates during macro disasters.

Table 4: Predictive results using an alternative disaster dummy: OLS-based mean-group estimates

Without lagged dependent variable With lagged dependent variable

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.022∗∗ 0.017 -0.038∗∗ -0.016 0.025∗ -0.039∗∗

( 0.009 ) ( 0.014 ) ( 0.015 ) ( 0.010 ) ( 0.014 ) ( 0.018 )

(cit − yit) -0.026∗∗∗ -0.054∗∗∗ 0.028 -0.022∗∗ -0.048∗∗∗ 0.025∗∗

( 0.009 ) ( 0.018 ) ( 0.018 ) ( 0.011 ) ( 0.017 ) ( 0.012 )

(cit − yit)dit 0.196∗∗∗ -0.080 0.276∗∗∗ 0.196∗∗∗ -0.131∗∗ 0.311∗∗∗

( 0.071 ) ( 0.069 ) ( 0.037 ) ( 0.071 ) ( 0.067 ) ( 0.041 )

xit 0.149∗∗∗ 0.120∗∗∗ 0.110∗∗

( 0.038 ) ( 0.043 ) ( 0.046 )

Cumby-Huizinga AC 3.340 3.329 2.066 2.270 3.207 2.225

[ 0.188 ] [ 0.189 ] [ 0.356 ] [ 0.321 ] [ 0.201 ] [ 0.329 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) (results without lagged dependent variable) and

eq.(8) (results with lagged dependent variable) using a disaster dummy dit based on disasters identified by Nakamura et al.

(2013). Estimation is based on panel data for sixteen countries over the period 1870−2016. Standard errors are in parentheses,

p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga

test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis

of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero

(with maximum lag equal to two).

18Stock and Yogo (2004) in their Table 1 provide the 5% critical values for the null hypothesis that the bias of the IV

estimator relative to the bias of the OLS estimator exceeds the threshold of x% (see the notes to Table 3 for the critical

values).
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Disposable income

The baseline results are based on estimations that use real GDP as a proxy for income. Theoretically,

using an after-tax measure of income is more appropriate but historical data on disposable income are

not widely available. Piketty and Zucman (2014) provide historical data on national income after taxes

which are available for only four countries out of the sixteen considered when using GDP data.19 These

countries are France, Germany, the UK and the US.

Table 5: Predictive results using disposable income: OLS-based mean-group estimates

Disposable income GDP (for comparison)

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.015 -0.026∗∗∗ 0.010 -0.040∗ -0.029∗∗∗ -0.012

( 0.021 ) ( 0.003 ) ( 0.020 ) ( 0.021 ) ( 0.003 ) ( 0.023 )

(cit − yit) -0.013 -0.085∗∗∗ 0.072∗∗ -0.016∗ -0.050∗∗∗ 0.034∗∗

( 0.016 ) ( 0.031 ) ( 0.036 ) ( 0.009 ) ( 0.018 ) ( 0.015 )

(cit − yit)dit 0.173∗∗ 0.047 0.125∗∗ 0.173∗∗∗ -0.006 0.179∗∗∗

( 0.080 ) ( 0.069 ) ( 0.064 ) ( 0.046 ) ( 0.065 ) ( 0.021 )

Cumby-Huizinga AC 4.274 3.501 3.905 3.939 4.308 3.160

[ 0.118 ] [ 0.174 ] [ 0.142 ] [ 0.140 ] [ 0.116 ] [ 0.206 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) using log per capita real disposable national

income for yit. Estimation is based on panel data for four countries over the period 1870 − 2016. The results for this sample

when using per capita real GDP for yit are added for comparison. Standard errors are in parentheses, p-values are in square

brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average

of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of no autocorrelation

against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag

equal to two).

In Table 5 (columns 2-4), we therefore report the OLS-based mean-group estimates obtained from

estimating eq.(6) with y now calculated as the log of per capita real national disposable (after-tax) income.

For reasons of comparison, the table also reports the mean-group estimates obtained from this reduced

sample of four countries when using our standard variable for y, namely the log of per capita real GDP

(columns 5-7). We note that the results obtained for both measures of y are quite similar. The results

for xi,t+1 = ∆yi,t+1 and xi,t+1 = (∆yi,t+1 − ∆ci,t+1) confirm our baseline findings, i.e., during macro

19The website is http://piketty.pse.ens.fr/fr/capitalisback. The data used are in the country excel files, Table 1, columns

9 and 14. From the reported per capita real national income series and the reported series for the ratio of national income

after taxes to national income, a series is constructed for per capita real disposable national income (=national income

minus taxes plus transfers). Note that, in line with our consumption data (see Section 4.1), we express this series as an

index with baseyear 2005 = 100 (see also Figure 2 above). The data used are available uninterruptedly from 1870 onward.

One exception is the UK where the ratio of after-tax national income to national income is only available from 1948 onward.

Here, we extrapolate the 1948 value of this ratio to the period 1870 − 1947. Note further that we update the calculated

historical per capita real disposable income series from 2011 to 2016 using data from OECD Economic Outlook.
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disasters, the predictive power of c− y for ∆y and ∆y −∆c is higher. Contrary to our baseline results,

however, we do not find a significantly higher predictive impact of c− y on ∆c. Importantly, this result

is obtained for both measures of income and therefore cannot be attributed to our use of an alternative

income measure. Rather, it stems from the low N dimension of the panel used here (i.e., N = 4) which

can make the mean-group results less stable and driven by outliers.20

4.4 Longer horizons

The intertemporal budget constraint discussed in Section 3 implies that the current log consumption-

income ratio may have predictive power, not only for next period’s income and consumption growth rates,

but also for income and consumption growth rates further into the future. In this section, we therefore

investigate how macro disasters affect the predictive power of cit − yit at longer horizons. To this end,

we consider our baseline specification at longer horizons, i.e., we estimate,

xi,t+j = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + εi,t+j (10)

with horizon j and where xi,t+j = ∆yi,t+j ,∆ci,t+j , (∆yi,t+j −∆ci,t+j).

Table 6: Predictive results at longer horizons: OLS-based mean-group estimates

Horizon j = 2 Horizon j = 3

Dependent variable xi,t+j Dependent variable xi,t+j

∆yi,t+j ∆ci,t+j (∆yi,t+j −∆ci,t+j) ∆yi,t+j ∆ci,t+j (∆yi,t+j −∆ci,t+j)

dit -0.024∗ 0.001 -0.025 -0.010 0.002 -0.012

( 0.012 ) ( 0.018 ) ( 0.022 ) ( 0.011 ) ( 0.017 ) ( 0.011 )

(cit − yit) -0.013 -0.038∗∗ 0.025∗∗∗ -0.019∗ -0.032∗∗ 0.013∗

( 0.012 ) ( 0.015 ) ( 0.009 ) ( 0.010 ) ( 0.015 ) ( 0.008 )

(cit − yit)dit 0.143∗∗ -0.094∗ 0.237∗∗∗ 0.022 -0.116∗∗ 0.138∗∗∗

( 0.057 ) ( 0.054 ) ( 0.048 ) ( 0.048 ) ( 0.054 ) ( 0.031 )

Cumby-Huizinga AC 3.438 3.893 2.483 3.297 4.071 3.044

[ 0.329 ] [ 0.273 ] [ 0.478 ] [ 0.509 ] [ 0.396 ] [ 0.550 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(10) for horizons j = 2 and j = 3. Estimation

is based on panel data for sixteen countries over the period 1870 − 2016. Standard errors are in parentheses, p-values are in

square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the

average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests. For j = 2, we test the null hypothesis of

autocorrelation of either order zero or order one against the alternative that the autocorrelations of the error term are nonzero

at lags greater than one (with maximum lag equal to three). For j = 3, we test the null hypothesis of autocorrelation of either

order zero, order one or order two against the alternative that the autocorrelations of the error term are nonzero at lags greater

than two (with maximum lag equal to four).

20Specifically, the insignificant mean-group estimate for the coefficient of ∆c on (c − y)d is driven by the outlier result

for Germany for which the estimate for γi in this regression is positive rather than negative. To see this for the GDP-

based result, we refer to Appendix D which reports the country-specific estimates of βi and γi that underlie our baseline

mean-group results.

20



The OLS-based mean-group estimates obtained from estimating eq.(10) for j = 2 and j = 3 are

reported in Table 6. Compared to the baseline results reported in Table 1, the coefficients on our

regressor of interest (c − y)d are generally somewhat smaller (in absolute value). With the exception

of the impact of (c − y)d on ∆y at horizon j = 3, they are all significant. We note that the impact of

(c − y)d is significant until j = 4 for ∆c and until j = 5 for ∆y −∆c (results unreported but available

upon request). Hence, while significant for j > 1, the predictive ability of c − y during disasters clearly

decreases with the horizon j.

In sum, in line with the validity of the IBC, we also find evidence of the predictive power of the log

consumption-income ratio - and of its different impact during disasters - at horizons larger than one.

4.5 What about ordinary recessions?

We now investigate whether our results hold, not only for disasters, but also for more conventional

recessions. To this end, we conduct estimations using recession dummies instead of the disaster dummies

considered previously. To focus on ordinary recessions, we restrict our sample to the period 1960− 2016

with the same N = 16 countries considered in the analysis of historical disasters. Over this period,

almost no disasters of the type defined by Barro and Ursúa (2008) have occurred, while a large number

of ordinary recessions have taken place. We calculate an annual recession dummy drec from the OECD

Composite Leading Indicator (CLI) of activity which provides monthly data on recession dates - i.e.,

turning points - for each country in our sample.21 The other data used in the estimations are those used

in the baseline regressions, albeit taken over a smaller sample period.

In Table 7, we report OLS-based mean-group estimates obtained when estimating eq.(6) with drec

for x = ∆y and x = ∆c (we leave out the results for x = (∆y − ∆c) to save space). For these results,

however, we cannot reject the null hypothesis of no autocorrelation based on the Cumby-Huizinga test.

As such, we also look at the results obtained when estimating eq.(8) where the lagged dependent variable

is included as a regressor. By adding this regressor, the autocorrelation issue can be tackled to some

extent as can be seen from the improved autocorrelation tests. The reported results suggest that, during

ordinary recessions, the predictive ability of c−y is significantly higher for ∆y but not for ∆c. The impact

of c− y on ∆y, while in accordance with the results found for ∆y in disasters, is quantitatively smaller,

however, and less robust. An example of this lack of robustness is given by the CCEMG estimates that

we also report in the table. The CCEMG estimator corrects for cross-sectional dependence as detailed

21We first calculate a monthly recession dummy per country which is set to one for the months after the peak and up to

and including the trough. A quarterly recession dummy for that country then equals one if the monthly dummy equals one

during at least two months of the quarter under consideration. An annual recession dummy for that country then equals

one if the quarterly dummy equals one during at least two quarters of the year under consideration.
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above. Based on these CCEMG estimates, we do not find an increase in the predictive ability of c − y

during ordinary recessions, neither for ∆c nor for ∆y.22

Hence, while our previous results show that the consumption-income ratio has more predictive ability

for future income and consumption growth rates during disaster episodes, we cannot robustly draw the

same conclusion when looking at ordinary recessions. This is not entirely surprising given that Figure

1 shows that the log consumption-income ratios are relatively stable over the period 1960 − 2016, even

during severe recessions like the Great Recession (2007-2009).

Table 7: Predictive results for ordinary recessions: OLS-and CCE-based mean-group estimates

Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1

OLS CCE OLS CCE

(1) (2) (1) (2)

drecit -0.015∗∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.004∗∗∗ -0.007∗∗∗

( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.002 ) ( 0.001 ) ( 0.002 )

(cit − yit) 0.041 0.054 0.005 -0.020 -0.045 -0.089∗∗∗

( 0.046 ) ( 0.035 ) ( 0.023 ) ( 0.047 ) ( 0.031 ) ( 0.022 )

(cit − yit)drecit 0.049∗∗ 0.062∗∗ 0.024 0.011 0.037 0.002

( 0.024 ) ( 0.026 ) ( 0.025 ) ( 0.033 ) ( 0.030 ) ( 0.032 )

xit 0.270∗∗∗ 0.421∗∗∗

( 0.054 ) ( 0.052 )

Cumby-Huizinga AC 7.939 3.421 4.206 9.427 3.039 4.103

[ 0.019 ] [ 0.181 ] [ 0.122 ] [ 0.009 ] [ 0.219 ] [ 0.129 ]

Notes: Reported are the mean-group results based on either OLS or static CCE estimation of eq.(6) or eq.(8) with either

xi,t+1 = ∆yi,t+1 or xi,t+1 = ∆ci,t+1 and with recession dummy drecit instead of disaster dummy dit. The recession dummy drecit

is constructed from the OECD Composite Leading Indicator (CLI) of activity. Estimation is based on panel data for sixteen

countries over the period 1960 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate

significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’

Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that

the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag equal to two).

4.6 Major historical disasters

In this section, we investigate whether all disaster episodes magnify the predictive impact of the log

consumption-income ratio or whether only particular episodes do so. To look at this issue, we investigate

the separate impact of the major disaster episodes that occurred during the sample period according to

Barro and Ursúa (2008), i.e., World War I (WW1), the Spanish flu pandemic of the late 1910s/early

1920s (PAN), the Great Depression (GRD) and World War II (WW2). Hence, we estimate predictive

22This is also true when estimating the regressions with drec using IV (results unreported but available upon request).
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regression equations of the following form,

xi,t+1 = αid
j
it + α−ji d−jit + βi(cit − yit) + γi(cit − yit)djit + γ−ji (cit − yit)d−jit + εi,t+1 (11)

where, as before, we have xi,t+1 = ∆yi,t+1, xi,t+1 = ∆ci,t+1 or xi,t+1 = (∆yi,t+1−∆ci,t+1). We estimate

the equation per major disaster episode j (with j = WW1, PAN,GRD,WW2) while controlling for all

other disasters. To this end, we include the specific disaster dummy variable dj that equals one during

disaster period j, but also a dummy variable d−j that takes on the value of one when disasters other

than j occur, i.e., the dummy d−j equals d− dj where d is the disaster dummy used in previous sections.

Both dummies dj and d−j enter the equation interacted with the log consumption-income ratio and

also, as before, separately. As not all specific disasters occur in all sixteen countries of our sample, the

estimations are conducted with a different number of countries for each particular disaster episode j. We

refer to Appendix B for an overview of the exact dates of the major disaster episodes in each country.

In particular, estimation is based on panel data for thirteen countries when j = WW1, for five countries

when j = PAN , for eight countries when j = GRD and for fifteen countries when j = WW2.23

In Table 8, we report mean-group estimates obtained from estimating eq.(11) for every major disaster

episode j. To control for measurement error, we report not only OLS-based but also IV-based estimates

(see Section 4.3 above for details). Results are reported only for xi,t+1 = (∆yi,t+1 −∆ci,t+1) because of

space considerations and because the results obtained for ∆yi,t+1 and ∆ci,t+1 separately are considerably

less precise.24 From looking at the results in the table, we note that the largest disasters also tend to

have the largest impact on the predictive ability of the log consumption-income ratio, i.e., the estimates

on the regressor (c − y)dj (with dj the dummy for the major disaster episode j under scrutiny) are

generally larger in magnitude than those on the regressor (c− y)d−j (with d−j the dummy for the other

major disasters but also all the minor ones). Furthermore, we find that for all major disasters considered

(with the exception of j = PAN in the IV case), the predictive power of the log consumption-income

ratio becomes significantly higher during the occurrence of these major crises. Hence, the reduction

in decoupling between consumption and income and the implied reduction in consumption smoothing

is not limited to one particular disaster type but seemingly characterizes every major crisis type that

23We note that since estimations occur at the country level, a country can only be included in the panel estimation if

both dummies dj and d−j are defined for that country (i.e., if both dummies take on the value of one at least once over

the sample period for that country). For example, even though for j = WW2 the dummy variable dj is defined for all

sixteen countries, we cannot include Japan in the sample as the dummy d−j is not defined for Japan, i.e., the only disaster

identified by Barro and Ursúa (2008) for Japan is WW2. Hence, for j = WW2, we have N = 15 instead of N = 16. If we

do not include the dummy d−j in the estimations, we can add Japan to the sample when j = WW2 and we find that the

results with respect to the impact of WW2 on the predictive impact of c− y are very similar to those reported in Table 8.

These results are not reported, but are available upon request.
24These results are not reported but are available from the authors upon request.
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we consider in our historical dataset. Finally, we acknowledge that IV estimation does not necessarily

improve on OLS estimation here. While a priori it can be expected that the IV-based estimates control

for measurement error as detailed in Section 4.3 above, we find, based on the reported Cragg-Donald

statistics, that the instruments used in these estimations are not very strong.

Table 8: Predictive results for major disaster episodes: OLS- and IV-based mean-group estimates

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

OLS IV

Disaster episode j Disaster episode j

WW1 PAN GRD WW2 WW1 PAN GRD WW2

djit -0.178 -0.137∗∗∗ -0.146∗∗∗ -0.049 -0.637 0.016 -0.241∗ -0.048

( 0.123 ) ( 0.041 ) ( 0.056 ) ( 0.035 ) ( 0.579 ) ( 0.208 ) ( 0.140 ) ( 0.039 )

d−jit -0.056∗∗∗ -0.029 -0.019 -0.093∗∗∗ -0.056∗∗∗ -0.006 -0.046 -0.106∗∗∗

( 0.019 ) ( 0.031 ) ( 0.018 ) ( 0.025 ) ( 0.021 ) ( 0.055 ) ( 0.029 ) ( 0.026 )

(cit − yit) 0.057∗∗∗ 0.010 0.064∗∗∗ 0.050∗∗∗ 0.046∗∗∗ 0.109 0.020 0.040∗∗

( 0.016 ) ( 0.006 ) ( 0.023 ) ( 0.014 ) ( 0.017 ) ( 0.096 ) ( 0.025 ) ( 0.016 )

(cit − yit)djit 0.718∗∗∗ 0.615∗∗∗ 0.529∗∗∗ 0.487∗∗∗ 1.470∗ 0.192 0.848∗∗∗ 0.338∗∗∗

( 0.210 ) ( 0.089 ) ( 0.129 ) ( 0.057 ) ( 0.793 ) ( 0.558 ) ( 0.294 ) ( 0.098 )

(cit − yit)d−jit 0.245∗∗∗ 0.268∗∗∗ 0.187∗∗∗ 0.324∗∗∗ 0.330∗∗∗ 0.044 0.362∗∗∗ 0.342∗∗∗

( 0.077 ) ( 0.080 ) ( 0.069 ) ( 0.087 ) ( 0.123 ) ( 0.085 ) ( 0.096 ) ( 0.094 )

Cumby-Huizinga AC 1.735 3.213 1.507 2.543 1.910 3.588 1.533 2.196

[ 0.420 ] [ 0.201 ] [ 0.471 ] [ 0.280 ] [ 0.385 ] [ 0.166 ] [ 0.465 ] [ 0.334 ]

Sargan-Hansen OR 13.325 18.253 13.859 14.344

[ 0.577 ] [ 0.250 ] [ 0.536 ] [ 0.500 ]

Cragg-Donald WI 3.963 0.588 2.643 3.693

Notes: Reported are the mean-group results based on OLS and IV estimation of eq.(11). The dummy variable dj (with j =

WW1, PAN,GRD,WW2) equals one during the considered major disaster episode (World War I, Spanish flu pandemic, Great

Depression, World War II). We refer to Appendix B for details on the exact dates of these disasters. The dummy d−j takes on the

value of one when disasters other than j occur (i.e., it equals d− dj where d is the general disaster dummy used in previous sections).

Estimation is based on panel data for thirteen countries (WW1), five countries (PAN), eight countries (GRD) or fifteen countries

(WW2) over the period 1870 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance

at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation test, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the

error term are nonzero at lags greater than zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is the average

of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint validity of the

instruments used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-specific Cragg-Donald

weak instrument test statistics (see Cragg and Donald, 1993). For the critical values, we refer to the notes to Table 3 and to Stock

and Yogo (2004). The instrument set used for IV estimation consists of a constant and lags one to four of the regressors of eq.(11).

4.7 The Covid-19 pandemic

We now take a look at the impact of the Covid-19 pandemic, a contemporaneous macroeconomic disaster,

on the predictive ability of the log consumption-income ratio. To this end, we use quarterly data over
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the period 1995Q1 − 2021Q4 for twenty industrial economies, i.e., N = 20.25 In line with our previous

estimations, our specification is given by,

xi,t+1 = αidt + βi(cit − yit) + γi(cit − yit)dt + εi,t+1 (12)

with dependent variable xi,t+1 and where dt denotes the Covid-19 dummy which is set to one over

the period 2020Q1 − 2021Q4 for all countries. For cit, we use the log of per capita real private final

consumption expenditures, while for yit we use the log of per capita real GDP.26

The OLS-based mean-group results of estimating eq.(12) are presented in Table 9 (column ’No lag

dep. var.’). As in the previous subsection, results are reported only for xi,t+1 = (∆yi,t+1 − ∆ci,t+1)

because of space considerations and because the results obtained for ∆yi,t+1 and ∆ci,t+1 separately

are considerably less precise. In line with our previous discussion and findings, we observe that this

period’s log consumption-income ratio c− y has a positive impact on next period’s income-consumption

differential ∆y−∆c and that this predictive ability is significantly higher during the Covid-19 pandemic.

This suggests that also during the Covid-19 pandemic there is less decoupling between consumption

and income which points to a reduction in consumption smoothing. The reported results are robust to

adding the lagged dependent variable as a regressor to eq.(12) (column ’Lag dep. var.’), to detrending

the predictor variable c−y (column ’Detrended c−y’), and to using log per capita real disposable income

instead of log per capita real GDP as a proxy for y (column ’Disp. inc.’).27,28

25These are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, the Nether-

lands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the UK and the US.
26Real private final consumption expenditures and real GDP are taken from OECD Economic Outlook (No.110) and we

calculate per capita measures using quarterly population data from Datastream.
27In contrast to what we find for the historical period 1870 − 2016 (see Appendix C), panel unit root tests applied to

the variable c− y over the period 1995Q1 − 2021Q4 do not always reject that c− y is stochastically trended. To deal with

this, we consider c − y in deviation from its stochastic trend c− y where the latter is approximated by a twenty-quarter

moving average as c− y = 1
20

∑19
j=0(c−j − y−j). Our findings are also robust if instead we proxy the stochastic trend using

a moving average calculated over either ten or forty quarters.
28Data for nominal disposable income of households and non-profit institutions serving households are taken from OECD

Economic Outlook (No.110) and are available for seven countries, i.e., Australia, Canada, France, Germany, Japan, the UK

and the US. They are put in per capita real terms using the deflator of private final consumption expenditures from OECD

Economic Outlook and population data from Datastream.

25



Table 9: Predictive results for the Covid-19 pandemic: OLS-based mean-group estimates

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

Excluding ordinary recessions Including ordinary recessions

(1) (2) (3) (4) (5) (6)

No lag dep. var. Lag dep. var. Detrended c− y Disp. inc. No lag dep.var. Lag dep. var.

dt 0.624∗∗∗ 0.641∗∗∗ 0.030∗∗ 0.175∗∗∗ 0.708∗∗∗ 0.691∗∗∗

( 0.082 ) ( 0.082 ) ( 0.014 ) ( 0.023 ) ( 0.082 ) ( 0.078 )

(cit − yit) 0.044∗∗∗ 0.042∗∗∗ 0.050∗∗∗ 0.161∗∗∗ 0.039∗∗∗ 0.033∗∗∗

( 0.009 ) ( 0.009 ) ( 0.012 ) ( 0.022 ) ( 0.011 ) ( 0.010 )

(cit − yit)dt 0.903∗∗∗ 0.926∗∗∗ 0.873∗∗∗ 1.031∗∗∗ 1.012∗∗∗ 0.988∗∗∗

( 0.095 ) ( 0.100 ) ( 0.097 ) ( 0.063 ) ( 0.097 ) ( 0.101 )

xit 0.014 -0.032

( 0.045 ) ( 0.045 )

drecit 0.007 0.010

( 0.011 ) ( 0.010 )

(cit − yit)drecit 0.016 0.022

( 0.018 ) ( 0.017 )

Cumby-

Huizinga AC

4.247 3.144 3.619 1.517 4.689 2.870

[ 0.120 ] [ 0.208 ] [ 0.164 ] [ 0.468 ] [ 0.096 ] [ 0.238 ]

Notes: Reported are the mean-group results based on OLS estimation of eqs.(12) and (13). dt denotes the Covid-19 dummy

which equals one over the period 2020Q1 − 2021Q4. drecit denotes the recession dummy which is constructed from the OECD

Composite Leading Indicator (CLI) of activity. The first four columns present the results of the estimation of eq.(12). Column

’No lag dep. var.’ presents the baseline results of the estimation of eq.(12). In column ’Lag dep. var.’, the first lag of the

dependent variable is added as a regressor to eq.(12). In column ’Detrendfed c−y’, the detrended log consumption-income ratio

is used for c−y in eq.(12). In column ’Disp. inc.’, log per capita real disposable income is used for y in eq.(12) instead of log per

capita real GDP. Both final columns present the results of the estimation of eq.(13) where in column ’Lag dep. var.’ the first lag

of the dependent variable is added as a regressor to eq.(13). Estimation is based on panel data for twenty countries (columns 2,

3 and 4), seven countries (column 5) or nineteen countries (columns 6 and 7) over the period 1995Q1−2020Q4. Standard errors

are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The

Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing

the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags

greater than zero (with maximum lag equal to two).

As before, we ask ourselves whether the increased predictive ability of the log consumption-income

ratio during the Covid-19 pandemic is specific to this disaster episode or whether it occurs also during

more conventional recessions that have taken place over the considered sample period. To investigate

this, we estimate,

(∆yi,t+1 −∆ci,t+1) = αidt + βi(cit − yit) + γi(cit − yit)dt + αreci drecit + γreci (cit − yit)drecit + εi,t+1 (13)

where, as before, dt is the common Covid-19 dummy and where drecit denotes the country-specific recession

dummy. The latter is calculated from the OECD Composite Leading Indicator (CLI) of activity which
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provides monthly data on recession dates - i.e., turning points - for each country in our sample.29 If

ordinary recessions also increase the predictive power of the log consumption-income ratio, we should not

only find a significantly positive impact of the regressor (cit−yit)dt but also of the regressor (cit−yit)drecit .

The OLS-based mean-group results of the estimation of eq.(13) - without and also with the inclusion of the

lagged dependent variable - are presented in the final two columns of Table 9. In line with the findings for

annual historical data reported and discussed in Section 4.5 above, there is not much evidence to suggest

that more conventional recessions have an impact on the predictive ability of the consumption-income

ratio, i.e., the coefficient on the regressor (cit−yit)drecit is never significantly different from zero. As such,

in terms of its impact on the long-run IBC-implied relationship between consumption and income, the

Covid-19 pandemic is more akin to historical disaster episodes and has less in common with more typical

recessions (including the Great Recession of 2007− 2009).

5 Theoretical interpretation of the results

How do our findings of increased predictive ability of the consumption-income ratio for income and

consumption growth rates during disasters relate to consumption theory? To answer this question, we

impose additional structure on the predictive relationship obtained from the IBC by specifying consumer

behavior.

5.1 Consumption growth

We consider a savers-spenders set-up where one consumer type is optimizing intertemporally and the

other type follows a rule-of-thumb and consumes current income in every period (see e.g., Campbell and

Mankiw, 1989; Mankiw, 2000). Mankiw (2000) suggests that rule-of-thumb consumer behavior may stem

both from consumers who deviate from rational expectations and/or from consumers who face a binding

liquidity constraint. This gives the following expression for total consumption growth,

∆ct+1 = λ∆yt+1 + (1− λ)∆c∗t+1 (14)

where λ reflects the fraction of income going to rule-of-thumb consumers (with 0 ≤ λ < 1) and where

∆c∗t+1 is the consumption growth rate of intertemporally optimizing consumers. The latter is derived in

Appendix A and is given by,

∆c∗t+1 = −1

θ
δ +

1

θ
Etrt+1 +

1

θ
Etνt+1 + ωt+1 (15)

29See footnote 21 above for details. Since these data are missing for New Zealand in 2020 and 2021, estimations with the

recession dummy - i.e., both final columns of Table 9 - are based on a panel of nineteen countries instead of twenty.
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where θ > 0 is the coefficient of relative risk aversion, δ > 0 is the rate of time preference and rt+1 is the

real rate of return on wealth. The term ωt+1 ≡ 1
θ [(rt+1 − Etrt+1) + (νt+1 − Etνt+1)] with Et(ωt+1) = 0

reflects the part of consumption growth related to the arrival of new information. The component 1
θEtrt+1

is related to intertemporal substitution in consumption in response to expected changes in the rate of

return, i.e., a period t expected increase (resp. decrease) in the rate of return of period t + 1 implies

an increase (resp. decrease) in consumption growth from t to t + 1 as consumption is shifted from t

to t + 1 (resp. from t + 1 to t). The component 1
θEtνt+1 is the part of consumption growth of the

optimizing consumer that reflects a precautionary saving motive, i.e., the precautionary component (see

e.g., Parker and Preston, 2005). As precautionary saving reduces period t consumption and augments

period t + 1 consumption, thereby raising consumption growth from t to t + 1, we show in Appendix A

that Etνt+1 > 0.

Our model for consumption growth nests several consumption models considered in the literature.

For rt+1 = δ (∀t), λ = 0 and Etνt+1 = 0 (∀t), we obtain the log-linear version of the standard permanent

income model with log consumption following a random walk (see e.g., Campbell and Mankiw, 1989). We

then have ct+1 = ct + ωt+1 with Et(ωt+1) = 0. In this setting, there is maximal consumption smoothing

as consumers expect the same consumption in every period, i.e., we have Et(ct+1) = ct (∀t). The log-

linear permanent income model with intertemporal substitution in consumption in response to return

variation is obtained for λ = 0 and Etνt+1 = 0 (∀t) (see e.g., Hall, 1988). If these models are extended

with rule-of-thumb consumers and we therefore only restrict our set-up by imposing Etνt+1 = 0 (∀t), we

obtain a standard savers-spenders model (see e.g., Campbell and Mankiw, 1989; Mankiw, 2000). Finally,

for λ = 0, we have the consumption growth rate obtained from a typical buffer stock model of saving (see

Carroll, 1992; Parker and Preston, 2005).

5.2 The consumption-income ratio

Taking into account consumer behavior, the log consumption-income ratio can be obtained by substituting

eqs.(14) and (15) into the IBC given by eq.(1) to obtain,

ct − yt = (1− λ)

∞∑
j=1

ρj
[
Et(∆yt+j) +

1

θ
δ − 1

θ
Et(rt+j)−

1

θ
Et(νt+j)

]
(16)

From this equation, we note that, since 0 ≤ λ < 1, the consumption-income ratio depends on expected

future income changes, on expected future rates of return on wealth and on the expected future pre-

cautionary components. We note that under the standard (log-linearized) permanent income model for

which we have rt+1 = δ (∀t), λ = 0 and Etνt+1 = 0 (∀t), eq.(16) reduces to ct − yt =
∑∞
j=1 ρ

jEt(∆yt+j)

which is the log-linear version of Campbell (1987)’s ’saving for a rainy day’ expression, i.e., if income is
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expected to fall, the consumer saves. With respect to the other determinants of ct − yt, we note that it

is negatively affected by expected rates of return Etrt+j and by the expected precautionary components

Etνt+j , i.e., saving increases when Etrt+j increases (i.e., intertemporal substitution) and when Etνt+j

increases (i.e., precautionary saving).

5.3 Implications for predictability

With respect to our findings of Section 4, as it turns out, both deviations from the standard (log-linearized)

permanent income model with time-varying returns discussed above - i.e., rule-of-thumb consumption

and precautionary saving - can explain our documented changes in the predictive impact of the log

consumption-income ratio for income and consumption growth rates during disasters.

First, a reduction in consumption smoothing can occur because of an increase in rule-of-thumb con-

sumer behavior. This is captured by the parameter λ where an increase in λ implies - all else constant -

a more positive predictive impact of ct − yt on future income growth rates ∆yt+j . This can immediately

be observed from eq.(16) above by multiplying both sides of the equation by 1
1−λ so that future income

growth rates then are written as a function of the current log consumption income ratio ct − yt times

1
1−λ . An increases in λ, however, cannot explain the observed more negative impact of ct − yt on future

consumption growth rates ∆ct+j . Indeed, a rise in λ, by increasing the positive predictive impact of

ct − yt on ∆yt+j , tends to also lead to a less negative or even positive predictive impact of ct − yt on

future ∆ct+j as, from eq.(14), ∆ct+1 is driven by ∆yt+1.30

Second, a reduction in consumption smoothing can occur because of an increase in the precautionary

component Etνt+1 of the optimizing consumers. An increase in Etνt+1 leads - all else constant - to a more

negative predictive impact of ct − yt for future consumption growth rates ∆ct+j . To see this, suppose

initially that Etνt+j = 0, i.e., there is no precautionary component in consumption growth. In this case,

if ct − yt has a negative predictive impact for future consumption growth, it must stem from its negative

relationship with Etrt+j , i.e., it is due to intertemporal substitution. If the precautionary component

in consumption growth then becomes more important so that Etνt+j > 0, then the predictive ability

of ct − yt for future consumption growth increases - i.e., becomes more negative - as ct − yt then has

predictive power not only for rt+j but also for νt+j .

30For a large λ, for instance, income and consumption growth rates are highly positively correlated so that the positive

impact of ct − yt on ∆yt+j more than likely implies a positive impact of ct − yt on ∆ct+j .
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5.4 Empirical evidence

We shed light on the theoretical channels underlying the results of Section 4 by focussing on the predictive

relationships implied by eq.(16). As such, we avoid the direct estimation of the specification for consump-

tion growth given by eqs.(14)-(15). Apart from the theoretical objections that can be formulated against

attempting to estimate structural parameters such as risk aversion from aggregate data, there are also

practical considerations that complicate this estimation. A major issue concerns the use of instruments

for the potentially endogenous regressors. The variables ∆yt+1 and rt+1, for instance, are notoriously

hard to instrument which renders the instrumental variables estimation of a regression for consumption

growth largely unreliable.31

5.4.1 Approach

According to eq.(16), the log consumption-income ratio ct−yt may predict ∆yt+j , rt+j and νt+j . Evidence

of the predictive ability of ct − yt for ∆yt+1 has been provided in Section 4 above. Given the theory

presented in this section, the finding that ct − yt has a more positive predictive impact on future income

growth ∆yt+1 during disaster episodes can be attributed to an increase in rule-of-thumb consumption

behavior during these episodes. This, in turn, may be the result of liquidity constraints becoming more

binding during disasters. In what follows, we present evidence of the predictive ability of ct − yt for νt+1

as this channel constitutes our explanation for the finding reported above that, during disasters, ct − yt

has a more negative predictive impact on future consumption growth ∆ct+1. The problem, however, is

that the component νt+1 is unobserved. To deal with this, our approach is twofold. First, we look at

the predictive impact of ct − yt for future returns rt+1 in normal times and during disasters. In doing

so, we investigate whether we can rule out the alternative explanation for observing a more negative

predictive impact of ct − yt on consumption growth ∆ct+1 during disasters, namely that it is due to a

more negative predictive impact of ct − yt on rt+1. Second, we proxy the precautionary component νt+1

using an uncertainty measure. Then, we investigate whether ct − yt has predictive power for this proxy

and whether this predictive power is higher during disasters.

5.4.2 Data

The estimations are conducted with the historical dataset used in most previous estimations and detailed

in Section 4.1. Additionally, for real returns on wealth rt+1, we use the real rate of return on equity.

31This is confirmed by the values obtained for the Cragg-Donald weak instrument test calculated when estimating regres-

sions of consumption growth on income growth and returns using our historical dataset. Using a variety of instrumental

variables for income growth and returns, we find values for the Cragg-Donald weak instrument test are typically below one

(whereas the rule-of-thumb value for this test equals ten). These results are not reported but are available upon request.
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Historical data for the nominal rate of return on equity are reported by Jordà et al. (2019).32 We

deflate nominal returns using the inflation rate calculated from the Consumer Price Index (CPI) which

is obtained from the Jordà-Schularick-Taylor macro-history Database.33

To proxy the precautionary component νt+1, there are few possibilities as, over the historical period

considered, data are often unavailable, in particular during the disaster periods that we investigate. A

viable option is to follow Mody et al. (2012) who, in their paper on precautionary saving during the

Great Recession, consider the variance of per capita real GDP growth as an uncertainty measure. To this

end, we estimate a first-order GARCH process for per capita real GDP growth ∆yi,t+1 for every country

included in our historical dataset. Details on the GDP data used are provided in Section 4.1. From these

estimations, we calculate the conditional variance series ht+1 of shocks to per capita real GDP growth.

Graphs of these series are presented in Appendix E.

5.4.3 Results

Table 10 presents the results of estimating the predictive impact of the log consumption-income ratio

cit− yit on the real rate of return on equity ri,t+1 and on the conditional variance hi,t+1 of shocks to per

capita real GDP growth, i.e., we estimate eq.(6) above with xi,t+1 = ri,t+1 and with xi,t+1 = hi,t+1. We

report both OLS-based and IV-based mean-group estimates where the latter control for measurement

error as discussed in Section 4.3 above. The Sargan-Hansen OR and Cragg-Donald WI test statistics

suggest that the instruments used - i.e., lags of the regressors - are valid and of good quality. The results

reported for the conditional variance hi,t+1 include estimates obtained from estimating a specification that

includes the lagged dependent variable as a regressor, i.e., the estimation of eq.(8) above with xi,t+1 =

hi,t+1. This is necessary as the conditional variance series are highly persistent so that excluding the

lagged dependent variable in these instances implies poor results for the Cumby-Huizinga autocorrelation

test statistic, i.e., the null hypothesis of no autocorrelation is strongly rejected.

The results for returns on equity suggest that cit − yit has a significant negative impact on ri,t+1.

This finding supports the theory of intertemporal substitution, i.e., high (expected) returns coincide with

a low consumption-income ratio or, conversely, with a high saving ratio. This relationship is unaffected

by macroeconomic disasters, however, as can be concluded from the positive but insignificant impact of

the regressor (cit − yit)dit on ri,t+1. As such, it seems that the more negative predictive ability of the

log consumption-income ratio for consumption growth during disasters that we document in Section 4

32The data can be found at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GGDQGJ

where the nominal equity returns have code ‘eq-tr’. Details on the data sources are discussed in the online Appendix

of Jordà et al. (2019)’s paper.
33The website is http://www.macrohistory.net/data. The data used has code ‘cpi’.
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cannot be attributed to a more negative predictive impact of the log consumption-income ratio for real

returns.

Table 10: Predictive results determinants consumption growth: OLS- and IV-based mean-group estimates

Dependent variable xi,t+1

ri,t+1 hi,t+1

OLS IV OLS IV

(1) (2) (1) (2)

dit -0.049 -0.033 0.006∗ 0.000 0.007 0.000

( 0.043 ) ( 0.054 ) ( 0.003 ) ( 0.002 ) ( 0.004 ) ( 0.002 )

(cit − yit) -0.058∗ -0.078∗∗ 0.010 0.007 0.014∗ 0.006

( 0.035 ) ( 0.035 ) ( 0.008 ) ( 0.005 ) ( 0.008 ) ( 0.005 )

(cit − yit)dit 0.201 0.368 -0.024∗ -0.029∗ -0.048∗ -0.030∗∗

( 0.178 ) ( 0.251 ) ( 0.015 ) ( 0.016 ) ( 0.029 ) ( 0.015 )

xit 0.769∗∗∗ 0.774∗∗∗

( 0.035 ) ( 0.033 )

Cumby-Huizinga AC 4.014 3.528 15.559 3.054 14.331 2.475

[ 0.134 ] [ 0.171 ] [ 0.000 ] [ 0.217 ] [ 0.001 ] [ 0.290 ]

Sargan-Hansen OR 7.724 11.900 15.472

[ 0.562 ] [ 0.219 ] [ 0.217 ]

Cragg-Donald WI 9.080 9.495 7.692

Notes: Reported are the mean-group results based on either OLS or IV estimation of eq.(6) or eq.(8) with either

xi,t+1 = ri,t+1 or xi,t+1 = hi,t+1. The variable ri,t+1 is the real rate of return on equity. The variable hi,t+1 is the

conditional variance of shocks to per capita real GDP growth ∆yi,t+1 as estimated from a first-order GARCH process.

Estimation is based on panel data for sixteen countries over the period 1870 − 2015 for the results with xi,t+1 = ri,t+1

and over the period 1870 − 2016 for the results with xi,t+1 = hi,t+1. Standard errors are in parentheses, p-values are in

square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows

the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of

no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than

zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is the average of the country-specific

Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint validity of the instruments

used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-specific Cragg-Donald

weak instrument test statistics (see Cragg and Donald, 1993). For the critical values, we refer to the notes to Table 3

and to Stock and Yogo (2004). The instrument set used both for xi,t+1 = ri,t+1 and xi,t+1 = hi,t+1 consists of a constant

and lags one to four of the regressors dit, (cit − yit) and (cit − yit)dit.

The results obtained for the conditional variance in the relevant cases where a lagged dependent

variable is included as a regressor suggest that, during normal times, there is no link between the log

consumption-income ratio cit − yit and our uncertainty measure hi,t+1. During macroeconomic disaster

episodes, however, a significant negative relationship is uncovered between cit − yit and hi,t+1, i.e., high

(expected) uncertainty coincides with a low consumption-income ratio or, conversely, with a high saving

ratio. While our uncertainty measure is only an (imperfect) proxy for the theoretical precautionary

component in aggregate consumption growth discussed in Section 5.1, this result nonetheless suggests
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that the precautionary saving motive of optimizing consumers may be significantly higher during disasters.

Importantly, it supports a precautionary saving interpretation of the empirical finding documented in

Section 4 that, during disasters, the log consumption-income ratio has a more negative predictive impact

on aggregate consumption growth, i.e., during disasters, the log consumption-income ratio has a more

negative predictive impact on consumption growth because it has a negative predictive impact on the

precautionary component in consumption growth.

6 Conclusions

Macroeconomic disasters (wars, pandemics, depressions) are characterized by drastic shifts and increased

volatility of the log aggregate consumption to income ratio, i.e., the propensity to consume out of income.

The validity of the intertemporal budget constraint implies that this ratio is linked to future income and

consumption growth rates and therefore should have predictive power for these variables. Given the

different behavior of the log consumption-income ratio during macroeconomic disaster episodes, this

paper investigates whether the predictive ability of this ratio is affected by these episodes. Through the

estimation of cross-country predictive panel data regressions for industrial economies using a variety of

mean-group estimators, we find that rare macroeconomic disasters increase the predictive ability of this

ratio for both future income and consumption growth rates. This result survives a battery of robustness

checks and holds both for historical disaster episodes and for the ongoing Covid-19 pandemic, though

not for more conventional postwar recessions. Theoretically, the result implies that the IBC holds more

strictly and that consumption and income are significantly less decoupled during disaster episodes. This,

in turn, points to a reduction in consumption smoothing opportunities during disasters. Using a savers-

spenders model, we show that this reduction can be interpreted as stemming from an increase during

disasters of the number of rule-of-thumb consumers who spend current income in every period as well as

from a larger precautionary saving motive of those consumers who do optimize.
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Appendices

Appendix A Derivation of eqs.(1) and (15)

A.1 Derivation of eq.(1)

This appendix describes the steps in the derivation of eq.(1) in the main text. For details, we refer to

Campbell and Mankiw (1989). When total wealth is tradeable, the period-by-period budget constraint

of a consumer can be written as,

Wt+1 = Rt+1(Wt − Ct) (A-1)

where Wt is real total wealth, Ct is real consumption and Rt is the gross real return on total wealth.

Dividing both sides by Wt, we can write Wt+1

Wt
= Rt+1

(
1− Ct

Wt

)
. After taking logs, this gives

∆wt+1 = rt+1 + ln (1− exp(ct − wt)) (A-2)

with wt = lnWt, rt = lnRt and ct = lnCt. We linearize the term ln (1− exp(ct − wt)) by taking a

first-order Taylor approximation which gives,

ln (1− exp(ct − wt)) ≈ −
C

W − C (ct − wt) = (1− 1

ρ
)(ct − wt) (A-3)

where we ignore the linearization constant and where W and C are the average or steady state values of

Wt and Ct.
1 The second step replaces − C

W−C by 1− 1
ρ with ρ ≡ 1− C

W where 0 < ρ < 1. Substituting

eq.(A-3) into eq.(A-2), we obtain ∆wt+1 = rt+1 +
(

1− 1
ρ

)
(ct − wt). Note that we can write ∆wt+1 as

∆wt+1 = ∆ct+1 + (ct − wt) − (ct+1 − wt+1). Upon combining these results and rearranging terms, we

obtain,

ct − wt = ρ(rt+1 −∆ct+1) + ρ(ct+1 − wt+1) (A-4)

Solving eq.(A-4) forward ad infinitum, imposing the transversality condition ρ∞(ct+∞ − wt+∞) = 0 and

taking expectations at period t then gives,

ct − wt =

∞∑
j=1

ρjEt (rt+j −∆ct+j) (A-5)

with Et the expectations operator conditional on period t information.

Following Campbell and Mankiw (1989), we derive an income-based budget constraint by assuming

total wealth Wt consists of Nt shares with ex-dividend price given by Pt and where Yt is real income (i.e.,

the real dividend) obtained from total wealth. As such, we have Wt = Nt(Pt + Yt) where Pt + Yt is the

1Note that the linearization occurs around the point ct − wt = c− w with c− w = ln
(

C
W

)
.
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cum-dividend price of a share. The gross real return on total wealth is given by Rt+1 = Pt+1+Yt+1

Pt
. By

combining these results and rearranging terms, we obtain,

W ∗t+1 = Rt+1 (W ∗t − Yt) (A-6)

with W ∗t ≡ Wt

Nt
. Eq.(A-6) is in the same form as eq.(A-1) so the same steps (linearization, defining the

discount factor, forward solving) can be applied to obtain,

yt − w∗t =

∞∑
j=1

κjEt (rt+j −∆yt+j) (A-7)

where w∗t = lnW ∗t and yt = lnYt. The discount factor κ is given by κ ≡ 1− Y
W∗ where 0 < κ < 1.

We then combine eqs.(A-5) and (A-7) where, after imposing the normalization Nt = 1 or lnNt = 0,

we obtain,

ct − yt =

∞∑
j=1

[
κjEt (∆yt+j − rt+j)− ρjEt (∆ct+j − rt+j)

]
(A-8)

We note that the link between ct − yt and expected future returns on wealth rt+j is ambiguous and not

substantial if, as can be expected, the discount factor for future income growth rates κ is close to that

of future consumption growth rates ρ. Hence, we follow Campbell and Mankiw (1989), and set ρ = κ to

obtain eq.(1) in the main text.

A.2 Derivation of eq.(15)

This appendix describes the steps in the derivation of eq.(15) in the main text. Consider the following

first-order condition for a utility-maximizing consumer who faces uncertainty about future labor income

and returns, i.e.,

Et

(
(1 + rt+1)

(1 + δ)

U ′(C∗t+1)

U ′(C∗t )

)
= 1 (A-9)

where rt denotes the real return on wealth and U(C∗t ) denotes utility as a function of the level of real

consumption of the optimizing consumer C∗t and where δ is the rate of time preference. This equation

can also be written as, (
(1 + rt+1)

(1 + δ)

U ′(C∗t+1)

U ′(C∗t )

)
= 1 + χt+1 (A-10)

where χt+1 is an expectation error uncorrelated with period t information, i.e., we have Etχt+1 = 0.

Using the isoelastic utility function U(C∗) = C∗1−θ

1−θ with coefficient of relative risk aversion θ > 0, we can

rewrite eq.(A-10) as, (
(1 + rt+1)

(1 + δ)

C∗−θt+1

C∗−θt

)
= 1 + χt+1 (A-11)
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After taking logs of both sides of this expression and solving for the growth rate in consumption ∆c∗t+1,

we obtain,

∆c∗t+1 = −1

θ
δ +

1

θ
rt+1 +

1

θ
νt+1 (A-12)

where νt+1 ≡ − ln(1 + χt+1) and where we have used the approximation ln(1 + x) ≈ x for δ and r. The

variables rt+1 and νt+1 can be decomposed into the expected parts Etrt+1 and Etνt+1 and the unexpected

parts (rt+1 − Etrt+1) and (νt+1 − Etνt+1) to obtain,

∆c∗t+1 = −1

θ
δ +

1

θ
Etrt+1 +

1

θ
Etνt+1 + ωt+1 (A-13)

where ωt+1 ≡ 1
θ [(rt+1 − Etrt+1) + (νt+1 − Etνt+1)] with Et(ωt+1) = 0 and where 1

θEtνt+1 is the part

of consumption growth related to the precautionary saving motive of the optimizing consumer (see e.g.,

Parker and Preston, 2005). Importantly, we have Etνt+1 > 0. This can be shown by noting that

ln(E(1 + χ)) = ln(1) = 0 (this follows from E(χ) = 0). For the concave log function, we have that

ln(E(.)) > E(ln(.)) so that E(ln(1 + χ)) < 0 and −E(ln(1 + χ)) = E(ν) > 0.

Appendix B Historical disaster episodes and dummies

Table B-1 presents the disaster periods used in the construction of the disaster dummies. The periods

are obtained by combining the consumption and GDP disasters reported in Tables 6 and 8 in Barro and

Ursúa (2008). The grouping of consumption and GDP disasters according to principal world economic

crises (World War I, Spanish flu pandemic, Great Depression, World War II) is based on Tables 7 and 9

in Barro and Ursúa (2008).2,3,4

2To illustrate, the UK experienced a consumption disaster over the period 1915−18 attributed to World War I and a GDP

disaster over the period 1918−21 attributed to the Spanish flu pandemic. Hence, the overall disaster period is 1915−21 and

the general dummy dit for the UK takes on the value of one during this period. Additionally, the episode-specific dummies

dWW1
it and dPAN

it take on the value of one during the periods 1915 − 18, respectively 1918 − 21.
3We slightly deviate from the grouping considered in Barro and Ursúa (2008) by allocating a number of their post-World

War II disaster episodes, occurring in the immediate aftermath of World War II, to our World War II category. This is the

case for Denmark (the 1946 − 48 consumption disaster), Spain (the 1946 − 49 consumption disaster, UK (the 1943 − 47

output disaster) and US (the 1944− 47 output disaster). This minor change has a minimal impact on the estimates and no

impact on the conclusions of the paper.
4The Spanish flu pandemic is based on the 1920s grouping of Barro and Ursúa (2008) where we include an episode if the

first year of the GDP or consumption disaster is either 1918 or 1919. Some episodes from Barro and Ursúa (2008)’s 1920s

grouping are therefore not included in our Spanish flu pandemic group. Examples are Germany (1922 − 23) and Portugal

(late twenties).
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Table B-1: Disaster periods used in the construction of disaster dummies

Episodes Episodes

All WW1 PAN GRD WW2 All WW1 PAN GRD WW2

Australia 1889-95 1910-18 1926-32 1938-46 Netherlands 1889-93 1913-18 1929-34 1939-44

1910-18 1912-18

1926-32 1929-34

1938-46 1939-44

Belgium 1913-18 1913-18 1930-34 1937-43 Norway 1916-21 1916-18 1919-21 1939-44

1930-34 1939-44

1937-43

Denmark 1914-21 1914-18 1919-21 1939-41 Portugal 1913-19 1913-19 1939-42

1939-41 1946-48 1927-28

1946-48 1934-36

1939-42

1974-76

Finland 1876-81 1913-18 1928-32 1938-44 Spain 1892-96 1913-15 1929-33 1940-49

1913-15 1913-15

1913-18 1929-33

1928-32 1935-38

1938-44 1940-49

1989-93

France 1870-71 1912-18 1929-35 1938-44 Sweden 1913-18 1913-18 1939-45

1874-79 1920-21

1882-86 1939-45

1912-18

1929-35

1938-44

Germany 1912-19 1912-19 1928-32 1939-46 Switzerland 1870-72 1912-18 1939-45

1922-23 1875-79

1928-32 1881-83

1939-46 1885-88

1912-18

1939-45

Italy 1918-20 1918-20 1939-45 UK 1915-21 1915-18 1918-21 1938-47

1939-45 1938-47

Japan 1937-45 1937-45 US 1906-08 1917-21 1929-33 1944-47

1913-14

1917-21

1929-33

1944-47

Notes: The periods in the table correspond to periods reported by Barro and Ursúa (2008) as either GDP disaster episodes, consumption

disaster episodes or both. The grouping of episodes according to principal world economic crises in columns ‘WW1’ (World War I), ‘PAN’

(Spanish flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) follows the grouping reported by Barro and Ursúa (2008).

App-4



The episodes in column ‘All’ are used to construct the general dummy dit which is equal to one over

the reported periods in the column. The episodes in columns ‘WW1’ (World War I), ‘PAN’ (Spanish

Flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) are used to construct the episode-

specific dummies djit with j = WW1, PAN,GRD,WW2 which are equal to one over the reported periods

in the respective columns. The episode-specific dummies are used in the estimations reported in Section

4.6.

Appendix C Panel unit root test consumption-income ratio

The table below reports panel unit root tests applied to the log consumption-income ratio cit − yit

constructed using the historical panel data discussed in Section 4.1. Reported are the Im et al. (2003)

heterogeneous panel unit root test that does not control for cross-sectional dependence in the data (the IPS

statistic) and the Pesaran (2007) heterogeneous panel unit root test that does control for cross-sectional

dependence. We report both the standard CIPS statistic and the truncated CIPS* statistic (see Pesaran,

2007, for details). The statistics are reported both for the case without and with a deterministic linear

time trend included in the underlying country-specific augmented Dickey-Fuller regressions. We find that

the null hypothesis of a unit root is strongly rejected in all cases, i.e., at the 1% level of significance.

Table C-1: Heterogeneous panel unit root tests applied to the log consumption-income ratio cit − yit

Panel unit root test

IPS CIPS CIPS*

Without linear time trend -2.791 -3.104 -3.093

[ < 0.010 ] [ < 0.010 ] [ < 0.010 ]

With linear time trend -6.819 -3.560 -3.554

[ < 0.010 ] [ < 0.010 ] [ < 0.010 ]

Notes: Estimation is based on panel data for the log consumption income ratio cit − yit for sixteen countries over the

period 1870 − 2016. Reported are the Im et al. (2003) heterogeneous panel unit root test that does not control for

cross-sectional dependence (IPS statistic) and the Pesaran (2007) heterogeneous panel unit root tests that do control for

cross-sectional dependence (the CIPS statistic and the truncated version, CIPS*). P-values for testing the null hypothesis

of a unit root are between square brackets. Test statistics are reported both for the case without and with a deterministic

linear time trend included in the underlying country-specific augmented Dickey-Fuller regressions. The number of lags

included in these regressions is based on the Schwarz information criterion.

Appendix D Per country baseline estimates

The following table reports the per country OLS estimates of the coefficients βi and γi obtained from

estimating the baseline specification eq.(6). These estimates are used in the calculation of the mean-group

estimates reported in Table 1 in the text. Also reported, between brackets, are heteroskedasticity- and
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autocorrelation-consistent standard errors (see Newey and West, 1987).

Table D-1: Per country OLS estimates of βi and γi in the baseline specification eq.(6)

Dependent variable Dependent variable

Country Regressor ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) Country Regressor ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

Australia (cit − yit) 0.001 -0.023 0.024 Netherlands (cit − yit) 0.187 0.092 0.095

( 0.015 ) ( 0.018 ) ( 0.015 ) ( 0.173 ) ( 0.095 ) ( 0.083 )

(cit − yit)dit -0.053 -0.100 0.047 (cit − yit)dit 0.129 -0.339 0.467

( 0.063 ) ( 0.075 ) ( 0.095 ) ( 0.213 ) ( 0.345 ) ( 0.239 )

Belgium (cit − yit) 0.280 0.072 0.208 Norway (cit − yit) -0.015 -0.020 0.005

( 0.109 ) ( 0.043 ) ( 0.106 ) ( 0.010 ) ( 0.010 ) ( 0.007 )

(cit − yit)dit -0.148 -0.080 -0.068 (cit − yit)dit 0.156 -0.042 0.199

( 0.171 ) ( 0.203 ) ( 0.178 ) ( 0.181 ) ( 0.167 ) ( 0.070 )

Denmark (cit − yit) 0.023 0.020 0.004 Portugal (cit − yit) -0.179 -0.259 0.080

( 0.012 ) ( 0.018 ) ( 0.011 ) ( 0.064 ) ( 0.049 ) ( 0.042 )

(cit − yit)dit 0.231 -0.142 0.374 (cit − yit)dit 0.157 0.240 -0.082

( 0.113 ) ( 0.227 ) ( 0.159 ) ( 0.164 ) ( 0.134 ) ( 0.084 )

Finland (cit − yit) -0.035 -0.090 0.055 Spain (cit − yit) 0.001 -0.021 0.022

( 0.036 ) ( 0.033 ) ( 0.023 ) ( 0.037 ) ( 0.044 ) ( 0.014 )

(cit − yit)dit -0.081 -0.083 0.002 (cit − yit)dit -0.214 -0.592 0.379

( 0.097 ) ( 0.098 ) ( 0.112 ) ( 0.089 ) ( 0.177 ) ( 0.110 )

France (cit − yit) 0.004 -0.038 0.042 Sweden (cit − yit) 0.021 0.017 0.004

( 0.023 ) ( 0.022 ) ( 0.020 ) ( 0.015 ) ( 0.013 ) ( 0.011 )

(cit − yit)dit 0.158 -0.033 0.191 (cit − yit)dit -0.129 -0.335 0.206

( 0.063 ) ( 0.103 ) ( 0.132 ) ( 0.219 ) ( 0.242 ) ( 0.093 )

Germany (cit − yit) -0.018 -0.085 0.066 Switzerland (cit − yit) 0.086 -0.020 0.106

( 0.065 ) ( 0.054 ) ( 0.060 ) ( 0.045 ) ( 0.052 ) ( 0.045 )

(cit − yit)dit 0.307 0.181 0.126 (cit − yit)dit -0.092 -0.969 0.877

( 0.238 ) ( 0.061 ) ( 0.209 ) ( 0.175 ) ( 0.214 ) ( 0.155 )

Italy (cit − yit) -0.046 -0.058 0.011 UK (cit − yit) -0.041 -0.074 0.033

( 0.020 ) ( 0.021 ) ( 0.015 ) ( 0.024 ) ( 0.021 ) ( 0.018 )

(cit − yit)dit 0.601 0.314 0.287 (cit − yit)dit 0.121 -0.051 0.172

( 0.290 ) ( 0.166 ) ( 0.186 ) ( 0.057 ) ( 0.079 ) ( 0.117 )

Japan (cit − yit) -0.040 -0.070 0.030 US (cit − yit) -0.010 -0.005 -0.005

( 0.018 ) ( 0.018 ) ( 0.013 ) ( 0.023 ) ( 0.017 ) ( 0.020 )

(cit − yit)dit 0.533 -0.021 0.554 (cit − yit)dit 0.105 -0.122 0.227

( 0.100 ) ( 0.219 ) ( 0.297 ) ( 0.049 ) ( 0.047 ) ( 0.058 )

Notes: Reported estimates are for βi and γi in equation (6). Heteroskedasticity- and autocorrelation-robust Newey-West standard errors are in parentheses

(see Newey and West, 1987). The OLS estimates reported are used to calculate the baseline mean-group estimates reported in Table 1.

Appendix E Per country uncertainty measures

The following table presents the conditional variance series hi,t+1 of shocks to GDP growth for all sixteen

countries in our historical dataset. These are obtained from the per country estimation of a first-order

GARCH process for per capita real GDP growth. These conditional variance series capture uncertainty

and are used as proxies for the precautionary component in aggregate consumption growth as detailed

in Section 5.
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Figure E-1: The conditional variance of shocks to per capita real GDP growth
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Notes: The blue line denotes the conditional variance hi,t+1 of shocks to per capita real GDP growth. Shaded areas

correspond to disaster episodes as identified by Barro and Ursúa (2008). We refer to Sections 4.1 and 5.4.2 for more

details on the data used in this figure.
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