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Abstract

We study the optimal taxation of risk-free and excess capital income with heterogeneous rates of return,

alongside an optimal nonlinear earnings tax. Households can hold three assets: one risk-free, one risky

but diversifiable, and one a private investment with idiosyncratic risk whose expected return differs among

households. Contrary to expectations, the optimal tax on excess returns to risky assets is ineffective for

redistribution, because its effects are annulled by a Domar-Musgrave effect. It assumes only an insurance

role, and is positive. The optimal tax on risk-free returns does fulfill a redistributive role, insofar the risk-

free returns reveal information about the investors’ types beyond what is revealed by the earnings tax base.

The optimal nonlinear earnings tax takes the standard Mirrleesian form amended to take account of the

stochasticity of capital income tax revenue.
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1 Introduction

The consensus among public economists is that capital income should be taxed at positive rates, despite sugges-

tions in the earlier literature of the contrary.1 Recently this view has been strengthened by the observation that

rates of return to capital differ among households, with some households obtaining above-normal returns on

their investments.2 Heterogeneous rates of return lead to excess returns, which may reflect rents, luck or differ-

ences in investment ability. This observation has led some observers to recommend a differential tax treatment

of normal versus excess capital returns.

The Mirrlees Review (2011) proposes a Rate-of-Return Allowance (RRA) that would fully exempt all risk-

free returns from taxation, while taxing all excess returns at the same marginal rate as labour income.3 A recent

report by the Institute for Fiscal Studies reinforces this reasoning, applying it to the taxation of business owner-

managers (Adam and Miller (2021)). In the corporate tax literature, the differential taxation of rents versus

normal capital income has long been proposed, beginning especially with the recommendation for an Allowance

for Corporate Equity, which is equivalent to a tax on rents and risk. (Gammie (1991); Mirrlees Review, 2011).

More recently, proposals for cash-flow taxation accomplish the same result. For example, Auerbach et al. (2017)

recommend the use of Destination-Based Cash Flow Taxation for multinational corporations, fully exempting

the normal returns to capital from taxation. Devereux et al. (2019) acknowledge the fairness problem involved

in taxing only at destination. Their Residual Profit Allocation by Income (RPA-I) proposal allows for routine

profits to generate tax revenue where actual economic activity takes place, while still taxing residual profits

at destination. Some Scandinavian countries already partly implement the recommendation to focus on excess

returns, adding returns that surpass a normal rate to the labour income tax base, while taxing normal returns

at a lower rate.4

A common thread underlying the above policy recommendations appears to be that taxing excess returns

with perfect loss offsets, would redistribute the heterogeneous rates of return and prevent tax avoidance, without

discouraging risk. Taxing normal rates of return, on the other hand, would impose additional efficiency losses,

without offering distributional benefits over other tax bases.

In this paper, we revisit the case for taxing excess returns and normal returns to capital at different rates,

in a context in which excess returns are risky. We find that, contrary to expectations, the taxation of excess

returns does not reduce the after-tax excess returns that investors obtain, so it cannot serve a redistribution role.

The intuition is that as a tax on excess returns with perfect loss offsets reduces the after-tax risk for investors,

1The arguments are reviewed by Banks and Diamond (2010), Bastani and Waldenström (2020) and Scheuer and Slemrod (2021).
2Fagereng et al. (2020) provide direct evidence, showing a presence of persistent, individual-specific rates of return that cannot

be explained by differences in the allocation of wealth between risk-free and risky assets. Piketty (2014) finds that universities
with larger endowments obtain higher rates of return on their investments, and Saez and Zucman (2016) report similar findings for
foundations in the United States. Gabaix et al. (2016), Lusardi et al. (2017), Kacperczyk et al. (2018) and Benhabib et al. (2019)
provide indirect evidence, showing that the observed wealth inequality can only be explained using life-cycle models if one accounts
for the presence of heterogeneous rates of return.

3The Mirrlees Review (2011) states that the empirical relevance of known violations of the Atkinson-Stiglitz (1976) theorem is
not clear, with doubts arising even about the optimal sign of the tax on normal returns to capital. They then recommend to not
tax normal returns at all, and to focus on the excess returns.

4Norway applies a Rate of Return Allowance in its treatment of owner-managers of businesses. Finland taxes profits distributed
by closely-held companies at higher rates if they exceed 8% of the equity value.
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they respond by expanding their investments in risky assets. Following Domar and Musgrave (1944), we show

that a tax on excess returns then does not affect the expected utilities of the individuals. The government is

thus unable to use the tax on excess returns to redistribute between individuals with different expected rates of

return. Instead, the main reason to tax excess returns is to provide insurance against risky returns to capital.

The government then turns to the tax on normal returns for redistributive purposes, insofar the normal returns

include information about the investment productivities of the individuals that is not already revealed by the

labour income tax base. In doing so, the government balances the distortions caused by such a tax, against the

distributional benefits.

Our Model We adopt an optimal income tax approach to study the optimal taxation of risk-free normal

returns and risky excess returns to capital alongside a nonlinear earnings tax. We allow for symmetric loss

offsets in the tax on excess returns.5 An important consideration is that the government cannot separate the

different components of the excess returns. It is practically impossible to tax rents, which may be desirable

on efficiency grounds, without at the same time taxing returns to risk. To confront this issue, we allow for

three types of assets: a risk-free asset, risky assets that yield a competitive return and face aggregate risk, and

those that yield an idiosyncratic and possibly above-normal return. We assume the latter assets are personal

investments whose expected returns vary among individuals, but which cannot be insured or diversified on the

market. Individuals then differ in two dimensions, labour skills as in the standard optimal income tax literature

and investment productivities, which we assume are not perfectly correlated. In a first-best world, lump-sum

taxes would differentiate according to these two productivity types, but informational limitations faced by the

government preclude that. In our second-best setting, a nonlinear income tax is imposed on labour income, and

separate linear taxes are applied to the risk-free component of all assets and to the excess return on the risky

assets.

Since the empirical literature does not yet offer clear insights into the origins of the observed heterogeneous

rates of return to capital, we remain agnostic on this front. We assume that the expected rates of return to

the risky assets are linear and differ exogenously among individuals. The presence of risk suffices to limit the

amounts that individuals are prepared to invest into the higher-yielding assets. To prevent the government

from fully insuring all risk in the optimum, we follow the approach of Christiansen (1993) and Schindler (2008),

assuming that the government returns the risk of its revenues to the tax payers using a stochastic public

good. Since there is then a social cost associated with taxing the excess returns, the government is unwilling

to fully tax them away. Different modelling assumptions could be used to prevent full insurance of the risky

capital incomes, e.g. including decreasing returns to scale or incentive effects of taxing excess returns, in which

case a tax on excess returns would yield additional distortions. Our setup however allows us to most cleanly

illustrate the main mechanisms at work, because it allows us to apply standard portfolio theory. Alternatively,

we follow Atkinson and Stiglitz (1980) and Gordon (1985), by assuming that stochastic revenues are returned

5Adam and Miller (2021) present equivalent methods to implement a tax on excess returns. An expenditure tax, for example,
allows taxing the excess returns without identifying the risk-free returns. With an expenditure tax, normal returns to capital are
exempted by design.
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to individuals as state-contingent equal per capita lump sums. Qualitatively similar results apply in this case.

A problem in a framework with many periods and yearly taxation, would be that the normal returns to

capital at any point in time, partly reflect excess returns to capital in the past. Since we wish to clearly

distinguish between taxes on normal and excess returns to capital, we work in a two-period life-cycle setting.

Individuals supply labour in the first period, and they save part of their labour incomes into their portfolio to

finance consumption over the two periods. We adopt assumptions that would lead to zero taxation of capital

income in a risk-free setting with no excess returns (Atkinson and Stiglitz, 1976). Taxpayers thus have identical

preferences, which are weakly separable between goods and labour.

Main Results We first show that the Domar-Musgrave (1944) result remains valid, despite the inclusion

of variable labour supply, heterogeneous rates of return and different rates of tax on normal and excess returns:

individuals alter their portfolio compositions in such a way that their excess capital income moves in inverse

proportion with the net of tax rate. The tax on excess returns does not affect the taxpayers’ labour supply or the

distribution of their consumption in either period, so it does not affect the expected utilities of the individuals.

The optimal tax on the excess returns does not depend on the social welfare weights of the individuals: the

presence of heterogeneous rates of return does not yield an additional distributional reason to tax the excess

returns.

While the tax on excess returns cannot address redistributive concerns, the tax on risk-free returns will

generally have redistributive consequences. If individuals differed only in labour skills, then under some common

assumptions (e.g. when the Mean-Variance framework applies or when there is only one type of risk) the

tax on risk-free capital income would be zero because of the separability assumptions we have adopted. All

redistribution can be accomplished by the nonlinear earnings tax. That is no longer the case when individuals

have different investment productivities. The amount of savings and therefore the risk-free capital income of

individuals with the same earnings will vary with investment productivity, implying that the tax on risk-free

capital income can achieve some redistribution over and above that achieved by the earnings tax.

Relationship to Existing Literature The evidence of a positive gradient in the rates of return to capital

has sparked a line of research that investigates the implications for the optimal taxation of capital income.

Gahvari and Micheletto (2016) and Kristjánsson (2016) study a two-type model where the type with a higher

labour-earning ability also has a higher rate of return, finding that the optimal marginal tax on capital income

is positive. Gerritsen et al. (2020) study the optimal mix of non-linear taxes on incomes from labour and capital

with continuous types. They find that the marginal tax rates on capital income should differ from zero, both

when rates of return depend on labour ability and when they depend on the scale of the portfolio. Guvenen

et al. (2019) find that a linear wealth tax performs better than a linear capital income tax when investment

productivities are heterogeneous. A crucial difference between the papers in this literature and ours, is that

we assume that investors do not yet know the returns to their investments when they make their decisions.

Furthermore, we allow for a separate tax on excess returns, which avoids distorting the intertemporal allocation

of the taxpayers’ consumption.
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Regarding the taxation of risky capital, the seminal contributions are those of Domar and Musgrave (1944),

Mossin (1968) and Stiglitz (1969). In a comparative statics exercise, they study a representative individual

who maximizes expected utility by allocating savings over a safe and a risky asset. They show that when the

government introduces a linear tax on excess returns to capital, the individual will increase investment in the

risky asset. The total after-tax risk will remain unaltered for the investor, as will expected utility. Sandmo

(1977) shows that the results of Domar and Musgrave (1944) remain valid when investors optimize a portfolio

consisting of multiple risky assets. Gordon (1985) and Kaplow (1994) show how the neutrality of capital income

taxes for risk taking remains true in general equilibrium models.

One should not conclude from the Domar-Musgrave (1944) result that the government can costlessly tax all

excess returns at 100%, and then obtain a welfare gain by redistributing the revenue to the taxpayers. Buchholz

and Konrad (2014) summarize the consequences of taxing idiosyncratic returns, noting the private sector may

choose not to insure all risks for incentive reasons. If this is the case, then government insurance will introduce

inefficiencies. Only in specific cases, for example when there are positive spillovers from the activities of inventors

or when an asset cannot be traded because it is productive only in the hands of a specific individual, can there

be good reasons to provide public insurance.

Another reason why taxing excess returns at very high rates may be undesirable is the presence of aggregate

risk. In theory, the government could use the financial markets to smooth the aggregate risk of its revenues over

time. In practice however, it is unlikely that the government can do so without limit or without distributional

consequences. Christiansen (1993) studies the optimal taxation of capital income when the government returns

the risky tax revenues to the households via changes in public goods. He does so in a representative individual

model with fixed income and one risky asset with linear returns. In this case, as long as the public good is not

a perfect substitute for consumption, stochastic public goods mitigate the consumption risk from holding risky

assets. An increase in the tax on capital income reduces uncertain capital income and therefore consumption

risk, but it increases risk associated with consuming the public good. Schindler (2008) alters this model to

allow for separate taxes on risk-free and excess returns. He finds that risk-free assets should not be taxed in an

efficient tax system, while excess returns should be taxed, balancing public risk against private risk. We follow

this latter road, assuming that the government returns part of the aggregate risk using a stochastic public good,

to prevent the government from taxing the excess returns at 100% in the optimum.

The literature that studies optimal redistributive taxation has neglected the possibility of risky capital

income. For example, the recent dynamic optimal tax literature focuses instead on idiosyncratic wage risk.

The natural conclusion appears to be that there are good reasons to tax capital income at positive rates for

redistributional purposes, and that given the Domar-Musgrave (1944) result, we should not worry too much

about discouraging risk. We show however that the shortcomings of this reasoning follow from the Domar-

Musgrave (1944) result itself: given that a tax on excess returns does not affect expected utilities, there are no

good grounds to expect that in absence of tax avoidance, a tax on excess returns should serve a redistributional

purpose.
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Road Map We proceeds as follows. Section 2 outlines a general model with both risky and risk-free assets,

in which the risky assets can take two forms. As mentioned, one is the purchase of a market portfolio where

competitive capital markets ensure that all remaining risk is aggregate. The other is a personal investment,

such as a private business or private equity investments where expected returns differ among individuals and

risks are assumed to be idiosyncratic. Individuals differ in wage rates and investment productivities, and face

a nonlinear tax on labour income and linear taxes on risk-free and excess capital income. Section 3 solves the

individual optimization problem, and finds relevant properties. We derive optimal linear tax rates on risk-free

and excess returns to capital, optimal nonlinear tax rates on labour income and public good decision rules in

Section 4. We use a solution method suitable for our problem that involves deriving the optimal tax system

using a perturbation method analogous to that of Saez (2001), Werquin et al. (2015) and Lehmann et al. (2019).

Section 5 considers the case where the government returns the risk to individuals using a stochastic lump sum,

and Section 6 concludes.

2 The model

2.1 Individuals

There is a continuum of individuals endowed with labour earning abilities, or skills, w ∈ [w,w], which are

distributed by the function Gw(w). The density function is gw(w) = Gw
w(w), where Gw

w(w) ≡ dGw(w)/dw, a

convention we adopt throughout the paper. Skills determine the effective labour generated by a given effort.

Besides their skill levels, individuals differ in the expected returns on their private investments as discussed

below.

Individuals live for two periods. In the first period, they supply labour `, yielding gross labour income

(effective labour supply) z ≡ w`, which is non-stochastic and declared to the tax authorities. Labour income is

taxed according to the nonlinear tax function t`(z), so first-period disposable income is z − t`(z). Individuals

consume c1 of their disposable income and save s, so:

c1 = z − t`(z)− s. (1)

Savings s are invested in three assets: bonds b, market funds f and private investment opportunities p so

that:

s = b+ f + p. (2)

Using three assets allows us to clearly separate the different sources of risk. Bonds are risk-free and yield a

normal return rb, so bond income in period two is brb. Market funds yield a stochastic market rate of return

r̃m, impacted only by aggregate shocks. We denote stochastic variables by a tilde. Total returns from market

funds are then f r̃m. Investment in private investment opportunities p yields a return p(α + ε̃), where ε̃ is

an idiosyncratic shock that is independent and identically distributed. The shock ε̃ is thus uncorrelated with
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the market returns. We follow the common assumption that the idiosyncratic shock ε̃ is added linearly to

the expected return α. The assumption that market risks are aggregate while private investment risks are

idiosyncratic captures the assumption that capital markets fully insure idiosyncratic risk on market portfolios

but private investments are not fully insured.

Individuals differ in their expected rates of return to private investment α ∈ [α, α], which are distributed by

the function Gα(α), with density function gα(α). Therefore, they differ ex ante in both their labour produc-

tivities and their expected rates of return. We denote the two-dimensional types as ω ≡ (w,α), with domain

Ω ≡ [w,w] × [α, α]. Individuals of the same type ω make the same decisions. We denote the joint cumulative

distribution of skills and expected returns to private investment by Gω(ω), with density function gω(ω). We

make no assumptions about the joint distributions of labour earning abilities w and returns to private investment

α: they could be strongly correlated, but they could also be entirely independent.

The rate r̃m is drawn from a distribution function Gm(rm) with density function gm(rm). The domain for

these functions is denoted R. The realizations of the stochastic shocks ε̃ are drawn from a distribution function

Gp(ε), with density function gp(ε). The domain for these distribution functions is denoted E . When choosing

labour supply, savings and portfolio composition, the individuals know their skills w, their expected returns

to private investment α and the distribution functions Gm and Gp of the capital income shocks, but not the

realizations of the shocks r̃m and ε̃. Individuals who are ex ante equal differ ex post in the realizations of the

idiosyncratic shock ε̃.

Total capital income in the second period is denoted by ỹ ≡ (s− f − p) rb+f r̃m+p(α+ ε̃). For tax purposes

it is split in two separately declared components: a risk-free part yn at interest rate rb, and the remaining excess

part ỹe such that ỹ ≡ yn + ỹe, with:

yn ≡ srb, and ỹe ≡ f r̃m + p(α+ ε̃)− (f + p)rb. (3)

Recall that we define excess returns to refer to all capital income that deviates from the risk-free return, including

risk premiums, rents and stochastic shocks. This corresponds with the definition used in the Mirrlees Report

(2011) in their proposed RRA system.

Individuals pay taxes tnyn on the risk-free part of their capital income, and teỹe on excess returns. Second-

period consumption equals assets saved plus second period after-tax capital income:

c̃2 ≡ s+ (1− tn)yn + (1− te)ỹe. (4)

The government chooses a labour income tax function and capital income tax rates in the first period. It

obtains labour income tax revenues in the first period and capital income tax revenues in the second, and must

satisfy an intertemporal budget constraint described below. If there is aggregate risk in the capital markets,

tax revenues will be stochastic. The government returns this risk to the individuals in the second period, using

a stochastic provision of a pure public good P̃ .
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Given effective labour supply z, first-period consumption c1, realization of second-period consumption c2

and the realized level of the public good P , an individual with skill w obtains utility:

U
(
u
(
c1, c2

)
,
z

w
, P
)
. (5)

This utility function displays weak separability between intertemporal consumption allocation and labour effort,

so preferences over c1 and c2 are independent of `. As well, the public good is weakly separable from all individual

choice variables, so does not affect them.6 For ease of notation, we do not write the corresponding subutility

function.

Individuals make all their decisions in the first period and are passive recipients of capital income and the

public good in the second period. In particular, they choose their labour supply, first period consumption, total

savings and portfolio composition to maximize expected utility, subject to their lifetime budget constraints.

Second period consumption is determined as a residual.

2.2 The government

Each individual reports three variables to the government: labour income z, risk-free capital income yn ≡ srb

and excess capital income ye ≡ y−srb. The government imposes a nonlinear labour income tax t`(z) and linear

taxes tn and te on risk-free and excess capital income yn and ye. It commits to these tax rates, as is standard

in the literature. We use linear tax rates on capital income for two reasons. The first is that any curvature of

the tax function would affect the concavity of the net-of-tax returns to capital, which would influence portfolio

choices by the individuals. The additional behavioural effects caused by the nonlinearity of the tax schedule

would complicate our analysis, without adding much intuition. The second reason is that linear taxes on capital

income might be levied through financial institutions, easing compliance.

We assume the government cannot observe the allocation of savings among the different types of assets. The

reason is that the difference is not always clear. Financial institutions might repackage bundles of assets, for

fiscal or other reasons; it is not obvious which types of bonds can really be regarded as risk-free investments;

and it is difficult to distinguish between aggregate and idiosyncratic components of risk.

The government has access to the bond market between the periods and it balances its budget over time.

The law of large numbers ensures that, with sufficiently large populations at each type, the government budget

constraint is not affected by the idiosyncratic shocks to private investments. Aggregate shocks do however

cause government revenue to be stochastic. The provision of the public good varies with the aggregate shock,

according to the intertemporal budget constraint in second-period values:

P (r̃m) =

¨
Ω

[
(1 + rb)t`(z) + teEE [ỹ

e|r̃m] + tnyn
]

dGω(ω), (6)

6The case where preferences over private and public consumption are not separable goes beyond the scope of our paper. We
merely use the public good to return the aggregate risk to the individuals. See Schindler (2008) for a discussion of the more general
cases. We verify the robustness of our results in Section 5, where the government returns the risk of its revenues through a stochastic
lump sum, potentially affecting the decisions of the individuals.

8



where, recall, Ω is the domain of the types (w,α) and where EE denotes an average over the realizations of the

private investment risk, conditional on the realization of the market rate of return.78

We treat the levels of P (r̃m) to be provided for each potential realization of the market shock as policy

instruments in the government’s optimization problem. The government takes an ex ante perspective. It sets

the tax instruments, together with the spending on the public good P (rm), to maximize the sum of the taxpayers’

expected utilities:

max
t`(·),tn,te,P (·)

¨
Ω

E[Ṽ (t`(·), tn, te, P (·))]dGω(ω), (7)

subject to the intertemporal budget constraint (6). Here E[Ṽ (t`(·), tn, te, P (·))] is the expected maximized level

of utility of an individual with type ω, given government policies (where we have suppressed ω for simplicity).9

Note that we define social welfare in the first period, while we define the government’s budget constraint

in the second period. After all, the government commits to its policies in the first period, maximizing expected

social welfare before the shocks are realized, while public good provision is only set in the second period, to

close the budget constraint.

3 Individual behaviour

3.1 Parameterizations of the tax instruments

We parameterize the nonlinear policy instruments in a way that allows us to study the comparative statics of

individual behaviour. This will allow us to formulate the optimal policies in terms of behavioural elasticities.

We parameterize the labour tax function as follows:10

τ `(z|ρ, σ) ≡ t`(z) + σz − ρ,

where the parameter ρ shifts the intercept and σ shifts the slope of the tax function. The corresponding marginal

tax rate is τ `z(z|ρ, σ) ≡ t`z(z) + σ.

To study the comparative statics for the linear tax rates on risk-free and excess capital income, we directly

perturb the parameters tn and te. We summarize the vector of tax perturbation parameters as −→σ ≡ (ρ, σ, te, tn).

7Whenever we use the expectation operator E[·], we refer to the average of the operand over all potential realizations of the shocks
(rm, ε) ∈ R×E. I.e. for any stochastic variable x̃ ≡ x(r̃m, ε̃), its expected value is defined as E[x̃] ≡

´
R
´
E x(rm, ε)dGp(ε)dGm(rm).

The conditional expectation operator EE [·|rm] denotes an average over all potential realizations ε ∈ E of private investment risk,
conditional on the realization rm of market risk: EE [x̃|rm] ≡

´
E x(rm, ε)dGp(ε). The quantity EE [ỹe|r̃m] still contains aggregate

risk, but no idiosyncratic risk.
8Note that although the government can borrow freely to balance its budget over the two periods of our model, we assume that

it cannot pool aggregate risk over time by borrowing. For example, the aggregate risk might manifest itself as a once-over shock
in the second period of our model. To pool that shock would involve borrowing over the indefinite future which would be very
demanding.

9Here and elsewhere in the paper, when a function argument is a function itself rather than its value, we indicate this by adding
(·) behind the function name. In (7) this convention means that indirect utility depends on the tax system and on the stochastic
public good provision in their entirety, rather than on specific values of these functions.

10For previous papers that parameterize nonlinear tax schedules to study comparative statics, see e.g. Christiansen (1981) and
Jacquet et al. (2013).
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3.2 Parameterization of the public good

For the stochastic public good, we assume that the government commits to levels of P (rm) for each potential

realization of the market shock r̃m, such that its intertemporal budget constraint (6) is satisfied. When we

discuss a perturbation of the level of P (rm) at a specific realization rm, we implicitly mean a perturbation of

the function P in a small interval around the realization rm. We discuss the perturbations of the function P

more rigorously in Appendix A.1.

The fact that we implement perturbations for different realizations of the market return rm does not imply

that we redistribute resources between the different states of the world. The government budget constraint

needs to be satisfied for each state of the world separately. Our approach differs from that of Christiansen

(1993) and Schindler (2008), who in a representative agent model directly substitute the government budget

constraint for the public good parameter in the individual’s utility function. An advantage of our approach,

besides tractability in our more general setting, is that it leads to a stochastic government budget Lagrange

multiplier, yielding optimal tax equations that are more straightforward to interpret. We discuss this in more

detail in Section 4.

3.3 First-order conditions

Consider the individual optimization problem in a situation where the policy reform parameters ρ and σ are

not necessarily zero. Any individual of type ω chooses effective labour supply z, first-period consumption c1,

total savings s and investment in assets with excess returns f and p to maximize expected utility. Using the

utility function (5), the Lagrangian for this maximization problem is:

L(c1, z, s, f, p|−→σ , P (·)) ≡E
[
U
(
u(c1, c2(s, f, p|−→σ , r̃m, ε̃)), z

w
, P̃
)]
− µ · [c1 − z + τ `(z|ρ, σ) + s], (8)

with budget Lagrange multiplier µ, and with second-period consumption obtained from (4) using (3):

c2(s, f, p|−→σ , r̃m, ε̃) = s+ (1− tn)srb + (1− te)[f r̃m + p(α+ ε̃)− (f + p)rb]. (9)

We treat second-period consumption as a residual rather than a choice variable, since its realization is not

known at the time of the optimization.

We assume throughout that second-order conditions are met and focus solely on the first-order conditions. To

simplify notation, we denote Ũ1 ≡ (∂Ũ/∂u) · (∂u/∂c1) and Ũ2 ≡ (∂Ũ/∂u) · (∂u/∂c2). The first-order conditions

on earnings z and savings s are standard and are as follows:

E[Ũ`]

E[Ũ1]
= −(1− τ `z)w,

E[Ũ1]

E[Ũ2]
= 1 + (1− tn)rb. (10)

From the first-order conditions on portfolio choices f and p, we obtain the marginal risk premiums required by
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the individuals:

(1− te)E[r̃m − rb] = −(1− te)cov(Ũ2, r̃
m)

E[Ũ2]
, (11)

(1− te)(α− rb) = −(1− te)cov(Ũ2, ε̃)

E[Ũ2]
. (12)

We assume that there is sufficient risk to limit the amounts that individuals are willing to invest in the risky

assets. We thus assume an interior solution for the choice between risk-free and risky assets. Combining

conditions (11) and (12) yields:11

(1− te)

(
E[ỹe] +

cov(Ũ2, ỹ
e)

E[Ũ2]

)
= 0. (13)

The term E[ỹe] reflects the expected excess return to capital, which is positive (although some realizations of ye

are negative). The normalized covariance cov(Ũ2, ỹ
e)/E[Ũ2] is negative. Its size reflects the required total risk

premium from the risky investments. The left-hand side of (13) reflects the certainty equivalent of the after-tax

excess capita incomes. Individuals thus invest in the risky assets up to the point where the certainty equivalent

of their excess capital income equals zero.

3.4 Unconditional demand and supply functions

The solution to the individual optimization problem (8)–(9) yields uncompensated demand functions for goods

and assets and an uncompensated supply function of labour: c1(−→σ ), p(−→σ ), s(−→σ ), f(−→σ ) and `(−→σ ). (We omit

type ω as an argument for notational convenience.) These functions depend on the individual type and on the

reform parameters for the taxes, but by our weak separability assumption not on the public good. We use these

uncompensated functions to construct the following uncompensated functions for risk-free and excess capital

income:

yn(−→σ ) = s(−→σ )rb, (14)

ỹe(−→σ ) = f(−→σ )(r̃m − rb) + p(−→σ )(α+ ε̃− rb). (15)

The demand function c̃2(−→σ ) follows by substituting the appropriate demand functions into budget constraint

(9).

If for each individual the policy reforms are complemented by lump sum payments such that utility remains

constant at level V , then we obtain compensated supply and demand functions, which we denote using a

superscript asterisk: c1∗(−→σ , P (·), V ), `∗(−→σ , P (·), V ), s∗(−→σ , P (·), V ), f∗(−→σ , P (·), V ) and p∗(−→σ , P (·), V ). The

corresponding tax bases are z∗(−→σ , P (·), V ), yn∗(−→σ , P (·), V ) and ỹe∗(−→σ , P (·), V ).12

11To see this, rewrite (11) and (12) as follows: (1− te)E[Ũ2(r̃m − rb)f ] = 0 and (1− te)E[Ũ2(α+ ε̃− rb)p] = 0. Add these two
results together and substitute definition (3) to find (1− te)E[Ũ2ỹe] = 0. Rearrange to find (13).

12We introduce compensated responses more formally in Appendix A.1.
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We can now formulate some properties of individual demand. Domar and Musgrave (1944) and Sandmo

(1977) derive comparative statics for the effect of capital income tax changes on the demand for risky assets.

In the following lemma, we extend their findings to our setting with endogenous labour supply.

Lemma 1. A reform to the tax on excess returns te has the following effects:

1. excess capital income moves in inverse proportion with the net of tax rate:

ỹete =
ỹe

1− te
. (16)

2. labour income and consumption in either period are not affected by a change in the tax on excess capital

income:

zte = c1te = c̃2te = 0. (17)

3. individual welfare is not affected by the tax on excess capital income:

E[Ṽte ] = 0. (18)

Proof. See Appendix A.2.

Intuitively, if there is an increase in the tax on excess returns, then without behavioural responses, both

the expected value and the standard deviation of net-of-tax excess returns (1 − te)ỹe decrease proportionally.

As a consequence, the net-of-tax marginal risk premiums required by the individuals (the right-hand sides of

(11) and (12)) decline more than the effective decrease in the net-of-tax marginal risk premiums (the left-hand

sides of (11) and (12)). The individuals will extend their investments in the risky assets up to the point where

their required marginal risk premiums again equal the effective marginal risk premiums — when their after-tax

returns (1 − te)ỹe and thus second-period consumption c̃2 are back at their original levels. Since also labour

income and first-period consumption are not affected by a change in the tax on excess returns, a reform to the

tax on excess returns does not affect individual welfare.

3.5 Demand and supply functions conditional on labour income

Our aim is to characterize the optimal taxes on capital income in the presence of an optimal nonlinear tax on

labour income. To do so, it is useful to express the behavioural responses of the individuals conditional on

labour supply.13 Imagine the individual problem as a two-stage optimization problem in which labour supply

and therefore earnings are chosen first, and then earnings are allocated to consumption, savings and portfolio

composition. We study the problem starting from the second stage. Taking labour supply and first-period

13Christiansen (1984) shows that the optimal differentiation of commodity taxes balances the additional distributional benefits
and efficiency gains against the additional distortionary costs, compared to a tax system that fully relies on the tax on labour
income. The relevant comparative statics to characterize the optimum are then conditional on labour income. See e.g. Jacobs and
Boadway (2014) and Gerritsen et al. (2020) for other papers that use comparative statics conditional on labour income.
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disposable income as given, individuals maximize utility by choosing first-period consumption, savings and

portfolio composition. Denote the resulting uncompensated conditional demand functions using a superscript

·c: c1c(−→σ |z, α), sc(−→σ |z, α), f c(−→σ |z, α) and pc(−→σ |z, α), with corresponding capital income tax bases ync(−→σ |z, α)

and yec(−→σ |z, α). The conditional demand functions depend on the expected return α, but they do not depend

on labour earnings ability w due to the separability of preferences between leisure and consumption. In the

first stage individuals optimize their overall expected utility by choosing their labour incomes, anticipating the

outcome of the resulting second-stage choices.

4 Government optimization

We now have all the building blocks to study the government optimization problem (7) subject to budget

constraint (6), taking into account the behavioural responses of the individuals. We characterize the optimal

policies in Appendix A. To find the optimal linear tax rates tn and te, we use the standard approach, demanding

that small perturbations of the tax rates do not affect social welfare. To characterize the nonlinear instruments

t`(·) and P (·), we use a perturbation approach similar to that introduced by Saez (2001) and formalized by

Werquin et al. (2015) and Lehmann et al. (2019). We use the calculus of variations to study the effects of

arbitrary perturbations to the nonlinear policy instruments, and we require that the effects of such perturbations

on social welfare sum to zero.

A difficulty in constructing the Lagrangian is that the government budget depends on the state of the world.

We assume for purposes of analysis that the levels of the public good for each shock are chosen before the

realization of the market shock. Thus, there is no single budget multiplier for the government optimization

problem. To each realization of the market shock rm corresponds a budget multiplier λr
m

. To reflect this, we

introduce a stochastic budget Lagrange multiplier λ̃ ≡ λr̃
m

. Each realization λr
m

of the stochastic multiplier

can be interpreted as the social value of an additional unit of resources in the second period if the realization of

the market shock equals rm.14 We obtain the following Lagrangian for the government optimization problem:

Λ(t`(·), tn, te, P (·), λ(·)) =

¨
Ω

E[Ṽ (t`(·), tn, te, P (·))]dGω(ω)− E[λ̃P̃ ] (19)

+ (1 + rb)E[λ̃]

¨
Ω

t`(z)dGω(ω) + tnE[λ̃]

¨
Ω

yndGω(ω) + te
¨

Ω

E[λ̃ỹe]dGω(ω).

The arguments of the demand and supply functions z, yn and ỹe capture the behavioural responses to policy

changes. For notational simplicity, we omit these function arguments in (19).

We introduce some notation before showing the optimality conditions. Suppose the government gives an

additional unit of income in the first period to an individual of type ω. This is equivalent to a change in the

intercept of the labour income tax schedule. The effect on social welfare consists of two parts. First, there

is a direct effect on the expected utility of this individual. Second, there are income effects on the different

14This interpretation of the budget multipliers shows why we choose to write the government’s budget constraint (6) in second-
period values. Writing (6) in first-period values would not alter our results, but it would complicate our notations.
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tax bases, which affect the tax liability. The total effect of the additional unit of income on the government

objective (19) equals E[Ũ1 + λ̃ · {(1 + rb)t`zzρ + tnynρ + teỹeρ}]. Divide by E[λ̃] to find the monetary value of the

effect on social welfare:

β(ω) ≡ E[Ũ1]

E[λ̃]
+ (1 + rb)t`zzρ + tnynρ + te

E[λ̃ỹeρ]

E[λ̃]
. (20)

The term β(ω) indicates the net marginal social utility of income for an individual of type ω, following Diamond

(1975). The variation of β(ω) with skill captures the benefits of redistributing income between individuals with

different earning abilities, whereas the variation of β(ω) with the expected return to private investment captures

the benefits of redistributing income from individuals with a high expected return to individuals with a low

expected return.

We denote the marginal excess burden of a change in the marginal tax rate on labour income as:

W(ω) ≡ −(1 + rb)t`zz
∗
σ − tnyn∗σ − te

E
[
λ̃ỹe∗σ

]
E[λ̃]

. (21)

This marginal excess burden quantifies, in monetary terms, the social welfare loss due to the compensated

revenue effects of a small increase in the marginal tax rate on labour income at the income level chosen by a

type-ω individual. The first term equals the loss from compensated responses of labour income, the second and

third terms equal the losses from compensated responses of risk-free and excess capital incomes.

Let Gz(z) denote the cumulative distribution function for labour incomes in the tax optimum, and let gz(z)

be the density function. Denote the cumulative distribution of the individual types ω conditional on labour

income z as Gω|z(ω|z). For any function h(ω), let h(z) ≡
˜

Ω
h(ω)dGω|z(ω|z) denote the average of h(ω) for

all types ω who choose labour income z.

Following Saez (2002), we assume that among individuals who earn the same labour income, the compensated

behavioural responses to a labour tax reform are not systematically correlated with the propensities to save out

of labour income.15 We thus assume that for any tax base k = z, yn, ỹe:16

covΩ(k∗σ, y
nc
z |z) = 0, (22)

where covΩ(·) denotes a population covariance (as opposed to cov(·), which denotes a covariance over the

potential realizations of the investment risks).

Given the definitions of β(ω) andW(ω), we derive the first-order conditions for the government optimization

problem in Appendix A. Rearranging them yields the following conditions, where the equation labels refer to

15Saez (2002) argues that there is no obvious reason why such correlations should exist. Moreover, such systematic relations
would be empirically difficult to detect.

16A direct equivalent to Saez’ (2002) Assumption 2 would be e.g. covΩ(z∗tn , y
nc
z |z) = 0. Using the Slutsky symmetry between

z and yn (see Appendix A.2), this is equivalent to covΩ(yn∗σ , yncz |z) = 0. We use the latter formulation in (22) because it leads
to simpler equations for stochastic tax bases. Assumption (22) only affects the optimal tax on risk-free returns. Appendix A.5
contains characterizations for the optimal tax on risk-free returns that do not use Assumption (22).
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the policy variable being perturbed:

t`z(·) : W(z)gz(z) =

ˆ z

z

(1 + rb − β(z))dGz(z), (23)

t`(0) :

¨
Ω

β(ω)dGω(ω) = 1 + rb, (24)

tn : tn
ˆ z

z

ync∗tn dGz(z) =
E[Ũ2]

E[Ũ1]

ˆ z

z

covΩ(β, yn|z)dGz(z)− te
ˆ z

z

E[λ̃ỹ
ec∗
tn ]

E[λ̃]
dGz(z), (25)

te :

¨
Ω

cov(λ̃, ỹe)

E[λ̃]
dGω(ω) =

¨
Ω

cov(Ũ2, ỹ
e)

E[Ũ2]
dGω(ω), (26)

P (·) : λr
m

=

¨
Ω

EE [ŨP |rm]dGω(ω). (27)

The effect of most policy reforms on tax revenue from excess capital income is uncertain. Definitions (20) and

(21) and optimality condition (25) take into account the welfare effects of this uncertainty. Before turning to the

interpretation of the optimality conditions, we reflect on how the uncertainty in the government’s cost-benefit

analysis affects optimal policy decisions.

4.1 Marginal social risk premiums

The optimizing government compares the marginal costs and benefits of using different policy instruments.

When there is a marginal reform to any of the policy instruments, the effects will generally include a change

in tax revenue from excess capital income. Since the excess returns to capital are uncertain, the effects on

government revenue will be uncertain. For this reason, a term E[λ̃teỹeν ]/E[λ̃] appears in definitions (20) and

(21) and in optimality condition (25). This term is the government’s certainty equivalent of the effect of the

reform on the tax revenues from the excess returns. It can be decomposed into expectation and risk terms:

E[λ̃teỹeν ]

E[λ̃]
= E[teỹeν ] +

cov(λ̃, teỹeν)

E[λ̃]
. (28)

The normalized covariance in (28) captures the effect of a policy reform on the uncertainty of the government’s

revenues. The size of this normalized covariance cov(λ̃, teỹeν)/E[λ̃] is the marginal social risk premium associated

with the instrument ν. The marginal social risk premium is analogous to the private marginal risk premiums in

individual first-order conditions (11) and (12). An advantage of this concept is that when different groups of the

population are affected in different ways by a given realization of the state of the world, the distributional effects

are taken into account in the value of the corresponding government budget multiplier, λr
m

. The marginal social

risk premium allows for distribution-sensitive cost-benefit analyses in stochastic environments.

The sign of the term cov(λ̃, teỹeν) = tefνcov(λ̃, r̃m) is opposite to that of E[ỹeν ], since λr
m

rises as rm falls

and vice versa. It is not clear a priori whether the total impact of the term E[λ̃teỹeν ] on social welfare is positive

or negative. To further interpret this term, introduce the notation A ≡ −E[λ̃ỹe]/E[λ̃]. If there is a perturbation

of ν, then −te
˜

Ω
AνdGω(ω) captures the effect on social welfare caused by behavioural responses of excess
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capital income ye. We show in the following lemma how the term
˜

Ω
AνdGω(ω) reflects the change in the

relative importance of aggregate risk due to a perturbation of ν.

Lemma 2. The effect of any policy reform ν = σ, ρ, tn on the expected social value of government revenue from

excess returns is determined by the relative shift towards or away from private investment:

te
¨

Ω

AνdGω(ω) = −
¨

Ω

teE[r̃m − rb]fdGω(ω) · d

dν

( ˜
Ω
te(α− rb)pdGω(ω)˜

Ω
teE[r̃m − rb]fdGω(ω)

)
.

This result extends to compensated effects and to effects conditional on labour income.

Proof. See Appendix A.9.

If idiosyncratic risk on average becomes relatively more important, e.g. because entrepreneurs undertake

new investments that are not correlated with the market, then the total impact on social welfare is positive. The

welfare effect of the increased expected government revenue outweighs the effect of the increased uncertainty,

because the sources of government revenue become better diversified. If on the other hand market investment

becomes relatively more important, the total impact on social welfare is negative, even if the expected tax

revenue increases.

Lemma 2 illustrates the importance of correcting for uncertainty. If we were to ignore uncertainty, then we

would simply include the expected effect on excess capital income as a sufficient statistic in the government’s

cost-benefit analysis. After correcting for uncertainty, it is not the expected effect on excess capital income, but

the effect on the relative importance of aggregate risk that matters.17 We show in Appendix B that seemingly

innocuous simplifications of our model lead to the conclusion that
˜

Ω
AνdGω(ω) equals zero. This is most

obviously the case when there is only idiosyncratic or only aggregate risk. Also, when individuals optimize their

portfolios according to the Mean-Variance framework, we find that
˜

Ω
AνdGω(ω) equals zero when expected

returns to private investment are equal for all investors, or when the semi-elasticities of p and f with respect to

ν are constant over the income distribution.

In the sections that follow we discuss optimality conditions (23)–(27) for the different policy instruments.

We first discuss optimal linear taxes on excess returns in Subsection 4.2, and on risk-free capital income in

Subsection 4.3. We treat the optimal nonlinear tax on labour income in Subsection 4.4. We discuss the optimal

provisions of public goods in Subsection 4.5. Finally, in Subsection 4.6, we combine our insights to discuss the

optimality of the Rate-of-Return Allowance proposed by the Mirrlees Review (2011).

4.2 Optimal linear tax on excess capital income

Condition (26) shows how the government should balance the risk of private consumption against the uncertainty

of public revenues. To gain further intuition, substitute (27) into (26) to find the following theorem, which

characterizes the optimal tax on excess capital income.

17Our findings illustrate the warning of Kleven (2020), who notes that the sufficient statistics approach implicitly relies on strong
assumptions on preferences and on the decision environment.
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Theorem 3. The optimal linear tax on excess capital income balances public consumption risk against private

consumption risk:
cov(
˜

Ω
ŨPdGω(ω),

˜
Ω
ỹedGω(ω))˜

Ω
E[ŨP ]dGω(ω)]

=

¨
Ω

cov(Ũ2, ỹ
e)

E[Ũ2]
dGω(ω). (29)

The optimal tax on excess returns is not affected by behavioural elasticities or by the social welfare weights.

As the uncertainty of government revenue increases, also the uncertainty of public good provision increases.

If individual preferences are concave in the public good, uncertainty in its provision will have a welfare cost.

The optimal tax on excess capital income thus balances the uncertainty of public good provision against the

uncertainty of private consumption.

A striking feature of optimality condition (29) is that it does not depend on the social welfare weights β. The

optimal tax on excess returns does not serve to redistribute between individuals based on ex ante differences,

such as ability or expected rates of return to capital. Lemma 1 shows why this is the case: individuals respond

to a tax increase on excess returns by proportionally increasing their investments in the risky assets, such that

their expected utility remains unaltered. A tax on excess returns is unable to redistribute welfare differences

that stem from ex ante characteristics.

There is another way to understand the absence of the social welfare weights in (29). Recall from (7) that

the government cares about the distribution of expected utilities. Thus, what matters from a distributional

perspective are the certainty equivalents of the excess capital incomes. By (13) the certainty equivalents of

excess capital income are equal to zero for all optimizing individuals. Hence, for the tax on excess returns, there

is no scope for redistribution based on ex ante characteristics.

We now show that te should be strictly between zero and unity. Suppose first that te = 0. If there is a high

realization of the market rate of return, excess returns ye will be high, and thus second-period consumption c2

will be high. The marginal utility of second-period consumption U2 will be low. Conversely, when there is a

low realization of the market rate of return, the marginal utility of second-period consumption will be high. It

follows that the covariance on the right-hand side of (29) is strictly negative. The left-hand side is zero, since

without a tax on excess returns government revenues are not stochastic. Therefore, te = 0 cannot be optimal.

Similarly, we can exclude the case te < 0, because in this case the covariance on the left-hand side would

be positive: a high realization of the market rate of return would lead to low government revenues and to a

higher value of λr
m

. Similar reasoning shows that the only remaining possibility, a positive tax on excess returns

te > 0, yields the correct signs for both covariances, as long as te does not become larger than 100%, in which

case the covariance on the right-hand side of (29) becomes positive.

To see that te should be strictly smaller than 100%, suppose that te approaches unity from below and that

excess returns are all taxed away. The covariance on the right-hand side of (29) approaches zero. The size of

the covariance on the left-hand side on the other hand increases: the government budget is more responsive

to market shocks when taxes on excess returns are high. As long as individuals are averse towards risk in the

provision of the public good, the optimal tax on excess returns is thus strictly smaller than 100%. We summarize
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these findings in the following corollary.

Corollary 4. If all risk is returned using uncertain provision of a public good, then the optimal tax rate on

excess capital returns is strictly positive, and strictly smaller than 100%:

0 < te < 1.

If the importance of aggregate risk increases, then the optimal tax rate on excess returns decreases.

4.3 Optimal linear tax on risk-free capital income

Substitute the definition of A into condition (25) to find the optimal tax on risk-free capital income in the

following Theorem.

Theorem 5. The optimal tax on risk-free capital income balances its distortions against its distributional

benefits:

tn
ˆ z

z

ync∗tn dGz(z) =
E[Ũ2]

E[Ũ1]

ˆ z

z

φn(z)dGz(z) + te
ˆ z

z

Ac∗tndGz(z), (30)

where φn(z) denotes the distributional characteristic of risk-free capital income conditional on labour income:

φn(z) ≡ covΩ(β, yn|z).

Condition (30) shows that the optimal tax on risk-free capital income depends on three effects: the com-

pensated effects of a change in tn on a) tax revenue from risk-free capital income, b) the relative importance of

aggregate risk, and c) the covariance of the social welfare weights β with the risk-free returns to capital yn, all

conditional on labour income z. Given that we assume that preferences are separable between consumption and

leisure, there are no Corlett and Hague (1953) motives to tax risk-free capital income. The absolute value of

the tax on risk-free capital income should be larger if the compensated responses of risk-free capital income are

smaller. The integral on the left-hand side of (30) is negative: a compensated increase of the tax on risk-free

capital income decreases savings and thus risk-free returns. Furthermore, we showed in the previous subsection

that the tax rate te on excess returns is never negative. The tax on risk-free capital income should thus be

larger if the relative importance of aggregate risk decreases as a consequence, and vice versa.

The term involving the covariance between β and yn reflects the potential to use the tax on risk-free returns

to obtain distributional benefits that cannot be obtained through a tax on labour income. If individuals only

differ in their ability to earn labour income, then the conditional covariance of the welfare weights with the

risk-free capital incomes is zero: covΩ(β, yn|z) = 0. In this case there is no scope for redistribution through

the tax on risk-free capital income: all ex ante redistribution takes place through the tax on labour income. If

instead covΩ(β, yn|z) 6= 0, then the tax on risk-free returns should be used to redistribute from individuals with

lower welfare weights to those with higher welfare weights, conditional on labour income.
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Given the heterogeneity of the expected returns to private investment, the welfare weights do vary with the

amount of risk-free capital income, conditional on labour income, so covΩ(β, yn|z) 6= 0. We show in Appendix

A.2 that when the utility function is additively separable between consumption in both periods and between

consumption and labour supply, and individual preferences exhibit constant absolute risk aversion, then changes

in the expected rate of return α only have income effects, both on savings s and on labour income z. Those

individuals with a low return to private investment, and thus those with a higher welfare weight conditional

on labour income, are then the ones who save the most to smooth their consumption over the life cycle.

The covariance covΩ(β, yn|z) would thus be positive: conditional on labour income, the individuals with the

highest risk-free capital income would also have the highest welfare weights. The presence of the distributional

characteristic of risk-free capital income in (30) then puts a downward pressure on the optimal tax on risk-free

capital income.

With more general preferences, one cannot unambiguously sign the covariance covΩ(β, yn|z) based on theo-

retical considerations alone. Even if there is growing empirical evidence of persistent heterogeneity in rates of

return after correcting for risk (e.g. Fagereng et al. (2020)), it remains unclear to what extent such differences

are independent of differences in the ability to earn labour income. More research is needed to find whether the

conditional covariance covΩ(β, yn|z) differs substantially from zero, and in which direction.

Similarly, even if the term
´ z
z
Ac∗tndGz(z) easily becomes zero under common theoretical assumptions, its

sign is ultimately an empirical question. There is limited empirical evidence about the effects of capital taxes

on investment decisions. Akcigit et al. (2018) find that higher income taxes decrease the activities of inventors.

Higher income taxes thus discourage activities that are less correlated with the market. Jakobsen et al. (2020)

find that wealth taxes have a stronger effect on wealth accumulation at the top. We know that private equity

is more concentrated at the top of the income distribution. Taken together, these results suggest that a tax

on wealth decreases the relative importance of investments in activities whose returns correlate less with the

market. Lemma 2 then indicates that the term
´ z
z
Ac∗tndGz(z) is positive.

Recall that the integral on the left-hand side of (30) is negative. If both terms on the right-hand side of

(30) are indeed positive, then Theorem 5 indicates that the optimal tax on risk-free returns to capital income

is negative.

4.4 Optimal nonlinear tax on labour income

The optimality condition for the intercept (24) is standard. The optimal marginal labour income tax (23)

resembles the standard Mirrlees result, amended to take into account induced expected capital income tax

revenue effects of a labour income tax reform, and the uncertainty involved therein. The standard Mirrlees

result can be recovered when all individuals earn equal returns to capital (i.e. cov(β, yn|z) = 0) and policy

reforms do not alter the relative shares of aggregate and idiosyncratic risk (i.e. Aν = 0). According to Theorem
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5, the optimal tax on capital income then equals zero, and the marginal social utility of income can be simplified:

β (w) ≡
(
1 + rb

)E
[
Ũ2

]
E
[
λ̃
] − t`zzρ

 . (31)

The optimal tax on labour income then takes the traditional form, as shown in the following theorem.

Theorem 6. When all individuals earn equal returns to capital and compensated policy reforms do not alter

the relative shares of aggregate and idiosyncratic risk, then the marginal optimal tax rates on labour income are

determined by the classic Mirrlees equation:

∀z :
t`z

1− t`z
=

1

ez
· 1−Gz

zgz
·
´ z
z

(
1 + r − β (z)

)
dGz

1−Gz
,

with present value compensated elasticity of labour income:

∀z : ez ≡ − 1

1 + rb
1− t`z
z

z∗σ.

4.5 Optimal stochastic public good provision

Condition (27) shows that for each market outcome rm, the government should choose the level of the public

good such that the average value of the expected marginal utility of its provision ŨP equals the shadow price

of government revenue λr
m

.

This can be related to a Samuelson-type rule for public goods provision by adopting the approach of Chris-

tiansen (1981). Take the expected value of (27), divide by E[λ̃] and rearrange to find:

1 =

¨
Ω

(1 + rb)
E[ŨP ]

E[Ũ1]
dGω(ω) +

¨
Ω

(
E[Ũ1]

E[λ̃]
− (1 + rb)

)
E[ŨP ]

E[Ũ1]
dGω(ω). (32)

The term E[ŨP ]/E[Ũ1] reflects an individual’s expected marginal valuation of the public good in terms of first-

period consumption. The first term on the right-hand side of (32) reflects the effect on social welfare of a

marginal increase in public good provision when all individuals have equal social weights, so E[Ũ1]/E[λ̃] = 1+rb

for each individual. This term reflects the traditional Samuelson rule (1954) for public good provision, where

the marginal utility of private consumption should be equalized to the marginal utility of the public good.

The second term on the right-hand side reflects the distributional effects of a marginal increase in public good

provision, due to the fact that different individuals have different social weights. If the expected marginal

valuation of the public good E[ŨP ]/E[Ũ1] increases sufficiently with the social weight E[Ũ1]/E[λ̃], then the

second term on right-hand side of (32) is positive. This implies that the first term on the right-hand side of (32)

must be smaller than one, and thus that the provision of the public good must be larger than if distributional

motives were ignored.
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4.6 Optimality of the Rate-of-Return Allowance

An RRA is defined as a zero-tax on risk-free capital income combined with a positive tax on excess returns.

With an RRA, the entire burden of insurance and redistribution of capital income falls on the tax on excess

returns.

We have shown that the tax on excess returns serves the purpose of insurance, by pooling idiosyncratic

risk and by balancing the uncertainty of private consumption against the uncertainty of public good provision.

However, we demonstrated that with fairly weak assumptions, the tax on excess returns cannot be used for

redistribution. If a tax on excess return is introduced, then individuals will reoptimize their portfolios such

that their net-of-tax returns to capital and their utility remain unchanged, analogous to the well-known Domar-

Musgrave (1944) result.

Whether the tax on risk-free capital income should be zero depends on two factors. The first is whether

conditional on labour income, risk-free capital income is correlated with the welfare weights. In our model this

is the case when returns to private investment are heterogeneous even after controlling for risk. In this case

there is scope for redistribution through the tax on risk-free capital income, beyond what is possible using a tax

on labour income alone.

The second factor determining whether the tax on risk-free capital income should be zero is whether a tax on

risk-free returns alters the relative importance of aggregate and idiosyncratic risk in the individual investment

portfolios. In the presence of a tax on excess returns, tax revenues become more uncertain if the importance of

aggregate risk increases, which has adverse consequences for social welfare. A tax on risk-free capital income

should be larger if this decreases the importance of aggregate risk, and vice versa. We found that commonly

made theoretical assumptions can reduce this second factor to zero.

Summarizing, we find that a tax on risk-free capital income has a different function than a tax on excess

capital income. A tax on excess returns serves to insure against potential realizations of the investment risk.

Any redistribution based on ex ante characteristics conditional on labour income, however, should occur through

the tax on risk-free capital income. Our results thus go against recommendations to introduce an RRA.18

5 Returning the risk using a stochastic lump sum

Up to now we have assumed that the government returns the risk of its revenues using a stochastic public

good. The stochasticity of the government’s revenues then did not affect private consumption risk. With the

assumption that preferences were separable between public and private consumption, the provision of the public

good did not affect individual behaviour.

We now consider the case where the government returns the risk of its revenues using a stochastic lump sum

K̃. The model remains the same as in Section 2, however the individual budget constraint in the second period

18This does not necessarily mean that the RRA proposal should be discarded altogether. Suppose that the optimal taxes on risk-
free and excess capital incomes equal tn∗ and te∗ respectively. If the government would exempt a rate of return rE = (1−tn∗/te∗)rb
from taxation, and if it would tax any deviations from rE at rate te∗, then the government would still be implementing the optimum.
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is altered as follows:

c̃2 ≡ s+ (1− tn)yn + (1− te)ỹe + K̃, (33)

and the government’s intertemporal budget constraint becomes:

K(r̃m) =

¨
Ω

[
(1 + rb)t`(z) + teEE [ỹ

e|r̃m] + tnyn
]

dGω(ω). (34)

The presence of the stochastic lump sum affects individual behaviour. The supply and demand functions

now also depend on the function K(·), as does the indirect utility function.

We treat the levels of K(r̃m) to be provided for each potential realization of the market shock as policy

instruments in the government’s optimization problem. The government sets the tax instruments together with

the levels of the lump sum K(rm) to maximize social welfare:

max
t`(·),tn,te,K(·)

¨
Ω

E[Ṽ (t`(·), tn, te,K(·))]dGω(ω), (35)

subject to intertemporal budget constraint (34).

We derive the first-order conditions for the government optimization problem in Appendix A. We find that

optimality conditions (23)–(26) remain valid. In Appendix B we show that if the Mean-Variance framework

applies in the presence of a stochastic lump sum that is positively correlated with the market risk, then with

some simplifying assumptions the relative importance of the aggregate risk responds in the same direction as

the size of the risky portfolio:19

¨
Ω

AνdGω(ω) R 0⇐⇒ pν R 0 and fν R 0. (36)

The intuition is that in the presence of the stochastic lump sum, individuals are less interested in investing in

assets that are also correlated with the market risk. As the risky portfolio grows however, the relative importance

of the stochastic lump sum decreases, and individuals will be more interested in investing in the market asset.

Result (36) reduces the probability that the optimal tax on risk-free capital income is negative. To see this,

note that when there is a tax increase on risk-free returns, the compensated response of total savings conditional

on labour income is unambiguously negative (sc∗tn < 0), and the risky portfolio is likely to decline in size (pc∗ν < 0

and f c∗ν < 0). Result (36) then implies that
˜

Ω
AtndGω(ω) < 0: the relative importance of aggregate risk in

the portfolios declines. From a theoretical point of view, the second term on the right-hand side of Theorem 5

is then more likely to be negative, and the sign of the optimal tax on risk-free capital income is more likely to

be positive.

The optimality condition (27) for the public good is now replaced by the following optimality condition for

19The additional assumptions needed are that either the semi-elasticities of p and f with respect to ν are equal for all individuals,
or that all individuals earn the same expected rates of return α to private investment. See Appendix B for proofs. If there are no
assets with idiosyncratic risk, we again find that

˜
ΩAνdGω(ω) = 0, even in the presence of the stochastic lump sum.
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the stochastic lump sum:20

K(rm) :
λr

m

E[λ̃]
=

¨
Ω

EE [Ũ2|rm]

E[Ũ2]
dGω(ω) +

¨
Ω

(
tnync∗K(rm) + teAc∗K(rm)

)
dGω(ω) (38)

+
E[Ũ2]

E[Ũ1]

ˆ z

z

covΩ

(
EE [Ũ2|rm]

E[Ũ2]
, β

∣∣∣∣∣ z
)

dGz(z).

The left-hand side of (38) reflects the direct effect on the government budget of an increase of the lump sum in a

specific realization rm of the state of the world. The first term on the right-hand side contains the direct welfare

effects of the perturbation on the individuals. The remaining terms on the first line of (38) reflect compensated

behavioural effects of the perturbation on government revenue from the capital incomes, conditional on labour

income. A change of K(rm) for a specific realization of the market risk rm changes the risk properties of

second-period consumption. This causes individuals to alter their investments, even if they are compensated

for the perturbation. The term on the second line of (38) reflects the distributional consequences of increasing

the stochastic lump sum in a specific realization of the state of the world. The terms on the right-hand side of

(38) are difficult to characterize without further assumptions on individual behaviour.

Substituting condition (38) into the optimality condition (26) for the tax on excess returns, we obtain the

following Theorem.

Theorem 7. If the government returns the risk of its tax revenues using a stochastic lump sum, then the optimal

tax on excess returns satisfies the following necessary condition:

¨
Ω

cov(Ũ2, ε̃
ep)

E[Ũ2]
dGω(ω) = tncov

(¨
Ω

ync∗
K̃

dGω(ω),

¨
Ω

ỹedGω(ω)

)
+ tecov

(¨
Ω

Ac∗K̃dGω(ω),

¨
Ω

ỹedGω(ω)

)
.

(39)

Proof. See Appendix A.

The left-hand side of (39) indicates how much of the idiosyncratic risk remains after the tax on excess returns

is imposed. If the distortions on the right-hand side of (39) were to approach zero, then the optimal tax on

excess returns would approach 100%, such that the idiosyncratic risk would be fully insured. If moreover there

were no idiosyncratic risk, but only aggregate risk, then the left-hand side of (39) would always be zero, and

the value of the tax on excess returns would become irrelevant. In this case it would optimally be set to zero,

to minimize the compliance costs.

The irrelevance of the tax on excess returns in absence of idiosyncratic risk and compensated behavioural

responses extends the findings of Atkinson and Stiglitz (1980), who assume the presence of a representative

20To arrive at (38), we extend assumption (22) to include the following statement for any k = z, yn, ỹe:

cov

(
k∗σ ,

d

dz

(
EE [Ũ2|rm]

E[Ũ2]

)∣∣∣∣∣ z
)

= 0, (37)

where EE [Ũ2|rm]/E[Ũ2] is the certainty equivalent of an increase in the stochastic lump sum for a specific realization rm of the market
risk. We thus assume, again following Saez (2002), that among individuals who earn the same labour income, the compensated
behavioural responses to a labour tax reform are not systematically correlated with the propensity of this certainty equivalent to
increase with labour income. Formulations of the optimum that do not use Assumption (37) can be found in Appendix A.8.
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consumer for whom the tax on excess returns is exactly undone by the stochastic lump sum, and of Gordon

(1985), who assumes that the lump sums are tailored to the individuals. In our case, the fact that the lump

sums are not matched to the individuals does not undo the irrelevance of the tax on excess returns. Any redis-

tributional effects of introducing a positive tax on excess returns are absorbed as the other policy instruments

are re-optimized, and the final effect on social welfare is zero.

In presence of both aggregate and idiosyncratic risk, Theorem 7 shows that the optimal insurance is no

longer mitigated by a balancing act between public risk and private risk. This extends the results of Gordon

(1985), who finds in a comparative statics exercise that a tax on excess returns has no behavioural effects when

the lump sums are tailored to the individuals in the non-corporate sector. He finds that it would be better,

from a welfare perspective, to fully insure the idiosyncratic risk. Condition (39) states that in presence of a

nonlinear tax on earnings and in absence of compensated effects of the stochastic lump sum, this full insurance

result remains valid even when the lump sums are not tailored to the individuals.

The right-hand side of (39) indicates the distortions caused by not tailoring the stochastic lump sums to

individual risks. Even if individuals are compensated for changes in their expected utility, an increase of the

stochastic lump sum in high realizations of the market rate will generally have different behavioural effects than

an increase of the stochastic lump sum in low realizations of the market rate. If these distortions indeed depend

on the state of the world, then the optimal tax on excess capital income differs from 100%. These distortions

however are difficult to characterize without further assumptions on individual behaviour. This question is

beyond the scope of our paper.

In conclusion, our main results remain valid when the government returns the aggregate risk of its revenues

using a stochastic lump sum. The optimal tax on excess capital income is still unambiguously positive for

insurance reasons, though the government now only insures idiosyncratic risk, taking into account the distortions

caused by the way the aggregate risk is returned to the individuals. The tax on risk-free capital income still

serves to redistribute based on differences between individuals conditional on labour income, and to reduce the

risk of tax revenues from excess capital income. The sign of the optimal on risk-free capital income is ambiguous.

6 Conclusion

We have studied optimal linear taxation of risk-free and excess returns to capital, alongside an optimal nonlinear

tax on labour income, in an intertemporal model with risky assets. Our approach differs from the standard

Mirrlees optimal income tax analysis in a number of dimensions. We incorporate portfolio choice into a two-

period model with heterogeneous households who both supply labour and save in the first period. Portfolios

include both safe and risky assets where the latter combine market assets with aggregate risk and private

investment with idiosyncratic risk. Individuals differ both in their labour productivity and in the expected

return on their private investments. Aggregate risk on market assets is reflected in the government’s revenue

stream, which in turn leads to uncertainty in government spending either on public goods or on identical
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lump-sum transfers to all individuals.

In our base case, we assume the government returns uncertain tax revenues to the economy by varying the

supply of public goods. A tax on excess returns taxes both rents of private investments and returns to risk. One

might expect that since individuals differ in the productivity of their private investments, taxing excess returns

might serve a redistribution role. However, a Domar-Musgrave effect nullifies such a role: individuals respond

to a tax on excess returns by adjusting their portfolios such that their expected utility remains unchanged. The

tax does fulfill an insurance role. Such a tax reduces the riskiness of private consumption while increasing that

of public goods consumption. At an optimum, a positive tax on excess returns trades off these two risks. At the

same time, a tax on risk-free returns can have redistributive consequences and can serve as a complement to the

progressive earnings tax. Individuals of different investment productivities but the same earnings will generally

differ in their savings and risk-free capital income. However, the relation between investment productivity and

savings is ambiguous: under reasonable assumptions more productive persons might save less. If so, the optimal

tax on risk-free capital income would be negative. This implies that, while it is optimal to tax risk-free capital

income and excess returns to capital at different rates, the RRA system proposed by the Mirrlees Review (2011)

will generally not be optimal. These results extend to the case where the government returns its uncertain

revenues to households as lump sums.

Marginal labour income tax rates will take into account capital income tax revenue changes induced by

changes in the marginal income tax rate. Public goods decision rules are standard and are equivalent to equity-

adjusted Samuelson rules. For each realization of aggregate risk, the sum of the expected marginal social utilities

of public good should equal the shadow value of government revenue.

Our stylized model shows that optimal tax results are sensitive to the inclusion of risky assets. As more

refined models are developed to study the optimal taxation of capital in presence of heterogeneous rates of

return, one should account for the risk incurred in obtaining those returns. The fact that a tax on excess

returns does not discourage risk-taking due to the Domar-Musgrave (1944) effect, does not imply that one can

simply extrapolate the results from a model with deterministic capital incomes to a context with risky capital

incomes. One should be particularly careful when applying a sufficient-statistics framework. The change in the

tax liability due to a tax reform on risky excess returns, is not an adequate measure for its effect on individual

welfare. Moreover, elasticities of expected tax revenues are no longer sufficient if uncertain tax revenues decrease

social welfare.

References

Stuart Adam and Helen Miller. Taxing work and investment across legal forms: pathways to well-designed

taxes. The Institute for Fiscal Studies, 2021.

Ufuk Akcigit, John Grigsby, Tom Nicholas, and Stefanie Stantcheva. Taxation and innovation in the 20th

century. National Bureau of Economic Research Working Paper Series w24982, 2018.

25



George B Arfken and Hans J Weber. Mathematical methods for physicists international student edition. Aca-

demic press, 2005.

Anthony B. Atkinson and Joseph E. Stiglitz. The design of tax structure: Direct versus indirect taxation.

Journal of Public Economics, 6(1-2):55–75, 1976.

Anthony B. Atkinson and Joseph E. Stiglitz. Lectures on public economics. McGraw-Hill College, 1980.

Alan J Auerbach, Michael P Devereux, Michael Keen, and John Vella. Destination-based cash flow taxation.

Oxford Legal Studies Research Paper WP 17/01, 2017.

James Banks and Peter A Diamond. The base for direct taxation. Institute for Fiscal Studies, ed., Dimensions

of Tax Design, New York: Oxford University Press, 2010.

Spencer Bastani and Daniel Waldenström. How should capital be taxed? Journal of Economic Surveys, 34(4):

812–846, 2020.

Jess Benhabib, Alberto Bisin, and Mi Luo. Wealth distribution and social mobility in the us: A quantitative

approach. American Economic Review, 109(5):1623–47, 2019.
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Appendix A First-order conditions for the government

We prove our results for the general case that allows for both a stochastic public good and a stochastic lump

sum (described in subsection 5) to return the uncertainty of the government’s revenues. The government uses

two linear instruments (tn and te) and three nonlinear instruments (t`(z), K(r̃m) and P (r̃m)) to maximize

social welfare subject to a budget constraint. For the optimization of the linear instruments we derive standard

first-order conditions. The optimization of the nonlinear instruments is more challenging.

A standard approach to optimize a nonlinear function is the Euler-Lagrange formalism. A standard as-

sumption of the Euler-Lagrange method is that the arguments of the functions that are being optimized, are

exogenous. This assumption is clearly violated when optimizing a tax function: individuals change their be-

haviour when the tax system changes. The tax base is endogenous. Saez (2001) develops a heuristic perturbation

method to overcome this difficulty in a deterministic setting where the government only levies a nonlinear tax

on labour income. For a given perturbation of the tax function, he lists the effects on the government objective

and requires that the total effect is zero. Recent contributions by Werquin et al. (2015), Boháček and Kejak

(2018) and Lehmann et al. (2019) further formalize the perturbation method, enabling its application to more

complex policy questions.

We adapt a standard proof for the Euler-Lagrange equation (see e.g. Arfken and Weber (2005) chapter

17), to incorporate behavioural responses to perturbations of the policy instruments. We start in Subsection

A.1 by formally defining our perturbations to the policy instruments. In Subsection A.2 we study the effects

of our perturbations on individual behaviour. This allows setting up a Lagrange equation for our problem in

Subsection A.3, and deriving the first-order conditions for the government in the remaining subsections.

A.1 Perturbations to the policy instruments

If a given policy instrument is optimal, then any perturbation to it leaves the government objective unchanged.

To find optimal values for the linear instruments, we perturb tn and te and demand that the effects on the

government objective sum to zero. For the nonlinear instruments, we introduce perturbation functions. For the

tax on labour income, for example, we introduce a perturbation function εzηz(z). The function ηz(z) models

an arbitrary, nonlinear but sufficiently smooth perturbation. The parameter εz is an infinitesimal that allows

varying the size of the perturbation. After the perturbation, the tax liability for any labour income z equals

t`(z) + εzηz(z). Together, the entities εz and ηz allow modelling any small perturbation to the tax function

t`(z). If the value of εz equals zero, then the unperturbed tax function is in place. If the optimal value of εz is

zero for every function ηz, then we know that the unperturbed tax function is optimal. Similarly, we introduce

perturbations εKηK(r̃m) and εP ηP (r̃m) respectively for the state-dependent lump sum and the state-dependent

public good.

The general perturbations εzηz(z), εKηK(r̃m) and εP ηP (r̃m) look different from the perturbations that

we introduce in the main text. To verify the optimality of the government policies, we must verify that any
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perturbation leaves the government objective unchanged. However, the perturbation parameters introduced in

the main text suffice to describe the comparative statics of such general perturbations. For example, we will

show in the next subsection that the effects on individual behaviour of any perturbation of the labour income tax

schedule can be decomposed into income and substitution effects, and can thus be described using the simpler

perturbation parameters ρ and σ.21 Furthermore, we will show that the general perturbations to the lump sum

εKηK(r̃m) and to the public good εP ηP (r̃m) can be decomposed into local perturbations for specific realizations

of the state of the world rm. In the main text we model such local perturbations as direct changes to the

values K(rm) and P (rm). We now model these local perturbations more formally using a Dirac delta function

δ(r̃m − rm), and we let κm and πm parameterize the size of the reforms.22 The stochastic lump sum after the

perturbations then equals K(r̃m) + εKηK(r̃m) +κmδ(r̃m− rm). Similarly, the provision of the stochastic public

good after the perturbations equals P (r̃m) + εP ηP (r̃m) + πmδ(r̃m − rm).

The budget constraints taking into account all perturbation parameters are then:

C1(z, s, εz, σ, ρ) ≡z − s− t`(z)− σz − εzηz(z) + ρ, (40)

C̃2(s, f, p, tn, te, εK , κm, ρ2) ≡s+ (1− tn)rbs+ (1− te)ỹe(f, p) + ρ2 (41)

+K(r̃m) + κmδ(r̃m − rm) + εKηK(r̃m),

where ỹe(f, p) is defined by (3), and ρ2 denotes a deterministic lump sum that is given to all individuals in the

second period.

A.2 Individual behaviour

In this subsection we derive properties of individual supply and demand, which we will use in the following

subsections to characterize the optimal policies. It is mathematically convenient to redefine utility function (5)

by substituting budget constraints (40) and (41) for c1 and c2. An individual facing the perturbed government

policies thus maximizes the expected value of the following utility function:

Ũ(z,s, f, p, σ, εz, ρ, tn, te, εK , κm, εP , πm, ρ2)

≡ U
(
u(C1(z, s, εz, σ, ρ), C̃2(s, f, p, tn, te, εK , κm, ρ2)),

z

w
, P (r̃m, εP , πm, rm)

)
, (42)

where we write P (r̃m, εP , πm, rm) as shorthand for P (r̃m) + εP ηP (r̃m) + πmδ(r̃m − rm).

21Saez (2001) considers one specific perturbation, where the function ηz alters the slope of the tax schedule in a small interval
around a specific income level, it leaves the tax schedule unaltered below that income level, and it changes the level but leaves
the slope of the tax schedule unaltered for individuals with higher incomes. Given the complexity of our model, we consider more
general perturbations, and formally derive their effects on the government objective.

22The Dirac delta function δ(rm − Rm) is defined such that δ(rm − Rm) = 0 whenever rm 6= Rm, and it integrates to one on
the set of real numbers:

´∞
−∞ δ(rm −Rm)drm = 1. This setup allows modelling a localized reform to the lump sum with non-zero

effects on social welfare.
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The first-order conditions for the individual are:

E[Ũz] = E[Ũs] = E[Ũf ] = E[Ũp] = 0. (43)

Denote the supply function for labour income as z(·) and denote the demand functions for assets as s(·), f(·)

and p(·). Each of the supply and demand functions has as arguments type ω and the perturbation parameters

σ, εz, ρ, tn, te, εK , κm, εP , πm and ρ2.

Substituting the supply and demand functions into the utility function yields indirect utility Ṽ(·), which

also is a function of type and of the perturbation parameters. Applying the envelope theorem to problem (42)

yields the following properties:

E[Ṽεz ] = −E[Ũ1]ηz(z), E[Ṽσ] = −E[Ũ1]z, (44)

E[Ṽte ] = 0, E[Ṽtn ] = −E[Ũ2]yn, E[Ṽρ] = E[Ũ1], E[Ṽρ2 ] = E[Ũ2], (45)

E[ṼεK ] = E[Ũ2η
K(r̃m)], E[Ṽκm ] = EE [Ũ2|rm], E[ṼεP ] = E[ŨP η

P (r̃m)]. (46)

Combining these envelope conditions allows deriving Slutsky properties, as we do in the following Lemma.

Lemma 8 (Slutsky properties). We find the following Slutsky properties for individual behaviour:

1. for any k = z, s, f, p, the behavioural effects of perturbations σ, tn and κm can be decomposed into income

effects and compensated effects:

k∗σ = kσ + zkρ, k∗tn = ktn + ynkρ2 , k∗κm = kκm − EE [Ũ2|rm]

E[Ũ2]
kρ2 . (47)

2. individual behaviour complies to the following Slutsky symmetry between labour income and risk-free capital

income:

z∗tn =
E[Ũ2]

E[Ũ1]
yn∗σ . (48)

3. individual behaviour complies to the following Slutsky symmetry between labour income and the stochastic

lump sum:

z∗κm = − ∂

∂σ

(
EE [Ũ2|rm]

E[Ũ1]

)∗
, (49)

4. individual behaviour complies to the following Slutsky symmetry between risk-free capital income and the

stochastic lump sum:

yn∗κm = − ∂

∂tn

(
EE [Ũ2|rm]

E[Ũ2]

)∗
. (50)

The latter Slutsky symmetry remains valid conditional on labour income z.

Proof. Denote the value of any demand or supply function k in the situation before any reforms as ki. Introduce
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the indirect utility in terms of the different compensated reforms as:

V∗(ω, σ, tn, κn) ≡ V

(
ω, σ, tn, κn, ρ = ziσ, ρ2 = ynitn − EE [Ũ

i
2|rm]

E[Ũ i2]
κm

)
,

where we omit irrelevant function arguments. Use envelope conditions (44)–(46) to find:

E[Ṽ∗σ] = E[Ṽσ] + E[Ṽρ]zi = −E[Ũ1](z − zi), (51)

E[Ṽ∗tn ] = E[Ṽtn ] + E[Ṽρ2 ]yni = −E[Ũ2](yn − yni), (52)

E[Ṽ∗κm ] = E[Ṽκm ]− E[Ṽρ2 ]
EE [Ũ2|rm]

E[Ũ2]
= E[Ũ2]

(
EE [Ũ2|rm]

E[Ũ2]
− EE [Ũ

i
2|rm]

E[Ũ i2]

)
. (53)

1. In the situation without any reforms, (51)–(53) show that E[Ṽ∗σ] = E[Ṽ∗tn ] = E[Ṽ∗κm ]=0. It follows that the

combined reforms in (47) are indeed compensated.

2. Evaluate the partial derivative of (51) with respect to tn, and that of (52) with respect to σ, each time in

the situation before any reforms:

E[Ṽ∗σtn ] = −E[Ũ1]z∗tn , (54)

E[Ṽ∗tnσ] = −E[Ũ2]yn∗σ . (55)

Young’s theorem demands that the second-order partial derivatives of any function are symmetric. Apply

this requirement to (54) and (55) to find Slutsky symmetry (48).

3. Evaluate the partial derivative of (51) with respect to κm, and of (53) with respect to σ, each time in the

situation before any reforms:

E[Ṽ∗σκm ] = −E[Ũ1]z∗κm , (56)

E[Ṽ∗κmσ] = E[Ũ2]
∂

∂σ

(
EE [Ũ2|rm]

E[Ũ2]

)∗
. (57)

Applying Young’s theorem and using the fact that the marginal rate of substitution E[Ũ2]/E[Ũ1] does not

depend on the tax on labour income, yields (49).

4. Evaluate the partial derivative of (52) with respect to κm, and of (53) with respect to tn, each time in the

situation before any reforms:

E[Ṽ∗tnκm ] = −E[Ũ2]yn∗κm , (58)

E[Ṽ∗κmtn ] = E[Ũ2]
∂

∂tn

(
EE [Ũ2|rm]

E[Ũ2]

)∗
. (59)
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Applying Young’s theorem and using the fact that the marginal rate of substitution E[Ũ2]/E[Ũ1] does not

depend on the tax on labour income, yields (49).

If there is a marginal change to any of the type or perturbation parameters ν, then individuals change their

behaviour, such that first-order conditions (43) remain satisfied. We thus obtain for any k = z, s, f, p:23

0 =
dE[Ũk]

dν
= E[Ũkz]zν + E[Ũks]sν + E[Ũkf ]fν + E[Ũkp]pν + E[Ũkν ]. (60)

Write equation (60) in matrix notation to find the following lemma.

Lemma 9. The effects of a change of any parameter ν = w, σ, εz, ρ, tn, te, εK , κm, εP , πm or ρ2 on the

choices of the individuals are given by:
zν

sν

fν

pν

 = −(E[H̃])−1 · E




Ũzν
Ũsν
Ũfν
Ũpν



 ,

where H̃ denotes the Hessian of utility function (42).

Lemma 9 reduces the task of finding relations between the effects of different perturbations, to finding

relations between the partial derivatives of the functions Ũz, Ũs, Ũf and Ũp. The following Lemma uses Lemma

9 to find relations between the income effects in both periods.

Lemma 10. The behavioural effects of perturbations to the tax intercepts in the two periods are related as

follows:

zρ =
E[Ũ1]

E[Ũ2]
zρ2 , sρ =

E[Ũ1]

E[Ũ2]
sρ2 + 1, fρ =

E[Ũ1]

E[Ũ2]
fρ2 , pρ =

E[Ũ1]

E[Ũ2]
pρ2 . (61)

Proof. Note the following second-order derivatives, evaluated in the situation before any reforms:

E[Ũzρ] = (1− τ `z)E[Ũ11], E[Ũzρ2 ] = −(1− τ `z)E[Ũ12], (62)

E[Ũsρ] = −E[Ũ11] + E[Ũ12]
E[Ũ1]

E[Ũ2]
, E[Ũsρ2 ] = −E[Ũ12] + E[Ũ22]

E[Ũ1]

E[Ũ2]
,

∀k = f, p : E[Ũkρ] = (1− te)E[Ũ21ỹ
e
k], E[Ũkρ2 ] = (1− te)E[Ũ22ỹ

e
k], (63)

23The behavioural effects zν , sν , fν and pν are total effects. This means that they include not only the direct effects of a change
in the parameter ν. They also include second-round effects due to the nonlinearity of the tax on labour income. If a change in the
parameter ν causes a change in labour income z, this will cause a change in the marginal tax on labour income τ`z(z), which will
cause further effects on the choices of the individuals. Jacquet et al. (2013) and Jacobs and Boadway (2014) include similar second-
round effects in their elasticities. The functions E[Ũz ], E[Ũs], E[Ũf ] and E[Ũp] are equivalent to the shift functions introduced by
Jacquet et al. (2013).
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and thus:

∀k = z, s, f, p : E[Ũks] =E[Ũkρ2 ]
E[Ũ1]

E[Ũ2]
− E[Ũkρ]. (64)

Write (64) in matrix notation:

E[Ũ1]

E[Ũ2]
E




Ũzρ2
Ũsρ2
Ũfρ2
Ũpρ2



− E




Ũzρ
Ũsρ
Ũfρ
Ũpρ



 = E




Ũzs
Ũss
Ũfs
Ũps



 .

Substitute Lemma 9 on the left-hand side and fully write the Hessian E[H̃]:

−E




Ũzz Ũzs Ũzf Ũzp
Ũsz Ũss Ũsf Ũsp
Ũfz Ũfs Ũff Ũfp
Ũpz Ũps Ũpf Ũpp



 · E


E[Ũ1]

E[Ũ2]


zρ2

sρ2

fρ2

pρ2

−

zρ

sρ

fρ

pρ



 = E




Ũzs
Ũss
Ũfs
Ũps



 ,

or equivalently:

−E




Ũzz Ũzs Ũzf Ũzp
Ũsz Ũss Ũsf Ũsp
Ũfz Ũfs Ũff Ũfp
Ũpz Ũps Ũpf Ũpp



 · E


E[Ũ1]

E[Ũ2]


zρ2

sρ2

fρ2

pρ2

−

zρ

sρ

fρ

pρ

+


0

1

0

0



 = 0.

This last equation implies Eq. (61).

When there is a marginal increase in the perturbation parameter εz, then at any labour income z, the tax

liability will increase by ηz(z), and the marginal tax rate will increase by ηzz(z). The following Lemma then

shows how the behavioural effects such a perturbation can be decomposed into substitution effects and income

effects.

Lemma 11. The behavioural effects of any perturbation function εzηz can be decomposed into substitution and

income effects:

kεz = k∗ση
z
z − kρηz. (65)

Proof. Note the following second-order derivatives of (42), evaluated in the situation before any reforms, and

substitute Eqs. (62) and (63):

E[Ũzσ] = −E[Ũ1]− E[Ũzρ]z,
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∀k = s, f, p : E[Ũkσ] = −E[Ũkρ]z,

∀k = z, s, f, p : E[Ũkεz ] = (E[Ũkσ] + zE[Ũkρ])ηzz − E[Ũkρ]ηz. (66)

Substitute (66) into Lemma 9 and use Slutsky decomposition (47) to find Eq. (65).

In the following Lemma, we apply Lemma 9 to find the effects of a change in the tax on excess returns te

on the behaviour of the individuals.

Lemma 12. A change in the tax on excess returns has no effect on labour supply and on savings:

zte = ste = 0.

A proportional change in the tax on excess returns, causes a proportional change in the investment in both risky

assets:

fte =
1− te

f
f, pte =

1− te

p
p.

Proof. Note the following second-order derivatives, evaluated in the situation before any reforms, and substitute

E[Ũfs] and E[Ũps] from Eq. (64):

E[Ũfz] =
1− te

f

1

w
E

[(
Ũ2` − Ũ21

E[Ũ`]

E[Ũ1]

)
(r̃m − rb)f

]
, (67)

E[Ũff ] =
1− te

f
E[(1− te)Ũ22(r̃m − rb)2f ], (68)

E[Ũfp] =
1− te

f

1− te

p
E[Ũ22(r̃m − rb)f(α+ ε̃− rb)p], (69)

E[Ũpz] =
1− te

p

1

w
E

[(
Ũ2` − Ũ21

E[Ũ`]

E[Ũ1]

)
(α+ ε̃− rb)p

]
, (70)

E[Ũpp] =
1− te

p
E
[
(1− te)Ũ22(α+ ε̃− rb)2p

]
, (71)

∀k = z, s, f, p : E[Ũtek] = − f

1− te
E[Ũkf ]− p

1− te
E[Ũkp]. (72)

Apply Cramer’s rule to Lemma 9 and substitute E[Ũtez] and E[Ũtes] from Eq. (72) to find the effects on labour

income and savings:

zte =
1

det
(

E[H̃]
) det

E





f Ũzf+pŨzp
1−te Ũzs Ũzf Ũzp

f Ũsf+pŨsp
1−te Ũss Ũsf Ũsp

f Ũff+pŨfp

1−te Ũfs Ũff Ũfp
f Ũpf+pŨpp

1−te Ũps Ũpf Ũpp





 = 0,
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ste =
1

det
(

E[H̃]
) det

E




Ũzz f Ũzf+pŨzp

1−te Ũzf Ũzp
Ũsz f Ũsf+pŨsp

1−te Ũsf Ũsp
Ũfz f Ũff+pŨfp

1−te Ũff Ũfp
Ũpz f Ũpf+pŨpp

1−te Ũpf Ũpp





 = 0.

Both equations equal zero, because the columns in the right-most determinants are linearly dependent.

To find the effects on investment in market funds and private assets, substitute E[Ũtef ] and E[Ũtep] from

(72):

fte =
1

det
(

E[H̃]
) det

E




Ũzz Ũzs f Ũzf+pŨzp

1−te Ũzp
Ũsz Ũss f Ũsf+pŨsp

1−te Ũsp
Ũfz Ũfs f Ũff+pŨfp

1−te Ũfp
Ũpz Ũps f Ũpf+pŨpp

1−te Ũpp





 =
f

1− te
k, (73)

pte =
1

det
(

E[H̃]
) det

E




Ũzz Ũzs Ũzf f Ũzf+pŨzp

1−te

Ũsz Ũss Ũsf f Ũsf+pŨsp
1−te

Ũfz Ũfs Ũff f Ũff+pŨfp

1−te

Ũpz Ũps Ũpf f Ũpf+pŨpp
1−te





 =
p

1− te
. (74)

We now use Lemma 12 to prove Lemma 1.

Proof of Lemma 1.

1. We found the comparative statics fte = f/(1 + te) and pte = p/(1 + te) in Lemma 12. Substituting fte

and pte into the uncompensated function (15) for ỹe, yields Eq. (16).

2. We found that zte = ste = 0 in Lemma 12. Substituting the comparative statics for zte , ste and ỹete into

budget constraints (1) and (4) yields c̃2te = 0.

3. We already showed that E[Ṽte ] = 0 in (45).

Finally, we show that when the utility function is additively separable between consumption in both periods

and between consumption and labour supply, and individual preferences exhibit constant absolute risk aversion,

then a change in the expected return to private investment α only has income effects, on savings and on labour

income.

Lemma 13. If the utility function is additively separable: U12 = U1` = U2` = 0, and absolute risk aversion is
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constant: U22/U2 ≡ A, then a change in α only has income effects, both on savings s and on labour income z:

∀k = s, z :
dk

dα
= (1− te)p dk

dρ2
. (75)

Proof. Note the following partial derivatives, taking into account additive separability and substituting (62)–

(64):

E[Ũzα] = (1− te)pE[Ũzρ2 ], E[Ũsα] = (1− te)pE[Ũsρ2 ],

E[Ũfα] = (1− te)pE[Ũfρ2 ], E[Ũpα] = (1− te)E[ũ2] + (1− te)pE[Ũsρ2 ].

Like in the proof of Lemma 12, use Cramer’s rule and Lemma 9 to find the following comparative statics:

dz

dα
= (1− te)p ds

dρ2
− (1− te)E [ũ2]

det
(

E[H̃]
) det

E



Ũzs Ũzf Ũzp
Ũss Ũsf Ũsp
Ũfs Ũff Ũfp



 , (76)

ds

dα
= (1− te)p ds

dρ2
− (1− te)E [ũ2]

det
(

E[H̃]
) det

E



Ũzz Ũzf Ũzp
Ũsz Ũsf Ũsp
Ũfz Ũff Ũfp



 . (77)

Note the following partial derivatives, use the fact that relative risk aversion u22/u2 ≡ A is constant and apply

first-order conditions (11)–(12) for portfolio optimization:

E[Ũsf ] = (1− te)E
[
(r̃m − rb)ũ22

] E [ũ1]

E [ũ2]
= 0,

E[Ũsp] = (1− te)E
[
(α+ ε̃− rb)ũ22

] E [ũ1]

E [ũ2]
= 0.

Note furthermore that taking into account additive separability, (67) and (70) imply that also E[Ũzf ] = E[Ũzp] =

0. Substitute E[Ũzf ] = E[Ũzp] = E[Ũsf ] = E[Ũsp] = 0 into (76)–(77) to find that the determinants in the

numerators equal zero, and thus (75) is correct.

A.3 Lagrangian for the government optimization problem

The Lagrangian for the government’s optimization problem (19) in terms of the perturbation parameters εz,

εK , εP , tn and te is:

Λ(εz,εK , εP , tn, te)

≡
¨

Ω

E[Ṽ(ω, εz, tn, te, εK , εP )]dGω(ω)− E[λ̃ · {P (r̃m) +K(r̃m) + εP ηP (r̃m) + εKηK(r̃m)}]
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+ (1 + rb)E[λ̃]

¨
Ω

{t`(z(ω, εz, tn, te, εK , εP )) + εzηz(z(ω, εz, tn, te, εK , εP ))}dGω(ω)

+

¨
Ω

{tnE[λ̃]yn(ω, εz, tn, te, εK , εP ) + teE[λ̃ỹe(ω, εz, tn, te, εK , εP )]}dGω(ω), (78)

where we omit superfluous function arguments for legibility. The first-order conditions require that partial

derivatives of the Lagrangian with respect to εz, εK , εP , tn and te equal zero, for all reform functions ηz, ηK

and ηP . We derive the respective first-order conditions in the following subsections.

A.4 First-order condition for the tax on labour income

The first-order condition for εz requires that the condition ∂Λ/∂εz = 0 is satisfied for every perturbation function

ηz. Evaluate the condition ∂Λ/∂εz = 0 for the Lagrangian (78) in the situation before any reforms, substitute

envelope condition (44) for E[Ṽεz ], substitute decomposition (65) for ∀k = z, yn, ye : kzε , and substitute definition

(20) for β(ω) and definition (21) for W(ω):

0 =

¨
Ω

(1 + rb − β(ω))ηz(z(ω))dGω(ω)−
¨

Ω

W(ω)ηzz(z(ω))dGω(ω). (79)

To further interpret condition (79), we will rewrite it as an integral over labour incomes z. Condition (79)

becomes:

0 =

ˆ z

z

(
1 + rb − β(z)

)
ηz(z)dGz(z)−

ˆ z

z

W(z)ηzz(z)dGz(z). (80)

Use partial integration to rewrite the second integral of (80):

0 =

ˆ z

z

{(
1 + rb − β(z)

)
gz(z) +

d[W(z)gz(z)]

dz

}
ηz(z)dz (81)

−W(z)gz(z)ηz(z) +W(z)gz(z)ηz(z).

The latter condition must be valid for every perturbation function ηz. Let us first focus on the perturbation

functions that are zero on the boundaries, ηz(z) = ηz(z) = 0. The second line of (81) is then zero. Consequently,

the first line of (81) must also be zero. We will prove by contradiction that the terms between curly brackets of

(81) must then sum to zero. Suppose that these terms do not sum to zero on some interval between z and z.

Choose then a perturbation function ηz which has the same sign everywhere as the sum of the terms between

curly brackets. The integral on the first line of (81) is then strictly positive. This contradicts the requirement

that the first line is zero. It is thus impossible that the first-order condition is satisfied for every perturbation

function ηz if the expression between curly brackets differs from zero on some interval. The latter reasoning

is an application of the fundamental theorem of the calculus of variations. Requiring that the terms between

the curly brackets sum to zero yields the Euler-Lagrange equation that characterizes the optimal tax on labour
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income for any labour income z:

(1 + rb − β(z))gz(z) = −d[W(z)gz(z)]

dz
. (82)

Having established that the first line of (81) must be zero, let us now consider perturbation functions ηz which

differ from zero at one of the end points, ηz(z) 6= 0 or ηz(z) 6= 0. Since the second line of (81) must be zero, it

follows that the tax wedges on the end points must be zero. We thus find the following transversality conditions:

W(z) =W(z) = 0. (83)

Integrating (82) and using transversality conditions (83), we find first-order condition (23) for the tax on labour

income. Substitute transversality condition (83) into first-order condition (23) to find condition (24) for the

welfare weights.

A.5 First-order condition for the tax on risk-free capital income

The first-order condition for the tax rate on risk-free capital income requires that ∂Λ/∂tn = 0:

¨
Ω

{(
1− E[Ũ2]

E[λ̃]

)
yn + (1 + rb)t`zztn + tnyntn + te

E[λ̃ỹetn ]

E[λ̃]

}
dGω(ω) = 0,

where we use envelope condition (45), and we evaluate in the situation before any reforms. Apply Slutsky

decompositions (47) to find:

¨
Ω

{(
1 + rb − β(ω)

) E[Ũ2]

E[Ũ1]
yn + (1 + rb)t`zz

∗
tn + tnyn∗tn + te

E[λ̃ỹe∗tn ]

E[λ̃]

}
dGω(ω) = 0,

where we use property (61) to substitute for second-period income effects, we substitute Euler equation (10)

and we substitute definition (20) of β(ω).

Change the integration domain to the labour incomes and rearrange:

ˆ z

z

{
E[Ũ2]

E[Ũ1]

¨
Ω

(
1 + rb − β(ω)

)
yndGω|z(ω|z) + (1 + rb)t`zz

∗
tn + tnyn∗tn + te

E[λ̃ỹ
e∗
tn ]

E[λ̃]

}
dGz(z) = 0, (84)

where we use the constancy of E[Ũ2]/E[Ũ1] due to Euler equation (10).

Let us focus now on the first term in the integrand of (84). Write this term as a covariance over the

population Ω, conditional on labour income:

ˆ z

z

¨
Ω

(
1 + rb − β(ω)

)
yndGω|z(ω|z)dGz(z) = −

ˆ z

z

{
covΩ(β, yn|z)−

(
1 + rb − β(z)

)
yn
}

dGz(z). (85)
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Use integration by parts and use transversality condition (24) to rewrite the right-hand side of (85):

ˆ z

z

¨
Ω

(
1 + rb − β(ω)

)
yndGω|z(ω|z)dGz(z) =

ˆ z

z

{´ z
z

(
1 + rb − β(ẑ)

)
dGz(ẑ)

gz(z)

dyn

dz
− covΩ(β, yn|z)

}
dGz(z).

(86)

Substitute (86) into optimality condition (84):

ˆ z

z

covΩ(β, yn|z)dGz(z) =

ˆ z

z

ˆ z

z

(
1 + rb − β(ẑ)

)
dGz(ẑ)

dyn

dz
dz

+
E[Ũ1]

E[Ũ2]

ˆ z

z

(
(1 + rb)t`zz

∗
tn + tnyn∗tn + te

E[λ̃ỹ
e∗
tn ]

E[λ̃]

)
dGz(z).

Substitute the optimal labour tax condition (23) and the definition of the labour wedge (21), and use the

fact that preferences are separable between leisure and consumption (dyn/dz = yncz ):

ˆ z

z

covΩ(β, yn|z)dGz(z) =

ˆ z

z

(1 + rb)t`z

(
z∗tn

E[Ũ1]

E[Ũ2]
− z∗σyncz

)
dGz(z) + tn

ˆ z

z

(
yn∗tn

E[Ũ1]

E[Ũ2]
− yn∗σ yncz

)
dGz(z)

+ te
E
[
λ̃
´ z
z

(
ỹ
e∗
tn

E[Ũ1]

E[Ũ2]
− ỹe∗σ yncz

)
dGz(z)

]
E[λ̃]

. (87)

We rewrite the terms on the right-hand side of (87) one by one. First, use Slutsky symmetry (48) to rewrite:

z∗tn
E[Ũ1]

E[Ũ2]
− z∗σyncz = y∗σ − z∗σyncz = (yn∗σ − z∗σyncz ) + covΩ(z∗σ, y

nc
z |z) = 0. (88)

where the last step follows from assumption (22) and the fact that yn∗σ = yncz z
∗
σ. Second, use Slutsky symmetry

(48) to rewrite:

yn∗tn
E[Ũ1]

E[Ũ2]
− yn∗σ yncz =

E[Ũ1]

E[Ũ2]
(yn∗tn − z∗tnyncz ) =

E[Ũ1]

E[Ũ2]

(
yn∗tn − z∗tnyncz + covΩ(z∗tn , y

nc
z |z)

)
=

E[Ũ1]

E[Ũ2]
ync∗tn , (89)

where the last step follows from assumption (22). Third, note that yn∗σ = yncz z
∗
σ and ỹe∗σ = ỹecz z

∗
σ, and thus

ỹe∗σ y
nc
z = yn∗σ ỹecz . Use this equality and assumption (22) to rewrite:

ỹ
e∗
tn

E[Ũ1]

E[Ũ2]
− ỹe∗σ yncz =

(
ỹe∗tn

E[Ũ1]

E[Ũ2]
− yn∗σ ỹecz

)
=

E[Ũ1]

E[Ũ2]
(ỹe∗tn − z∗tn ỹecz ) =

E[Ũ1]

E[Ũ2]
ỹ
ec∗
tn , (90)

where we apply Slutsky symmetry (48) in the second step. Substitute (88)–(90) into (87) to find condition (25).
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A.6 First-order condition for the tax on excess capital income

The first-order condition for the tax on excess capital income requires ∂Λ/∂te = 0 in the situation before any

reforms:

¨
Ω

{E[λ̃ỹe] + teE[λ̃ỹete ]}dGω(ω) = 0.

Substitute (16):

¨
Ω

E[λ̃ỹe]dGω(ω) = 0⇔
¨

Ω

cov(λ̃, ỹe)

E[λ̃]
dGω(ω) = −

¨
Ω

E[ỹe]dGω(ω). (91)

Substitute (13) into (91) to find (26).

A.7 First-order condition for the ex-post provision of the public good

The government’s first-order condition for the ex-post provision of the public good, ∂Λ/∂εP = 0, requires that

the following condition is satisfied:

E

[(¨
Ω

ŨPdGω(ω)− λ̃
)
η̃P
]

= 0, (92)

where we use envelope property (46) and the fact that the level of public good provision does not affect individual

behaviour. The latter expression must be true for every perturbation function η̃P . Applying similar reasoning

as we did for the first-order condition for the labour income tax, using the fundamental theorem of the calculus

of variation, we find government’s first-order condition (27) for the optimal provision of the public good.

A.8 First-order condition for the ex-post provision of the lump sum

The first-order condition ∂Λ/∂εK = 0 for the ex-post provision of the lump sum requires:

E[λ̃ηK(r̃m)]

E[λ̃]
−
¨

Ω

E[Ũ2η
K(r̃m)]

E[λ̃]
dGω(ω) =

¨
Ω

{
(1 + rb)t`zεK + tnynεK + te

E[λ̃ỹeεK ]

E[λ̃]

}
dGω(ω), (93)

where we use envelope property (46).

We first rewrite the integrand on the right-hand side of (93). Write it in matrix notation:

(1 + rb)t`zεK + tnrbsεK + te
E[λ̃(r̃m − rb)]

E[λ̃]
fεK + te

E[λ̃(α+ ε̃− rb)]
E[λ̃]

pεK (94)

= −
(

(1 + rb)t` tnrb te E[λ̃(r̃m−rb)]

E[λ̃]
te E[λ̃(α+ε̃−rb)]

E[λ̃]

)
· (E[H̃])−1 · E

[(
Ũzρ2 Ũsρ2 Ũfρ2 Ũpρ2

)T
η̃K
]
,

where we apply Lemma 9, and the fact that for any k = z, s, f, p: ŨkεK = Ũkρ2 η̃K .
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Substitute (94) into (93), apply the fundamental theorem of the calculus of variations as we did in the proof

for the first-order condition for the tax on labour income, substitute for any k = z, s, f, p: Ũkκm = Ũkρ2δ(r̃m−rm)

and apply Lemma 9 to find the following condition for any realization rm of the market risk:

λr
m

E[λ̃]
−
¨

Ω

EE [Ũ2|rm]

E[λ̃]
dGω(ω) =

¨
Ω

{
(1 + rb)t`zκm + tnynκm + teAκm

}
dGω(ω).

Apply Slutsky decomposition (47), substitute property (61) for the second-period income effects and substitute

definition (20) of β(ω):

λr
m

E[λ̃]
−
¨

Ω

EE [Ũ2|rm]

E[Ũ2]
dGω(ω) =−

¨
Ω

{
EE [Ũ2|rm]

E[Ũ1]

(
1 + rb − β(ω)

)}
dGω(ω) (95)

+

¨
Ω

{
(1 + rb)t`z∗κm + tnyn∗κm + teA∗κm

}
dGω(ω).

Let us now focus on the first integral on the right-hand side. Rewrite the integration limits:

¨
Ω

{
EE [Ũ2|rm]

E[Ũ1]

(
1 + rb − β(ω)

)}
dGω(ω) =

ˆ z

z

ˆ α

α

{
EE [Ũ2|rm]

E[Ũ1]

(
1 + rb − β(ω)

)}
dGα|z(α|z)dGz(z)

=−
ˆ z

z

covΩ

(
EE [Ũ2|rm]

E[Ũ1]
, β

∣∣∣∣∣ z
)

dGz(z)

+

ˆ z

z

(
EE [Ũ2|rm]

E[Ũ1]

)(
1 + rb − β(z)

)
dGz(z).

Apply partial integration on the last line and use transversality condition (24):

ˆ z

z

(
EE [Ũ2|rm]

E[Ũ1]

)(
1 + rb − β(z)

)
dGz(z) =

ˆ z

z

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

)ˆ z

z

(
1 + rb − β(ẑ)

)
dGz(ẑ)dz.

Substitute these results into (95):

λr
m

E[λ̃]
−
¨

Ω

EE [Ũ2|rm]

E[Ũ2]
dGω(ω) =

ˆ z

z

covΩ

(
EE [Ũ2|rm]

E[Ũ1]
, β

∣∣∣∣∣ z
)

dGz(z)

−
ˆ z

z

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

) ˆ z

z

(
1 + rb − β(ẑ)

)
dGz(ẑ)dz

+

¨
Ω

{
(1 + rb)t`z∗κm + tnyn∗κm + teA∗κm

}
dGω(ω).

Substitute the optimal labour income tax (23) and definition (21) of the labour wedge on the second line:

λr
m

E[λ̃]
−
¨

Ω

EE [Ũ2|rm]

E[Ũ2]
dGω(ω) =

ˆ z

z

covΩ

(
EE [Ũ2|rm]

E[Ũ1]
, β

∣∣∣∣∣ z
)

dGz(z)
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+

ˆ z

z

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

)(
(1 + rb)t`zz

∗
σ + tnyn∗σ + teA∗σ

)
dGz(z)

+

ˆ z

z

{
(1 + rb)t`z∗κm + tnyn∗κm + teA∗κm

}
dGz(z).

Using Slutsky symmetries (48)–(50), separability of preferences between leisure and labour supply and assump-

tion (37), following steps analogous to those in section A.5, we find:

λr
m

E[λ̃]
−
¨

Ω

EE [Ũ2|rm]

E[Ũ2]
dGω(ω) =

ˆ z

z

covΩ

(
EE [Ũ2|rm]

E[Ũ1]
, β

∣∣∣∣∣ z
)

dGz(z) (96)

+

ˆ z

z

tnync∗κm dGz(z)

+

ˆ z

z

te

(
A∗κm +

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

)
A∗σ

)
dGz(z).

Note the following identities:

d

dσ

(
EE [Ũ2|rm]

E[Ũ1]

)∗
=

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

)
z∗σ,

and ỹe∗σ = ỹecz z
∗
σ, and thus:

d

dσ

(
EE [Ũ2|rm]

E[Ũ1]

)∗
Acz = A∗σ

d

dz

(
EE [Ũ2|rm]

E[Ũ1]

)
.

Substitute this into (96) to find (38).

Substituting (38) into (26) we obtain:

¨
Ω

cov(Ũ2, ỹ
e)

E[Ũ2]
dGω(ω) =cov

(¨
Ω

EE [Ũ2|r̃m]

E[Ũ2]
dGω(ω),

¨
Ω

ỹedGω(ω)

)
(97)

+ cov

(¨
Ω

(
tnync∗

K̃
+ teAc∗K̃

)
dGω(ω),

¨
Ω

ỹedGω(ω)

)
+

E[Ũ2]

E[Ũ1]
cov

(ˆ z

z

covΩ

(
EE [Ũ2|r̃m]

E[Ũ2]
, β

∣∣∣∣∣ z
)

dGz(z),

¨
Ω

ỹedGω(ω)

)
.

We rewrite the terms on the right-hand side of (97) one by one. Simplify the first line:

cov

(¨
Ω

EE [Ũ2|r̃m]

E[Ũ2]
dGω(ω),

¨
Ω

ỹedGω(ω)

)
=

¨
Ω

cov
(

EE [Ũ2|r̃m], r̃m
)

E[Ũ2]
dGω(ω)

¨
Ω

fdGω(ω)

= −
¨

Ω

E[(r̃m − rb)f ]dGω(ω),

where we use first-order condition (11) in the last step. Now rewrite the second line on the right-hand side of
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(97) to find that it equals zero:

cov

(ˆ z

z

covΩ

(
EE [Ũ2|r̃m]

E[Ũ2]
, β

∣∣∣∣∣ z
)

dGz(z),

¨
Ω

ỹedGω(ω)

)

=

ˆ z

z

cov

(
covΩ

(
EE [Ũ2|r̃m]

E[Ũ2]
, β

∣∣∣∣∣ z
)
, r̃m

)
dGz(z)

¨
Ω

fdGω(ω)

=

ˆ z

z

covΩ

(
cov

(
EE [Ũ2|r̃m]

E[Ũ2]
, r̃m

)
, β

∣∣∣∣∣ z
)

dGz(z)

¨
Ω

fdGω(ω) = 0,

where the last step follows form first-order condition (11). Finally, simplify the third line on the right-hand side

of (97):

cov

(¨
Ω

(
tnync∗

K̃
+ teAc∗K̃

)
dGω(ω),

¨
Ω

ỹedGω(ω)

)
=tn
¨

Ω

cov
(
ync∗
K̃

, r̃m
)

dGω(ω)

¨
Ω

fdGω(ω)

+ te
¨

Ω

cov
(
Ac∗K̃ , r̃m

)
dGω(ω)

¨
Ω

fdGω(ω).

Substitute these results into (97) to obtain (39).

A.9 Proof of Lemma 2

Proof of Lemma 2. Use (15) and the fact that the private shocks are i.i.d. to find cov(λ̃, ỹeν) = cov(λ̃, r̃m)fν .

Multiply and divide the right-hand side by
˜

Ω
fdGω(ω) to find:

cov(λ̃, ỹeν)

E[λ̃]
=

fν˜
Ω
fdGω(ω)

¨
Ω

cov(λ̃, ỹe)

E[λ̃]
dGω(ω).

Substitute the government’s optimality condition (26) and individual first-order conditions (11)–(12):

cov(λ̃, ỹeν)

E[λ̃]
= − fν˜

Ω
fdGω(ω)

¨
Ω

E[ỹe]dGω(ω).

We thus find:

te
¨

Ω

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGω(ω) = te
¨

Ω

(
E [ỹeν ]− fν˜

Ω
fdGω(ω)

¨
Ω

E[ỹe]dGω(ω)

)
dGω(ω)

Substitute (15) on the right-hand side:

te
¨

Ω

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

dGω(ω) = te

(¨
Ω

pν(α− rb)dGω(ω)−
˜

Ω
p(α− rb)dGω(ω)˜

Ω
fdGω(ω)

¨
Ω

fνdGω(ω)

)
.

Verify that the latter corresponds to Lemma 2.
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Appendix B The Mean-Variance framework

We apply the Mean-Variance approach, introduced by Markowitz (1952), to our model. Suppose the returns of

both risky assets are jointly normally distributed, so any linear combination of them has a univariate normal

distribution. The second-period individual budget constraint (9) then implies that second-period consumption

is normally distributed. Government budget constraint (34) shows that second-period consumption remains

normally distributed even if the government returns the aggregate risk using a stochastic lump sum. This

allows us to study the individual portfolio optimization problem in the Mean-Variance framework.

Taking labour income z and the size of the portfolio s as given and using the separability properties of

individual preferences, the portfolio optimization problem consists of choosing the amounts invested in assets f

and p to maximize the expected utility from consumption in the second period:

max
p,f

E[u(c1, c̃2)|c1], (98)

where c̃2 is given by (4). The amount b invested in bonds follows as a residual from (2).

Assume that second-period consumption is normally distributed, with expected value E[c̃2] and standard

deviation sd[c̃2]. Then the following stochastic quantity follows the standardized normal distribution:

ñ ≡ c̃2 − E[c̃2]

sd[c̃2]
.

Denote the probability density function of ñ as ϕ (ñ). The objective function (98) can then be rewritten in

terms of the mean and the standard deviation of second-period consumption:

E[u(c1, c̃2)|c1] =

ˆ +∞

−∞
u(c1,E[c̃2] + n · sd[c̃2])ϕ(n)dn. (99)

Solving this portfolio optimization problem leads to the following Lemma.

Lemma 14. In the Mean-Variance framework, the ratio of investments in the risky assets is determined by:

p

f
=

1 +
cov

(
K̃, (1− te)f r̃m

)
var ((1− te)f r̃m)

 α− rb

E [r̃m]− rb
var (r̃m)

var (ε̃)
. (100)

In the case without a stochastic lump sum, so cov
(
K̃, r̃m

)
= 0, the relative proportion p/f invested in the

risky assets is increasing in private investment productivity α, and is unaffected by skill, taxes or the size of the

portfolio.

Proof. We start from equation (99). For any asset k = f, p, we find first-order condition:

0 =

ˆ +∞

−∞
u

(
c1,

∂E[c̃2]

∂k
+ n · ∂sd[c̃2]

∂k

)
ϕ(n)dn. (101)
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Rewrite ∂sd[c̃2]/∂k, for any k = f, p :

∂sd[c̃2]

∂k
=

1

2
√

var[c̃2]

∂var[c̃2]

∂k

=
1

2sd[c̃2]

∂

∂k

(
E
[(
c̃2
)2]− E

[
c̃2
]2)

=
1

sd[c̃2]

(
E

[
c̃2
∂c̃2

∂k

]
− E

[
c̃2
]

E

[
∂c̃2

∂k

])

=
cov

(
c̃2, ∂c̃

2

∂k

)
sd[c̃2]

. (102)

Substitute (102) into first-order condition (101) and rearrange:

E[∂c̃
2

∂k ]sd[c̃2]

cov
(
c̃2, ∂c̃

2

∂k

) = −
´ +∞
−∞ u2nϕ(n)dn´ +∞
−∞ u2ϕ(n)dn

.

The right-hand side is the same for any asset. Combine the left-hand side for assets k = p and k = f to find

optimality condition:

E[∂c̃
2

∂f ]

cov
(
c̃2, ∂c̃

2

∂f

) =
E[∂c̃

2

∂p ]

cov
(
c̃2, ∂c̃

2

∂p

) .
Substitute partial derivatives ∂c̃2/∂f and ∂c̃2/∂p of the second-period budget constraint (9):

E[r̃m − rb]
cov (c̃2, r̃m)

=
α− rb

cov (c̃2, ε̃)
.

Substitute second-period budget constraint (9) for c̃2:

E[r̃m − rb]

(1− te)var (r̃m) f + cov
(
K̃, r̃m

) =
α− rb

(1− te)var (ε̃) p
.

Rearrange to find (100).

As long as the government does not return its risk by lump sums, we find the standard result that the

relative proportions invested in the risky assets are determined only by the mean and the variance of the excess

returns of these assets. Individuals with higher expected returns on private investment undertake more private

investment. If the government returns the risk of its investments using a stochastic lump sum, then the returns

to the market asset are correlated to the stochastic lump sum. Individuals will prefer to diversify their portfolio

away from the market asset, towards the private asset that carries idiosyncratic risk. In this case the separation

between the composition of the risky portfolio and other factors is no longer valid.

Denote the semi-elasticity of the investment γ = f, p with respect to some perturbation parameter ν as

ξγν ≡ ∂ log γ/∂ν. Taking logarithms on both sides of (100) and taking derivatives with respect to the perturbation

parameter, results in the following lemma.
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Lemma 15. In the Mean-Variance framework, the semi-elasticities of investment in the market asset are related

to the corresponding semi-elasticities of investment in the private asset as follows:

∀ν = σ, tn, ρ : ξfν = ξpν ·

1 +
cov

(
K̃, (1− te)f r̃m

)
var ((1− te)f r̃m)

 .

This result extends to the corresponding compensated semi-elasticities, and to semi-elasticities conditional on

labour income.

It follows that without a stochastic lump sum, if individuals behave as predicted by the Mean-Variance

framework, then the amounts invested in private and market assets move proportionally and in the same

direction. This is in line with Lemma 14. As soon as the government returns part of the risk through a

stochastic lump sum, so cov(K̃, r̃m) > 0, we find |ξfν | > |ξpν | if ξpν 6= 0. Investments in both assets still move

in the same direction, but investment in the market assets responds more strongly to changes in an exogenous

parameter ν. One way to understand this is as follows. Suppose that due to a change in a parameter ν,

the investment in the risky portfolio, and thus in both risky assets, increases. As this happens, the relative

importance of the risk of the stochastic lump sum decreases, so the term between brackets in (100) becomes

relatively less important. The individual will end up investing larger share of the risky portfolio in the market

asset.

Let us now verify the consequences of Lemma 15 for our model. First assume that ξpν and ξfν are constant

over the income distribution. Lemma 2 then implies:

¨
Ω

AνdGω(ω) =

¨
Ω

(α− rb)pdGω(ω) · (ξfν − ξpν).

Without a stochastic lump sum, Lemma 15 then implies:

¨
Ω

AνdGω(ω) = 0.

With a stochastic lump sum, we find:

¨
Ω

AνdGω(ω) R 0⇐⇒ ξpν R 0.

Assume instead that α is constant, so all individuals obtain the same expected rate of return to their private

investments. Lemma 2 then implies:

¨
Ω

AνdGω(ω) =

¨
Ω

(α− rb)pdGω(ω) ·

(˜
Ω
fξfνdGω(ω)˜

Ω
fdGω(ω)

−
˜

Ω
pξpνdGω(ω)˜

Ω
pdGω(ω)

)
. (103)

If there is no stochastic lump sum, then Lemma 14 shows that p/f is equal for all individuals and that ξpν = ξfν
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for all individuals. It follows again that: ¨
Ω

AνdGω(ω) = 0.

If there is a stochastic lump sum, then use Lemmas 14 and 15 to rewrite (103):

¨
Ω

AνdGω(ω)

=

¨
Ω

(α− rb)pdGω(ω) ·
¨

Ω

1 +
cov(K̃,(1−te)fr̃m)

var((1−te)fr̃m)˜
Ω
fdGω(ω)

−
1 +

cov(K̃,(1−te)fr̃m)
var((1−te)fr̃m)˜

Ω

(
1 +

cov(K̃,(1−te)fr̃m)
var((1−te)fr̃m)

)
fdGω(ω)

 fξpνdGω(ω)

=

˜
Ω

(α− rb)pdGω(ω)˜
Ω
fdGω(ω)

·

˜
Ω

(
1 +

cov(K̃,(1−te)fr̃m)
var((1−te)fr̃m)

)
fξpνdGω(ω) ·

˜
Ω

cov(K̃,(1−te)fr̃m)
var((1−te)fr̃m) fdGω(ω)

˜
Ω

(
1 +

cov(K̃,(1−te)fr̃m)
var((1−te)fr̃m)

)
fdGω(ω)

.

Since cov(K̃, r̃m) > 0, we again find (assuming that ξpν has the same sign for all individuals):

¨
Ω

AνdGω(ω) R 0⇐⇒ ξpν R 0.
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