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Abstract

In this paper, we study the implications of extending the balanced cost reduction prop-

erty from queueing problems to general games. As a direct translation of the balanced cost

reduction property, the axiom of balanced externalities for solutions of games, requires that

the payoff of any player is equal to the total externality she inflicts on the other players

with her presence. We show that this axiom and efficiency together characterize the Shap-

ley value for 2-additive games. However, extending this axiom in a straightfoward way

to general games is incompatible with efficiency. Keeping as close as possible to the idea

behind balanced externalities, we weaken this axiom by requiring that every player’s payoff

is the same fraction of its total externality inflicted on the other players. This weakening,

which we call weak balanced externalities , turns out to be compatible with efficiency. More

specifically, the unique efficient solution that satisfies this weaker property is the propor-

tional allocation of nonseparable contribution (PANSC) value, which allocates the total

worth proportional to the separable costs of the players. We also provide characterizations

of the PANSC value using a reduced game consistency axiom.

Keywords: Cooperative game, balanced externalities, proportional allocation of nonsep-

arable contributions, consistency

JEL classification number: C71



1 Introduction

A situation in which a finite set of players can generate certain payoffs by cooperation

can be described by a cooperative game with transferable utility (or simply a game). A

game consists of a player set, and for every subset of the player set, called a coalition, a

real number which is the worth that the coalition of players can earn when they agree to

cooperate. A main question is how to allocate the worth of the grand coalition consisting

of all players over the individual players. Various solutions to this problem appear in the

literature, one of the most famous being the Shapley value (Shapley, 1953).

Games are applied in many profit and cost allocation problems in economics and op-

erations research. An example is the queueing problem. A queueing problem describes a

situation where jobs need to be served on a machine one at a time. A queue is efficient if

jobs are served in a non-increasing order of their urgency indices. But then the question is

how jobs that are served later should be compensated for waiting in the queue. One of the

most popular solutions for such queueing problems is the minimal transfer rule (Maniquet,

2003) which is obtained by applying the Shapley value to an associated game. Queueing

games are so-called 2-additive games , or shortly 2-games , meaning that the worth is fully

generated by coalitions of size two. For a nonnegative 2-game, it is known that the Shapley

value, and thus the minimal transfer rule, coincides with several other solutions such as

the nucleolus (Schmeidler, 1969) or τ -value (Tijs, 1987) of the associated queueing game

(van den Nouweland et al., 1996).

Solutions for games are usually supported by axiomatizations. In van den Brink and

Chun (2012), the minimal transfer rule for queueing problems is axiomatized by efficiency ,

Pareto indifference, and balanced cost reduction. Whereas efficiency and Pareto indifference

are very common axioms, balanced cost reduction requires that the payoff of any player

is equal to the total externality she inflicts on the other players with her presence, i.e. a

player’s payoff equals the sum of all changes in the payoffs of all other players if that player

leaves the queueing problem.

In this paper, we study the implications of extending this balanced cost reduction

property to general games. First, considering the class of 2-games , we show that the

Shapley value (and thus pre-nucleolus, τ -value) is the unique efficient solution that satisfies

balanced externalities being a direct translation of balanced cost reduction, requiring that

the payoff of any player is equal to the total externalities she inflicts on the other players.

Second, we extend this axiom to k-games being games where every worth is generated by

coalitions of size k, and obtain a characterization of the Shapley value for k-games. Third,

it turns out that this axiom is incompatible with efficiency for general games.

Keeping as close as possible to the idea of having an efficient solution which allocates the

worth of the grand coalition in a way that balances a player’s payoff with the externalities
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she inflicts on the other players, we weaken balanced externalities by requiring that every

player’s payoff is the same fraction of her total externality inflicted on the other players.

This brings in one extra parameter (the fraction of total externality that is attributed to the

players), which makes this weak balanced externalities axiom compatible with efficiency.

We show that the unique efficient solution that satisfies this weak balanced externalities

axiom is the proportional allocation of nonseparable contribution (PANSC) value, which

allocates the payoffs proportional to the separable costs (Moulin, 1985) of the players. It

is interesting to note that this value is closely related to the Separable Costs Remaining

Benefits (SCRB) method (Young et al., 1982) and Alternative Cost Avoided (ACA) method

(Straffin and Heaney, 1981; Otten, 1993) in cost allocation problems. The SCRB method

is commonly used in practice, for example in allocating the costs of multi-purpose water

development projects (Straffin and Heaney, 1981; Young et al., 1982).

We also consider the dual solution of the PANSC value, being the proportional division

(PD) value (Zou et al., 2021), which allocates the worth of the grand coalition proportional

to the stand-alone worths of the players, and extend weak balanced externalities and the

axiomatization mentioned above using mollifier games (i.e. affine combinations of a game

and its dual game, see Charnes et al. (1978)). A comparison between the PANSC value and

PD value in terms of optimizing satisfaction criteria and associated consistency is given in

Li et al. (2020). Finally, we discuss a reduced game consistency property of the PANSC

value, which, by duality, follows from the reduced game consistency property of the PD

value.

The paper is structured as follows. After presenting preliminaries in Section 2, in

Section 3 we extend the axiomatization of the Shapley value for queueing problems and

provide an axiomatization by efficiency and balanced externalities for the classes of 2-games,

and more general k-games. In Section 4, we extend this axiomatization to general games

and show incompatibility of efficiency and balanced externalities. We weaken balanced

externalities to get compatibility, and use this weaker axiom to characterize the PANSC

value. In Section 5, we consider the dual solution of the PANSC value, i.e. the PD value.

In Section 6, we consider a reduced game consistency property of the PANSC value. In

Section 7, we introduce cost allocation problems and compare the PANSC value with cost

allocation methods from the literature. Finally, Section 8 concludes.

2 Preliminaries

A cooperative game with transferable utility, shortly a game, is a pair (N, v), where N ⊂ IN

is a finite set of players, and v: 2N → IR is a characteristic function on N such that v(∅) = 0.

For any coalition S ⊆ N , v(S) is the worth of coalition S. This is what the members of

2



coalition S can obtain by agreeing to cooperate. We denote the class of all games with

player set N by GN , and the class of all games by G.

A game (N, v) is additive if v(S) =
∑

i∈S v({i}) for all S ⊆ N . For every T ⊆ N , T 6= ∅,
the unanimity game (N, uT ) ∈ G is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise.

It is well-known that for every game (N, v), there exist unique weights ∆v(T ) ∈ IR, ∅ 6= T ⊆
N , such that v =

∑
T⊆N ∆v(T )uT . The weights ∆v(T ), ∅ 6= T ⊆ N , are the (Harsanyi)

dividends (Harsanyi, 1959) of the coalitions in (N, v) and are given by ∆v(T ) = v(T ) if

|T | = 1, and ∆v(T ) = v(T )−
∑

S⊂T,S 6=T ∆v(S) if |T | ≥ 2.

A payoff vector of game (N, v) is an |N |-dimensional real vector x ∈ IRN , which repre-

sents the payoffs that players can earn by cooperation. A (point-valued) solution on a class

of games C ⊆ G is a function ψ which assigns a payoff vector ψ(N, v) ∈ IRN to every game

(N, v) ∈ C. If a solution assigns to every game a payoff vector that exactly distributes the

worth of the grand coalition, then the solution is efficient .

• Efficiency. A solution ψ satisfies efficiency on C ⊆ G if for every game (N, v) ∈ C,
it holds that

∑
i∈N ψi(N, v) = v(N).

Efficient (point-valued) solutions are often called values . One of the most famous values

for games is the Shapley value (Shapley, 1953), being the solution Sh given by

Shi(N, v) =
∑
S⊆N

i∈S

∆v(S)

|S|
for all i ∈ N,

and thus allocates the Harsanyi dividends equally over the players in the corresponding

unanimity coalition.

The literature also studies several efficient egalitarian solutions, such as the equal di-

vision value (which allocates v(N) equally over all players, axiomatized in van den Brink

(2007)), the centre of the imputation set (CIS) value (which first assigns to every player

its stand-alone worth and allocates the remainder equally over all players (Driessen and

Funaki, 1991)), and the equal allocation of nonseparable cost (EANSC) value (which first

asigns to every player its separable cost and allocates the remainder equally over all players

(Moulin, 1985)). Formally, the CIS value is given by

CISi(N, v) = v({i}) +
1

|N |

(
v(N)−

∑
j∈N

v({j})

)
for all i ∈ N.

The EANSC value is given by

EANSCi(N, v) = SCi(N, v) +
1

|N |

(
v(N)−

∑
j∈N

SCj(N, v)

)
for all i ∈ N, (1)
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where

SCi(N, v) = v(N)− v(N \ {i}),

is the separable cost of player i ∈ N in game (N, v).

3 Balanced externalities and 2-games

A game (N, v) is a 2-additive game, or shortly a 2-game, if v(S) = 0 for all S ⊆ N with

|S| ≤ 1, and v(S) =
∑

T⊆S

|T |=2
v(T ) otherwise. Equivalently, a game (N, v) is a 2-game if and

only if only coalitions of size two can have a nonzero dividend, i.e. ∆v(S) 6= 0 implies that

|S| = 2. Therefore, in 2-games, all the worth is generated by coalitions of size two. It is

known that for nonnegative 2-games (i.e. 2-games in which all worths are nonnegative),

the Shapley value coincides with several other values such as the nucleolus and the τ -value

(van den Nouweland et al., 1996). For 2-games on N with |N | ≥ 2, this value is given by

Shi(N, v) = 1
2
(v(N)− v(N \ {i})) for all i ∈ N .

A 2-game can be generalized to a k-additive game, or shortly a k-game. A game (N, v)

is a k-game, if v(S) = 0 for all S ⊆ N with |S| < k, and v(S) =
∑

T⊆S

|T |=k
v(T ) otherwise.

Equivalently, a game (N, v) is a k-game if and only if only coalitions of size k can have

a nonzero dividend, i.e. ∆v(S) 6= 0 implies that |S| = k. It is known that for k-games

on N with |N | ≥ k, the Shapley value is given by Shi(N, v) = 1
k
(v(N) − v(N \ {i})) for

all i ∈ N (van den Nouweland et al., 1996). Also for nonnegative k-games, the Shapley

value coincides with the τ -value, but for k > 2, the payoff vector assigned to a game by

the nucleolus need not coincide with the payoff vector assigned by the Shapley value. In

this paper, we do not restrict the sign of the worths of coalitions in 2-games, as well as

k-games.

As mentioned in the introduction, queueing games form a proper subset of the class of

2-games. One of the most famous solutions for queueing problems is the minimal transfer

rule that is obtained as the Shapley value of an associated queueing game (Maniquet,

2003). In van den Brink and Chun (2012), the minimal tranfer rule is characterized as

the unique solution for queueing problems that satisfies efficiency, Pareto indifference, and

balanced cost reduction. The question that we address in this paper is which solutions for

games satisfy, or are characterized by, (an extension of) these axioms for general games.

We first consider the class of 2-games. Throughout the sequel, we denote by (N \{h}, v−h)
the restricted game on N \ {h}, given by v−h(S) = v(S) for all S ⊆ N \ {h}.

A direct translation of balanced cost reduction for 2-games gives the following property.

• Balanced externalities. A solution ψ on the class of 2-games satisfies balanced
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externalities if

ψh(N, v) =
∑

i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
,

for every 2-game (N, v) with |N | ≥ 2 and h ∈ N .

Notice that this axiom is well-defined since (N \ {h}, v−h) is a 2-game if (N, v) is a

2-game. Together with efficiency, this axiom characterizes the Shapley value on the class

of 2-games.1

Theorem 1 For 2-games, a solution satisfies efficiency and balanced externalities if and

only if it is the Shapley value.

Proof. It is well-known that the Shapley value is efficient. To show that the Shapley value

satisfies balanced externalities, let (N, v) be a 2-game such that |N | ≥ 2, and h ∈ N . Then

∑
i∈N\{h}

(
Shi(N, v)− Shi(N \ {h}, v−h)

)
=

∑
i∈N\{h}

 ∑
S⊆N,|S|=2

i∈S

∆v(S)

2
−

∑
S⊆N,|S|=2

i∈S,h6∈S

∆v(S)

2


=

∑
i∈N\{h}

∑
S⊆N,|S|=2

i,h∈S

∆v(S)

2

=
∑

S⊆N,|S|=2

h∈S

∆v(S)

2

= Shh(N, v),

where the first equality follows since ∆v(S) = ∆v−h(S) for all S ⊆ N \ {h}, and the last

equality follows since only coalitions of size 2 have a nonzero dividend. This shows that

the Shapley value satisfies balanced externalities.

We show the ‘only if’ part by induction on |N |. If |N | = 1, then ψi(N, v) = v({i}) =

0 = Shi(N, v) by efficiency. If |N | = 2 such that N = {i, j}, then balanced externalities

implies that ψi(N, v) = ψj(N, v) − ψj({j}, v−i) = ψj(N, v). With efficiency and the case

|N | = 1 above, it then follows that ψi(N, v) = ψj(N, v) = v(N)
2

.

We will establish the claim for an arbitrary number of players by an induction argument.

As induction hypothesis, suppose that uniqueness holds for all N ′ ⊂ N such that 2 ≤ |N ′| ≤
|N | − 1. Consider 2-game (N, v). For any h ∈ N , balanced externalities yields

ψh(N, v) =
∑

i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
. (2)

1We can even prove the uniqueness with the weaker axiom of 2-efficiency, requiring efficiency only for

games with at most two players.
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By the induction hypothesis, the ψi(N\{h}, v−h), i, h ∈ N, i 6= h, are uniquely determined.

Since |N | ≥ 3, (2) and efficiency yield a system of (|N |− 1) + 1 = |N | linearly independent

equations in the |N | unkowns ψh(N, v), h ∈ N , which thus are uniquely determined. 2

As a corollary, we have that, on the class of 2-games, the pre-nucleolus and the τ -value

are also characterized by efficiency and balanced externalities.

We can generalize this result straightforward to the class of k-games by introducing a

generalization of balanced externalities for k-games, k ≥ 2.

• k-balanced externalities. Let k ≥ 2. A solution ψ on the class of k-games satisfies

k-balanced externalities if

ψh(N, v) =
1

k − 1

∑
i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
,

for every k-game (N, v) with |N | ≥ k and h ∈ N .

Notice again that this axiom is well-defined since (N \ {h}, v−h) is a k-game if (N, v)

is a k-game. Together with efficiency and symmetry, this axiom characterizes the Shapley

value on the class of k-games.2

• Symmetry. A solution ψ satisfies symmetry on C ⊆ G if for every game (N, v) ∈ C
and i, j ∈ N such that v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}, it holds that

ψi(N, v) = ψj(N, v).

Theorem 2 For k-games, a solution satisfies efficiency, symmetry, and k-balanced exter-

nalities if and only if it is the Shapley value.

Although the proof is almost the same as that of Theorem 1, for completeness, it is

given in the Appendix. Notice that Theorem 1 is a special case of Theorem 2 by taking

k = 2. In this case, symmetry is superfluous. However, for k ≥ 3, symmetry cannot be

taken out since, k-balanced externalities has no bite if |N | < k in which case the game is

a null game where the worths of all coalitions equal zero.

2Similar as for 2-games, it is sufficient to require k-efficiency which requires efficiency only for games

with at most k players.
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4 Balanced externalities and the proportional alloca-

tion of nonseparable contributions for general games

Translating the idea of balanced externalities to general games, we first consider the axiom

which requires that the payoff of any player is equal to the total externality she inflicts

on the other players with her presence. We call a class of games C ⊆ G subgame closed if

(N \ {h}, v−h) ∈ C for all (N, v) ∈ C and h ∈ N .

• Balanced externalities. A solution ψ on a subgame closed class C ⊆ G satisfies

balanced externalities if

ψh(N, v) =
∑

i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
,

for every game (N, v) ∈ C with |N | ≥ 2, and h ∈ N .

It turns out that this axiom is incompatible with efficiency.

Proposition 3 There is no solution on G that satisfies efficiency and balanced externali-

ties.

Proof. Consider a three-player game (N, v) ∈ G with N = {1, 2, 3}. Let ψ be a solution

satisfying efficiency and balanced externalities. Then, we have the following six equa-

tions from balanced externalities (the first equality in each line) and efficiency (the second

equality in each line):

−ψ1(N, v) + ψ2(N, v) + ψ3(N, v) = ψ2(N \ {1}, v−1) + ψ3(N \ {1}, v−1) = v({2, 3}),
ψ1(N, v)− ψ2(N, v) + ψ3(N, v) = ψ1(N \ {2}, v−2) + ψ3(N \ {2}, v−2) = v({1, 3}),
ψ1(N, v) + ψ2(N, v)− ψ3(N, v) = ψ1(N \ {3}, v−3) + ψ2(N \ {3}, v−3) = v({1, 2}).

Further, efficiency implies that

ψ1(N, v) + ψ2(N, v) + ψ3(N, v) = v({1, 2, 3}).

These four equations can be simplified to

ψ1(N, v) =
1

2
(v({1, 2}) + v({1, 3})),

ψ2(N, v) =
1

2
(v({1, 2}) + v({2, 3})),

ψ3(N, v) =
1

2
(v({1, 3}) + v({2, 3})), and

ψ3(N, v) =
1

2
(v({1, 2, 3})− v({1, 2})).
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Looking at the last two equations, this system of equations clearly has only a solution

if v({1, 3}) + v({2, 3}) = v({1, 2, 3}) − v({1, 2}), or v({1, 2, 3}) = v({1, 2}) + v({1, 3}) +

v({2, 3}), which implies that (N, v) is a 2-game. 2

Next, we explore whether we can characterize (subclasses of) the class of 2-games as

those classes of games where the Shapley value is characterized by efficiency and balanced

externalities.

Proposition 4 Let C ⊆ G be a subgame closed class of games that contains at least one

game (N, v) with |N | ≥ 3. Then the Shapley value is the unique solution that satisfies

efficiency and balanced externalities on C if and only if C is a subclass of the class of

2-games.

Proof. Let C ⊆ G be a subgame closed class of games that contains at least one game

(N, v) with |N | ≥ 3. For the class of 2-games, the ‘if’ part follows from Theorem 1. For

any subgame closed subclass of the class of 2-games, the proof goes in a similar way.

Next, we prove the ‘only if’ part by induction on |N |. Suppose that the Shapley value

is the unique solution that satisfies efficiency and balanced externalities on C.
Initialization. For |N | = 3, it follows from the proof of Proposition 3 that C should be

a subclass of 2-games.

Induction hypothesis. Suppose that the Shapley value being characterized by efficiency

and balanced externalities on every class C ⊆ G with |N | ≤ d (d ≥ 3) for every (N, v) ∈ C,
implies that C is a class of 2-games.

Induction step. Consider any game (N, v) such that |N | = d + 1. We already know

that v(S) = v−h(S) =
∑

T⊆S

|T |=2
v(T ) for all S ⊆ N \{h} and h ∈ N , since (N \{h}, v−h) is a

2-game by the induction hypothesis. Let ψ be a solution satisfying efficiency and balanced

externalities. Then,

ψh(N, v) =
∑

i∈N\{h}

ψi(N, v)−
∑

i∈N\{h}

ψi(N\{h}, v−h)

=
∑

i∈N\{h}

ψi(N, v)− v−h(N\{h}),

where the first equality follows from balanced externalities and the second equality follows

from efficiency.

Summing this equality over all h ∈ N yields∑
h∈N

ψh(N, v) = (|N | − 1)
∑
h∈N

ψh(N, v)−
∑
h∈N

v−h(N\{h}),
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so (|N | − 2)
∑

h∈N ψh(N, v) =
∑

h∈N v
−h(N \ {h}). Efficiency of ψ then implies that

(|N | − 2)v(N) =
∑
h∈N

v−h(N\{h}) =
∑
h∈N

∑
S⊆N\{h}
|S|=2

v(S) = (|N | − 2)
∑
S⊆N

|S|=2

v(S),

where the second equality follows from the induction hypothesis, and the third follows since

in
∑

S⊆N\{h},|S|=2 v(S), the two-player coalition worth v(S), S = {i, j}, appears once for

each h ∈ N\{i, j}. Therefore, we obtain that v(N) =
∑

S⊆N,|S|=2 v(S), which implies that

(N, v) must be a 2-game. 2

Notice that for |N | = 2, every game with v({i}) = v({j}) = 0 is a 2-game.

Keeping as close as possible to the idea of having an efficient solution which allocates

the payoffs of the players to somehow ‘balance’ the externalities inflicted on the other

players, we weaken balanced externalities by requiring that every player’s payoff is the

same fraction of her total externality inflicted on the other players.

• Weak balanced externalities. A solution ψ on a subgame closed class C ⊆ G
satisfies weak balanced externalities if for every (N, v) ∈ C with |N | ≥ 2, there exists

α ∈ IR such that for every h ∈ N , if
∑

i∈N\{h}
(
ψi(N, v)− ψi(N \ {h}, v−h)

)
6= 0,

then

ψh(N, v) = α
∑

i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
. (3)

Notice that we require the balanced externalities condition to hold only in the case that∑
i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
6= 0 since otherwise the payoff of h must be zero

and is not dependent on α anymore. In the extreme case where equality would hold for

all players, then all payoffs would be zero, which would be incompatible with efficiency if

v(N) > 0.3

This weakening of balanced externalities brings in one extra parameter (the fraction

of total externality that is attributed to the players), which makes this weak balanced

externalities compatible with efficiency. It turns out that the unique efficient solution that

satisfies this axiom is the proportional allocation of nonseparable contribution (PANSC)

value, which allocates the worth of the grand coalition proportional to the separable costs

of the players. This value coincides with the proportional repartition of the non-marginal

costs value (Lemaire, 1984) in cost allocation problems.

Let Gsc+ = {(N, v) ∈ G | SCi(N, v) > 0 for all i ∈ N} be the class of games with player

set N where all players have positive separable cost. Let G2sc+ = {(N, v) ∈ Gsc+ | |N | = 2}
and G≥2sc+ = {(N, v) | (N, v) ∈ Gsc+, |N | ≥ 2}.

3This would occur if v(N) = v(N\{h}) > 0 for all h ∈ N .
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Definition 1 The proportional allocation of nonseparable contribution (PANSC)

value on G≥2sc+ is the function PANSC which assigns to every game (N, v) ∈ G≥2sc+, the payoff

vector

PANSCi(N, v) =
SCi(N, v)∑
j∈N SCj(N, v)

v(N) for all i ∈ N.

We restrict ourselves to the class G≥2sc+ in order to avoid dividing by a zero denominator.

We remark that the class G≥2sc+ contains the almost diminishing marginal contributions

games (Leng et al., 2020) with positive stand-alone worths.

Notice that equivalently the PANSC value first assigns to every player its separable cost

and allocates the remainder (the total nonseparable cost) proportional to the separable

costs. Thus, the difference from the EANSC value (see (1)) is that, after each player

getting its separable cost, the PANSC allocates the total nonseperable cost proportional

to the separable costs, while that EANSC allocates it equally over all players. (We provide

a further comparison between the PANSC and EANSC value in Section 7.)

Theorem 5 A solution on G≥2sc+ satisfies efficiency and weak balanced externalities if and

only if it is the PANSC value.

Proof. It is obvious that the PANSC value is efficient. To show that the PANSC value

satisfies weak balanced externalities, take any h ∈ N . If
∑

j∈N SCj(N, v) 6= v(N), taking

α = v(N)∑
j∈N SCj(N,v)−v(N)

yields

α
∑

i∈N\{h}

(
PANSCi(N, v)− PANSCi(N \ {h}, v−h)

)
= α (v(N)− PANSCh(N, v)− v(N \ {h}))
= α (SCh(N, v)− PANSCh(N, v))

= α

(
SCh(N, v)− SCh(N, v)∑

j∈N SCj(N, v)
v(N)

)

= α · SCh(N, v) ·

(
1− v(N)∑

j∈N SCj(N, v)

)

= α · SCh(N, v) ·

(∑
j∈N SCj(N, v)− v(N)∑

j∈N SCj(N, v)

)

=

(
v(N)∑

j∈N SCj(N, v)− v(N)

)
· SCh(N, v) ·

(∑
j∈N SCj(N, v)− v(N)∑

j∈N SCj(N, v)

)

=
SCh(N, v)∑
j∈N SCj(N, v)

· v(N)

= PANSCh(N, v),
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where in the first equality we twice use that the PANSC value is efficient (once on game

(N, v) and once on game (N \ {h}, v−h)). This shows that the PANSC value satisfies weak

balanced externalities if
∑

j∈N SCj(N, v) 6= v(N).

If
∑

j∈N SCj(N, v) = v(N), then PANSCi(N, v) = SCi(N, v) for all i ∈ N , and thus

we have by efficiency of the PANSC value that
∑

i∈N\{h} (PANSCi(N, v)− PANSCi(N \
{h}, v−h)) = v(N)−PANSCh(N, v)−v(N \{h}) = SCh(N, v)−SCh(N, v) = 0, and weak

balanced externalities does not have any bite.

To prove the ‘only if’ part, suppose that a solution ψ satisfies efficiency and weak bal-

anced externalities on G≥2sc+. Let (N, v) ∈ G≥2sc+. If
∑

i∈N\{h}(ψi(N, v)−ψi(N\{h}, v−h)) 6= 0,

then efficiency and weak balanced externalities together imply that there is α ∈ IR such

that for any h ∈ N ,

ψh(N, v) = α
∑

i∈N\{h}

(ψi(N, v)− ψi(N \ {h}, v−h))

= α (v(N)− ψh(N, v)− v(N \ {h})) ,

and thus

(1 + α)ψh(N, v) = α (v(N)− v(N \ {h})) ,

meaning

ψh(N, v) =
α

1 + α
(v(N)− v(N \ {h})) .

Efficiency determines that∑
h∈N

ψh(N, v) =
∑
h∈N

α

1 + α
(v(N)− v(N \ {h})) =

α

1 + α

∑
h∈N

SCh(N, v) = v(N),

implying that α = v(N)∑
h∈N SCh(N,v)−v(N)

, and thus ψh(N, v) = PANSCh(N, v) for all h ∈ N .

If
∑

i∈N\{h}(ψi(N, v) − ψi(N \ {h}, v−h)) = 0, then by efficiency, we have v(N) −
ψh(N, v) − v(N \ {h}) = 0, implying that ψh(N, v) = v(N) − v(N \ {h}) = SCh(N, v) =

PANSCh(N, v). 2

The PANSC value can be seen as a multiplicative normalization of the separable costs

to allocate v(N). In the literature, this proportional allocation of nonseparable cost (or

contribution) is less popular than the additive normalization of the nonseparable cost

(or contribution), as done by the more famous EANSC value, that is mentioned in the

preliminaries. However, as we will see in Section 7, for some cases the PANSC value

coincides with well-known and applied solutions in cost allocation. In this section, we

promoted the PANSC value by the weak balanced externalities axiom, which is inspired

by a notion of fairness in queueing problems.
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5 The dual solution: proportional division

Every solution has its dual solution which, instead of focusing on what coalitions can earn,

considers what happens if any coalition leaves assuming that the grand coalition is already

formed. In some cases, the dual solution equals the solution itself, in which case we call

this solution self-dual. An example of a self-dual solution is the Shapley value.

Formally, the dual of game (N, v) ∈ G is the game (N, v∗) ∈ G given by v∗(S) =

v(N) − v(N \ S) for all S ⊆ N . The dual of solution ψ is the solution ψ∗ that assigns to

every game the payoff vector that ψ assigns to the dual game, i.e. ψ∗(N, v) = ψ(N, v∗)

for all (N, v) ∈ G. The dual solution of the PANSC value is the proportional division

(PD) value, recently studied by Zou et al. (2021), which allocates v(N) proportional to

the stand-alone worths of the players. The PD value on the class of games with positive

stand-alone worths is given by

PDi(N, v) =
v({i})∑
j∈N v({j})

v(N) for all (N, v) ∈ Gvi+ and i ∈ N,

where Gvi+ = {(N, v) ∈ G | v({i}) > 0 for all i ∈ N} is the class of games on N where all

stand-alone worths are positive.4

Proposition 6 For every game (N, v) ∈ Gvi+, it holds that PANSC(N, v∗) = PD(N, v).

Proof. For every (N, v) ∈ Gvi+ and i ∈ N , since (N, v∗) ∈ Gsc+,

PANSCi(N, v
∗) =

v∗(N)− v∗(N \ {i})∑
j∈N(v∗(N)− v∗(N \ {j}))

v∗(N)

=
v(N)− (v(N)− v({i}))∑

j∈N(v(N)− (v(N)− v({j})))
v(N)

=
v({i})∑
j∈N v({j})

v(N)

= PDi(N, v).

2

Notice that, under efficiency, (3) in the definition of weak balanced externalities can be

written as

ψh(N, v) = α

 ∑
i∈N\{h}

ψi(N, v)− v(N \ {h})


for every h ∈ N with

∑
i∈N\{h} ψi(N, v) − v(N \ {h}) 6= 0. This shows that the payoff

assigned to player i equals the externality it inflicts on all other players, assuming that

4This value is also well-defined if all stand-alone worths are negative.
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without player i, the coalition of remaining players earns its worth v(N \{h}) in the original

game. We can also consider other possibilities to measure this externality.

As an example, consider the class of mollifier games in Charnes et al. (1978), that is

based on affine combinations of a game and its dual. Formally, for β ∈ IR, define the game

(N, v′β) as follows:

v′β(S) = βv(S) + (1− β)v∗(S) for all S ⊆ N. (4)

• β-weak balanced externalities. Let β ∈ IR. A solution ψ on a subgame closed

class C ⊆ G satisfies β-weak balanced externalities if for every (N, v) ∈ C with |N | ≥
2, there exists α ∈ IR such that for every h ∈ N , if

(∑
i∈N\{h} ψi(N, v)− v′β(N \ {h})

)
6=

0, then

ψh(N, v) = α

 ∑
i∈N\{h}

ψi(N, v)− v′β(N \ {h})

 .

Although the worth v′β(N \{i}) need not be equal to v(N \{i}), i ∈ N , it turns out that

this axiom is compatible with efficiency, and characterizes the following solution among the

efficient solutions. Defining Gβ+ = {(N, v) ∈ G | βv∗({j}) + (1− β)v({j}) > 0 for all j ∈
N}, the proof follows a similar line as the proof of Theorem 5.

Theorem 7 Let β ∈ IR. A solution ψ on Gβ+ satisfies efficiency and β-weak balanced

externalities if and only if ψ = ψβ with ψβ given by

ψβi (N, v) =
βv∗({i}) + (1− β)v({i})∑

k∈N (βv∗({k}) + (1− β)v({k}))
v(N) for all i ∈ N.

Proof. It is obvious that ψβ is efficient. To show that this solution satisfies β-weak bal-

anced externalities, let (N, v), (N, v′β) ∈ Gβ+ and β ∈ IR be such that v′β(S) = βv(S) +

(1 − β)v∗(S) for all S ⊆ N . If
∑

j∈N(βv∗({j}) + (1 − β)v({j})) 6= v(N), taking α =
v(N)∑

j∈N (βv∗({j})+(1−β)v({j}))−v(N)
for any h ∈ N , we have

α
( ∑
i∈N\{h}

ψβi (N, v)− v′β(N\{h})
)

= α(v(N)− ψβh(N, v)− βv(N\{h})− (1− β)v∗(N\{h}))
= α(v(N)− ψβh(N, v)− βv(N\{h})− (1− β)v(N) + (1− β)v({h}))
= α(β(v(N)− v(N\{h})) + (1− β)v({h})− ψh(N, v))

= α(βv∗({h}) + (1− β)v({h})− ψh(N, v))

= α
(
βv∗({h}) + (1− β)v({h})− βv∗({h}) + (1− β)v({h})∑

j∈N(βv∗({j}) + (1− β)v({j}))
v(N)

)
13



= α(βv∗({h}) + (1− β)v({h}))
(

1− v(N)∑
j∈N(βv∗({j}) + (1− β)v({j}))

)
= α(βv∗({h}) + (1− β)v({h}))

(∑
j∈N(βv∗({j}) + (1− β)v({j}))− v(N)∑

j∈N(βv∗({j}) + (1− β)v({j}))

)
=

βv∗({h}) + (1− β)v({h})∑
j∈N(βv∗({j}) + (1− β)v({j}))

v(N)

= ψβh(N, v),

where the first equality holds from efficiency of ψβ, and the eighth equality follows from

substituting α.

If
∑

j∈N(βv∗({j})+(1−β)v({j})) = v(N), then ψβi (N, v) = βv∗({i})+(1−β)v({i}), and

thus
∑

i∈N\{h} ψ
β
i (N, v)−v′β(N \{h}, v−h) = v(N)−ψβh(N, v)−(βv(N \{h})+(1−β)v∗(N \

{h})) = v(N)−(βv∗({h})+(1−β)v({h}))−β(v(N)−v∗({h}))−(1−β)(v(N)−v({h})) = 0,

implying that β-weak balanced externalities does not have any bite. Altogether, ψβ satisfies

β-weak balanced externalities.

To prove the ‘only if’ part, let ψ be a solution satisfying efficiency and β-weak balanced

externalities on Gβ+. Let (N, v) ∈ Gβ+. If
∑

i∈N\{h} ψi(N, v) − v′β(N \ {h}) 6= 0, then

efficiency and β-weak balanced externalities imply that there is α ∈ IR such that for

h ∈ N ,

ψh(N, v) = α
( ∑
i∈N\{h}

ψi(N, v)− v′β(N\{h})
)

= α(βv∗({h}) + (1− β)v({h})− ψh(N, v)),

where the second equality holds from the first four equalities shown in the existence part.

Thus,

ψh(N, v) =
α

1 + α
(βv∗({h}) + (1− β)v({h})).

Efficiency determines that∑
h∈N

ψh(N, v) =
α

1 + α

∑
h∈N

(βv∗({h}) + (1− β)v({h})) = v(N),

and thus

α

1 + α
=

v(N)∑
h∈N(βv∗({h}) + (1− β)v({h}))

,

which yields the desired formula.

If
∑

i∈N\{h} ψi(N, v) − v′β(N \ {h}) = 0, then by efficiency, v(N) − ψh(N, v) − v′β(N \
{h}) = 0, implying that ψh(N, v) = v(N) − v′β(N \ {h}) = v(N) − (βv(N\{h}) + (1 −
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β)(v(N)− v({h}))) = β(v(N)− v(N\{h})) + (1− β)v({h}) = βv∗({h}) + (1− β)v({h}).
By efficiency,

∑
h∈N ψh(N, v) =

∑
h∈N [βv∗({h}) + (1 − β)v({h})] = v(N) > 0 since

(N, v) ∈ Gβ+. Therefore, ψi(N, v) = βv∗({i}) + (1 − β)v({i}) = βv∗({i})+(1−β)v({i})
v(N)

v(N) =
βv∗({i})+(1−β)v({i})∑

k∈N (βv∗({k})+(1−β)v({k}))v(N), as desired. 2

Notice that ψ1 is the PANSC value, and 1-weak balanced externalities is very similar

to weak balanced externalities (and, in fact, is equivalent to weak balanced externalities

under efficiency, i.e. for values). As another special case, ψ0 coincides with the PD value.

Other worths instead of v′β(N \{h}) could be used for coalition N \{h} in the definition

of β-weak balanced externalities, but there are some restrictions. For example, assuming

that there is no impact from player h leaving, and thus the remaining players earn v(N)

would give that ψh(N, v) = α
(∑

i∈N\{h} ψh(N, v)− v(N)
)

= α(v(N)−ψh(N, v)−v(N)) =

−αψh(N, v), which implies that α = −1. Obviously, this is a restatement of efficiency.

6 Consistency

In this section, considering a variable player set, we characterize the PANSC value involving

a reduced game consistency axiom. By duality, this result is very closely related to the

reduced game consistency result for the PD value in Zou et al. (2021).

The consistency principle is widely acceptable notion in cooperative game theory. It

is based on the idea that the payoffs of the remaining players should not change when

a specific player leaves the game with the payoff assigned to her by the solution. In the

literature, various reduced games are introduced which assess the effect on the worths of

coalitions of remaining players in a different way. Here, we consider the complement reduced

game (Thomson, 2011), also known as the dual projection reduced game in van den Brink

et al. (2016).

If player j ∈ N leaves game (N, v) with a certain payoff, then the complement reduced

game is a game on the remaining player set that assigns to every subset of N \ {j} its

worth together with player j in the original game minus the payoff that is assigned to

player j. We might consider that player j leaves the game with a fixed payoff, but commits

to cooperate with any coalition of remaining players. In return, player j is guaranteed her

payoff.

Definition 2 Given game (N, v) ∈ G with |N | ≥ 2, player j ∈ N and payoff vector

x ∈ IRN , the complement reduced game with respect to j and x is the game (N\{j}, vx)
given by

vx(S) =

{
v(S ∪ {j})− xj for any S ⊆ N \ {j}, S 6= ∅,

0 if S = ∅.
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Complement consistency requires that the payoffs assigned to the remaining players in

N \ {j}, after player j leaving the game with her payoff according to solution ψ, is the

same in the reduced game as in the original game.

• Complement consistency. A solution ψ on C ⊆ G satisfies complement consistency

if for every game (N, v) ∈ C with |N | ≥ 3, j ∈ N , and x = ψ(N, v), it holds that

(N\{j}, vx) ∈ C, and ψi(N, v) = ψi(N\{j}, vx) for all i ∈ N\{j}.

The following result follows straightforwardly from Proposition 2 in Zou et al. (2021).

Since their domains are different, we provide the proof for ease of the reader.

Proposition 8 The PANSC value on G≥2sc+ satisfies complement consistency.

Proof. Let (N, v) ∈ G≥2sc+ and j ∈ N . First, we remark that the class of games G≥2sc+ is

subgame closed under the complement reduced game operator, namely, if (N, v) ∈ G≥2sc+
for |N | ≥ 3, then (N \ {j}, vx) ∈ G≥2sc+ for any j ∈ N and x = PANSC(N, v), because

SCi(N \ {j}, vx) = vx(N \ {j})− vx(N \ {i, j}) = v(N)− PANSCj(N, v)− (v(N \ {i})−
PANSCj(N, v)) = v(N) − v(N \ {i}) = SCi(N, v) for any i ∈ N \ {j}.5 Next, we have,

for any i ∈ N \ {j},

PANSCi(N \ {j}, vx) =
SCi(N \ {j}, vx)∑

k∈N\{j} SCk(N \ {j}, vx)
vx(N \ {j})

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)
(v(N)− xj)

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)

(
v(N)− SCj(N, v)∑

k∈N SCk(N, v)
v(N)

)
=

SCi(N, v)∑
k∈N\{j} SCk(N, v)

(
1− SCj(N, v)∑

k∈N SCk(N, v)

)
v(N)

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)
·
∑

k∈N\{j} SCk(N, v)∑
k∈N SCk(N, v)

v(N)

=
SCi(N, v)∑
k∈N SCk(N, v)

v(N)

= PANSCi(N, v)

2

Complement consistency is the dual axiom of projection consistency used to axiomatize

the PD value in Zou et al. (2021). Axiomatizations using a reduced game consistency

5Notice that the class of games G≥2
sc+ is subgame closed under this reduced game operator for any

solution ψ.
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property usually assume a specific allocation for two-player games. For the PD value, this

is proportional standardness which requires that for two-player games (with positive stand-

alone worths) the worth of the grand coalition is allocated proportional to the stand-alone

worths of the players. The PANSC value obviously satisfies the dual of this standardness.

Recall that G2sc+ = {(N, v) ∈ Gsc+ | |N | = 2}.

• Dual proportional standardness. A solution ψ on G2sc+ satisfies dual proportional

standardness if for every (N, v) ∈ G2sc+,

ψi(N, v) =
v({i, j})− v({j})

(v({i, j})− v({i})) + (v({i, j})− v({j}))
v({i, j}) for i ∈ N = {i, j}.

Theorem 9 A solution on G≥2sc+ satisfies complement consistency and dual proportional

standardness if and only if it is the PANSC value.

Although the proof is almost the same as that of Theorem 6 in Zou et al. (2021), for

completeness, it is given in the Appendix.

Standardness axioms are quite strong since they coincide with the definition of some

solution for two-player games. Instead of dual proportional standardness, we could also

use the following axiom, which requires that for two-player games where the worth of the

grand coalition and the ratio of the separable costs of both players is equal, their payoffs

are equal.

• Dual proportionality. A solution ψ on G2sc+ satisfies dual proportionality if for

every two games (N, v), (N, v′) ∈ G2sc+ such that (i) v(N) = v′(N), and (ii) there

is α > 0 such that SCi(N, v) = αSCi(N, v
′) for all i ∈ N , it holds that ψ(N, v) =

ψ(N, v′).

Dual proportionality and complement consistency are not sufficient to characterize the

PANSC value on G≥2sc+. Therefore, we additionally require the inessential game property

and continuity, but only for two-player games in G2sc+.

• Inessential game property for two-player games. A solution ψ on G2sc+ satisfies

the inessential game property for two-player games if for every (N, v) ∈ G2sc+ such

that N = {i, j} and v({i}) + v({j}) = v({i, j}), it holds that ψi(N, v) = v({i}) and

ψj(N, v) = v({j}).

• Continuity for two-player games. A solution ψ on G2sc+ satisfies continuity for

two-player games if for all sequences of games {(N,wk)} and game (N, v) in G2sc+
such that (N,wk)→ (N, v), it holds that lim

(N,wk)→(N,v)
ψ(N,wk) = ψ(N, v).
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The above three axioms characterize the PANSC value on G2sc+.

Lemma 10 A solution on G2sc+ satisfies dual proportionality, the inessential game property

for two-player games, and continuity for two-player games if and only if it is the PANSC

value.

Proof. It is clear that the ‘if’ part is satisfied. To show the ‘only if’ part, suppose that

ψ is a solution satisfying the three axioms. Let (N, v) be an arbitrary game in the class

G2sc+ with N = {i, j}. If v(N) 6= 0, let (N, v′) be an additive game such that SCi(N, v
′) =

αSCi(N, v), SCj(N, v
′) = αSCj(N, v) and v′(N) = v(N). Clearly, α = v(N)

SCi(N,v)+SCj(N,v)
6=

0. Dual proportionality and the inessential game property for two-player games imply that

ψk(N, v) = ψk(N, v
′) = αSCk(N, v) = SCk(N,v)v(N)

SCi(N,v)+SCj(N,v)
for all k ∈ {i, j}. If v(N) = 0,

continuity for two-player games implies that ψ(N, v) = PANSC(N, v) = 0. 2

Logical independence of the axioms used in Lemma 10 can be shown by the following

alternative solutions.

(i) The PD value satisfies all axioms except dual proportionality.

(ii) The solution ψi(N, v) = SCi(N,v)v(N)
2
∑

j∈N SCj(N,v)
+ v(N)

2|N | for all (N, v) ∈ G2sc+ and i ∈ N , satisfies

all axioms except the inessential game property for two-player games.

(iii) The solution, for all (N, v) ∈ G2sc+ and i ∈ N , given by

ψi(N, v) =

{
PANSCi(N, v) if v(N) 6= 0

CISi(N, v) if v(N) = 0

satisfies all axioms except continuity for two-player games.

Theorem 9 and Lemma 10 together yield the following axiomatization of the PANSC

value on G≥2sc+.

Corollary 11 A solution on G≥2sc+ satisfies dual proportionality, the inessential game prop-

erty for two-player games, continuity for two-player games, and complement consistency if

and only if it is the PANSC value.

7 Comparison with other solutions

In this section, we discuss the relationship between the PANSC value and two other existing

values, in particular the EANSC value that was mentioned in the preliminaries (see (1)),

and the SCRB method which is popular for cost allocation problems.
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7.1 Comparison with the EANSC value

The PANSC and EANSC values are both based on the separable costs of the players.

Whereas the EANSC value assigns to every player its separable cost and allocates the

remainder (the total nonseparable cost) equally over the players, the PANSC value allocates

the worth of the grand coalition proportional to the separable costs, which is equivalent

to first assigning to every player its separable cost and allocating the remainder (the total

nonseparable cost) proportional to the separable costs. The next proposition gives two

sufficient conditions for the EANSC and PANSC values giving the same payoff vector.

Proposition 12 For every game (N, v) ∈ G≥2sc+, EANSC(N, v) = PANSC(N, v) if and

only if v(N) =
∑

k∈N SCk(N, v) or v(N\{i}) = v(N\{j}) for all i, j ∈ N .

Proof. For any (N, v) ∈ G≥2sc+ and i ∈ N ,

PANSCi(N, v) = SCi(N, v) +
SCi(N, v)∑
k∈N SCk(N, v)

[v(N)−
∑
k∈N

SCk(N, v)].

Comparing this equation with (1), we have that EANSC(N, v) = PANSC(N, v) if and

only if

[v(N)−
∑
k∈N

SCk(N, v)][
SCi(N, v)∑
k∈N SCk(N, v)

− 1

n
] = 0 for all i ∈ N,

and thus v(N) =
∑

k∈N SCk(N, v) or v(N\{i}) = v(N\{j}) for all i, j ∈ N . 2

The EANSC value satisfies the well-known standardness due to Hart and Mas-Colell

(1989).

• Standardness. A solution ψ on G satisfies standardness if for every (N, v) ∈ G with

|N | = 2, it holds that

ψi(N, v) = v({i}) +
1

2
[v({i, j})− v({i})− v({j})] for N = {i, j}.

The EANSC value also satisfies complement consistency. Similar to Theorem 9, com-

plement consistency and standardness together characterize the EANSC value on G (also

on G≥2sc+). Moulin (1985) considers this fact in cost allocation problems, but we give the

exact proof for completeness. The proof is similar to that of Theorem 9, and is postponed

to the Appendix.

Theorem 13 A solution on G satisfies complement consistency and standardness if and

only if it is the EANSC value.
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Similar as the PANSC value (respectively, the EANSC value) is the multiplicative

(respectively, additive) normalization of the separable costs, the PD value (respectively,

the CIS value) is the multiplicitave (respectively, additive) normalization of the stand-alone

worths, as summarized in Table 1.

Multiplicative normalization Additive normalization

Separable cost SCi(N, v) PANSC EANSC

Stand-alone worth v({i}) PD CIS

Table 1: Individual assignments and normalization

In Section 4, we considered a ‘multiplicative normalization’ of balanced externalities,

and saw that it characterizes the PANSC value as the unique efficient solution satisfying

this axiom. An alternative could be to consider an ‘additive normalization’. Combining

the two variations gives the following axiom (and thus weaker than both).

• α, γ-weak balanced externalities. A solution ψ on a subgame closed class C ⊆ G
satisfies α, γ-weak balanced externalities if for every (N, v) ∈ C with |N | ≥ 2, there

exist α, γ ∈ IR such that, for every h ∈ N ,

ψh(N, v) = α
∑

i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
+ γ.

If ψ is efficient, then this axiom implies that

ψh(N, v) = α(v(N)− ψh(N, v)− v(N \ {h})) + γ

and thus

ψh(N, v) =
αSCh(N, v) + γ

1 + α
.

Special cases of efficient solutions are:

(i) If α = 0, then we get the equal division value, being EDh = v(N)
|N | for all h ∈ N .

(ii) If γ = 0, then we get the PANSC value.

(iii) If α = 1, then we get a modified EANSC value, being

MEANSh(N, v) =
1

2
SCh(N, v) +

1

|N |

(
v(N)−

∑
j∈N

SCj(N, v)

2

)
for all h ∈ N.
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The MEANSC value coincides with the Shapley value for 2-games, and thus with the

minimal transfer rule for queueing games, as it should by the axioms. Notice that the

EANSC value does not coincide with the Shapley value for 2-games, and does not belong

to this class.

7.2 Comparison with the Separable Costs Remaining Benefits

(SCRB) method

In this subsection, we show that the PANSC value is closely related to the well-known

Separable Costs Remaining Benefits (SCRB) method in cost allocation problems. Cost al-

location problems have obtained much attention in the literature and have been applied to

address real problems. One of the most famous empirical examples is the Tennessee Valley

Authority (TVA) Act which is designed to assign the cost of TVA projects specifically

among the several purposes involved (Ransmeier, 1942). The SCRB method is commonly

used in practice for allocating the costs of multi-purpose water development projects (Straf-

fin and Heaney, 1981; Young et al., 1982). It is based on a simple yet appealing idea that

joint costs should be allocated in proportion to the willingness to pay of the players. For

a survey of such method, we refer to Tijs and Driessen (1986).

A cost allocation problem is a triple (N, c, b), where N ⊂ IN is a set of participants or

players, c : 2N → IR is a cost function with c(∅) = 0, and b = (b(i))i∈N is a profile where

b(i) is the benefit to player i if her purposes are served. For any S ⊆ N , c(S) is the cost

of serving S which is the minimal cost of providing the service to the players in S. The

objective is to allocate the total cost c(N) among all players. A cost allocation method or

solution is a function which assigns an allocation vector x ∈ IRN to each cost allocation

problem (N, c, b).

Notice that the pair (N, c) is mathematically equivalent to a game (N, v). Because of

its different interpretation, the literature often speaks about a cost game, respectively a

profit game. Solutions can be defined for both types of games. In the literature, one can

find solutions that are applicable for cost as well as profit games. Also the PANSC value

is applicable in both contexts. In the case of cost games, we speak about SCi(N, c) =

c(N) − c(N \ {i}) as the separable cost of player i in cost game (N, c), and we refer to

NSC(N, c) = c(N)−
∑

j∈N SCj(N, c) as the nonseperable cost .6

Since player i would not be willing to pay more than min{b(i), c({i})} to participate

in the joint project, min{b(i), c({i})} − SCi(N, c) is considered as player i’s remaining

benefit. The SCRB method assigns to each player her separable cost, and then allocates

6Since cost and profit games are mathematically equivalent, we denote the separable costs by SCi(N, c),

and SCi(N, v) respectively, depending on the context.
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the nonseparable cost in proportion to the remaining benefits of players. Formally, the

SCRB method is given by

SCRBi(N, c, b) = SCi(N, c) +
min{b(i), c({i})} − SCi(N, c)∑

j∈N(min{b(j), c({j})} − SCj(N, c))
·NSC(N, c).

A variant of the SCRB method, the Alternative Cost Avoided (ACA) method, is studied

by Straffin and Heaney (1981) and Otten (1993), and is given by

ACAi(N, c, b) = SCi(N, c) +
(c({i})− SCi(N, c)) ·NSC(N, c)∑

j∈N(c({j})− SCj(N, c))
.

It is known that if b(j) ≥ c({j}) for all j ∈ N , then the SCRB method coincides with the

ACA method.

A cost allocation problem (N, c, b) can be transformed into a game (N, v) in two ways.

One is using an anti-game defined by v(S) = −c(S) for all S ⊆ N . This game assigns

to every coalition the total cost to provide the service for this coalition (in nonnegative

terms). The other is using a cost saving game (Young et al., 1982) defined by v(S) =∑
k∈S c({k})− c(S) for all S ⊆ N . This game assigns to every coalition the cost saving it

can earn when cooperating and providing the service together for all players in the coalition

instead of every player providing the service for itself.

It turns out that in the special cases that the individual benefits are zero, or at least

equal to the individual costs, the SCRB method coincides with a variation of the PANSC

value to one of the associated games.

Proposition 14 Consider cost allocation problem (N, c, b).

(i) If b(j) = 0 for all j ∈ N , then SCRB(N, c, b) = −PANSC(N, v), where (N, v) is the

associated anti-game.

(ii) If b(j) ≥ c({j}) for all j ∈ N , then SCRBj(N, c, b) = c({j})− PANSCj(N, v) for all

j ∈ N , where (N, v) is the associated cost saving game.

Proof. Consider cost allocation problem (N, c, b).

(i) Suppose that b(j) = 0 for all j ∈ N . Then, the SCRB solution becomes, for all

i ∈ N ,

SCRBi(N, c, b) = SCi(N, c) +
−SCi(N, c) ·NSC(N, c)∑

j∈N(−SCj(N, c))
=

SCi(N, c)∑
j∈N SCj(N, c)

· c(N).

For the associated anti-game (N, v), since SCj(N, v) = −SCj(N, c) for all j ∈ N , and

c(N) = −v(N), we have

SCRBi(N, c, b) = − SCi(N, v)∑
j∈N SCj(N, v)

· v(N) = −PANSCi(N, v),
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and thus the cost allocation determined by the SCRB method coincides with (the negative

of) our PANSC value applied to the associated anti-game.

(ii) Suppose that b(j) ≥ c({j}) for all j ∈ N . In that case, for all i ∈ N ,

SCRBi(N, c, b) = ACAi(N, c, b) = SCi(N, c) +
(c({i})− SCi(N, c)) ·NSC(N, c)∑

j∈N(c({j})− SCj(N, c))
.

For the associated cost saving game (N, v), since SCj(N, v) = v(N) − v(N \ {j}) =∑
k∈N c({k}) − c(N) −

∑
k∈N\{j} c({k}) + c(N \ {j}) = c({j}) − SCj(N, c) for all j ∈

N , c(N) =
∑

k∈N c({k}) − v(N), and thus NSC(N, c) = c(N) −
∑

k∈N SCk(N, c) =∑
k∈N c({k})−v(N)−

∑
k∈N (c({k})− SCk(N, v)) =

∑
k∈N SCk(N, v)−v(N) = −NSC(N, v),

we have

c({i})− SCRBi(N, c, b) = c({i})− SCi(N, c)−
(c({i})− SCi(N, c)) ·NSC(N, c)∑

j∈N(c({j})− SCj(N, c))

= SCi(N, v) +
SCi(N, v)∑
j∈N SCj(N, v)

NSC(N, v)

=
SCi(N, v)∑
j∈N SCj(N, v)

· v(N)

= PANSCi(N, v).

and thus the cost allocation determined by the SCRB method coincides with the individual

cost of each player minus the cost share allocated by our PANSC value applied to the

associated saving game. 2

8 Concluding remarks

In this paper, we generalized the axiom of balanced cost reduction that characterizes the

minimal transfer rule for queueing problems in van den Brink and Chun (2012), to the

class of cooperative games. Although this minimal transfer rule is usually presented as the

Shapley value of an associated queueing game of Maniquet (2003), since queueing games are

2-games, the minimal tranfer rule can also be obtained by applying other solutions (such

as the pre-nucleolus or τ -value) to queueing games. After extending the characterization

result to the class of 2-games, we show that extending this axiom in a straightfoward way

to general games, is incompatible with efficiency. Therefore, we weakened the axiom by

requiring that every player’s payoff is the same fraction of its total externality inflicted on

the other players. This weakening turns out to be compatible with efficiency. Moreover,

these two axioms characterize a unique solution, called the PANSC value, which allocates

the total worth proportional to the separable costs of the players. We have provided
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characterizations of the PANSC value. In this sense, the spirit of the balanced contributions

property seems to express a feature of the PANSC value in queueing problems. Besides, we

compared the PANSC value with the EANSC value, and showed that it is closely related

to the well-known SCRB method in cost allocation problems, being a solution that is often

applied in cost allocation problems.

Appendix

Proof of Theorem 2. It is well-known that the Shapley value satisfies efficiency and sym-

metry. To show that the Shapley value satisfies k-balanced externalities, consider k-game

(N, v) and h ∈ N . Then

∑
i∈N\{h}

(
Shi(N, v)− Shi(N \ {h}, v−h)

)
=

∑
i∈N\{h}

 ∑
S⊆N,|S|=k

i∈S

∆v(S)

k
−

∑
S⊆N,|S|=k

i∈S,h6∈S

∆v(S)

k


=

∑
i∈N\{h}

∑
S⊆N,|S|=k

i,h∈S

∆v(S)

k

= (k − 1)
∑

S⊆N,|S|=k

h∈S

∆v(S)

k

= (k − 1)Shh(N, v),

where the first equality follows since ∆v(S) = ∆v−h(S) for all S ⊆ N \ {h}, and the third

equality follows since every k-size coalition containing player h appears k − 1 times in the

summation (once for every other player i ∈ N \ {h}). This shows that the Shapley value

satisfies k-balanced externalities.

We show the ‘only if’ part by induction on |N |. Let (N, v) be a k-game such that k ≥ 3

(the case k = 2 is already shown by Theorem 1). If |N | < k, then all players are symmetric

in (N, v), and thus by symmetry, ψi(N, v) = ψj(N, v) for any two players i, j ∈ N . Since

v(N) = 0, efficiency then implies that ψi(N, v) = 0 for all i ∈ N .

If |N | = k, then k-balanced externalities implies that ψi(N, v) = 1
|N |−1

∑
i∈N\{h} (ψi(N, v)−

ψi(N \ {h}, v−h)) = 1
|N |−1

∑
i∈N\{h} ψi(N, v) for any i ∈ N and h ∈ N\{i}. With efficiency

it follows that ψi(N, v) = 1
|N |−1(v(N)− ψh(N, v)). Summing this equality over h ∈ N\{i}

yields (|N |−1)ψi(N, v) = v(N)− 1
|N |−1

∑
h∈N\{i} ψh(N, v) = v(N)− 1

|N |−1(v(N)−ψi(N, v)).

This is equivalent to
(

(|N | − 1)− 1
|N |−1

)
ψi(N, v) =

(
1− 1

|N |−1

)
v(N)⇔ |N |(|N |−2)

|N |−1 ψi(N, v) =
|N |−2
|N |−1v(N), and thus ψi(N, v) = v(N)

|N | = Shi(N, v).
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As induction hypothesis, suppose that uniqueness holds for all N ′ ⊂ N such that

k ≤ |N ′| ≤ |N | − 1. For any k-game (N, v) and h ∈ N , k-balanced externalities yields

ψh(N, v) =
1

k − 1

∑
i∈N\{h}

(
ψi(N, v)− ψi(N \ {h}, v−h)

)
. (5)

By the induction hypothesis, the ψi(N\{h}, v−h), i, h ∈ N, i 6= h, are uniquely determined.

Since |N | ≥ 3, (5) and efficiency yield a system of (|N |− 1) + 1 = |N | linearly independent

equations in the |N | unkowns ψh(N, v), h ∈ N , which thus are uniquely determined. 2

Proof of Theorem 9. It is straightforward that the PANSC value satisfies dual proportional

standardness. Complement consistency follows from Proposition 8.

To prove the ‘only if’ part, let ψ be a solution on G≥2sc+ which satisfies the two axioms.

Let (N, v) ∈ G≥2sc+, x = PANSC(N, v), and y = ψ(N, v). We will show that x = y. If

|N | = 2, x = y follows from dual proportional standardness. Suppose, by induction, that

PANSCi(N
′, v) = ψi(N

′, v) holds for any game (N ′, v) with |N ′| < |N |.
Take any i ∈ N and j ∈ N \ {i}, and consider (N, v) and the complement reduced

games (N \ {j}, vx), (N \ {j}, vy). We have

xi − yi = PANSCi(N, v)− ψi(N, v)

= PANSCi(N \ {j}, vx)− ψi(N \ {j}, vy)
= PANSCi(N \ {j}, vx)− PANSCi(N \ {j}, vy)

=
SCi(N \ {j}, vx)∑

k∈N\{j} SCk(N \ {j}, vx)
vx(N \ {j})− SCi(N \ {j}, vy)∑

k∈N\{j} SCk(N \ {j}, vy)
vy(N \ {j})

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)
vx(N \ {j})− SCi(N, v)∑

k∈N\{j} SCk(N, v)
vy(N \ {j})

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)
(v(N)− xj)−

SCi(N, v)∑
k∈N\{j} SCk(N, v)

(v(N)− yj)

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)
(−xj + yj), (6)

where the second equality follows from the PANSC value and ψ satisfying complement

consistency, the third equality follows from the induction hypothesis, and the fifth equality

follows similar as in the proof of Proposition 8.

Summing up (6) over all i ∈ N \ {j} yields∑
i∈N\{j}

(xi − yi) =
∑

i∈N\{j}

SCi(N, v)∑
k∈N\{j} SCk(N, v)

(−xj + yj) = −xj + yj,
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and thus∑
j∈N\{i}

(−xj + yj) = xi − yi. (7)

Summing up (6) over all j ∈ N \ {i} yields∑
j∈N\{i}

(xi − yi) = (|N | − 1)(xi − yi)

=
SCi(N, v)∑

k∈N\{j} SCk(N, v)

∑
j∈N\{i}

(−xj + yj). (8)

Together (7) and (8) imply that(
|N | − 1− SCi(N, v)∑

k∈N\{j} SCk(N, v)

)
(xi − yi) = 0.

Since SCk(N, v) > 0 for any k ∈ N and i ∈ N \ {j}, we have

|N | − 1− SCi(N, v)∑
k∈N\{j} SCk(N, v)

6= 0 for any i ∈ N and j ∈ N \ {i}.

Therefore, we have xi = yi. 2

Proof of Theorem 13. It is straightforward to show that the EANSC value satisfies com-

plement consistency and standardness. To show the ‘only if’ part, suppose that ψ is a

solution satisfying complement consistency and standardness.

If |N | = 2, then ψ(N, v) = EANSC(N, v) follows from standardness.

Proceeding by induction, for |N | ≥ 3, suppose that ψ(N ′, v) = EANSC(N ′, v) when-

ever |N ′| = |N | − 1. Take any i, j ∈ N such that i 6= j. Let x = ψ(N, v) and

y = EANSC(N, v). For the two reduced games (N\{j}, vx) and (N\{j}, vy), we have

xi − yi = ψi(N, v)− EANSCi(N, v)

= ψi(N\{j}, vx)− EANSCi(N\{j}, vy)
= EANSCi(N\{j}, vx)− EANSCi(N\{j}, vy), (9)

where the last equality follows from the induction hypothesis.

By definitions of the EANSC value and the complement reduced game, we have

EANSCi(N\{j}, vx)− EANSCi(N\{j}, vy)

= SCi(N\{j}, vx) +
1

|N | − 1
[vx(N\{j})−

∑
k∈N\{i}

SCk(N\{j}, vx)]
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−SCi(N\{j}, vy)−
1

|N | − 1
[vy(N\{j})−

∑
k∈N\{i}

SCk(N\{j}, vy)]

= v(N)− v(N\{i}) +
1

|N | − 1
[v(N)− xj −

∑
k∈N\{i}

(v(N)− v(N\{k})]

−(v(N)− v(N\{i}))− 1

|N | − 1
[v(N)− yj −

∑
k∈N\{i}

(v(N)− v(N\{k})]

=
1

|N | − 1
(yj − xj).

Together with (9), we have that, for all i, j ∈ N with i 6= j,

xi − yi =
1

|N | − 1
(yj − xj). (10)

Summing (10) over all i ∈ N\{j} yields
∑

i∈N\{j}(xi − yi) = yj − xj, which implies∑
i∈N

(xi − yi) = 0. (11)

On the other hand, (10) can be written as (|N | − 1)(xi − yi) = yj − xj. Summing this

equality over all j ∈ N\{i} yields

(|N | − 1)2(xi − yi) =
∑

j∈N\{i}

(yj − xj). (12)

Together with (11) and (12), it holds that |N |(|N | − 2)(xi − yi) = 0. Since |N | > 2,

xi − yi = 0 for all i ∈ N . This shows that ψ(N, v) = EANSC(N, v). 2
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