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Abstract

A Bayesian dynamic compositional model is introduced that can deal
with combining a large set of predictive densities. It extends the mixture
of experts and the smoothly mixing regression models by allowing for
combination weight dependence across models and time. A compositional
model with Logistic-normal noise is specified for the latent weight dynamics
and the class-preserving property of the logistic-normal is used to reduce
the dimension of the latent space and to build a compositional factor model.
The projection used in the dimensionality reduction is based on a dynamic
clustering process which partitions the large set of predictive densities into
a smaller number of subsets. We exploit the state space form of the model
to provide an efficient inference procedure based on Particle MCMC. The
approach is applied to track the Standard & Poor 500 index combining
3712 predictive densities, based on 1856 US individual stocks, clustered in
relatively small number of model sets. For the period 2007-2009, which
included the financial crisis, substantial predictive gains are obtained, in
particular, in the tails using Value-at-Risk. Similar predictive gains are
obtained for the US Treasury Bill yield using a large set of macroeconomic
variables. Evidence obtained on model set incompleteness and dynamic
patterns in the financial clusters provide valuable signals for improved
modelling and more effective economic and financial decisions.
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1 Introduction

Predicting with large sets of data involving many model structures and explanatory
variables is a topic of substantial interest to academic researchers as well as to
professional and applied forecasters. It has been studied in several papers (e.g.,
see Stock and Watson, 1999, 2002, 2005, 2014, and Bańbura et al., 2010). The
recent fast growth in (real-time) big data allows researchers to predict variables of
interest more accurately (e.g., see Choi and Varian, 2012; Varian, 2014; Varian and
Scott, 2014; Einav and Levin, 2014). Stock and Watson (2005, 2014), Bańbura
et al. (2010) and Koop and Korobilis (2013) suggest that there are also potential
gains from predicting using a large set of predictors.
However, predicting with large data sets, many predictors and high-dimensional
models requires new modelling strategies, efficient inference methods and extra
computing power possibly resulting from parallel computing. We refer to Granger
(1998) for an early discussion of these issues.

We propose a Bayesian dynamic compositional model which deals with the
combination of a large set of predictive densities using financial data. It extends
Billio et al. (2013) and McAlinn and West (2019) in several directions.

In terms of methodology we introduce three innovations. First, we use the
mixture o experts and/or smoothly mixing regression approaches (Jacobs et al.,
1991, Jordan and Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996, Wood
et al., 2002, Geweke and Keane, 2007, Villani et al., 2009) and extend these by
allowing the combination weights to be dependent between models as well as to
learn over time. Learning about model set incompleteness is also specified. In
this context a diagnostic analysis is presented to signal particular types of missing
information.

Second, a dimension reduction of the latent weight variables is introduced by
making use of the class-preserving property of the logistic-normal distribution.
The dimension reduction involves modelling the combination weights of the large
set of densities as a dynamic factor model with a small number of factors. The
projection onto a low dimension latent space uses a dynamic clustering process that
allocates the predictive densities into mutually exclusive groups. We contribute to
the literature on modelling variables (Aitchinson and Shen, 1980; Aitchinson, 1982,
e.g., see) and time-series on a bounded domain (e.g., see Wallis, 1987; Quintana
and West, 1988; Grunwald et al., 1993; Cargnoni et al., 1997; Brunsdon and Smith,
1998; Dey et al., 2001; Kynclova et al., 2015; Snyder et al., 2017; Boonen et al.,
2019).

Third, an efficient simulation-based Bayesian inferential procedure is derived.
Given that the model can be represented as a nonlinear state space form where the
measurement equation consists of a large finite mixture, Sequential Monte Carlo is
used for efficient posterior approximation.1 Also, we propose a Bayesian diagnostic
analysis of the model set incompleteness and use De Finetti’s diagrams (Ehm et al.,

1We implement parallel sequential filtering and clustering to exploit the computing power of
graphics processing units (GPU).
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2016) to study the evolution patterns in the model weights.
Using large financial data sets, the proposed approach is applied to two well-

known problems in finance. In the first example we use 3712 predictive densities
based on 1856 US individual stock return series and four clusters to construct a
combined predictive density of a replication of S&P 500 returns over the sample
2007-2009, which includes the turbulence of the financial crisis. We estimate several
features of this density, emphasizing that our method allows for a time-varying
composition of the four clusters letting individual stocks to switch across them
or eventually exit the model set, for example, after a default as in the Lehman
Brothers case. Compared to the no-prediction ability benchmark and predictions
from individual models estimated on the aggregate index, we find substantial
accuracy gains in predicting means, volatilities and tail events, in particular,
with respect to the economic value of such events like Value-at-Risk. Measures
of model set incompleteness and dynamic patterns in the cluster-based weights
provide valuable signals for improved economic and financial modelling and policy
analysis.

In the second example, we consider for our predictive purposes the 3-month
Treasury Bill yield series from the extended Stock and Watson (2005) dataset for
the period 1959Q1 to 2011Q2. Assuming the existence of 5-7 clusters, we identify
two clusters related to real activities; one cluster related to prices; and one cluster
related to financial variables. The other clusters contain the remaining series. We
find substantial gains in joint density predictions of 3-month Treasury Bill yield
over the last 25 years for all horizons from one-quarter ahead to five-quarters ahead.
The highest accuracy is achieved when the series is predicted using our combination
schemes with cluster weights based on log score learning. A dominant cluster does
not exist but we note that the cluster that includes Exports, Imports and GDP
deflator receives a relatively large weight. Diagnostic analysis provides valuable
signals that additional gains may be obtained with a better model set specification,
more detailed cluster grouping and different learning rules for weights. This is left
as a topic for further research.

The contents of this paper is structured as follows. Section 2 provides details
of the methodological contributions of our approach. Section 3 describes the
sequential inference. Section 4 contains novel empirical applications using a large
set of US stocks and bond data. Section 5 presents conclusions and suggestions for
further research.

2 A dynamic compositional combination model

for large sets of predictive densities

In this section we present a new compositional combination model which makes use
of dynamic mixture processes in order to deal with large sets of predictive densities.
For a recent survey about the evolution of predictive density combinations, see
Aastveit et al. (2019) and for background see Billio et al. (2013), McAlinn and West
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(2019) and Bastuerk et al. (2019). When the number of models or experts is large
the dimension of the latent space increases and overfitting issues can jeopardize the
validity of the empirical analysis. We propose a dimensionality reduction strategy
based on projections in the latent space and on dynamic clustering.

2.1 A dynamic mixture of density convolutions

A basic probabilistic approach to combine predictive information from different
sources proceeds as follows. Let It be an information set at time t and M =
{M1, . . . , Mn} a set of models or experts. In the mixture of experts literature the
conditional predictive probability density f(yt|It−1, M) of an economic variable of
interest yt is specified as a discrete mixture of conditional predictive probabilities
of yt coming from individual models, or experts Mi ∈ M with information sets
Ii,t−1 ⊂ It−1. The predictive distribution is the convex combination of predictive
distributions with density given as:

f(yt|It−1, M) =
n
∑

i=1

witf(yt|Ii,t−1, Mi) (1)

where wit, i = 1, . . . , n are the mixture weights such that 0 ≤ wit ≤ 1,
w1t + . . . + wnt = 1.

In this paper, we assume yt follows a discrete random probability measure G(·)
over the set of predictors from the models Mi, i = 1, . . . , n. The random measure
is defined as:

G(yt) =
n
∑

i=1

δ(ait − yt)wit (2)

with conditionally independent random atoms ait = ỹit + εit i = 1, . . . , n and
possibly dependent random probability weights wit i = 1, . . . , n, where δ(·) denotes
the Dirac delta.2 We denote with H0t = HW

0t ⊗ HA
0t the product distribution of the

sequences of the atoms ait, i = 1, . . . , n and of the weights wit, i = 1, . . . , n.
The first component of the atom ỹit follows the predictive density of the model

Mi, i.e.
ỹit ∼ f(ỹit|Ii,t−1, Mi) (3)

as in standard mixture of expert models.
The random variable εit, being the difference between yt and ỹit, points towards

two error sources. There may be predicting errors due to, for instance, sudden
shocks in the series and there may be misspecification errors due to model set
incompleteness. In this paper we focus on the latter, that is, a larger specification
error in model Mi implies a larger error εit. Investigating the relative importance
of a predicting error component is a topic for further research. In the following we
assume the probability density functions of εit, i = 1, . . . , n

εit ∼ g(εit|σ2
it) (4)

2We recall that δ(a − b) = 1 if a = b and zero otherwise.
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are parametrized by the scaling process σ2
it which controls for the level of

uncertainty due to misspecification. In summary the distribution HA
0t has density

given by
n
∏

i=1

∫

R

f(ait − εit|Ii,t−1, Mi)g(εit|σ2
it)dεit (5)

As stated in the following, under these assumptions the predictive density
combination model becomes a random finite mixture of convolutions of densities
f(yt|It−1, M, σ2

t ) where the process σ2
t = {σ2

1t, . . . , σ2
nt} controls for the overall

uncertainty level about the predictive models used in the combination.

Proposition 2.1. Let f(yt|Ii,t−1, Mi, σ2
it) be a convolution of two densities:

f(yt|Ii,t−1, Mi, σ2
it) =

∫

R

f(yt|ỹit, σ2
it)f(ỹit|Ii,t−1, Mi)dỹit (6)

where f(yt|ỹit, σ2
it) = g(yt − ỹit|σ2

it), then integrating out the random atoms of G(yt)
with respect to the measure HA

0t one obtains a predictive density combination model

f(yt|It−1, M, σ2
t ) =

n
∑

i=1

witf(yt|Ii,t−1, Mi, σ2
it) (7)

When the uncertainty level tends to zero, max{σit, i = 1, . . . , n} → 0 then
g(yt − ỹit|σ2

it) → δ(yt − ỹit) and one recovers the standard mixture of expert models
in Eq. (1), i.e. f(yt|It−1, M, σ2

t ) → f(yt|It−1, M).
In the next subsection we specify a stochastic process for the latent weights wit

with conditional distribution HW
0t .

2.2 A compositional weight process

We represent the combination weights in our dynamic mixture model as a stochastic
process on the simplex with logistic-normal noise. Exploiting the class-preserving
property of the logistic-normal distribution, we project the weights onto a lower
dimensional simplex while preserving their probabilistic properties.

In the following, we introduce some useful notation, definitions and results. For
convenience, we omit the subindex t here. Let Rm

+ be the positive orthant of Rm we
introduce the m-dimensional standard simplex S

m = {z ∈ R
m
+ |z1 + . . . + zm = 1}

and Vm = {v ∈ Rm : v1 + . . . + vm = 0} subspaces of Rm of dimension m − 1. We
denote with ιm and Im the m-dimensional unit vector and m-dimensional identity
matrix, respectively and define the ((m − 1) × m matrix Dm = (Im−1, −ιm−1), and
the (m − 1)-dimensional square matrix Hm = (Im−1 + ιm−1ι

′
m−1).

Definition 2.1 (Composition function). The composition function is defined as
Cm(u) : Rm

+ → Sm, u 7→ z = Cm(u) where the i-th element of z is zi = ui/zm,
i = 1, . . . , m, and zm = u′ιm.

In the following we denote with exp(x) ∈ R
m
+ the component-wise exponential of

x ∈ Rm, with log(v) ∈ Rm the component-wise logarithmic transforms of v ∈ Rm
+

and with u ◦ v ∈ Rm the Hadamard product between vectors u, v ∈ Rn.
We assume the simplex space Sm is equipped with the following operations.
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Definition 2.2 (Operations on the simplex). Let z, v ∈ S
m two elements of the

simplex, a ∈ R a coefficient and ◦ the Hadamard element-wise product between
vectors, then

z ⊕ v = Cm(u ◦ z) (8)

is a sum operation also called perturbation operation and

a ⊙ z = Cm((za
1 , . . . , za

m)′) (9)

is a scalar product operation also called power transform.

For details and background, see Aitchinson (1986) and Aitchinson (1992).
Billheimer et al. (2001) showed that Sm equipped with the perturbation and
powering operations is a vector space. Moreover Sm is an Hilbert space, i.e. a
complete, inner product vector space.

Random combination weights with values on the simplex can be defined by
introducing a probability space with support on the simplex Sn. A probability
measure on the simplex can be obtained by introducing a system of coordinates
and a probability distribution on the coordinates. The following transformations
can be used to define different systems of coordinates (Egozcue et al., 2003).

Definition 2.3 (Logratio transformations). Given z ∈ Sm, we define the additive
(alr), centered (clr) and isometric (ilr) logratio transformations:

alr(z) = log(z−m/zm) (10)

clr(z) = log(z/g(z)) (11)

ilr(z) = (DmV )−1Dm log(z) (12)

where V = (v1, . . . , vm) is an orthonormal basis of Vm, g(z) = (z1z2 . . . zm)1/m is
the geometric mean, z−m = (z1, . . . , zm−1) a subvector of z.

The clr(·) transformation is an one-to-one map from Sm to Vm subspace of Rm,
whereas the alr(·) and ilr(·) are one-to-one maps from Sm to Rm−1. The inverse
transformations are clr−1(x) = Cm(exp(x)), alr−1(x) = Cm((exp(x−m), 1)) and
ilr−1(x) = Cm(exp(xΨ)) where Ψ is a ((m − 1) × m)-dimensional contrast matrix
such that ΨΨ′ = Im − m−1ιmι

′
m. The following simple example illustrates the

composition of alr(·) with alr−1(·) which are the main transformations used in this
paper.

Example 2.1. Let z = (z1, z2) be a vector in S2 then x = alr(z) is in R with
element x1 = log(z1/z2). If we apply the inverse transformation we obtain a vector
v = alr−1(x) in S2 with elements v1 = exp(x1)/(1 + exp(x1)) = z1/(1 + z2) = z1

since z2 = 1 − z1.

Note that it always possible to change the representation coordinates thanks
to the following relationships: clr(z) = D′

mH−1
m alr(z) and clr(z) = (DmV)−1alr(z)

where x ∈ Sm, (see Pawlowsky-Glahn and Buccianti, 2011, pp. 102-103).
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A probability distribution on S
m can be defined by assuming a normal

distribution for the elements of the logratio transformations in Definition 2.3.
All coordinate systems provide the same probability distribution, called logistic-
normal, but its parametrization and reference measure will depend on the system
chosen (see Pawlowsky-Glahn and Buccianti, 2011, ch. 7). Each coordinate system
has its own drawback, the alr(·) depends on the choice of the coordinate used in
the common denominator, ilr depends on the choice of the orthonormal basis V
and the clr returns a singular distribution.

We choose the following definition of logistic-normal distribution (see
Aitchinson and Shen, 1980; Aitchinson, 1982, 1986) induced by the alr(·)
transformation because it exhibits some useful properties for modelling purposes.
We exploit the fact that the logistic-normal family is closed under perturbation
and power transformations to propose a random weight process. The resulting
family of compositional processes is invariant under the subcomposition and
amalgamation operations which will be used to provide a graphical representation
of high dimensional weight vectors.

Definition 2.4 (Logistic-normal distribution). The random vector z ∈ Sm follows
a logistic-normal distribution Lm(µ, Υ) if its probability density function is

p(z|µ, Υ) = |2πΥ|−1/2





m
∏

j=1

zj





−1

exp
(

− 1

2
(log(z/zm) − µ)′

(Υ)−1 (log(z−m/zm) − µ)
)

(13)

with parameters µ ∈ Rm−1 and Υ (m − 1)-dimensional positive symmetric matrix,
where zm = 1 − z′

−mιm−1.

As stated in the following the logistic-normal distribution is related to the
normal and the log-normal distributions.

Proposition 2.2. Let v ∼ Nm (µ, Υ), and define u = exp(v) and z = alr−1(v).
Then u follows the m-variate log-normal distribution, Λm(µ, Υ), and z follows a
m-variate logistic-normal distribution, Lm(Dmµ, DmΥD′

m).

Proof See Appendix A.

The following example illustrates the inverse relationship between the logistic-
normal and the normal distribution.

Example 2.2. Let z = (z1, z2) be a vector in S2 with distribution L2(D2µ, D2ΥD′
2)

and apply the transformations used used in Example 2.1. The (i, j)-th element of
the Jacobian of z = alr−1(u) is ∂jzi = uiδ(i−j)−uiuj and the Jacobian is |J | = u1u2

and log(z1/z2) = log(exp(u1)/(z2(1+exp(u1))) with z2 = 1−exp(u1)/(1+exp(u1)).
It follows that by substituting log(z1/z2) = u1 in the density of u and by
multiplying the by Jacobian, the distribution of z is N (D2µ, D2ΥD2). Top plots
in Figure 1 show the density function of L2(µ, υ2) for different values of µ and υ2.
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Distributions other than the logistic-normal can be used for weights such as the
Dirichlet distribution, but as noted in Aitchinson and Shen (1980) this distribution
may be too simple to be realistic in the analysis of compositional data since the
components of a Dirichlet composition have a correlation structure determined
solely by the normalization operation in the composition. Extensions of the logistic-
normal distribution can be considered such as the logistic skew-normal (Mateu-
Figueras et al., 2005) or the logistic Student-t (Aitchinson and Shen, 1980; Katz
and King, 1999), but we leave this topic for future research.

Another relevant property of the logistic-normal distribution is the class-
preserving property of the composition of the logistic-normal vectors (see
Aitchinson and Shen, 1980). This property is used to build a stochastic process in
the simplex with logistic-normal noise.

Proposition 2.3 (Class-preserving property). Let A a (c × d − 1) matrix and
z ∼ Ld(µ, Υ) a logistic-normal vector. Define the following transform w = φA(z)
from Sd to Sc, with d < c,

wi =
d−1
∏

j=1

(

zj

zd

)aij



1 +
c
∑

i=1

d−1
∏

j=1

(

zj

zd

)aij





−1

(14)

i = 1, . . . , c, then w = (w1, . . . , wc)
′ follows the logistic-normal Lc+1(Aµ, AΥA′).

Proof See Appendix A.

We provides in the following the statistical interpretation of the coefficients A
and illustrates how this property can be used to define dependent variables through
transformation of a common latent factor.

Example 2.3. Let z = (z1, z2) be a vector in S
2 with distribution L2(0, υ2) and

let A = (1, a)′ a (2 × 1) matrix then the random vector w = (w1, w2, w3) with
w1 = (z1/z2)/((z1/z2)+(z1/z2)

a+1), w2 = (z1/z2)a/((z1/z2)+(z1/z2)
a+1) and w3 =

1−w1 −w2, follows a logistic-normal L2(0, υ2(1, a)′(1, a)). The covariance between
w1 and w2 is defined as Cov(w1, w2) = Cov(log(w1/w3), log(w2/w3)) = υ2a. This
provides an interpretation of the coefficient matrix A appearing in Proposition 2.3.

Compositions are usually represented by means of the De Finetti’s, or ternary,
diagram. A point in the diagram has coordinates (z, v)′ ∈ R2 given by the following
map from S3 7→ R2

(z, v) = (Bz1, Cz2, Az3) (15)

with vertices A = (z0 + 0.5, v0 +
√

3/2)′, B = (z0, v0)
′ and C = (z0 + 1, v0)

′ where
(z0, v0)

′ are coordinates arbitrarily chosen. See Cannings and Edwards (1968) and
Pawlowsky-Glahn et al. (2015) for further details. In this diagram the weights
(1, 0, 0), (0, 1, 0) and (0, 0, 1), correspond to the vertices B, C and A, respectively.
The black square corresponds to the barycentre of the triangle (1/3, 1/3, 1/3). The
last line in Fig. 1 provides the De Finetti’s diagrams of the relationships given in
the Example 2.3 and rappresented in the second line of the same plot.
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Figure 1: Top: distribution L2(µ, υ2) for different values of υ2 (left) and µ (right). Middle: values
of the random variables w1 and w2 as functions of the random variable z1 for different level of
positive (left) and negative (right) covariance υ2a. Bottom: representation of the relationships in
the De Finetti’s diagrams.

In this paper, we apply these results as follows. First, we assume that the
n-dimensional vector of weights wt = (w1t, . . . , wnt)

′ of our mixture model in Eq.
(7) relates to a lower dimensional vector zt ∈ Sm as follows

wt = φAt
(zt) (16)

where the map φA(·) from Sm to Sn is defined in Proposition 2.3, and At is a
time-varying ((n − 1) × (m − 1)) projection matrix.

Second, we apply the operations in Definition 2.2 and assume that the latent
factors follow a random walk process with normal-logistic-normal innovations

zt = zt−1 ⊕ ηt, ηt ∼ Lm(0m, Υ) (17)

9



which is a flexible model for the latent weights. Thanks to the class-
preserving property of the logistic-normal the combination weights have conditional
distribution HW

0t which is a logistic-normal as stated in the following.

Corollary 2.1 (Weight dynamics). Let zt be a process defined in Eq. (17), At an
((n − 1) × (m − 1)) matrix, then wt defined in Eq (16) belongs to the simplex Sn

and follows the logistic-normal distribution Ln(Atalr(zt−1), AtΥA′
t).

Proof See Appendix A.

The class-preserving property allows for a projection from the large dimensional
simplex Sn onto the possibly lower space Sm. Nevertheless, the effectiveness of the
dimensionality reduction strategy and the probabilistic properties of the random
vector wt depend crucially on the choice of the sequence of matrices At, which will
be discussed in the next section.

2.3 Dimensionality reduction and dynamic clustering

A contribution of this paper is to simplify the complexity of the combination
exercise by reducing the dimension of the latent space of the weights while
preserving crucial aspects such as their time variations and probabilistic properties.

Dimensionality reduction techniques are widely used in machine learning to
reduce the dimension of high-dimensional datasets (e.g., see Casarin and Veggente,
2020, and references therein). The dependence structure in the data is used to
reduce substantially the data dimension and to extract relevant information. In
this paper we exploit the similarities between models or experts by specifying
a dynamic clustering process in the space of predictive densities f(ỹt|Ii,t−1, Mi).
The n predictors are clustered into m different groups with m < n, following some
(time-varying) features ψit ∈ Rd, i = 1, . . . , n, of the predictive densities. This
allows to learn sequentially model dependence, a feature well documented on data
but largely ignored in the predictive density combination literature.

Let N1t, . . . , Nmt be the m groups of predictors such that each predictor belongs
only to one group, i.e. Nit ∩ Njt = ∅ and N1t ∪ N2t ∪ . . . Nmt = {1, 2, . . . , n}. Given
the clustering of the predictors, we specify the (n × m) allocation matrix Ξt with
elements ξij,t = 1 if i ∈ Njt and ξij,t = 0 otherwise, and a (n×m) coefficient matrix
Bt. The two matrices allow us to project the n-dimensional latent variable wt onto
a reduced dimension latent space by using the elements of Ãt = (Ξt ◦ Bt) in (16).
With this specification, if the i-th predictive density is allocated to the k-th cluster
then its mixture weight wit will be driven by the latent factor zkt which is uniquely
associated to the cluster k.

The dynamics of the allocation matrix Ξt is given in the following. Let cjt ∈ Rd,
j = 1, . . . , m be the centroids defined as

cjt =
1

njt

∑

i∈Njt

ψit (18)

where njt = Card(Njt) is the number of predictive densities in the j-th cluster at
time t. At time t + 1 the allocation matrix updates as follows: ξij,t+1 = 1 if j = j∗
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and ξij,t+1 = 0 otherwise where j∗ = arg min{||ψit+1 −cjt||, j = 1, . . . , m} and || · ||
is the Euclidean norm. The centroids update as follows

cjt+1 = cjt + λt(mjt+1 − cjt) (19)

where

mjt+1 =
1

njt+1

∑

i∈Njt+1

ψit (20)

and λt ∈ [0, 1]. Note that the choice λt = njt+1/(nc
jt + njt+1), with nc

jt =
∑t

s=1 njs,
implies a dynamic clustering with forgetting driven by the processing of the blocks
of observations. In the application we fix λ = 0.99. The grouping of the predictors
can change over time, following our dynamic clustering rule, but the number of
clusters is assumed constant to preserve the interpretability of the factors.

For the elements bij,t of the coefficient matrix Bt we consider two alternative
specifications. In the first one all coefficients in the cluster have the same weights:

bij,t =
1

njt

I(ξj,it = 1) (21)

This specification may have the undesirable property that the projection
coefficients aij,t = ξij,tbij,t are constant within a group. For this reason, we also
propose a second specification where each model contributes to the combination
following its predicting performance git (e.g. the log score in Eq. (C.14) in the
Supplementary Material C), i.e.

bij,t = I(ξj,it = 1)
t
∑

s=1

exp{gis}
ḡit

(22)

where ḡit =
∑

l∈Nit

∑t
s=1 exp{gls}.

In order to use the projection matrix Ãt in the Eq. (16) it is possible to choose
At as the ((n − 1) × (m − 1))-dimensional matrix obtained by removing the last
column and the last row of Ãt.

Remark 1. Given the results in the preceding subsection, the chosen specification
for At returns a random weight vector wt with degenerate distribution on Sn.

Proof See Appendix A.

The degeneracy is related to the rank deficiency of the matrix AtΥA′
t. The first

source of degeneracy is due the presence of zeros in the last nmt rows of the matrix
At and can be removed by apply the class-preserving transformation to obtain a
subvector of wt. Let us denote with nt = (n1t + . . . + nm−1t) the number of models
assigned to the first m − 1 clusters and let us assume that they correspond to the
first nt elements of ỹt. Note that this simplifying assumption is not restrictive
since it is possible to permute the rows of Ãt in order to have the coefficients for
the last cluster in the last n − nt rows. Then one can obtain a random vector
(w1t, . . . , wnt

, (1 − w1t − . . . − wnt
)) with logistic-normal distribution by applying
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the class-preserving transformation. The residual weight 1 − w1t − . . . − wnt
is

then assigned to the models in the last cluster. This can be obtained in two steps.
First, we drop out the last n − nt rows of the projection matrix At and apply the
class-preserving transformation by using the (nt × (m − 1))-dimensional matrix
A∗

t = (Int
, On−nt

)At as projection matrix. Second, we set (wnt+1, . . . , wnt) = κat

where at represents a n − nt dimensional vector containing the elements in the
last n − nt rows of the last column of Ãt. The following results establishes the
relationship between our logistic-normal linear model with distribution on the
simplex Snt+1 and a Gaussian nonlinear model in Rnt .

Corollary 2.2. Let us define the Gaussian random walk process vt ∈ Rm−1

t = 1, 2, . . . with vt ∼ Nm−1(vt−1, Υ) and the following transformed processes
xt = A∗

t vt, w∗
t = alr−1(xt), zt = alr−1((vt, 1)) and w∗

t = φA(zt). The transformed
vectors have the following distributions

zt ∼ Lm(zt−1, Υ) (23)

w∗
t ∼ Lnt+1(A

∗
t vt−1, A∗

t ΥA∗′
t ) (24)

Proof See Appendix A.

The relationships with the Gaussian process given in the previous Corollary
can be exploited in the inference procedures to easily generate samples for the
latent weights or to derive filtering and smoothing recursions using the usual
operations on Rnt. Finally note that the second source of degeneracy is intrinsic
to our projection strategy based on the allocation matrix Ξt, which implies the
rank deficiency of the matrix A∗

t ΥA∗
t , and on the assumption that the relationship

between wt and zt is not subject to errors. Our approach can be extended to
account for contemporaneous uncertainty with the addition of logistic-normal noise
in the equation for wt. This is left for further research.

2.4 A compositional state-space model

We summarize the model defined in the previous subsections and show that it is
a conditionally linear state-space model on the simplex. Extending the ⊙ product
operation to the case of a matrix of real numbers allow us to write the transform
φA, as a linear matrix operation between simplices of different dimensions, denoted
with ⊞.

Remark 2. Let z ∈ Sm be a composition, A a (n × m) real matrix and define the

matrix multiplication A ⊞ z = Cn

(

∏m
j=1 z

a1j

j , . . . ,
∏m

j=1 z
an−1j

j

)

. If A is such that
Aιm = 0n and aim = −1, i = 1, . . . , n − 1 and an,j = 0 j = 1, . . . , m, the transform
defined in Proposition 2.3 can be written as φA(z) = A ⊞ z.

This result enables us to obtain the following state-space representation of our
compositional combination model. Let εt = (ε1t, . . . , εnt)

′ and ỹt = (ỹ1t, . . . , ỹnt)
′,

12



yt

st ∼ Can(wt)
(Model selection)

ỹit|Ii,t−1, Mi, i = 1, . . . , n
(Time series models)

bij,t = 1/njt, ∀i ∈ Njt

(Weights within cluster)
ξij,t = I(i ∈ Njt)

(Allocation variables)

wt = φAt
(zt),

At = Ξt ◦ Bt

(Projection)

σ2
it = exp{hit},

hit = φihit−1+ζit

(Volatility)

cjt = cjt−1 +
λt(mjt − cjt−1)

(Dynamic clustering)

zt = zt−1 ⊕ ηt

ηt ∼ Lm(0, DmΥD′
m)

(Probability weights)

Figure 2: Directed acyclic graph of state space model. It exhibits the hierarchical structure of the
observations on the endogenous variable yt and the predicted variables ỹit (rectangles, solid line),
the latent variables st and zt (ellipses) and the link functions φAt

, Ξt and Bt (rectangles, dashed
line). The directed arrows show the causal dependence structure of the model.

then the model in Equations (7), (16) and (17) writes as

yt = (ỹt + εt)
′st, εt ∼ Nn(0, diag{σ2

t }) (25)

st ∼ Can(wt), wt = At ⊞ zt (26)

zt = zt−1 ⊕ ηt, ηkt ∼ Lm (0, DnΥD′
m) (27)

where st is a model-selection categorical process and Can(wt) denotes the n-
dimensional Multinoulli, or categorical, distribution with parameter wt ∈ Sn.

A graphical representation of the dimensionality reduction strategy
implemented in our model is given in Fig. 2. The observable variable yt (top
box) depends on three latent processes (ellipses). The process st allows for a
dynamic selection of the models (see George and McCulloch, 1993, for model
selection with latent variables). The stochastic volatility process σ2

it accounts for
model set incompleteness as proposed in Billio et al. (2013). The compositional
model for the factors zt allows for well-defined probability weights (see Pawlowsky-
Glahn and Buccianti, 2011; Pawlowsky-Glahn et al., 2015, for an introduction to
compositional models).

In Fig. 3-4 we provide simulated paths from our compositional model with five
independent normal predictors ỹit ∼ N (−2 + i, 0.1i) i = 1, . . . , 5 and observation
noise εt ∼ N (0, 0.2). The common latent factors z1t, z2t, z3t (i.e. m = 3) are
associated with the first, second and third clusters, respectively, and have noise
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Figure 3: De Finetti’s diagram (left) and the time series plot (middle) of the ternary
(z1,t, z2,t, z3,t) and observations yt (right) with point predictions from the five predictors
(horizontal dashed lines). In the panels, colors indicate different sub-samples.

distribution ηt ∼ L2(02, 0.2D3D
′
3) i.i.d. t = 1, . . . , 500. The projection matrix

At =

















b11,t 0 0
b21,t 0 0

0 b32,t 0
0 b42,t 0
0 0 1

















, bij,t ∼ Λ1(0, 0.2), ∀i, j, t (28)

allocates models M1 and M2 to the first cluster, models M3 and M4 to the second
cluster and model M5 to the third cluster.

Fig. 3 exhibits the trajectories of the common factors by using the De Finetti’s,
or ternary, diagram (left) and a time series plot (middle). In this diagram, weight
vectors with probability 1 assigned to one cluster and 0 to the others, i.e. (1, 0, 0),
(0, 1, 0) and (0, 0, 1), correspond to the vertices. Red and blue dots close to the
vertices z1t and z3t, in the diagram, correspond to samples where cluster 1 and
cluster 3, respectively receive weights close to one (blue and red subtrajectories in
the time series plot). The barycentre of the triangle (black square) corresponds to
the case of equally weighted clusters, i.e. (1/3, 1/3, 1/3).

As reference lines, we report in the diagram two deterministic trajectories

r1t = alr−1((−10 + 20
t

T
, −20 + 40

t

T
, −30 + 60

t

T
))

r2t = alr−1((−20 + 40
t

T
, −10 + 20

t

T
, −30 + 60

t

T
))

t = 1, . . . , T (dashed and solid lines, respectively). In the first trajectory, a weight
close to 1 is assigned to cluster 1 at the beginning of the period, i.e. t = 0, and to
cluster 3 at the end of the period, i.e. t = T . In the second trajectory unit weight
is given to cluster 2 at t = 0 and to cluster 3 at t = T .

Realizations of yt given random samples from the five predictors are in the
right plot. Horizontal lines report the point predictions for the five predictors. For
example, when the weight of the cluster 3, z3t (middle plot, dotted-dashed, blue),
increases, the weight of the fifth predictor w5t increases resulting in values for yt

close to 2 (right, plot blue line).
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Figure 4: De Finetti’s diagram of the ternaries (wi,t, wj,t, w
−(i,j)t), j > i with w

−(i,j)t the
amalgamation of wlt, l 6= i, j. In each plot the ternary samples (dots), the equal weight
composition (square) and the reference lines (dashed and dotted). In the panels, colors indicate
different sub-samples.

A way commonly found for reducing dimensionality of probabilistic weights is
to sum some weights into a new weight which is called amalgamation.

Definition 2.5 (Amalgamation). Given the composition w ∈ Sm−1, and a
collection of indices A = {i1, . . . , id} ⊂ {1, . . . , d}, m − d > 0, and the complement
set Ā = {1, . . . , n}/A the value

wA =
∑

i∈A

wi

is called amalgamated component. The vector (wĀ, wA)′ is called amalgamated
composition which is in Sm−d, where wĀ is the vector containing wj with j ∈ Ā.
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See Egozcue et al. (2003), Egozcue and Pawlowskky-Glahn (2005) and
Fîserová and Hron (2011) for further details on amalgamation and subcomposition
operations. The amalgamation can be used in combination with the De Finetti’s
diagram for running weight comparisons and representation for high dimensional
weight vectors. Figure 4 illustrates the pairwise comparison of the weight dynamics.
In each diagram, the dots represent the ternary (wi,t, wj,t, w−(i,j),t) with i 6= j where
w−(i,j),t =

∑

l 6=i,j wl,t is the amalgamation of wl,t with l 6= i, j into a new weight
w−(i,j),t. One can see that w1t and w2t move together (first plot) since they are
driven by a common factor z1t. Whereas w1t does not depend on w3t (second plot)
and depends negatively on w5t (third plot). Also w3t and w4t move together and
have negative dependence with w5t (last three plots).

2.5 Multiple-prediction extensions

In the case the same set of predictive densities is used for predicting a set of
variables y1t, . . . , yKt, the model can be extended as follows:

ykt = (ỹt + εt)
′skt, εkt ∼ N (0, diag(σ2

kt)) (29)

skt ∼ Can(wkt), wkt = Akt ⊞ zkt, (30)

zt = zt−1 ⊕ ηt, ηt ∼ LKm (0, Im ⊗ Υ) (31)

where the projection matrices Akt are driven by a common clustering process Ξt

and a variable-specific learning coefficient Bkt which reflects the ability of each
predictive density to predict the variable of interest ykt.

3 Bayesian inference

The analytic solution of the optimal filtering problem is generally not known, also
the clustered-based mapping of the predictor weights onto the subset of latent
variables requires the solution of an optimization problem which is not available in
closed form.

3.1 Prior and posterior distributions

Let θ ∈ Θ be the parameter vector of the combination model, that is θ = (φ, Υ)
with φ = (φ1, . . . , φn). We assume independent normal prior distributions N (0, s2)
for φ1, . . . , φn and inverse Wishart distribution IWm(a, S) for Υ and denote with
π(θ) the joint distribution.

In the following, u1:t = (u1, . . . , ut) indicates the collection of vectors ut from
time 1 to time t and ωt = (st, ht, zt) the collection of latent variables with values
in the latent space W = ({0, 1}n × R

n × S
m). The joint posterior distribution is

π(θ|y1:T ) =
L(y1:T |θ)π(θ)

m(y1:T )
(32)
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where m(y1:T ) is the marginal likelihood or model evidence and L(y1:T |θ) the
likelihood function given in integral form

∫

W

T
∏

t=1

f(yt|st, ht)f(st|zt, At)f(ht|ht−1,φ)f(zt|zt−1, Υ)π(θ)dω1:T (33)

with f(yt|st, ht), f(st|zt, At) and f(zt|zt−1, Υ) the distributions in Eq. (25)-(27)
and f(ht|ht−1,φ) the conditional distribution of the log-volatility process.

3.2 Posterior approximation

The joint posterior is not tractable thus we apply Markov chain Monte Carlo
(MCMC) (Robert and Casella, 2004) combined with Sequential Monte Carlo
(Kitagawa, 1998; Liu and West, 2001; Doucet et al., 2001). More specifically we
consider the Particle Metropolis Hastings (PMH) algorithm discussed in (Andrieu
et al., 2010; Andrieu and Roberts, 2009). At the k-th iteration of the PMH a
candidate θ∗ is drawn from the proposal distribution q(θ∗|θ(k−1)) where θ(k−1) is
the previous iteration value of the MCMC chain, and it is accepted with probability

α(θ∗, θ(k−1)) = min

{

1,
L̂N (y1:T |θ∗)π(θ∗)q(θ(k−1)|θ∗)

L̂N (y1:T |θ(k−1))π(θ(k−1))q(θ∗|θ(k−1))

}

(34)

with

L̂N(y1:T |θ∗) =
T
∏

t=1

f̂N(yt|y1:t−1) (35)

the product of approximated predictive likelihood functions

f̂N(yt|y1:t) =
∫

W
f̂M(yt|st, ht)f(st|zt, At)f(ht|ht−1,φ)f(zt|zt−1, Υ)πN (ωt)dωt

(36)

In the approximated likelihood f̂M(yt|st, ht) is an unbiased standard Monte Carlo
estimator of f(yt|Ii,t−1, Mi, σ2

it) obtained with M independent draws from the
predictive distributions, i.e.

∫

R

f(yt|ỹit, σ2
it)f(ỹit|Ii,t−1, Mi)dỹit ≈ 1

M

N
∑

j=1

f(yt|ỹj
it, σ2

it) (37)

and πN(ωt) is the approximated filtering distribution obtained by a Sequential
Monte Carlo (SMC) algorithm, i.e.

π(ωt|y1:t) =

=
L(yt|st, ht)

L(yt|y1:t)

∫

W
f(st|zt, At)f(ht|ht−1,φ)f(zt|zt−1, Υ)p(ωt−1|y1:t−1)ωt−1

≈ 1

N

N
∑

j=1

L(yt|sj
t , h

j
t )

L(yt|y1:t)
f(sj

t |zj
t , At)f(hj

t |hj
t−1,φ)f(zj

t |zj
t−1, Υ) (38)
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In our SMC, given the initial set of particle Φt = {ωj
t , γ̃j

t }N
j=1 and the projection

matrix At = Ξt ◦ Bt we iterate the clustering, prediction, updating and resampling
steps detailed in the following.

First, we evaluate the dynamic clustering process in Eq. (19)-(22) by using
the predictive distribution of the models or experts at time t + 1 and obtain the
updated Ξt+1 and Bt+1.

Second, we approximate the state predictive density as follows:

πN (ωt+1|y1:t) =
N
∑

j=1

p(ωt+1|ωt)γ̃
j
t δ(ωj

t − ωt) (39)

where p(ωt+1|ωt) = f(st+1|zt+1, At+1)f(ht+1|ht,φ)f(zt+1|zt, Υ) The approximated
state filtered density is easily obtained

πN(ωt+1|y1:t+1) =
N
∑

j=1

γj
t+1δ(ωj

t+1 − ωt+1) (40)

where γj
t+1 ∝ γ̃j

t f̂M(yt+1|sj
t+1, h

j
t+1) is a set of normalized weights

Since the systematic resampling of the particles introduces extra Monte Carlo
variations and reduces the efficiency of the importance sampling algorithm, we do
resampling only when the effective sample size (ESS) is below a given threshold.
See Casarin and Marin (2009) for ESS calculation. At the t + 1-th iteration

if ESSj
t+1 < κ, simulate Φt+1 = {ωθ kj

t+1, γ̃j
t+1}N

j=1 from {ωθ j
t+1, γj

t+1}N
j=1 (e.g.,

multinomial resampling) and set γ̃j
t+1 = 1/N . We denote with kj the index

of the j-th re-sampled particle in the original set Φt+1. If ESSt+1 ≥ κ set
Φt+1 = {ωθ j

t+1, γ̃j
t+1}N

j=1.
In the application with large number of predictors we apply the parallel

evaluation of the dynamic clustering process and of the SMC algorithm as detailed
in the Supplementary Material B.

4 Empirical applications

As a first application we focus on the daily stock market case, briefly mentioned
in the previous section. We report results on several features of the combined
predictive density of a replication of the daily Standard & Poor 500 (S&P500)
index, including the economic value of tail events like Value-at-Risk.

The second application considers quarterly bond market data and using the
extended Stock and Watson (2005) dataset, which includes 142 series sampled
from 1959Q1 to 2011Q2, we predict the 3-month Treasury Bill interest rates.

In both exercises, we study incompleteness diagnostics and the weight patterns
of the clusters over time which provide valuable signals that may lead to improved
financial modelling and predicting.
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4.1 Predicting and tracking the S&P500

Many investors of mutual funds, hedge funds and exchange-traded funds try to
replicate the performance of the S&P500 index by holding a set of stocks, which
are not necessarily the exact same stocks included in the index. We collected 1856
individual stock daily prices quoted in the NYSE and NASDAQ from Datastream
over the sample March 18, 2002 to December 31, 2009, for a total of 2034 daily
observations for each individual series. To control for liquidity we impose that each
stock has been traded a number of days corresponding to at least 40% of the sample
size. We compute log returns for all stocks. The cross-section average statistics of
all series are reported in Table D.1 in Section D.1 of the Supplementary Material
together with the results for S&P500.3

To ease on the computational workload, we apply an optimisation method to
estimate the posterior modes of the parameters from a Normal GARCH(1,1) model
and a Student-t GARCH(1,1) model4 using rolling samples of 1250 trading days
(about five years) for each stock return:

yit = ci + κitζit (41)

κ2
it = θi0 + θi1ζ2

i,t−1 + θ2κ2
i,t−1, i = 1, 2, . . . , n, (42)

where yit is the log return of stock i at day t, ζit ∼ N (0, 1) and ζit ∼ T (νi) for the
Normal and t-Student cases, respectively. The number of degrees of freedom νi is
estimated in the latter model. We produce 784 one day ahead predictive densities
from January 1, 2007 to December 31, 2009. Our out of sample period is associated
with high volatility driven by the US financial crisis and includes, among others,
events such as the acquisitions of Bear Stearns, the default of Lehman Brothers
and all events of the following week.

In the dynamic clustering process we assume two clusters of predictive densities
for the Normal GARCH(1,1) model and two clusters for the Student-t GARCH(1,1)
model. The first two include Normal GARCH models with low (cluster one, labelled
n1) and high (cluster two, labelled n2) volatility. The third cluster (labelled t1)
includes Student-t GARCH models with low degrees of freedom and the fourth
one (labelled t2) includes Student-t GARCH with high degrees of freedom. 5 The
clustering of the densities is repeated every time a new prediction is produced and
therefore the cluster composition varies over time.

Figure 5 presents results about these features. Normal models in cluster n1
differ substantially in terms of predicted variance (left plot, solid black line), having
a rather low constant variance value over the entire period while cluster n2 has a
variance more than double in size (left plot, dashed black line) including a shock
in the latter part of 2008. Student-t models in cluster t1 have a relatively constant

3It has been suggested to make use of the information about shares outstanding in order to
determine better the time behaviour of weights. We leave this as a topic for further research.

4Given our flat prior, these estimates are equal to maximum likelihood estimates and also are
approximate Bayes mean estimates.

5Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur
jointly with a low scale.
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Figure 5: The figures present the average variance of the predictions from the two clusters
for the Normal GARCH(1,1) models based on low (cluster 1, solid black line) and high
(cluster 2, dashed black line) volatility in the left panel; and the average degree of freedom
of the predictions from the two clusters for the Student-t GARCH(1,1) models based on
low (cluster 3, solid red line) and high (cluster 4, dashed red line) degrees of freedom in
the right panel. The degrees of freedom are bounded to 30.
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Figure 6: Left: the mean logistic-normal weights for the two Normal GARCH clusters, labeled in
the graph “n1” and “n2”, and for the two Student-t-GARCH clusters, labeled in the graph “t1”
and “t2”. Middle: posterior mean estimates of incompleteness measures in the four clusters
in the scheme DCEW-SV. Right: average of the posterior mean estimates of the model set
incompleteness measure.

thick tail over the entire period (right plot, solid red line) while cluster t2 has values
around 10 for the degrees of freedom (right plot, dashed red line) except during
the crisis period, where the density collapses toward a normal density with degrees
of freedom larger than 30. The Lehman Brother effect is visible in the figure, with
an increase of volatility in the normal cluster n2 and a decrease in the degrees of
freedom in the Student-t cluster t2.

Diagnostic for the combination model with four clusters is shown in Figure 6.
The average weights per cluster, that is the average of wit over i ∈ Njt, are in
the left plot. De Finetti’s diagrams in Figure 7 exhibit the pairwise comparison
of the weight dynamics. In the diagrams the blue dots represent the ternary
(zi,t, zj,t, z−(i,j),t) where z−(i,j),t =

∑

l 6=i,j zl,t is the other model’s total weight.
There is evidence of time variations in the weights, with three distinct

subperiods, and of fat tails playing an important role. Before the crisis, clusters
n2 and t1 have almost equal high weights (blue dots in the fourth diagram,
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Figure 7: De Finetti’s diagram for the pairwise subcomposition comparison between model weights.
In each plot the trajectory of the ternary (zit, zjt, z

−(ij)t), j > i (blue line), the starting point (red
dot), the ending point (black dot) and the equal weight composition (square).

Figure 6), while clusters n1 and t2, both play a much less important role (third
diagram). In the crisis period of 2008, cluster t1 receives almost all the weight
with clusters n1 and n2 almost none (red dots on the dashed reference line in the
sixth diagram). Some of the assets led the market experiencing large losses in
that period. This results in very fat tailed densities and our combination scheme
captures these features and assigns to cluster t1 more weight. In the period after
the Lehman Brothers collapse cluster t1 receives again a substantial weight while
the normal cluster with large variance n2 is getting gradually more weight (black
dots, diagrams four and five).

We measure incompleteness for the model set Density Combination with
Equal Weights and Stochastic Volatility, (DCEW-SV). Estimates of model
set incompleteness are shown in Figure 6. We compute the incompleteness
contribution of each cluster as the average value of the squared posterior residuals.
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RMSPE LS CRPS avQS-T avQS-L Violation

WN 1.852 -9.045 1.017 0.429 0.425 3.57%
Normal GARCH 1.852 -4.164∗∗ 0.956∗∗ 0.139∗∗ 0.195∗∗ 2.93%
Student-t GARCH 1.852 -2.738∗∗ 0.937∗∗ 0.118∗∗ 0.154∗∗ 2.55%
GJR GARCH 1.852 -4.068∗∗ 0.955∗∗ 0.125∗∗ 0.158∗∗ 2.75%
EW-GARCH 1.853 -3.145∗∗ 1.018 0.144∗∗ 0.171∗∗ 2.80%
DCEW 1.812

∗∗
2.249

∗∗
0.911

∗∗
0.114

∗∗
0.149

∗∗ 0.90%
DCEW-SV 1.816∗∗ 2.206∗∗ 0.913∗∗

0.114
∗∗

0.149
∗∗

1.02%

Table 1: Predicting results for next day S&P500 log returns. Bold numbers indicate the
best statistic for each loss function. One or two asterisks indicate that differences in
accuracy from the white noise (WN) benchmark are credibly different from zero at 5%,
and 1%, respectively, using the Diebold-Mariano t-statistic for equal loss. The underlying
p-values are based on t-statistics computed with a serial correlation-robust variance, using
the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992). The
column “Violation” shows the number of times the realised value exceeds the 1% Value-
at-Risk (VaR) predicted by the different models over the sample.

It is seen that n1 and t2 have the higher average incompleteness and n2 and t1 have
lower average incompleteness. This diagnostic information confirms that clusters
n1 and t2 give lower predictive accuracy.6

We also plot the average estimate of the overall model incompleteness. This
estimate has a 7% increase in September 2008, which is due to the default of
Lehman Brothers and related following events. Interestingly, the volatility does
not reduce in 2009, a year with large positive returns opposite the large negative
returns in 2008.

We compare the performance of our approach with results from five different
basic models applied to the S&P500 log returns: a white noise model (or a random
walk for prices), often used as a main benchmark in equity premium predictibility;
the Normal GARCH(1,1) and the Student-t GARCH(1,1) models described above.
In order to explore the sensitivity of our results for model set incompleteness in
more detail, we include the Normal GJR GARCH(1,1) model in Glosten et al.
(1993) that includes leverage effects in the model set. This model is a richer model
than the standard GARCH and should fit the data better. In fact, leverage effect is
considered among the stylised facts of financial returns and the added feature may
become relevant in our analysis. Finally, since it might difficult to know which
of the GARCH models perform better ex-ante, we apply also an equal weight
combination of the three GARCH models, labeled EW-GARCH.

Out-of-sample predicting result are presented in Table 1. The first three
columns deal with location and shape features of the predictive densities. It is seen
that our combination schemes produce the lowest Root Mean Squared Prediction
Error (RMSPE) and Cumulative Rank Probability Score (CRPS) and the highest
Log Score (LS), see also Section C in the Supplementary Material for more details.

6We note that one may experiment with a larger set of individual models, see for example
Geweke and Durham (2012).
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The results indicate that the combination schemes are statistically superior to the
no-predictability WN benchmark. The Normal GARCH(1,1) model, the Student-t
GARCH(1,1) model and the Normal GJR GARCH(1,1) model fitted on the index
also provide more accurate density predictions than the WN, but not on point
predicting. For all three score criteria, the statistics given by the three individual
models are inferior to our combination schemes.

We consider two statistics that refer to left and right tails of the predictive
densities. These refer to weighted averages of the Gneiting and Raftery (2007)
quantile scores that are based on quantile predictions that correspond to the
predictive densities from the different models. In the Supplementary Material it is
shown that avQS-T emphasizes both tails and avQS-L the left tail of the predictive
density relative to the realization 1-step ahead. To study how the models perform
in the left tail predictions over time, we consider the cumulative sum of avQS-L and
the most accurate model at observation t produces the lowest cumavQS-Li,h,t. The
fourth and fifth columns of Table 1 show results for tail evaluation. Our schemes
provides the lowest avQS-T and avQS-L statistics, confirming the accuracy of the
method in the tails of the distribution. See Figure D.1 in the Supplementary
Material for a comparison of performance over time.

As economic measure, we apply a Value-at-Risk (VaR) based measure, see
Jorion (2006). We compare the accuracy of our models in terms of violations,
that is the number of times that negative returns exceed the VaR predictions
at time t, with the implication that actual losses on a portfolio are worse than
had been predicted. Higher accuracy results in numbers of violation close to
nominal value of 1%. Moreover, to have a gauge of the severity of the violations
we compute the total losses by summing the returns over the days of violation
for each model. When looking to VaR violations, reported in the final column
of Table 1, the number for all individual models is high and above 1%, with the
WN higher than 3%. The dramatic events in our sample, including the Lehman
default and all the other features of the US financial crisis provide an explanation
for the result. It is important to note that the two combination schemes provide
the best statistics, with violations very close to the 1% theoretical value. The
property of our combination schemes to assign higher weights to the fat tail cluster
t1 helps to model more accurately the lower tail of the index returns and covers
more adequately risks.

4.2 Treasury Bill predicting

We consider the extended Stock and Watson (2005) dataset, which includes 142
series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical
description of the data is given in Figure D.2 in the Supplementary Material. The
dataset includes only revised series and not vintages of real-time data.7 In order to
deal with stationary series, we apply the series-specific transformation suggested

7See Aastveit et al. (2018) for a real-time application, with fewer series, of combined density
nowcasting and the role of model set incompleteness over vintages and time.
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in Stock and Watson (2005). We also re-scale the series to have zero mean.
We split the sample size 1959Q3-2011Q2 in two periods. The initial 102

observations from 1959Q3-1984Q1 are used as initial in-sample period; the
remaining 106 observations from 1985Q1-2011Q2 are used as an out-of-sample
period. We evaluate combined predictive densities of the 3-month Treasury Bill
rate for h = 1, . . . , 5 step-ahead horizons using the large database.8 For all variables
we apply a Gaussian autoregressive model of the first order AR(1) and a Dynamic
Factor Model (DFM) with 5 factors described in Stock and Watson (2012).9

Let yt be the variable of interest to be predicted (i.e., Treasury Bill rates), the
AR(1) model

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ) (43)

is estimated following a Bayesian inference approach and assuming a diffuse
informative Normal-Inverse-Gamma prior with null means and variances equal
to 100 for the independent prior distributions of αi and β. For the variance σ2

i

we use an Inverse-Gamma with degrees of freedom equal to the number of lags
(one) and intercept, that is two. The AR(1) models are estimated recursively and
h−step ahead (Bayesian) Student-t predictive densities are constructed using a
direct approach extending each vintage with the new available observation; see for
example Koop (2003) for the exact formula of the mean, standard deviation and
degrees of freedom.

We also consider the DFM with 5 factors described in Stock and Watson (2012)
as another benchmark. More precisely:

ỹt = Λf t + εft, Φ(L)f t = ηft (44)

where the yt is the variable of interest, f t = (f1,t, . . . , fr,t)
′ is an r vector of latent

factors (in our case r = 5 or 7), Λ is a 1 × r matrix of factors loadings, Φ(L) is an
(r × r) matrix lag polynomial of order 2 , εft is a (1 × 1) vector of idiosyncratic
components and ηrt is an r vector of innovations. In this formulation the term
Λf t is the common component of yt. Bayesian estimation of the model described
in equation (44) is carried out using Gibbs Sampling given in Koop and Korobilis
(2009).

The clusters of predictive densities are identified by the dynamic clustering
process, where our predictive densities are grouped in clusters depending on the
persistence in the series. We are interested in the interpretation and behaviour of
the clusters over the full sample and, for convenience, we impose that the cluster
allocation of each model is fixed over the predicting vintages.10 Note that in
the finance exercise this assumption is relaxed. We assume alternatively 5 and 7

8We restrict the presentation to results for h = 1, 3, 5 horizons.
9We note that one more experiment would be to make use of a DFM structure for the models

in our combination approach and compare results with our choice of the AR model structure.
Given the extensive work that we did empirically, we prefer to leave this as a topic for future
research.

10We also experimented just using the initial sample and the results were similar.
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Figure 8: In each plot the logistic-normal weights (different lines) based on the UDCLS7 scheme
for the horizons h = 1, 3, 5 steps ahead predictive horizons (different columns).

clusters.11 In the grouping, we identify two clusters related to real activities; one
cluster related to prices; and one cluster related to financial variables. The other
clusters contains the remaining series. A detailed description of the 5 and 7 clusters
is provided in Tables D.2-D.3 in the Supplementary Material.

As described in Section 2, we consider two alternative strategies for the
specification of the weights bijt: equal weights and score recursive weights, where
in the second case we fix the log scores for the various horizons h. We note that
we keep the volatility of the incompleteness term constant, for convenience. In the
present analysis, the number of components matters more.

We construct dynamic combination models (D) with equal (EW) and log-score
driven (LS) cluster weights, and with 5 and 7 clusters. We obtain four models:
DCEW5, DCLS5, DCEW7 and DCLS7. For the variance-covariance matrix of the
combination weights we use a very informative prior.

In Figure 8 shows the time patterns of the weights based on the DCLS7 scheme.
The 6-th cluster has a large weight, but several other clusters have also large
positive weights, namely, clusters 2, 4, and 5 while clusters 1 and 7 do not receive
much weight. Apparently, variables such as Exports, Imports and GDP deflator
included in the 6-th cluster play an important role in predicting interest rate.
Also note that cluster 3, which includes the 3-month Treasury Bills, has the lowest
weight in Figure 8. This confirms evidence in Ludvigson and Ng (2009) that relying
only on the term structure information for predicting yields gives less accurate
results than applying a large database including real and inflation factors.

Figure 9 shows the De Finetti’s diagram of the weights within each cluster,
which are driven by the common factors zjt, j = 1, . . . , 7 and the coefficients
bijt. The ternary diagrams indicate there are large differences across clusters: for
clusters 2, 4, 5 and 6, only a few models have most of the weights, which we are able
to identify as models 20, 1, 22 and 4. Also, within these clusters there are more
heterogeneity over time and models, indicating that individual model performances
change over time even if overall information given by each cluster is stable. As

11Interestingly, Stock and Watson (2012) find that a factor model with 5 factors provides
superior predictions to factor models with less factors. We also investigate combinations with a
lower number of clusters, precisely 2 and 3 clusters, but predictions are less accurate.
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Figure 9: De Finetti’s diagrams for the pairwise comparison between model weights at horizon
h = 1. In each plot the estimated ternaries (zit, zjt, z

−(ij)t), j > i and t = 1, . . . , 106 (red dots)
for each cluster (different plots) where we choose the weight of the following reference models
21, 20, 10, 1, 22, 4, 19 for the clusters 1, . . . , 7, respectively.

26



h=1 h=3 h=5
PE LS CRPS PE LS CRPS PE LS CRPS

3-month Treasury Bills

AR 0.569 -1.058 0.363 0.518 -1.038 0.343 0.545 -1.041 0.358
BDFM 0.553∗ -1.190 0.359 0.516 -1.092 0.392 0.517 -1.089 0.401
DCEW5 0.519 -0.778∗∗ 0.288∗∗

0.509 -0.772∗∗ 0.283 0.525 -0.791∗∗ 0.292∗

DCLS5 0.740 -1.254 0.448 0.532 -1.210 0.381 0.584 -1.286 0.424
DCEW7 0.525 -0.783∗∗ 0.289∗ 0.514 -0.768∗∗ 0.284∗ 0.522 -0.786∗∗ 0.289∗

DCLS7 0.512
∗∗

-0.773
∗∗

0.284
∗ 0.514 -0.770

∗∗
0.284

∗
0.511

∗
-0.793

∗∗
0.289

∗

Table 2: Predicting results for h = 1, 3, 5 steps ahead 3-month Treasury Bill yields. Root
mean square Prediction error (PE), Logarithmic Score (LS) and the Continuous Rank
Probability Score (CRPS) are reported. Bold numbers indicate the best statistic for each
horizon and loss function. One or two asterisks indicate that differences in accuracy
versus the AR benchmark are credibly different from zero at 5%, and 1%, respectively,
using the Diebold-Mariano t-statistic for equal loss. The underlying p-values are based
on t-statistics computed with a serial correlation-robust variance, using the pre-whitened
quadratic spectral estimator of Andrews and Monahan (1992).

regards to the other clusters (1, 3 and 7) similar weights occur across models since
the dots in the diagrams concentrate around the point (1/nj , 1/nj, (nj − 2)/nj).

Table 2 reports the results to predict 3-month Treasury Bills for three different
horizons and using three different scoring measures. For all variables, horizons
and scoring measures our methodology provides more accurate predictions than
the AR(1) benchmark and the DFM benchmark. The DFM model provides more
accurate predictions than the AR(1) when focusing on the mean square prediction
error and CRPS metrics, but not for LS evaluation. On the contrary, several of our
combination schemes outperform this benchmark for all three metrics and horizons.
The predictive gains are similar across different horizons, that is up to 10% relative
to the AR benchmark in terms of RMSPE metrics and even larger for the log score
and CRPS measures.12 The combination that provides the largest gain is the one
based on seven clusters and log score weights within clusters (DCLS7), resulting
in the best statistics 8 times out of 9 cases in the Table. In most of the cases, the
difference is statistically credible at the 1% level. Fan charts in Figure S.4 of the
Supplementary Material show that the predictions are accurate even at our longest
horizon, h = 5. Note that the combination based on 5 clusters and equal weights
yields also accurate predictions.

We conclude that combining joint model predictions using multiple clusters
with cluster-based weights provides substantial predictive gains, confirming recent
evidence that machine learning type of tools are useful for predicting financial
markets, see for example Gu et al. (2020) and Bianchi et al. (2020). Of course,
additional gains may be obtained by playing with a more detailed cluster grouping
and different performance scoring rules for weights associated with models inside

12One would expect that RMSPE’s are monotonic decreasing over longer horizons. This is not
everywhere observed and is due to the fact of model misspecification.
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a cluster. This is left as a topic for further research.

5 Conclusions

We proposed a Bayesian semi-parametric model to construct a time-varying
weighted combination of a large set of predictive densities. The dimensionality
reduction is based on clustering the set of predictive densities in mutually exclusive
subsets. This modelling strategy reduces the dimension of the latent spaces
and leads to a more parsimonious combination model. We provide several
theoretical properties of the weights and propose an efficient procedure for posterior
approximation of the latent weights.

We applied the methodology to large financial data sets and find substantial
gains in point and density predicting for stock returns and Treasury yields. In a
stock market application, we show, using our methodology, how 3712 predictive
densities based on 1856 US individual stocks replicate the daily S&P500 index
return and predict accurately the economic value of tail events like Value-at-
Risk. In a bond market exercise, we show that combining models with cluster-
based weights increases predictive accuracy substantially; weights across clusters
are very stable over time and horizons. Furthermore, weights within clusters are
very volatile, indicating that individual model performances are very unstable,
strengthening the use of density combinations.

The line of research presented in this paper can be extended in several
directions. For example, the importance of the model clusters change following
the variable to predict. This calls for the use of multivariate combination models.
Some clusters have a substantial weight while others have only little weight
and such a pattern may vary over time. This may lead to the construction
of alternative models with asymmetric distributions in the combination weights
with the aim to get more accurate out-of-sample predicting and to improve policy
analysis. We notice also potential fruitful applications of our approach to dynamic
portfolio allocation and to study the effects of the COVID-19 pandemic on financial
predictions.
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A Proofs of the results in the paper

Proof of Proposition 2.1 Let a = (a1t, . . . , ant) then our probability density
combination model writes as

f(yt|It−1, M, σ2
t ) =

∫

Rn×Rn
G(yt)H

A
0t(da) (A.1)

=
∫

Rn×Rn

n
∑

i=1

witδ(ỹit + εit − yt)
n
∏

i=1

f(ỹit|Ii,t−1, Mi)g(εit|σ2
it)dỹitdεit (A.2)

n
∑

i=1

wit

∫

R

(∫

R

δ(ỹit + εit − yt)g(εit|σ2
it)dεit

)

f(ỹit|Ii,t−1, Mi)dỹit (A.3)

where last line follows from Fubini’s theorem and the conditional independence
assumption for the atoms. Solving the integral with respect to εit one obtains

f(yt|It−1, M, σ2
t ) =

n
∑

i=1

wit

∫

R

g(yt − ỹit|σ2
it)f(ỹit|Ii,t−1, Mi)dỹit (A.4)
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which concludes the proof.

Proof of Proposition 2.2 The Jacobian of the inverse transformation v = log(u)
is the diagonal matrix J(v) = diag((u−1

1 , . . . , u−1
m )′) where diag(a) is the diagonal

matrix with the elements of the vector a on the main diagonal. The probability
density function of u is

p(u|µ, Υ) = |(2π)Υ|−1/2|J(v)| exp
(

(log(u) − µ)′Υ−1(log(u) − µ)
)

= |(2π)Υ|−1/2





m
∏

j=1

uj





−1

exp
(

−1

2
(log(u) − µ)′Υ−1(log(u) − µ)

)

(A.5)

which is the pdf of the m-variate log-normal distribution Λm(µ, Υ).
The transformation z = alr−1(v) = Cm((exp(v−m), 1)′) implies zm = 1 −

ι′m−1z−m and
z−m = u−m/(1 + ι′m−1u−m) (A.6)

where u−m = exp(v−m − vmιm−1) = exp(Dmv). By the properties of the log-
normal distribution it follows that u−m ∼ Λm−1(Dmµ, DmΥD′

m). From Eq. A.6
one obtains z−m = (Im−1 − z−mιm−1)um−1 and the inverse transformation

u−m = (Im − z−mι
′
m−1)−1z−m =

1

1 + ι′m−1z−m
z−m (A.7)

where the last equality follows from the Sherman-Morrison-Woodbury’s formula
(A + xy′)−1 = A−1 − A−1xy′A−1(1 + y′A−1x)−1 (e.g., see Gentle, 2007, p. 221).
The Jacobian of this transformation is

Ju−m =
1

d
Im−1 − 1

d2
ιm−1z

′
−m (A.8)

where d = 1 + ι′m−1z−m. By applying the determinant rule |A + xy′| = |A|(1 +
y′A−1x) one obtains

|Ju−m| =
1

dm−1
(1 − 1

d
z′

−mιm−1) =
1

dm−1

1 + ι′m−1z−m − ι′m−1z−m

d
= d−m (A.9)

and the density function

p(z|Dmµ, DmΥD′
m) = |(2π)DmΥDm|−1/2|Ju−m|





m−1
∏

j=1

zj

d





−1

exp
(

log(z−mc) − Dmµ)′(DmΥD′
m)−1(log(z−mc) − Dmµ)

)

= |(2π)DmΥDm|−1/2





m
∏

j=1

zj





−1

exp
(

log(z−m/zm) − Dmµ)′(DmΥD′
m)−1(log(z−m/zm) − Dmµ)

)

(A.10)
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exp
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alr

Figure A.1: Relationship between the space of real vector Rm−1 endowed with the normal
distribution, the positive real R

m−1
+ endowed with the log-normal distribution and the simplex

Sm endowed with the logistic-normal distribution Lm.

where c = (1 + ι′m−1u−m) and we used zm = 1 − ι′m−1z−m = 1 − ι′m−1u−m/(1 +
ι′m−1u−m) which gives (1 + ι′m−1u−m)−1 = zm. In this proof we show that
the logistic-normal can be obtained by transforming log-normal variables, an
alternative proof can be obtained by considering the Jacobian of the inverse alr(·)
transformation (see Fig. A.1).

Proof of Proposition 2.3 The weights wi can be written as

wi = exp(
d−1
∑

j=1

aij log(zj/zd))



1 +
c
∑

i=1

exp(
d−1
∑

j=1

aij log(zj/zd))





−1

= exp(ui)

(

1 +
c
∑

i=1

exp(ui)

)−1

(A.11)

where ai = (ai1, . . . , aid−1) and ui = ai alr(z), i = 1, . . . , c. By applying the
definition of alr−1(·) one obtains w = (w1, . . . , wc)

′ = arl−1(u∗) and wc+1 =
1 − w1 − . . . − wc, where u∗ = (u′, κ)′ with κ ∈ R, u = (u1, . . . , uc)

′ = A alr(z).
From the properties of logistic-normal it follows alr(z) ∼ Nd−1(µ, Υ) and A alr(z) ∼
Nc(Aµ, AΥA′). In conclusion w ∼ Lc+1(Aµ, AΥA′)

Proof of Corollary 2.1 From the definition of perturbation operator ⊕ and the
properties of the log-normal distribution given in Proposition 2.2 it follows that
the log-ratio process alr(zt) = alr(zt−1)+alr(ηt) follows Nm−1(alr(zt−1), Υ) and the
random composition process zt = alr−1(alr(zt)) ∼ Lm(alr(zt−1), DmΥD′

m). Then
by setting w = wt, A = At and z = zt in Proposition 2.3 one obtains the result.

Proof of Remark 1 Without loss of generality, we assume that the n−nt elements in
the cluster m correspond to the last n − nt elements of ỹt. Under this assumption
the projection matrix can be partitioned as follows

Ãt =

(

A∗
t 0nt

O(n−nt)×(m−1) at

)

where 0n and On×m denote the null vector and matrix and at is a n−nt dimensional
vector such that a′

tιn−nt
= 1. Matrix At is thus equal to (A∗′

t , O′
n−nt

)′ and the scale
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Figure A.2: Relationships between Gaussian and logistic-normal representation of the latent
probability space (left) and of the latent process (left) involved in our compositional factor model.
In the directed edges the arrow indicates the results of the transformation, and the edge label
defines the transformation applied. Note in that in this diagram we allow for mapping onto
subspaces of Rn.

matrix of the logistic-normal distribution is thus

AtΥA′
t =

(

A∗
t Υ

∗A∗′
t Ont×(n−nt)

O(n−nt)×(nt) O(n−nt)×(n−nt)

)

where Υ∗ is the matrix given by the first nt rows and columns of Υ.

Proof of Corollary 2.2 For the easy of notation, in the following we assume d = nt+1
and A = A∗

t where A∗
t is the projection matrix defined in the proof of Remark 1. In

the first part of the proof we show that by applying a chain of transformations, a
Gaussian process in Rm has a logistic-normal process representation on the simplex
Sd (dashed lines in Figure A.2). The process xt = Avt has a Gaussian distribution,
xt ∼ Nd−1(Avt−1, AΥA′), and the transformed process w∗

t = alr−1((xt, 1)) is in Sd

and follows Ld(Avt−1, AΥA′). In the second part we show that our compositional
model in Sd has an equivalent representation in a subspace of Rd−1 (solid lines
in Figure A.2). By Propositions 2.2 zt is in Sm and follows Lm(vt−1, Υ) with
vt−1 = alr(zt−1). By Corollary 2.1 the process w∗

t = φA(zt) is in Sd and follows
Ld(Avt−1, AΥÃ′).
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Supplementary Material

B Parallel implementation

B.1 Parallel sequential filtering

With regard to the filtering part, we use M parallel conditional SMC filters, where
each filter is conditioned on the predictor vector sequence ỹs, s = 1, . . . , t. We
initialise independently the M particle sets: Φj

0 = {ωij
0 , γ̃ij

0 }N
i=1, j = 1, . . . , M . Each

particle set Φj
0 contains N i.i.d. random variables ωij

0 with random weights γ̃ij
0 .

We initialise the set of predictors, by generating i.i.d. samples ỹ
j
1, j = 1, . . . , M ,

from p(ỹ1|y0) where y0 is an initial set of observations for the variable of interest.
Then, at the iteration t + 1 of the combination algorithm, we approximate the

predictive density p(ỹt+1|y1:t) as follows

pM(ỹt+1|y1:t) =
1

M

M
∑

j=1

δ(ỹj
t+1 − ỹt+1)

where ỹ
j
t+1, j = 1, . . . , M , are i.i.d. samples from the predictive densities and δx(y)

denotes the Dirac mass at x.
We assume an independent sequence of particle sets Φj

t = {ωij
1:t, γ̃ij

t }N
i=1,

j = 1, . . . , M , is available at time t + 1 and that each particle set provides the
approximation

pN,j(ωt|y1:t, ỹ
j
1:t) =

N
∑

i=1

γ̃ij
t δ(ωij − ωt) (B.12)

of the filtering density, p(ωt|y1:t, ỹ
j
1:t), conditional on the j-th predictor realisation,

ỹ
j
1:t. Then M independent conditional SMC algorithms are used to find a new

sequence of M particle sets, which include the information available from the
new observation and the new predictors. Each SMC algorithm iterates, for
j = 1, . . . , M , the steps given in section 3.

After collecting the results from the different particle sets, it is possible to
obtain the following empirical predictive density

pM,N(yt+1|y1:t) =
1

MN

M
∑

j=1

N
∑

i=1

δ(yij
t+1 − yt+1) (B.13)

For horizons h > 1, we apply a direct predicting approach (see Marcellino
et al., 2006) and compute predictive densities pM,N(yt+h|y1:t) following the steps
previously described.
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B.2 Parallel dynamic clustering

The parallel evaluation of the dynamic clustering process can be described as
follows, see also Favirar et al. (2008) and the reference therein. Assume, for
simplicity, the n data points can be split in P subsets, Np = {(p−1)np+1, . . . , pnp},
p = 1 . . . , P , with the equal number of elements nP . P is chosen according to the
number of available cores.

1. Assign P sets of nP data points to different cores.

2. For each core p, p = 1, . . . , P

2a. find ji = arg min{j = 1, . . . , m| ||ψit −cjt||}, for each observation i ∈ Np

assigned to the core p.

2.b find the local centroid updates mp,jt+1, j = 1, . . . , m

3. Find the global centroid updates mjt+1 = 1/P
∑P

p=1 mp,jt+1, j = 1, . . . , m

4. Update the centroids as in Eq. (19).

The dynamic clustering is parallel in point 2) and 3) and this can be used in the
GPU context as we do in this paper.

C Predictive evaluation

To measure the predictive ability of our methodology, we consider several statistics
for point and density predctions previously proposed in the literature. Assume we
have n different approaches to predict the variable y.

Point predictions. We compare point predictions in terms of Root Mean Square
Prediction Errors (RMSPE)

RMSP Ei,h =

√

√

√

√

√

1

t∗

t
∑

t=t

ei,t+h,

where t∗ = t− t+h, t and t denote the beginning and end of the evaluation period,
and ei,t+h is the h-step ahead square prediction error of model i.

Density predictions. The complete predictive densities are evaluated as follows.
Let f(yt+h|Iit) be a candidate density obtained from the approach i. The
Logarithmic Score (LS) is then given as:

LSi,h = − 1

t∗

t
∑

t=t

ln f(yt+h|Iit) (C.14)
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for all i and choose the model for which this score is minimal, or, as we report in
our tables and use in the learning strategies, its opposite is maximal.

We also evaluate density predictions based on the continuous rank probability
score (CRPS); see, for example, Gneiting and Raftery (2007), Gneiting and Ranjan
(2013), Groen et al. (2013) and Ravazzolo and Vahey (2014). The CRPS for the
model i measures the average absolute distance between the empirical cumulative
distribution function (CDF) of yt+h, which is simply a step function in yt+h, and
the empirical CDF that is associated with model i’s predictive density:

CRPSi,t+h =
∫ +∞

−∞

(

F (z|Iit) − I[yt+h,+∞)(z)
)2

dz (C.15)

= Et|ỹi,t+h − yt+h| − 1

2
Et|ỹ∗

i,t+h − ỹ′
i,t+h|,

where F (·|Iit) is the CDF from the predictive density f(yt+h|Iit) of model i and
ỹ∗

i,t+h and ỹ′
i,t+h are independent random variables with common sampling density

equal to the posterior predictive density f(yt+h|Iit). We report the sample average
CRPS:

CRPSi,h = − 1

t∗

t
∑

t=t

CRPSi,t+h. (C.16)

Smaller CRPS values imply higher precisions and, as for the log score, we report
the average CRPSi,h for each model i in all tables.

Tail predictions. Given that our approach produces complete predictive
densities for the variable of interest, it is particularly suitable to compute tail
events. We consider two statistics and an economic measure for tail events. We
compute weighted averages of Gneiting and Raftery (2007) quantile scores that are
based on quantile predictions that correspond to the predictive densities from the
different models, i.e.,

QS(α, i, t) =
(

I{yt+1 ≦ F −1(α, i)} − α
) (

F −1(α|Iit) − yt+1

)

, (C.17)

with F −1(α|Iit) is the 1-step ahead quantile prediction using prediction i for level
α ∈ (0, 1). It can be shown that integrating (C.17) over α ∈ (0, 1) will result in
the CRPS measure (C.15), see Gneiting and Ranjan (2011). Gneiting and Ranjan
(2011), Groen et al. (2013) and Lerch et al. (2017) propose to integrate weighted
versions of (C.17) over α, with these weights being fixed functions of α chosen such
to emphasize in the predictive evaluation a certain area of the underlying predictive
density. We use a discrete approximation to this integration and use weights that
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emphasize both tail and the left tail of the predictive density:

avQS-Ti =
1

T − t0 − 1

T −1
∑

s=t0−1





1

99

99
∑

j=1

(2αj − 1)2QS(αj , i, s + 1)





avQS-Li,h =
1

T − t0 − 1

T −1
∑

s=t0−1





1

99

99
∑

j=1

(1 − αj)
2QS(αj , i, s + 1)





(C.18)

where αj = j/100 and QS(αj, i, s + 1) is defined in (C.17) for a quantile j. In
(C.18), avQS-T emphasizes both tails and avQS-L the left tail of the predictive
density relative to the realization 1-step ahead. To study how the models perform
in the left tail prediction over time, we consider the cumulative sum of avQS-L:

cumavQS-Li,h,t =
t
∑

s=t0−1

avQS-Li,h,s (C.19)

The most accurate model at observation t produces the lowest cumavQS-Li,h,t.
Finally, following Clark and Ravazzolo (2015), we apply the Diebold and

Mariano (1995) t-tests for equality of the average loss (with loss defined as squared
error, log score, or CRPS). In our tables presented below, differences in accuracy
that are statistically different from zero are denoted by one, two, or three asterisks,
corresponding to significance levels of 10%, 5%, and 1%, respectively. The
underlying p-values are based on t-statistics computed with a serial correlation-
robust variance, using the pre-whitened quadratic spectral estimator of Andrews
and Monahan (1992). Monte Carlo evidence in Clark and McCracken (2015) and
Clark and McCracken (2011) indicates that, with nested models, the Diebold-
Mariano test compared against normal critical values can be viewed as a somewhat
conservative (conservative in the sense of tending to have size modestly below
nominal size) test for equal accuracy in the finite sample. Since the AR benchmark
is always one of the model in the combination schemes, we treat each combination
as nesting the baseline, and we report p-values based on one-sided tests, taking the
AR as the null and the combination scheme in question as the alternative.

D Additional details on empirical results

D.1 Additional details on the S&P500 application

Table D.1 reports the cross-section average statistics, together with statistics for
the S&P500. Some series have much lower average returns than the index and
volatility higher than the index up to 400 times. Heterogeneity in skewness is also
very evident with the series with lowest skewness equal to -42.5 and the one with
highest skewness equal to 27.3 compared to a value equal to -0.18 for the index.
Finally, maximum kurtosis is 200 times higher than the index value. The inclusion
in our sample of the crisis period explains such differences, with some stocks that
realized enormously negative returns in 2008 and impressive positive returns in
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Subcomponents S&P500
Lower Median Upper

Average -0.002 0.000 0.001 0.000
St dev 0.016 0.035 0.139 0.019
Skewness -1.185 0.033 1.060 -0.175
Kurtosis 8.558 16.327 65.380 9.410
Min -1.322 -0.286 -0.121 -0.095
Max 0.122 0.264 1.386 0.110

Table D.1: Average cross-section statistics for the 1856 individual stock daily log returns in
our dataset for the sample 18 March 2002 to 31 December 2009. The columns “Lower”,
“Median” and “Upper” refer to the cross-section 10% lower quantile, median and 90%
upper quantile of the 3712 statistics in rows, respectively. The rows “Average”, “St dev”,
“Skewness”, “Kurtosis”, “Min” and “Max” refers to sample average, sample standard
deviation, sample skewness, sample kurtosis, sample minimum and sample maximum
statistics, respectively. The column “S&P500” reports the sample statistics for the
aggregate S&P500 log returns.

2009.
Figure D.1 shows for the time series of the full sample the cumulative avQS-

L for the Student-t GARCH(1,1) model, the best ex-post GARCH model, the
combination of GARCH models and DCEW model set. We note that our method
requires some observations in the beginning to catch up with the other models.
However, from August 2007 when stock markets start to experience large stress,
it provides the most accurate tail predictions. The gap between the three models
increases steadily over time and it becomes substantially larger after the collapse
of Bear Stearns. With the default of the Lehman brothers, the accuracy of all
three schemes reduces sharply until November/December 2008 when central banks
and governments from around the World started to take actions which reduced the
volatility in financial markets. Our DCEW, however, provides the lowest statistic
until the end of the sample.

D.2 Additional details on the Treasury Bill predicting

We consider the extended Stock and Watson (2005) dataset, which includes 142
series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical
description of the data is given in Figure D.2.

For each variable we estimate a Gaussian autoregressive model of the first order,
AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ) (D.20)

using the first 60 observations from each series. Then we identify the clusters of
parameters by applying our clustering algorithm on the vectors, θ̂i = (α̂i, β̂i, σ̂2

i )′,
of least square estimates of the AR(1) parameters. A detailed description of the 5
and 7 clusters is provided in Tables D.2-D.3.
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Table D.2: Predictors classification in 5 clusters (columns).

1 2 3 4 5

NAPMprodn Exports RGDP Cons-Dur Cons-Serv
CapacityUtil PGDP Cons Imports FixedInv
Emptotal PCED Cons-NonDur GovFed NonResInv
Empgdsprod CPI-ALL GPDInv IPfuels NonResInv-Struct
Empdblegds PCED-Core Gov Ul5wks NonResInv-Bequip
Empservices CPI-Core GovStateLoc U5-14wks Res.Inv
EmpTTU PCED-DUR-HHEQ IPconsgds Orders(NDCapGoods) IPtotal
Empwholesale PCED-DUR-OTH IPconsdble PCED-DUR IPproducts
EmpFIRE PCED-NDUR IP:consnondble PCED-DUR-MOTOR IPfinalprod
Avghrs PCED-NDUR-FOOD Empmining PCED-NDUR-OTH IP:buseqpt
HStartsTotal PCED-NDUR-CLTH EmpCPStotal PFI-NRES IPmatls
BuildPermits PCED-NDUR-ENERGY Overtimemfg PFI-NRES-EQP IPdblemats
HStartsNE PCED-SERV Umeanduration Pimp IP:nondblemats
HStartsMW PCED-SERV-HOUS U15-26wks LaborProd IPmfg
HStartsSouth PCED-SERV-HOUSOP Orders(ConsGoods) RealCompHour Empconst
HStartsWest PCED-SERV-H0-ELGAS Comspotprice(real) 3moT-bill Empmfg
PMI PCED-SERV-HO-OTH OilPrice(Real) 6moT-bill Empnondbles
NAPMnewordrs PCED-SERV-TRAN RealAHEgoods 5yrT-bond Empretail
NAPMvendordel PCED-SERV-MED RealAHEmfg 10yrT-bond EmpGovt
NAPMInvent PCED-SERV-REC UnitLaborCost Reservesnonbor Helpwantedindx
NAPMcomprice PCED-SERV-OTH Aaabond ExrateSwitz Helpwantedemp
Consumerexpect PGPDI Baabond ExrateJapan EmpCPSnonag
fygm10-fygm3 PFI Exrateavg DJIA EmpHours
Fyaaac-fygt10 PFI-NRES-STRPrInd ExrateUK Uall
Fyaaac-fygt10 PFI-RES EXrateCanada U15pwks

Pexp S&P500 U27pwks
Pgov S&Pindust RealAHEconst
PgovFed S&Pdivyield Conscredit
Pgovstatloc S&PPEratio fygm1-fygm3
FedFunds fygm6-fygm3
1yrT-bond
M1
MZM
M2
MB
Reservestot
BUSLOANS
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Table D.3: Predictors classification in 7 clusters (columns).

1 2 3 4 5 6 7

FixedInv Cons-Serv Empmining IPfuels RGDP Exports NAPMprodn
NonResInv NonResInv-Bequip CPI-ALL PCED Cons Imports CapacityUtil
NonResInv-Struct Res.Inv PCED-NDUR CPI-Core Cons-Dur Ul5wks Empwholesale
IPproducts GovStateLoc PCED-NDUR-CLTH PCED-DUR-OTH Cons-NonDur Orders(NDCapGoods) Helpwantedindx
IP:buseqpt IPtotal PCED-NDUR-ENERGY PCED-SERV GPDInv PGDP Avghrs
IP:nondblemats IPfinalprod PCED-SERV-H0-ELGAS PCED-SERV-HOUS Gov PCED-NDUR-FOOD HStartsTotal
Emptotal IP:consnondble FedFunds PCED-SERV-HO-OTH GovFed PCED-SERV-HOUSOP BuildPermits
Empgdsprod IPmfg 3moT-bill PCED-SERV-TRAN IPconsgds PCED-SERV-MED HStartsNE
Empmfg Empdblegds 6moT-bill PCED-SERV-REC IPconsdble PGPDI HStartsMW
Empnondbles Helpwantedemp 1yrT-bond PCED-SERV-OTH IPmatls PFI HStartsSouth
Empservices Overtimemfg 5yrT-bond PFI-NRES-STRPrInd IPdblemats PFI-NRES HStartsWest
EmpTTU Orders(ConsGoods) 10yrT-bond Pimp Empconst PFI-RES PMI
Empretail PCED-Core M1 PgovFed EmpCPStotal Pexp NAPMnewordrs
EmpFIRE PFI-NRES-EQP MZM Pgovstatloc U5-14wks Pgov NAPMvendordel
EmpGovt Comspotprice(real) MB M2 U15-26wks BUSLOANS OilPrice(Real)
EmpCPSnonag RealAHEconst Reservestot U27pwks NAPMcomprice
EmpHours RealCompHour Reservesnonbor PCED-DUR Conscredit
Uall UnitLaborCost ExrateUK PCED-DUR-MOTOR Consumerexpect
Umeanduration S&P500 EXrateCanada RealAHEgoods fygm10-fygm3
U15pwks fygm6-fygm3 S&Pindust RealAHEmfg Fyaaac-fygt10
NAPMInvent DJIA LaborProd Fyaaac-fygt10
PCED-DUR-HHEQ S&Pdivyield
PCED-NDUR-OTH
Aaabond
Baabond
Exrateavg
ExrateSwitz
ExrateJapan
S&PPEratio
fygm1-fygm3
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Figure D.1: Cumulative left quantile scores described in formula (C.19) of the Student-t
GARCH model, EW-GARCH model and DCEW. Timeline legend: a - 8/9/2007, BNP Paribas
redemptions on three investment funds; b - 3/17/2008, collapse of Bear Stearns; c - 9/15/2008,
Lehman bankruptcy.

The left and right columns in Fig.D.3 show the clusters of series in the parameter
space. The results show substantial evidence of different time series characteristics
in several groups of series. The groups are not well separated when looking at the
intercept values (see Fig. D.3, first and second row). However, the groups are well
separated along two directions of the parameter space, which are the one associated
with the variance and the one associated with persistence parameters (Fig.D.3, last
row). The differences in terms of persistence, in the different groups, is also evident
from the heat maps given in Fig.D.4. Different gray levels in the two graphs show
the value of the variables (horizontal axis) over time (vertical axis). The vertical
red lines indicate the different clusters. One can see for example that the series in
the 2nd and 4th cluster (of 5) are more persistent then the series in the clusters
1, 3 and 5 (see also Fig. D.3, bottom left). Series in cluster 1, 2 and 4 are less
volatile than series in the cluster 3 and 5. This information is also summarised by
the mean value of the parameter estimates for the series that belong to the same
cluster. See the values in Table D.4. Looking at the composition of the predictor
groups (see also Tables D.2-D.3), we find for the five clusters that:

1. The first cluster comprises capacity utilisation, employment variables,
housing (building permits and new ownership started) and manufacturing
variables (new orders, supplier deliveries index, inventories).

2. The second cluster contains exports, a large numbers of price indexes (e.g.
prices indexes for personal consumption expenditures, and for gross domestic
product) some money market variables (e.g. M1 and M2).

3. The third cluster includes real gross domestic product, consumption and
consumption of non-durables, some industrial production indexes, and some
financial market variables (e.g., S&P industrial, corporate bonds and USD -
GBP exchange rate).
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Figure D.2: Gray area: the set of series (standardised for a better graphical
representation), at the monthly frequency, of the Stock and Watson dataset. Solid line:
growth rate of real GDP (seasonally adjusted) for the US. Dashed line: inflation measured
as the change in the GDP deflator index (seasonally adjusted). Dotted line: yields on
US government 90-day T-Bills (secondary market). Dashed-dotted: total employment
growth rate for private industries (seasonally adjusted).

4. The fourth cluster includes imports, some price indexes and financials such
as government debt (3- and 6-months T-bills and 5- and 10-years T-bonds),
stocks and exchange rates.

5. The fifth cluster mainly includes investments, industrial production indexes
(total and many sector indexes), and employment.

Evidence is similar for the seven clusters.

D.3 Computing time

In this section we compare the computational speed of CPU with GPU in the
implementation of our combination algorithm for both the financial and macro
application. Whether CPU computing is standard in econometrics, GPU approach
to computing has been received large attention in economics only recently. See, for
example, Aldrich (2014) for a review, Geweke and Durham (2012) and Lee et al.
(2010) for applications to Bayesian inference and Aldrich et al. (2011), Morozov
and Mathur (2012) and Dziubinski and Grassi (2013) for solving DSGE models.

The CPU and the GPU versions of the computer program are written in
MATLAB, as described in Casarin et al. (2015). In the CPU setting, our test
machine is a server with two Intel Xeon CPU E5-2667 v2 processors and a total of
32 core. In the first GPU setting, our test machine is a NVIDIA Tesla K40c GPU.
The Tesla K40c card is with 12GB memory and 2880 cores and it is installed in the
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Figure D.3: Pairwise scatter plots of the series features: αi and βi (first column), αi and
σ2

i (second column) and βi and σ2
i (last column). In each plot the red dots represent the

cluster means. We assume alternatively 5 (left) and 7 (right) clusters.

CPU server. In the second GPU setting, our test machine is a NVIDIA GeForce
GTX 660 GPU card, which is a middle-level video card, with a total of 960 cores.
The test machine is a desktop Windows 8 machine, has 16 GB of Ram and only
requires a MATLAB parallel toolbox license.

We compare two sets of combination experiments, the density combination
based on 4 clusters with equal weights within clusters and time-varying volatility,
DCEW-SV, see Section 4.1, and the density combination based on 7 clusters
with recursive log score weights within clusters, DCLS7, see Section D.2, for an
increasing number of particles N . In both sets of experiments we calculated, in
seconds, the overall average execution time reported in Table D.5.

As the table shows, the CPU implementation is slower then the first GPU
set-up in all cases. The NVIDIA Tesla K40c GPU provides gains in the order of
magnitude from 2 to 4 times than the CPU. Very interestingly, even the second
GPU set-up, which can be installed in a desktop machine, provides execution times
comparable to the CPU in the financial applications and large gains in the macro
applications. Therefore, the GPU environment seems the preferred one for our
density combination problems and when the number of predictive density becomes
very large a GPU server card gives the highest gains.
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5 clusters
k α β σ2

1 0.049 0.752 0.270
2 0.021 -0.074 0.390
3 0.124 0.157 1.260
4 0.054 -0.338 1.335
5 0.100 0.466 0.811

7 clusters
k α β σ2

1 0.109 0.434 0.454
2 0.185 0.263 0.862
3 0.019 -0.116 0.224
4 0.090 -0.321 0.665
5 0.137 0.091 1.250
6 0.124 -0.437 1.297
7 0.026 0.817 0.197

Table D.4: Cluster means for the 5 (top table) and 7 (bottom table) cluster analysis. The first
column, k, indicates the cluster number given in Fig. D.3 and the remaining three columns the
cluster mean along the different directions of the parameter space.
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Figure D.4: Normal cumulative density function for the standardised series. The series
are ordered by cluster label. We assume alternatively 5 (left) and 7 (right) clusters.
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DCEW-SV DCLS7
Draws 100 500 1000 100 500 1000

CPU 1032 5047 10192 5124 25683 51108
GPU 1 521 2107 4397 1613 6307 14017
GPU 2 1077 5577 13541 2789 13895 27691
Ratio 1 1.98 2.39 2.32 3.18 4.07 3.65
Ratio 2 0.96 0.90 0.75 1.84 1.85 1.85

Table D.5: Observed total time (in seconds) and CPU/GPU ratios for the algorithm on
CPU and GPU on different machines and with different numbers of particles. The CPU
is a 32 core Intel Xeon CPU E5-2667 v2 two processors and the GPU1 is a NVIDIA
Tesla K40c GPU and the GPU2 is a NVIDIA GeForce GTX 660. “Ratio 1” refers to
the CPU/GPU 1 ratio and “ratio 2” refers to the CPU/GPU 2 ratios. Number below 1
indicates the CPU is faster, number above one indicates that the GPU is faster.
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