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Abstract

We consider the estimation of the mean of a multivariate normal distribution with known

variance. Most studies consider the risk of competing estimators, that is the trace of the mean

squared error matrix. In contrast we consider the whole mean squared error matrix, in particular

its eigenvalues. We prove that there are only two distinct eigenvalues and apply our �ndings

to the James�Stein and the Thompson class of estimators. It turns out that the famous Stein

paradox is no longer a paradox when we consider the whole mean squared error matrix rather

than only its trace.
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1 Introduction

Consider p independent normally distributed observations x1, x2, . . . , xp where xi has an unknown

mean θi and a known variance σ2i . Since the variances are known, there is no loss in generality by

setting σ2i = 1. In other words, x ∼ N(θ, Ip), where x = (x1, . . . , xp)
′, θ = (θ1, . . . , θp)

′, and Ip

denotes the identity matrix of order p. This is the so-called (multivariate) normal location model

and its relevance has been much discussed; see, for example, Johnstone (2019, Chapters 1 and 2).

Our purpose is to estimate the vector θ and we shall consider `shrinkage' estimators of the form

θ̂ = λ(wp)x, (1)

where λ depends on x only through wp = x′x. Our paper is an extension of Hansen (2015) who

studied the same class of estimators, concentrating on the e�ciency bound for minimax estimators

and their performance in terms of minimax regret.

We shall think of λ as a shrinkage factor (0 ≤ λ ≤ 1). In the cases studied below it will always

be the case that λ ≤ 1, but it will not always be the case that λ ≥ 0 as we shall see when we de�ne

the James�Stein estimator. The univariate random variable wp follows a noncentral χ
2 distribution

with p degrees of freedom and noncentrality parameter θ′θ, which we write as wp ∼ χ2
p(θ
′θ). If we

replace x by y = Sx where S is an orthogonal matrix, then y′y = x′x so that λ remains the same.

Hence λ is orthogonally invariant, and the class of estimators de�ned by (1) is called the class of

orthogonally invariant estimators.

The mean squared error (MSE) of θ̂ is the positive semide�nite p× p matrix

MSE(θ̂) = E[(θ̂ − θ)(θ̂ − θ)′] (2)

and its trace is called the risk of the estimator.

In the class of orthogonally invariant estimators we have

sup
θ

tr MSE(θ̂)

p
≥ 1 (3)

for all λ (Van der Vaart, 1998, Proposition 8.6). When equality occurs in (3) then θ̂ is called

minimax. For p = 1 and p = 2 there is a unique minimax estimator, namely the maximum

likelihood (ML) estimator θ̂ML = x, sometimes called the `usual' estimator. But for p ≥ 3 there are

many minimax estimators; see Hansen (2015) for further discussion and references.

Condition (3) refers to one aspect of the MSE matrix, namely its trace or, equivalently, its

average eigenvalue. But there is more to the MSE matrix than just its trace, and in this paper
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our focus is on the whole MSE matrix rather than on one aspect of it. In particular, we could be

interested in maxi MSE(θ̂i) or max νi(MSE(θ̂)), where ν1() ≥ · · · ≥ νp() denote the eigenvalues.

The fact that the largest individual mean squared error is relevant was well formulated by Lehmann

and Casella (1998, p. 363) who write:

�No one wants his or her blood test subjected to the possibility of large errors in order

to improve a laboratory's average performance.�

The largest eigenvalue is relevant too, because it provides an upper bound for arbitrary linear

combinations:

MSE(w′θ̂) = w′MSE(θ̂)w ≤ (w′w) max
1≤i≤p

νi(MSE(θ̂)). (4)

To set the scene, let us �rst compare two estimators: the ML estimator (where λ ≡ 1) and the

`silly' estimator θ̂0 = 0 (where λ ≡ 0). The ML estimator has zero bias and variance Ip so that

its MSE matrix is MSEML = Ip, while the silly estimator has bias −θ and zero variance so that

MSE0 = θθ′. We are interested in the di�erence

∆ = MSEML−MSE0 = Ip − θθ′.

The eigenvalues of ∆ are 1 − θ′θ (multiplicity 1) and 1 (multiplicity p − 1). Thus, tr ∆ ≥ 0 if and

only if θ′θ ≤ p, while ∆ ≥ 0 (∆ is positive semide�nite) if and only if θ′θ ≤ 1. Put di�erently, the

average eigenvalue of ∆ is nonnegative if and only if θ′θ ≤ p, while all eigenvalues are nonnegative

if and only if θ′θ ≤ 1.

This is illustrated in the left panel of Figure 1. For each p the line segment AB contains the

points where ∆ ≥ 0, while the larger line segment AC contains the points where tr ∆ ≥ 0. On

the line segment BC the weaker condition holds but not the stronger. The region where the silly

estimator performs better than the ML estimator thus depends on which criterion is used, in other

words what we mean by `better'.

The situation is rather di�erent with the James�Stein (JS) estimator

θ̂JS =
(

1− c

x′x

)
x (p ≥ 3, c ≥ 0), (5)

graphed in the right panel of Figure 1 for c = p− 2. In this case,

∆ = MSEML−MSEJS = Ip −MSEJS

and tr ∆ ≥ 0 for all θ so that the point C is at in�nity. This is the Stein paradox which states that

for p ≥ 3 the ML estimator is not admissible because there is another estimator, namely the JS
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Figure 1: Comparison of silly versus ML (left) and James�Stein versus ML (right) estimators

estimator, which is uniformly (that is, for every θ′θ) better than the ML estimator. But, again, it

depends on what we mean by `better'. If we use the stronger criterion ∆ ≥ 0, then the JS estimator

is only better on the interval AB, that is for small values of θ′θ, but not otherwise. In other words,

according to the stronger criterion, the JS estimator is not uniformly better than the ML estimator,

or vice versa.

In this paper we shall explore the di�erence between the weaker and the stronger criterion. In

Section 2 we formally de�ne and discuss weak and strong dominance. In Section 3 we show that,

under mild regularity conditions on λ, the MSE matrix of any orthogonally invariant estimator

has only two distinct eigenvalues: ν1 (multiplicity 1) and ν2 (multiplicity p − 1). In Section 4 we

derive alternative expressions for the MSE matrix and the two eigenvalues, using Stein's lemma. In

Sections 5 and 6 we specialize these results to two important classes of shrinkage estimators: the

JS estimator (5) and the Thompson estimator

θ̂Th =
x′x

c+ x′x
x (c ≥ 0). (6)

We compare the properties of these two classes in Section 7. In Section 8 we confront the (joint)

Thompson estimator with its separate counterpart where each component is estimated separately.

In other words, we ask whether joint estimation is indeed useful, which is the essence of the Stein
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paradox. Section 9 concludes. There are two appendices. Appendix A states two results concerning

idempotent matrices, while Appendix B provides three versions of Stein's lemma (in increasing

generality).

2 Weak and strong dominance

Thus motivated, let x be a single observation from the p-variate normal distribution with mean θ

and variance Ip, and let θ̂1 and θ̂2 be two estimators of θ with mean squared error matrices MSE1

and MSE2, respectively. Let

∆(θ) = MSE2−MSE1

denote the di�erence of the two MSE matrices. If tr ∆(θ) ≥ 0 for all θ ∈ Θ with strict inequality for

at least one value of θ ∈ Θ, then we say that θ̂1 weakly dominates θ̂2 on Θ. If θ̂1 weakly dominates

θ̂2 for all θ, then we say that θ̂1 weakly dominates θ̂2.

Similarly, if ∆(θ) is positive semide�nite for all θ ∈ Θ with ∆(θ) 6= 0 for at least one θ ∈ Θ,

then we say that θ̂1 strongly dominates θ̂2 on Θ. If θ̂1 strongly dominates θ̂2 for all θ, then we say

that θ̂1 strongly dominates θ̂2.

Strong dominance implies weak dominance, but not vice versa. Weak dominance requires that

the average eigenvalue of ∆(θ) is ≥ 0 for all θ, while strong dominance requires that all eigenvalues

of ∆(θ) are ≥ 0.

Since the trace is a linear operator we can equivalently say that θ̂1 weakly dominates θ̂2 if

tr MSE1 ≤ tr MSE2 for all θ with strict inequality for at least one θ or, written di�erently, if

E[(θ̂1 − θ)′(θ̂1 − θ)] ≤ E[(θ̂2 − θ)′(θ̂2 − θ)]

for all θ with strict inequality for at least one θ.

In contrast to the trace, eigenvalues are not linear operators and so it is, in general, not true

that νi(∆) = νi(MSE2)− νi(MSE1). However, in the special case

MSE1 = ν1J + ν2(Ip − J), MSE2 = ξ1J + ξ2(Ip − J),

where J = θθ′/θ′θ for θ 6= 0, it follows from Lemma 1 in Appendix A that the eigenvalues of MSE1

are ν1 (multiplicity 1) and ν2 (multiplicity p − 1), the eigenvalues of MSE2 are ξ1 (multiplicity 1)

and ξ2 (multiplicity p − 1), and the eigenvalues of ∆ = MSE2−MSE1 are ξ1 − ν1 (multiplicity 1)

and ξ2−ν2 (multiplicity p−1). This special case is the typical situation in the current paper (except

in Section 8) because the MSE matrices that we shall encounter have only two distinct eigenvalues
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where the larger eigenvalue has multiplicity 1 and the smaller eigenvalue has multiplicity p − 1;

see Proposition 1. Weak dominance is then essentially determined by the smaller eigenvalue, while

strong dominance is essentially determined by the larger eigenvalue.

Although the trace criterion (the sum or equivalently the arithmetic mean of the eigenvalues of

∆) for weak dominance is widely used, an alternative would be the determinant of ∆ (the product

of the eigenvalues) or its pth root (geometric mean of the eigenvalues). One could also extend the

de�nition of weak dominance by introducing a positive semide�nite weight matrix W , and say that

θ̂1 weakly dominates θ̂2 with respect to W if tr(W∆(θ)) ≥ 0 for all θ with strict inequality for at

least one θ, that is, if

E[(θ̂1 − θ)′W (θ̂1 − θ)] ≤ E[(θ̂2 − θ)′W (θ̂2 − θ)]

for all θ with strict inequality for at least one θ. If θ̂1 weakly dominates θ̂2 with respect to W for

all W , then θ̂1 strongly dominates θ̂2; see also Saleh (2006, Section 1.3).

Most authors only study weak dominance, but strong dominance is important too, particularly

if we are not only interested in the estimator θ̂ but also (or primarily) in linear combinations, say

w′θ̂ for some given vector w. This situation occurs whenever the normal location model is obtained

after preliminary transformations of the original model. Two recent examples are weighted-average

least squares (Magnus and De Luca, 2016) and wavelet shrinkage estimators (Johnstone, 2019,

Chapter 7). In such cases we want to know whether θ̂1 dominates θ̂2 weakly with respect to ww′.

In many cases w is not known in advance, in which case we want to know whether θ̂1 dominates θ̂2

weakly with respect to all ww′, that is, whether θ̂1 strongly dominates θ̂2. While for weak dominance

the average eigenvalue matters, for strong dominance it is the largest eigenvalue which matters.

When p ≥ 3 there are many orthogonally invariant estimators which weakly dominate the ML

estimator (or, put di�erently, are minimax), for example the JS estimator. But are there also

orthogonally invariant estimators which strongly dominate the ML estimator? Probably not.

Conjecture In the class of orthogonally invariant estimators no estimator θ̂ strongly dominates the

ML estimator.

If an estimator θ̂∗ exists which strongly dominates the ML estimator, then all eigenvalues of

MSE(θ̂∗) must be ≤ 1 for all θ. Also, from (3), supθ ν1(θ) ≥ supθ ν̄(θ) ≥ 1, where ν1(θ) denotes

the largest eigenvalue of MSE(θ̂∗) and ν̄(θ) the average eigenvalue. Hence, supθ ν1(θ) = 1. The

conjecture claims that the only estimator satisfying supθ ν1(θ) = 1 is the ML estimator.
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The conjecture clearly holds for the JS estimator as shown in the right panel of Figure 1 because

the point B is �nite for all values of p. We shall provide further evidence (but no proof) supporting

the conjecture as we proceed.

3 Structure and eigenvalues of the MSE matrix

To make further progress, we shall place the following restrictions on λ.

Assumption A The function λ(wp) is absolutely continuous and nondecreasing on [0,∞), and

E |λ′(wp)| is �nite.

The requirement of absolute continuity is stronger than (uniform) continuity but weaker than

continuous di�erentiability, and allows kinks (soft thresholding) but not jumps (hard thresholding);

see Candès, Sing-Long, and Trzasko (2013), Tibshirani (2015), and Mikkelsen and Hansen (2018) for

details. The assumption that λ is nondecreasing is intuitive when we go back to the ML estimator

θ̂ML = x (where λ ≡ 1) and the silly estimator θ̂0 = 0 (where λ ≡ 0). The silly estimator dominates

weakly for θ′θ ≤ p and strongly for θ′θ ≤ 1. This suggest a `pretest' estimator where

λpt =

{
0 if wp ≤ c,
1 if wp > c,

for some c ≥ 0. The pretest estimator is not a satisfactory estimator, but continuous versions of it

might be. These continuous versions would be a weighted average of the ML and silly estimators

such that the larger is wp the more weight is given to the ML estimator. In our case, both the

James�Stein and the Thompson class of estimators satisfy the requirement that λ is nondecreasing;

see Casella (1990) for a discussion in the context of the JS estimator. We note that Proposition 1

does not depend on the assumption that λ is nondecreasing, except to show that ν1 ≥ ν2.

If λ satis�es Assumption A, we say that is belongs to the L-class. Well-known examples in the

L-class are λ(wp) = 1, the ML estimator, and λ(wp) = 1− c/wp, the JS estimator (when c = p−2).

From Bock (1975, Theorems A and B) we know that for any function ψ : [0,∞)→ (−∞,∞) we

have

E[ψ(wp)xi] = θi E[ψ(wp+2)], (7a)

E[ψ2(wp)x
2
i ] = E[ψ2(wp+2)] + θ2i E[ψ2(wp+4)], (7b)

E[ψ2(wp)xixj ] = θiθj E[ψ2(wp+4)] (i 6= j), (7c)
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where wp, wp+2, and wp+4 denote noncentral χ2 random variables with common noncentrality θ′θ

and degrees of freedom p, p + 2, and p + 4, respectively. The third equality is in fact not proved

in Bock (1975) but the proof is similar to the proof of the second equality; see also Saleh (2006,

Section 2.2, Theorem 7).

These facts lead to the following result.

Proposition 1 The bias and MSE of θ̂ are

bias(θ̂) = (E[λ(wp+2)]− 1) θ

and

MSE(θ̂) = ν1J + ν2(Ip − J),

where J = θθ′/θ′θ and Ip − J are idempotent matrices of rank 1 and p − 1 respectively. The

eigenvalues of MSE(θ̂) are ν1 ≥ ν2 ≥ 0, where

ν1 = E[λ2(wp+2)] + (θ′θ)
(
1− 2 E[λ(wp+2)] + E[λ2(wp+4)]

)
and

ν2 = E[λ2(wp+2)]

have multiplicities 1 and p − 1, respectively. The two eigenvalues coincide if and only if θ = 0 or

λ ≡ 1, in which case the bias is zero and MSE(θ̂) = νIp, where ν = E[λ2(wp+2)] when θ = 0 and

ν = 1 when λ ≡ 1.

Proof From (7a) we �nd the bias as

bias(θ̂) = E[θ̂ − θ] = E[λ(wp)x− θ] = (E[λ(wp+2)]− 1) θ.

Similarly, from (7b) and (7c),

MSE(θ̂) = E[(θ̂ − θ)(θ̂ − θ)′]

= E[λ2(wp)xx
′]− E[λ(wp)x]θ′ − θE[λ(wp)x

′] + θθ′

= E[λ2(wp+2)]Ip + E[λ2(wp+4)]θθ
′ − 2 E[λ(wp+2)]θθ

′ + θθ′

= ν1J + ν2(Ip − J).

Since J is symmetric idempotent with rank r(J) = 1, it follows from Lemma 1 in Appendix A that

ν1 and ν2 are the eigenvalues of MSE(θ̂) with multiplicities 1 and p− 1, respectively.
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Finally, ν1 ≥ ν2 if and only if

E
[
1− 2λ(wp+2) + λ2(wp+4)

]
= E

[
(1− λ(wp+4))

2
]

+ 2 E[λ(wp+4)− λ(wp+2)]

= E
[
(1− λ(wp+4))

2
]

+ 4 E[λ′(wp+4)] ≥ 0,

where the second equality follows from (11) (to be proved later). Since λ is nondecreasing, we have

λ′ ≥ 0 and hence E[λ′] ≥ 0.

Proposition 1 generalizes Saleh (2006, Eq. 4.3.20) who obtained the MSE matrix of the JS

estimator (in a slightly di�erent but equivalent form), but not the eigenvalues. The proposition

shows that any estimator in the L-class has a MSE matrix with only two distinct eigenvalues: ν1

with multiplicity 1 and ν2 with multiplicity p − 1. It also gives explicit expressions for these two

eigenvalues. From the two eigenvalues it is easy to obtain the trace of the MSE matrix as

tr MSE(θ̂) = ν1 + (p− 1)ν2

= pE[λ2(wp+2)] + (θ′θ)
(
1− 2 E[λ(wp+2)] + E[λ2(wp+4)]

)
(8)

and the determinant as ν1ν
p−1
2 .

The two eigenvalues ν1 ≥ ν2 ≥ 0 depend only on p and θ′θ, and they completely characterize

the MSE matrix. This is consistent with (and more general than) the well-known fact that the risk

(i.e. the trace of the MSE matrix) of L-class estimators depends on θ only through p and θ′θ (see,

e.g., Hansen, 2015, Theorem 1).

4 Alternative route using Stein's lemma

There is an alternative route based on Stein's lemma (see Appendix B). Starting from the basic

equality

(θ̂ − x)(θ̂ − x)′ = (θ̂ − θ)(θ̂ − θ)′ + (x− θ)(x− θ)′

− (θ̂ − θ)(x− θ)′ − (x− θ)(θ̂ − θ)′,

we can write the MSE matrix as

MSE(θ̂) = E[(θ̂ − x)(θ̂ − x)′]− Ip + E[θ̂(x− θ)′] + E[(x− θ)θ̂′].
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The di�culty lies in the expression E[θ̂(x− θ)′], that is, the covariance between θ̂ and x. Since we

have assumed that λ(wp) is absolutely continuous and that E |λ′(wp)| is �nite (Assumption A), we

can invoke Lemma 5 from Appendix B which gives E[θ̂(x− θ)′] = E[∂θ̂/∂x′]. Now,

dθ̂ = (dλ(wp))x+ λ(wp) dx = λ′(wp)(2x
′dx)x+ λ(wp) dx

and we thus obtain
∂θ̂

∂x′
= λ(wp)Ip + 2λ′(wp)xx

′.

Then, letting

φ(wp) = (1− λ(wp))
2 + 4λ′(wp), (9)

the MSE matrix takes the form

MSE(θ̂) = E[(1− λ(wp))
2xx′]− Ip + 2 E[λ(wp)]Ip + 4 E[λ′(wp)xx

′]

= Ip − 2 E[1− λ(wp)]Ip + E[φ(wp)xx
′], (10)

which, using again (7b) and (7c), we can write as

MSE(θ̂) = Ip − 2 E[1− λ(wp)]Ip + E[φ(wp+2)]Ip + E[φ(wp+4)]θθ
′

= ν1J + ν2(Ip − J),

where J = θθ′/θ′θ is the idempotent matrix of Proposition 1. In summary, we have proved

Proposition 2 The eigenvalues ν1 and ν2 in Proposition 1 can equivalently be written as

ν1 = 2 E[λ(wp)]− 1 + E[φ(wp+2)] + (θ′θ) E[φ(wp+4)],

and

ν2 = 2 E[λ(wp)]− 1 + E[φ(wp+2)].

Since the eigenvalues must be the same as in Proposition 1, we have proved as a by-product

that

2 E[λ′(wp+2)] = E[λ(wp+2)]− E[λ(wp)], (11)

which generalizes Saleh (2006, Eq. 2.2.13e).
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Notice that we now have three equivalent expressions for the trace of the MSE matrix, namely

tr MSE(θ̂) = pE[λ2(wp+2)] + (θ′θ)
(
1− 2 E[λ(wp+2)] + E[λ2(wp+4)]

)
= p− 2pE[1− λ(wp)] + E[wpφ(wp)]

= p− 2pE[1− λ(wp)] + pE[φ(wp+2)] + (θ′θ) E[φ(wp+4)], (12)

where the �rst expression follows from (8), the second follows from (10), and the third follows by

adding up the eigenvalues ν1 + (p− 1)ν2 in Proposition 2 or alternatively from (7b).

5 The James�Stein class

The well-known James�Stein (JS) estimator (Stein, 1956; James and Stein, 1961) is de�ned in (5)

through

λJS(wp) = 1− c

wp
(p ≥ 3, c ≥ 0).

The traditional JS estimator has c = p− 2, but we leave c undetermined for now. The derivative of

λ is λ′
JS

(wp) = c/w2
p and the function φ de�ned in (9) becomes

φJS(wp) = (1− λ(wp))
2 + 4λ′(wp) = c(c+ 4)/w2

p.

Letting µk,p = E[(1/wp)
k], we shall employ the following identities (see Saleh, 2006, Eq. 2.2.13):

(θ′θ)µ1,p+2 = 1− (p− 2)µ1,p,

(θ′θ)µ2,p+4 = µ1,p+2 − (p− 2)µ2,p+2,

2µ2,p+2 = µ1,p − µ1,p+2.

This gives

ν1 = 1−
(
c[(c+ 4)(p− 3) + 4]

2

)
µ1,p +

(
c(c+ 4)(p− 1)

2

)
µ1,p+2, (13)

ν2 = 1 +
c2

2
µ1,p −

c(c+ 4)

2
µ1,p+2, (14)

so that

tr MSE(θ̂JS) = ν1 + (p− 1)ν2 = p− c(2p− c− 4)µ1,p. (15)

The JS estimator thus weakly dominates the ML estimator if and only if 0 < c < 2(p − 2) and

tr MSE(θ̂JS) reaches a minimum for c = p − 2, which is therefore the obvious choice if one is

only interested in weak dominance. For c = 0 the JS estimator equals the ML estimator, but for
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c = 2(p− 2) the JS estimator does not equal the ML estimator and the two MSE matrices are not

the same even though the two traces are the same (namely p) for every value of θ′θ.

The fact that the traditional JS estimator (with c = p−2) weakly dominates the ML estimator is

the so-called Stein paradox, which caused and still causes much comment and disbelief. Thompson

(1989, pp. 182�183) writes:

�When estimating, simultaneously, the density of mosquitoes in Houston, the average

equatorial temperature of Mars, and the gross national product of ancient Persia, we

ought not believe that some mathematical quirk demands that we multiply our usual

(separable) estimates by a �nagle factor which arti�cially combines all three estimates.

[. . . ] When the use of a particular criterion function yields results that are completely

contrary to our intuitions, we should question the criterion function before disregarding

our intuitions.�

This is precisely right: we should question the criterion function. If we choose the trace of the MSE

matrix as our criterion (weak dominance) then we get the Stein paradox, but if we consider the

whole MSE matrix then the paradox disappears, as shown in Figure 1.

According to Proposition 1 we have, at θ = 0,

ν1 = ν2 = 1− c(2p− c− 4)

p(p− 2)
,

so that both eigenvalues are smaller than 1 at θ = 0 for any 0 < c < 2(p − 2). Hence, for small

values of θ′θ, the JS estimator dominates the ML estimator strongly but not for large values, and

hence the JS estimator does not strongly dominate the ML estimator; see also the discussion in

Saleh (2006, Eqs 4.3.31 and 4.3.32).

5.1 The positive JS estimator

The traditional JS estimator (where c = p− 2) has the disadvantage that the associated λ function

is negative when wp < p− 2. For small values of θ′θ the probability of this happening is nontrivial.

In particular, at θ′θ = 0 we �nd that Pr(wp < p − 2) = 0.30 for p = 5, 0.37 for p = 10, and 0.41

for p = 20. At θ′θ = 10 these probabilities reduce to 0.01 (p = 5), 0.03 (p = 10), and 0.07 (p = 20);

and at larger values of θ′θ the probabilities become negligible.

The positive James�Stein (JS+) estimator (Baranchik, 1964) forces the shrinkage factor λ to lie

between zero and one:

λJS+(wp) =

{
0 if wp ≤ p− 2,

1− p−2
wp

if wp > p− 2.
(16)
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Note that the constant c in the de�nition of the JS estimator is no longer a constant but rather a

concave function of wp. The positive JS estimator is continuous but not di�erentiable at wp = p−2;

it is however absolutely continuous and hence satis�es Assumption A. The derivative of λ is

λ′JS+(wp) =

{
0 if wp < p− 2,

(p− 2)/w2
p if wp > p− 2.

The positive JS estimator dominates the traditional JS estimator not only weakly but even strongly;

see, e.g., Saleh (2006, Section 4.3.3). The positive JS estimator, like the JS estimator, dominates

the ML estimator, but only weakly in accordance with our conjecture. Since JS+ dominates JS,

the JS estimator is not admissible. But the JS+ is also inadmissible because it is kinked. Hence

there exists an estimator that weakly dominates it; see Lehmann and Casella (1998, Chapter 5,

Example 7.3). Such an estimator was in fact found by Shao and Strawderman (1994), but the

improvement over θ̂JS+ is negligible.

5.2 Hansen's trimmed linear shrinkage estimator

The trimmed linear shrinkage (TLS) estimator proposed by Hansen (2015) was designed to have

good performance in terms of minimax regret. Hansen (2015) �rst derives the e�ciency bound

(the lowest achievable trace of the MSE matrix) for the class of minimax orthogonally invariant

estimators satisfying the conditions of Efron and Morris (1976, Theorem 3). Then he obtains the

TLS estimator by numerically approximating the smallest possible maximum regret over the class

of continuous linear splines. This is the TLS estimator with shrinkage function

λTLS(wp) =


0 if wp ≤ τ1,
1− b− a

wp
if τ1 < wp ≤ τ2,

1− 2(p−2)
wp

if wp > τ2,

(17)

where a and b depend on p (see Hansen, 2015, Table 3) and satisfy

0 < b < 1, 0 < a < 2(p− 2)(1− b),

with τ1 = a/(1− b) and τ2 = (2(p− 2)− a)/b. As with the positive JS estimator, the constant c in

the de�nition of the TLS estimator is a concave function of wp. The TLS estimator is continuous

but not di�erentiable at wp = τ1 and wp = τ2. When a = p− 2 and b = 0 we obtain the positive JS

estimator as a special case.
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Figure 2: James�Stein class eigenvalues for p = 5

The derivative of λ is

λ′TLS(wp) =


0 if wp < τ1,

a/w2
p if τ1 < wp < τ2,

2(p− 2)/w2
p if wp > τ2.

Even though the TLS estimator is inadmissible (because kinked), numerical comparisons in Hansen

(2015, Table 2) show that this estimator leads to a substantial reduction of maximum regret relative

to eleven other shrinkage estimators.

5.3 Comparison of JS class estimators

In Figure 2 we present the largest, smallest, and average eigenvalue of the MSE matrix for each of

the three JS-class estimators: JS, JS+, and TLS, and as a benchmark also of the ML estimator.

The results are given for p = 5; a comparison for di�erent values of p will be discussed in Figures 4

and 5. The expectations involved in the two eigenvalues of the JS-class estimators are approximated

numerically by Monte Carlo simulations based on forty million pseudo-random draws.

In the third panel we plot the average eigenvalue which, for each of the three JS-class estimators,

is monotonically increasing in θ′θ and converges to the minimax bound 1 (the unique eigenvalue

of the ML estimator) as θ′θ → ∞. In this panel we also plot Hansen's e�ciency bound which, by

14



de�nition, lies below each of the three curves. It is clear that each of the three JS-class estimators

weakly dominate the ML estimator. The JS+ estimator weakly (even strongly) dominates the JS

estimator, but the TLS estimator does not weakly dominate either the JS or the JS+ estimator.

The TLS estimator has lower risk for small values of θ′θ, but slightly larger risk at large values of

θ′θ. In particular, at θ′θ = 0, the average risk is 0.40 (JS), 0.28 (JS+) and 0.20 (TLS), while the

Hansen bound is 0.07. In terms of risk performance the three estimators are close except for very

small values of θ′θ.

In the second panel we plot the smallest eigenvalue ν2, which is close to average, because the

smallest eigenvalue has multiplicity p− 1. The TLS estimator performs particularly well.

Things are di�erent for the largest eigenvalue ν1, plotted in the �rst panel. The JS-class esti-

mators strongly dominate the ML estimator for very small values of θ′θ, but clearly not uniformly.

The good performance of the TLS estimator for the smallest and average eigenvalue comes at the

expense of a poor performance for the largest eigenvalue. Since JS+ strongly dominates JS, we

see that the largest eigenvalue associated with the JS+ estimator is uniformly smaller than the

largest eigenvalue associated with the JS estimator, especially for small values of θ′θ. At θ′θ = 0 the

largest, smallest, and average eigenvalue coincide, and hence the largest eigenvalue is 0.40 for the

JS estimator, 0.28 for the JS+ estimator, and 0.20 for the TLS estimator. The shape of the largest

eigenvalue is characterized by a maximum larger than 1 at some θ′θ > 0, and so none of these three

minimax estimators strongly dominates the ML estimator. Hence our conjecture appears to be true

for the JS class.

6 The Thompson class

As an alternative to the JS class we present what we call the Thompson class, de�ned in (6):

λTh(wp) =
wp

c+ wp

for some c ≥ 0. The estimator was introduced by Thompson (1968) and we shall see that it also

weakly dominates the ML estimator.

If we allow c in (5) to depend on wp, then the Thompson class can be obtained as a special case

of the JS class by replacing c in (5) by the concave function c(wp) = cwp/(c+wp); see also Baranchik

(1970, Example 2). As with the JS+ estimator (but unlike the JS estimator), the function λTh of the

Thompson estimator satis�es 0 ≤ λTh ≤ 1, and hence is a proper shrinkage factor. The shrinkage

15



function is continuously di�erentiable and its derivative is

λ′Th(wp) =
c

(c+ wp)2
,

so that the function φ de�ned in (9) takes the form

φTh(wp) = (1− λTh(wp))2 + 4λ′Th(wp) =
c(c+ 4)

(c+ wp)2
.

Using Propositions 1 and 2 we have

ν1 = ν2 + θ′θ Qp (18)

and

ν2 = 1− 2 E

[
c

c+ wp

]
+ E

[
c(c+ 4)

(c+ wp+2)2

]
= E

[
w2
p+2

(c+ wp+2)2

]
, (19)

where

Qp = 1− 2 E

[
wp+2

c+ wp+2

]
+ E

[
w2
p+4

(c+ wp+4)2

]
= E

[
c(c+ 4)

(c+ wp+4)2

]
. (20)

In particular, it follows from (12) that

tr MSE(θ̂Th) = pν2 + θ′θ Qp

= p− (2p− c− 4) E[1− λTh(wp)]− (c+ 4) E[1− λTh(wp)]2, (21)

from which we see that a necessary and su�cient condition that the Thompson estimator weakly

dominates the ML estimator is

0 < c ≤ 2(p− 2) +
2pE[1− λTh(wp)]2

E[λTh(wp)(1− λTh(wp))]
,

so that a su�cient condition is given by 0 < c ≤ 2(p − 2). The Thompson estimator, like the JS

estimator, is inadmissible (Strawderman and Cohen, 1971, p. 278), which means that there exists

another estimator which weakly dominates the Thompson estimator, but almost certainly with

negligible bene�ts.

In Figure 3 we present, again for p = 5, the largest, smallest, and average eigenvalue of the MSE

matrix for four variants of the Thompson estimator (labeled Th1�Th4). In Th1 we take c = 2(p−2),

which is the minimax regret solution obtained through Hansen's e�ciency bound, while in Th2 we

take c = p−2, the central value in the interval [0, 2(p−2)] for which we know that tr MSE(θ̂Th) ≤ p.

In Th3 and Th4 we let c depend on wp. The above formulas in this section are then no longer valid
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Figure 3: Thompson class eigenvalues for p = 5

because λ′
Th

will have an additional term, but it will still be the case that λTh depends on x only

through wp and hence Propositions 1 and 2 still apply. More speci�cally, when c = c(wp) we have

φTh(wp) =
c(c+ 4)− 4wpc

′(wp)

(c+ wp)2
.

In Th3 we let

c =
(wp + 2p)(p− 2)

wp + p
, c′ =

−p(p− 2)

(wp + p)2
,

motivated by the fact that c = 2(p− 2) performs well at θ′θ = 0, while c = p− 2 performs well for

large values of θ′θ. The c function is a compromise which decreases monotonically from 2(p− 2) at

wp = 0 to p− 2 when wp →∞.

In Th4 we let

c =
2p(p− 2)

wp + p
, c′ =

−2p(p− 2)

(wp + p)2
,

motivated by the fact that the minimax regret solution for the average eigenvalue is c = 2(p − 2),

while the minimax solution for the largest eigenvalue is c = 0 (this is also true in the class of JS

estimators). The c function is monotonically decreasing from c = 2(p− 2) at wp = 0 to c = 0 when

wp →∞.

At θ′θ = 0 the largest, smallest, and average eigenvalue are all equal, namely 0.27 in Th1, 0.45

in Th2, 0.35 in Th3, and 0.48 in Th4, while the e�ciency bound is 0.07. The estimator Th1 has the
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smallest ν2 (the smaller of the two eigenvalues) and therefore performs well in terms of risk (average

eigenvalue), especially for small values of θ′θ. But there is a cost, namely that ν1 (the larger of the

two eigenvalues) is the largest of the four estimators. As θ′θ increases, the average eigenvalue of

Th1 converges more rapidly to the minimax bound 1 than Th2 and Th3. In contrast, the estimator

Th4 has the largest ν2 and therefore performs relatively poorly in terms of risk (average eigenvalue),

but it has the smallest ν1 of the four estimators and therefore safeguards against high risk for linear

combinations of θ̂Th according to the inequality in (4). The estimators Th2 and Th3 are in-between.

In particular, the eigenvalues of Th3 are (mostly) in-between Th1 and Th2, by construction.

These results emphasize again the trade-o� between the smallest and largest eigenvalue: the risk

of shrinkage estimators in the L-class can be made smaller but at the cost of increasing the largest

eigenvalue. All four estimators weakly dominate the ML estimator (third panel), but none of them

dominates the ML estimator strongly (�rst panel), in accordance with our conjecture.

7 Comparison of James�Stein and Thompson class estimators

One may wonder which of the two classes performs better: the celebrated James�Stein class or the

much less well-known Thompson class. In the previous two sections we reported results only for

p = 5. Let us now compare the two classes for p = 5, 10, and 20. In Figures 4 and 5 we compare,

respectively, the average and the largest eigenvalue of the ML, JS+, TLS, Th3, and Th4 estimators.

In Figure 4 we see that the average eigenvalue gets closer to the e�ciency bound as p increases,

so that the improvement relative to the ML estimator becomes larger. Also, as p increases, Th4 is

not performing well, JS+ is preferred over TLS, and the di�erence between JS+ and Th3 becomes

negligible. At small values of θ′θ the di�erences between the estimators are more pronounced. For

example, for p = 20, the eigenvalues at θ′θ = 0 are equal to 0.05 for the TLS estimator, 0.06 for

the JS+ estimator, 0.20 for the Th3 estimator, and 0.31 for the Th4 estimator. Thus, we conclude

that the JS+ estimator is to be preferred when the average eigenvalue is our criterion, because for

small values of θ′θ it outperforms Th3 and for large values of p it outperforms TLS.

While the behavior of the average eigenvalue is important, the behavior of the largest eigenvalue

is important too, especially if we wish to protect ourselves against high risk for linear combinations

of the p components of our estimator. This is because we know from (4) that the risk of a linear

combination w′θ̂ in the L-class can be as large as (θ′θ)ν1.

If we choose the largest eigenvalue as our criterion, then things are rather di�erent as shown

18



0.00

0.25

0.50

0.75

1.00

0 8 16 24 0 8 16 24 0 8 16 24

p=5 p=10 p=20

ML JS+ TLS Th3 Th4 Efficiency bound

θ’θ/p

Figure 4: James�Stein versus Thompson class estimators: average of eigenvalues

in Figure 5. While the average eigenvalue is rather stable in p (except at θ′θ = 0), the largest

eigenvalue is an increasing function of p (and, not shown, the smallest eigenvalues is a decreasing

function of p). This implies that, as p increases, the risk for linear combinations of θ̂ increases, so

that the di�erence with the (constant) risk of the ML estimator can become large. From the point

of view of the largest eigenvalue the Thompson-class estimators perform better than the JS-class

estimators, Th4 being the best choice and TLS the worst.

A good compromise is the Thompson estimator Th3 which performs well in both criteria. It

weakly dominates the ML estimator without increasing the largest eigenvalue too much.

8 The Thompson estimator: joint versus separate

So far we have studied the L-class of shrinkage estimators and in particular the James�Stein and

the Thompson classes. For these estimators, Propositions 1 and 2 apply so that the MSE matrix

has only two distinct eigenvalues ν1 ≥ ν2 ≥ 0. Many estimators in the L-class weakly dominate the

ML estimator, for example the JS estimator (Stein paradox). The fact that combining things that

have nothing to do with each other can provide an advantage remains di�cult to understand, see

the quote by Thompson (1989) in Section 5. We have tried to explain the paradox by emphasizing

that the trace criterion is only one possible criterion, and that we could equally well (perhaps even
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better) choose the maximum eigenvalue criterion. Then there is no paradox.

In this section we confront joint estimation with separate (component-wise) estimation and we

do this in the context of the Thompson estimator because the Thompson estimator is de�ned for

all p (also p = 1) in contrast to the JS estimator.

The observations are still given by x ∼ N(θ, Ip). But now we estimate each θi separately by

θ̂∗i = λ∗(xi)xi (i = 1, . . . , p), (22)

where λ∗ is the common shrinkage function. Notice that θ̂∗i is di�erent from the ith component

θ̂i = λ(wp)xi of the joint estimator, because the shrinkage function λ∗ depends only on xi while λ

depends on wp = x′x. Since the xi are independent, the θ̂∗i are also independent while the θ̂i are

not.

In our case, the shrinkage factor for the (separate) Thompson estimator is

λ∗(xi) =
x2i

c+ x2i
(23)

for some c ≥ 0. The MSE matrix is now

MSE(θ̂∗) = Σ + bb′,
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where

Σ = diag(var(θ̂∗1), . . . , var(θ̂∗p)), b = E[θ̂∗ − θ]

represent the variance and the bias of θ̂∗. The MSE matrix is not diagonal because θ̂∗ is biased and

hence, for i 6= j,

E[(θ̂∗i − θi)(θ̂∗j − θj)] = bibj 6= 0.

in general. In contrast to the MSE matrix for the joint estimator (where there are only two distinct

eigenvalues), the eigenvalues of the MSE matrix for the separate estimator are, in general, all

distinct.

The Hansen e�ciency bound does not apply to the separate estimator, but each θ̂∗i satis�es

the univariate e�ciency bound θ2i /(1 + θ2i ) derived by Magnus (2002, Theorem A.7). Using the

univariate e�ciency bound we �nd that minimax regret solution for the generic component of the

separate Thompson estimator θ̂∗i = x3i /(c+x2i ) is c = 3.7213 with maximum regret equal to 0.1815.1

While the properties of the MSE matrix for the joint estimator θ̂ depend on θ only through p

and the noncentrality parameter θ′θ, this is no longer the case for the separate estimator θ̂∗. To

analyze the properties of MSE(θ̂∗) we need to make assumptions on the components of θ. We shall

assume that either all θs are the same, θ = δıp for some scalar δ, or that there are two sets of θs:

two large values and p− 2 small values. Thus, we assume that

θ1 = θ2 = δ, θ3 = θ4 = · · · = θp = (1− α)δ, (24)

where the parameter 0 ≤ α ≤ 1 controls the degree of sparsity. When α = 0 there is no sparsity

(all θs are the same) and when α = 1 there is maximum sparsity. Our treatment of the θs is similar

to the simulation setup of Hansen (2016) who compares the risk bounds of the JS and the least

absolute shrinkage and selection operator (LASSO). Here, instead of performing numerical MSE

comparisons, we provide explicit expressions for the eigenvalues of MSE(θ̂∗) which are thus directly

comparable with those of MSE(θ̂) in Propositions 1 and 2.

When all θs are the same (α = 0), then the xi are not only independent but also identically

distributed. The MSE matrix then takes the form

MSE(θ̂∗) = ν∗1J + ν∗2(Ip − J), J = ıpı
′
p/p, (25)

where

ν∗1 = ν∗2 + p (E[θ̂∗1]− δ)2, ν∗2 = var(θ̂∗1). (26)

1The maximum regret 0.1815 is much smaller than the maximum regret 0.4251 for the same estimator reported
in Magnus (2002, p. 230). Apparently a computational or typographical error.
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When there are two sets of θs (α > 0), then the MSE matrix is given by (31) in Appendix A,

MSE(θ̂∗) =

(
ν1J2 + ν2(I2 − J2) γı2ı

′
p−2

γıp−2ı
′
2 ξ1Jp−2 + ξ2(Ip−2 − Jp−2)

)
, (27)

where ı2 = (1, 1)′ and ıp−2 = (1, 1, . . . , 1)′ have dimensions 2 and p− 2 respectively, and J2 = ı2ı
′
2/2

and Jp−2 = ıp−2ı
′
p−2/(p− 2), and

ν1 = σ21 + 2b21, ν2 = σ21, ξ1 = σ2p + (p− 2)b2p, ξ2 = σ2p, γ = b1bp,

with

b1 = E[θ̂∗1]− δ, σ21 = var(θ̂∗1), bp = E[θ̂∗p]− (1− α)δ, σ2p = var(θ̂∗p).

The MSE matrix depends on four parameters and its behavior is completely determined by its four

eigenvalues ξ2 (multiplicity p− 3), and ν2, ν
∗
1 , and ξ

∗
1 (each with multiplicity 1), where

ν∗1 =
ν1 + ξ1

2
+

1

2

√
(ν1 − ξ1)2 + 8(p− 2)γ2, (28)

ξ∗1 =
ν1 + ξ1

2
− 1

2

√
(ν1 − ξ1)2 + 8(p− 2)γ2. (29)

The largest eigenvalue is ν∗1 because ν∗1 ≥ ξ∗1 and ν∗1 ≥ max(ν1, ξ1) ≥ max(ν2, ξ2), and the trace is

given by

tr MSE(θ̂∗) = (p− 3)ξ2 + ν2 + ν∗1 + ξ∗1 = 2(σ21 + b21) + (p− 2)(σ2p + b2p). (30)

In Figure 6 we present the average eigenvalue of the joint Thompson estimator Th3 and four

versions of the separate Thompson estimator θ̂∗, depending on the sparsity α. We consider three

values of c: one value of c < 1, one value c = 1, and one value c > 1. For the largest value we

select the minimax regret solution c = 3.72. The selected degrees of sparsity are: α = 0 (all θs the

same, no sparsity), α = 0.75, α = 0.90, and α = 1 (maximum sparsity). We set p = 10. Plots for

alternative values of p are qualitatively similar.

For α = 0 and α = 0.75, the joint estimator outperforms the separate estimator. However, when

there is a stronger degree of sparsity (α = 0.90 and α = 1), the separate estimator can perform

better than the joint estimator. Thus, we conclude that the joint Thompson estimator is to be

preferred when the coe�cients are roughly comparable in magnitude, while the separate Thompson

estimator is to be preferred when few coe�cients are large in magnitude and the others are relatively

small. These conclusions agree with earlier comparisons between JS and LASSO (Hansen, 2016)

and between joint and component-wise JS estimators (Lehmann and Casella, 1998, p. 365),
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Figure 6: Joint versus separate Thompson estimator for p = 10: average of eigenvalues

When there is a strong degree of sparsity (α close to one), the separate Thompson estimator

based on the minimax regret solution c = 3.72 has uniformly lower risk than at smaller values of

c. In general, however, this `optimal' choice of c ensures low risk only around θ′θ = 0 where regret

is at its maximum. Minimax regret is a local optimality criterion which may not perform well in

regions of the parameter space that are far from the optimal solution. For small values of α and

large values of θ′θ, the separate Thompson estimator with c = 3.72 performs poorly.

Notice that the curvature at α = 1 is di�erent than the curvature at α < 1. When α = 1 we

have bp = 0 and ξ1 = ξ2, and the curvature of the average eigenvalue depends solely on MSE(θ̂∗1).

But when α < 1 the curvature of the average eigenvalue depends on both MSE(θ̂∗1) and MSE(θ̂∗p).

In Figure 7 we present the corresponding �gure for the largest eigenvalue. Here is becomes clear

that the `optimal' value (in terms of minimax regret) of c = 3.72 may not be a good choice. To

safeguard against large values of the largest eigenvalue we need to restrict c to c ≤ 1, in which case

the separate estimators perform well compared to the joint estimator. Choosing c ≤ 1 thus limits

the maximum risk of the separate estimator by sacri�cing a small amount of e�ciency in terms of

the trace criterion, in the spirit of the limited translation empirical Bayes estimators proposed by

Efron and Morris (1972).

Summarizing, the joint estimator performs well when the θs are close to each other in magnitude,
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Figure 7: Joint versus separate Thompson estimator for p = 10: largest eigenvalue

while the separate estimator is better when there is a large degree of sparsity. In addition, the

`optimal' value for c in terms of minimax regret may not work well over the whole parameter space,

because maximum regret occurs at θ′θ = 0 so that the optimal c value works for small values of θ′θ

but not necessarily for large values.

9 Conclusions

We have considered the estimation of the p-variate normal mean by means of the class of orthogonally

invariant shrinkage estimators, which includes as special cases the James-Stein and the Thompson

classes of estimators. We have shown that the mean squared error matrix of these estimators has

only two distinct eigenvalues: the larger with multiplicity 1 and the smaller with multiplicity p− 1.

This result has important implications because the two eigenvalues fully characterize the mean

squared error matrix.

We have applied our �ndings to study the well-known concept of weak dominance (trace crite-

rion = average eigenvalue criterion) and the less well-known concept of strong dominance (largest

eigenvalue criterion) in the James-Stein and the Thompson classes of estimators. Our conjecture is

that, while there are several shrinkage estimators which weakly dominate the ML estimator (Stein

paradox), none of them dominates the ML estimator strongly. The intuition is that there exists
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a trade-o� between the smaller and the larger of the two eigenvalues, as the risk of our shrinkage

estimators can only be made smaller at the expense of increasing the larger eigenvalue. The validity

of the Stein paradox thus depends crucially on the choice of the criterion function used to rank

estimators.

Although the trace criterion is important, we have emphasized that the largest eigenvalue cri-

terion is important too, particularly when we are concerned with the risk of linear combinations of

the coe�cients or (as a special case) with the maximum risk in estimating single components of the

unknown mean vector. It turns out that in these situations we can often reduce the maximum risk

by sacri�cing a little e�ciency in terms of average risk. For example, we �nd that the James-Stein

class of shrinkage estimators is slightly preferred in terms of average risk, but that the Thompson

class of shrinkage estimators weakly dominates the ML estimator with only a slight increase in

maximum risk.

To gain additional insight about the Stein paradox we have also compared the (joint) Thompson

estimator with its separate (component-wise) counterpart in the case when the unknown mean vector

consists of two sets of coe�cients. Our �ndings suggest that the joint estimation approach is to be

preferred when the coe�cients are roughly comparable in magnitude, while the separate estimation

approach is to be preferred when there is a strong degree of sparsity with few large coe�cients and

many small or zero coe�cients. Again, there is a clear trade-o� between the four possible eigenvalues

of the mean squared error matrix of the separate estimator, so that it may be desirable to sacri�ce

a little e�ciency in terms of average risk to limit maximum risk on the single components of the

shrinkage estimator.

Our conjecture is valid for a large class of shrinkage estimators, but we are not sure how large

this class precisely is. We claim that it is the complete L-class, and we invite the reader to prove it.

Appendices

A Some results involving idempotent matrices

Our �rst result is not new.

Lemma 1 Let A be a symmetric idempotent p×p matrix of rank r(A) = r. Then, r(Ip−A) = p−r

and A(Ip −A) = 0. Next, let

V = ν1A+ ν2(Ip −A).
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Then the eigenvalues of V are ν1 (multiplicity r) and ν2 (multiplicity p − r), its determinant is

|V | = νr1ν
p−r
2 , and its inverse is V −1 = (1/ν1)A+ (1/ν2)(Ip −A) when ν1 6= 0 and ν2 6= 0.

Proof This is a simple version of a much more general result, see Abadir and Magnus (2005,

Exercises 8.72 and 8.73).

Now let's consider an extension where the p×p matrix V is partitioned into blocks of dimensions

p1 and p2 as follows:

V =

(
ν1J1 + ν2(Ip1 − J1) γı1ı

′
2

γı2ı
′
1 ξ1J2 + ξ2(Ip2 − J2)

)
, (31)

where ı1 = (1, 1, . . . , 1)′ and ı2 = (1, 1, . . . , 1)′ have dimensions p1 and p2 respectively, and J1 =

ı1ı
′
1/p1 and J2 = ı2ı

′
2/p2.

In the special case p1 = p2 = p we can write V = V1 ⊗ J + V2 ⊗ (Ip − J), where

V1 =

(
ν1 γp
γp ξ1

)
, V2 =

(
ν2 0
0 ξ2

)
, J = (1/p) ıı′,

which implies that the eigenvalues of V are given by ν2 (p− 1 times), ξ2 (p− 1 times), and the two

eigenvalues of V1 (Magnus, 1982, Lemma 2.1).

When p1 6= p2 we cannot write V in terms of Kronecker matrices, but the result is still essentially

the same.

Lemma 2 The eigenvalues of V are ν2 (p1 − 1 times), ξ2 (p2 − 1 times) and two additional eigen-

values ν∗1 and ξ∗1 given by
ν1 + ξ1

2
± 1

2

√
(ν1 − ξ1)2 + 4γ2p1p2.

The sum of the eigenvalues is

trV = ν1 + (p1 − 1)ν2 + ξ1 + (p2 − 1)ξ2,

and V is positive semide�nite if and only if ν1, ν2, ξ1, and ξ2 are all ≥ 0 and in addition ν1ξ1 ≥

γ2p1p2.

Proof We write

V − λIp =

(
ν̄1J1 + ν̄2(Ip1 − J1) γı1ı

′
2

γı2ı
′
1 ξ̄1J2 + ξ̄2(Ip2 − J2)

)
,

where

ν̄1 = ν1 − λ, ν̄2 = ν2 − λ, ξ̄1 = ξ1 − λ, ξ̄2 = ξ2 − λ.
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The determinant is

|V − λIp| = |ν̄1J1 + ν̄2(Ip1 − J1)|

× |ξ̄1J2 + ξ̄2(Ip2 − J2)− γ2ı2ı′1[ν̄1J1 + ν̄2(Ip1 − J1)]−1ı1ı′2|

= ν̄1ν̄
p1−1
2

∣∣∣∣ξ̄1J2 + ξ̄2(Ip2 − J2)− γ2ı2ı′1
(

1

ν̄1
J1 +

1

ν̄2
(Ip1 − J1)

)
ı1ı
′
2

∣∣∣∣
= ν̄1ν̄

p1−1
2 |ξ̄1J2 + ξ̄2(Ip2 − J2)− (γ2/ν̄1)p1p2J2|

= ν̄1ν̄
p1−1
2

∣∣∣∣ ν̄1ξ̄1 − γ2p1p2ν̄1
J2 + ξ̄2(Ip2 − J2)

∣∣∣∣
= ν̄p1−12 ξ̄p2−12

(
ν̄1ξ̄1 − γ2p1p2

)
= (ν2 − λ)p1−1(ξ2 − λ)p2−1

(
(ν1 − λ)(ξ1 − λ)− γ2p1p2

)
.

Hence the eigenvalues of V are ν2 (p1− 1 times), ξ2 (p2− 1 times), and the two solutions ν∗1 and ξ∗1

of the quadratic equation (ν1−λ)(ξ1−λ)− γ2p1p2 = 0. Note that ν∗1 + ξ∗1 = ν1 + ξ1. In the special

case γ = 0 we have ν∗1 = ν1 and ξ∗1 = ξ1.

The sum of the eigenvalues is

(p1 − 1)ν2 + (p2 − 1)ξ2 + ν1 + ξ1,

and it easy to verify that this equals the trace of V , as of course it should.

B Stein's lemma

Stein's lemma (Stein, 1981) is a rather surprising and strong result. We �rst consider the univariate,

then the multivariate case. The generalization is not straightforward.

Lemma 3 Let x ∼ N(θ, 1) and let h : < → < be an absolutely continuous function with derivative

h′. Assume that E |h′(x)| <∞. Then,

cov(h(x), x) = E[h(x)(x− θ)] = E[h′(x)].

Proof We write

[h(x)φ(x− θ)]′ = h′(x)φ(x− θ) + h(x)φ′(x− θ)

= h′(x)φ(x− θ)− h(x)(x− θ)φ(x− θ),

where φ denotes the standardnormal density. Integrating gives

0 = h(x)φ(x− θ)
∣∣∣∞
−∞

= E[h′(x)]− E[h(x)(x− θ)].
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Note the requirement of absolute continuity, which imposes a smoothness property on h that is

stronger than (uniform) continuity, but weaker than continuous di�erentiability. It guarantees that

h is di�erentiable almost everywhere. In the applications it is important to place minimal restrictions

on the function h, for example that it may be kinked.

The univariate version of Stein's lemma is a powerful result with many nontrivial applications.

As a simple example, let h(x) = xm. Then we immediately obtain all moments of the normal

distribution through the recursion E[xm+1] = θE[xm] +mE[xm−1].

In the multivariate case we have x ∼ N(θ, Ip) with p ≥ 2 and we need the concept of `almost

di�erentiability' (in Stein's terminology). We write x = (xi, x−i) to decompose a point x ∈ <p in

terms of its ith component xi and all other components x−i. Thus, h(·, x−i) refers to h as a function

of its ith argument with all other arguments �xed at x−i. Then h is `almost di�erentiable' if for each

i = 1, . . . , p and almost every x−i ∈ <p−1 the function h(·, x−i) : < → < is absolutely continuous.

An almost di�erentiable function h has partial derivatives almost everywhere.

Given this multivariate extension of the concept of absolute continuity, Stein's lemma reads as

follows.

Lemma 4 (Stein) Let x ∼ N(θ, Ip) with p ≥ 2 and let h : <p → < be almost di�erentiable with

E ‖∇h(x)‖ <∞, where ∇h(x) denotes the gradient of h(x). Then,

E [h(x)(x− θ)] = E[∇h(x)].

Proof See Stein (1981, Lemma 2).

Stein's result can be generalized straightforwardly to the case where h is a vector function.

Lemma 5 Let x ∼ N(θ, Ip) with p ≥ 2 and let h : <p → <q. If hj : <p → < is almost di�erentiable

with E ‖∇hj(x)‖ <∞ for all j = 1, . . . , q, then

E
[
h(x)(x− θ)′

]
= E

[
∂h(x)

∂x′

]
.

Proof This follows from Lemma 4 by considering each row of h(x)(x− θ)′ separately. Then,

E
[
hj(x)(x− θ)′

]
= E

[
∂hj(x)

∂x′

]
for each j and the result follows.
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