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Abstract

We develop a new targeted maximum likelihood estimation method that provides

improved forecasting for misspecified linear autoregressive models. The method weighs

data points in the observed sample and is useful in the presence of data generating

processes featuring structural breaks, complex nonlinearities, or other time-varying

properties which cannot be easily captured by model design. Additionally, the method

reduces to classical maximum likelihood when the model is well specified, which results

in weights which are set uniformly to one. We show how the optimal weights can be

set by means of a cross-validation procedure. In a set of Monte Carlo experiments we

reveal that the estimation method can significantly improve the forecasting accuracy

of autoregressive models. In an empirical study concerned with forecasting the U.S.

Industrial Production, we show that the forecast accuracy during the Great Recession

can be significantly improved by giving greater weight to observations associated with

past recessions. We further establish that the same empirical finding can be found for

the 2008-2009 global financial crisis, for different macroeconomic time series, and for

the COVID-19 recession in 2020.
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1 Introduction

For the vast majority of empirical studies in economics and finance of the last five decades, the

linear autoregressive (AR) model has been used for the analysis and forecasting of time series

observations. The flexibility of the AR model allows econometricians to describe relatively

complex dynamics in a remarkably simple manner. From short-run temporal dependence

with seasonal dynamics to long-run persistency generated by stochastic trends, the basic

AR model is often able to provide a better in-sample fit and a more accurate out-of-sample

forecast, when compared to more intricate and complex dynamic models. However, given

the simplistic structures present in linear reduced-form AR models, and the complexity of

data generating processes for large market economies, it is likely that autoregressions suffer

from a form of model misspecification. A typical way in which model misspecification can

manifest itself is parameter instability. We can find much evidence of parameter instability

in economic and financial empirical studies and applications; see Stock and Watson (1996,

2007) in macroeconomic forecasting, and Wolff (1987), Schinasi and Swamy (1989) and

Goyal and Welch (2003) in financial forecasting. As also discussed by Inoue et al. (2014),

parameter instability is widely recognized as a crucial issue that significantly hampers the

forecasting performance of econometric models; see, for example, Stock and Watson (1996),

Clements and Hendry (1998), Goyal and Welch (2003), Koop and Potter (2004), Paye and

Timmermann (2006), Giacomini and Rossi (2009), and Rossi (2013). Several methods have

been proposed to improve forecasting performance in the presence of parameter instability.

Rolling window estimation is among the most popular with important applications in finance,

see Goyal and Welch (2003), in macroeconomics, see Swanson (1998), and in exchange rate

forecasting, see Molodtsova and Papell (2009), among others. Using a window of observations

for estimation can be regarded as a basic weighting scheme for the observations.

We propose a new targeted estimation procedure for the unknown parameters in the

model. The procedure weighs observed data points differently for constructing a likelihood

function that is used to estimate the parameters. The observation weights are chosen such

that the forecasting performance of the misspecified linear AR model is optimized. Hence,

the weights are designed to optimize a secondary criterion, which we call a targeting function.

By providing a second forecasting target to the estimation procedure, we provide additional

2



structure to the estimation process. Furthermore, we are able to improve the properties

of the MLE with respect to this secondary target. We refer to this procedure as weighted

maximum likelihood estimation (WMLE).

In practice, our WMLE provides specific weights to individual observations, and obtains

parameter estimates that are optimal for forecasting. For example, the WMLE can be used

to give higher weights to more recent observations compared to observations far in the past.

This may be desirable as various political, institutional, and technological developments

change the economy, rendering past observations increasingly obsolete for the forecasting of

economic variables. Similarly, the WMLE can be used to give higher weights to data from

past periods of greater historical relevance. For example, Industrial Production forecasts

during an economic recession can be improved by giving higher weights to past episodes of

economic recession. In fact, at any given point in time, the WMLE weights can be adjusted to

reflect the importance of past observations for improving forecast accuracy. It is also natural

that forecasts for inflation during international oil crises can be improved by paying special

attention to price dynamics during past oil crises. The forecasts for unemployment during a

period of strong fiscal austerity can benefit from giving more prominence to observations that

originate from past episodes of strong fiscal austerity. The WMLE estimator often implies

a time-varying parameter AR model whose parameter estimates are optimal for forecasting

observations in a given period of interest. We show in our empirical study that forecasts

of the U.S. Industrial Production during the global 2008–2009 recession can be significantly

improved by defining weights that are making past observations from recession periods more

informative while those from the more remote past less informative.

The WMLE procedure can be applied generally for the analysis, modeling, and forecasting

of economic and financial time series. The procedure is designed to provide optimal AR

forecasts under model misspecification and it includes other weighted estimation methods

(such as rolling window estimation techniques) as a special case. We show in our study how to

obtain the optimal WMLE weights through cross-validation. This procedure automatically

identifies the important features from past data and adjusts the weights to deliver optimal

out-of-sample forecasting accuracy for the AR model. We will show that our method of

weight selection by cross-validation ensures that the WMLE converges to the classical MLE

when the AR model is correctly specified. In this special case, the WMLE converges to the
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‘true’ time-invariant parameter vector, which is optimal for forecasting. At the same time,

if the AR model is misspecified, then the cross-validation procedure will establish weights

that are optimal according to the targeting criterion. In this case, the WMLE provides time-

varying parameter estimates for the AR model which significantly improve the forecasting

accuracy of the classical MLE method.

In contrast to earlier contributions in the literature as listed above, our method for

finding optimal weights is shown to be valid under very general conditions for the data

generation process which is not restricted to pre-specified breaks, trends, and related effects.

We also deviate from a substantial part of the literature in basing our approach on the

maximum likelihood estimation of AR models. Indeed, while Giraitis et al. (2012) have

already proposed a cross-validation method for optimizing forecasts, their method is not

related to maximum likelihood estimation of parameters and they do not use AR models to

forecast. Instead, Giraitis et al. (2012) produce one-step-ahead predictions directly through

a weighted sample average of past observations. In essence, our approach also defines such

weights, but it does so implicitly through the structure of the AR model and its estimated

parameters. By taking the AR model as a starting point, we take advantage of the ability

of this model to describe relatively complex dynamic dependence patterns in the data and

produce forecasts multiple steps ahead. Amongst other models, AR models are capable to

capture short-run dynamics, seasonalities and stochastic trends in time series. Hence, we

start at an appreciable level of forecasting accuracy. The WMLE is then used to further

optimize the forecasting performance of the model. Additional empirical evidence reveals

that the advantages of WMLE extend to the forecasting of a wide variety of time series.

Instead of introducing weights to the MLE method, to address possible misspecifications

in a linear AR model, one could also concentrate on improving model specification. We fully

recognize that many contributions in econometrics are concerned with efforts to improve the

model design by, for example, introducing breaks, random coefficients, nonlinearities and

non-parametric features. These attempts typically leads to a specification that is closer to

the correct model. Indeed, testing for model specification and investing in model design that

captures complex nonlinearities and time-varying parameters is an important part of time

series analysis and forecasting. There are however cases where we believe that a targeted

estimator, such as the one we develop here, can be advantageous: (i) when there is great
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uncertainty about the correct model specification; (ii) when correct specification is difficult

to achieve, even after incorporating nonlinear features into the model; (iii) when model com-

plexity is undesirable from a perspective of implementation, computation, or interpretation.

These issues are especially relevant in present days, when the world has been shaken by the

COVID-19 pandemic, and time series models have to be revised without much evidence after

such a major structural break. This situation illustrates the uncertainty referred to in case

(i). The relevance of case (ii) becomes more prominent when we analyze complex data sets

where it is highly challenging to obtain only a reasonable model specification, even after the

introduction of nonlinear features in the model. Finally, case (iii) is particularly relevant

when we analyze big data sets and we fit a model to thousands of different time series for

producing forecasts, including confidence bounds, and impulse responses. In this setting, it

is undesirable to treat complex nonlinear models by means of numerical estimation methods

that can become computationally prohibitive or unreliable.

This paper is organized as follows. Section 2 introduces the basic concepts behind

weighted maximum likelihood estimation and optimality in forecasting. Section 3 provides

the details of our WMLE procedure including possible weight functions and their estimation

by cross-validation. Section 4 investigates the theoretical aspects of WMLE; in particular,

we show its asymptotic equivalence with MLE, provide conditions for optimal forecasting

performance, and show the asymptotic validity of the Diebold-Mariano test for accuracy in

forecasting. For a selection of empirical illustrations in Section 5, we show that the optimal

weight functions can take intuitive forms that would be difficult to obtain from time-varying

parameter models. Section 6 concludes and discusses possible directions for future research.

2 Basic Concepts

In order to easily grasp the basic concepts that underly the weighted maximum likelihood

estimation (WMLE) procedure, we first consider a very simple example concerned with the

estimation of a population mean.

Consider a sequence of random variables X1, . . . , XT that is assumed to come from an

unknown data generating process (DGP) with length T > 1. Suppose that we decide to

work with a statistical model where Xt is assumed to be an independent and identically
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distributed (iid) sequence that is generated by a Gaussian distribution with unknown mean

µ and unity variance, that is Xt ∼ N(µ, 1), for t = 1, . . . , T . In this case, the MLE of

the unknown parameter µ, based on the sample Xs:T := {Xt}Tt=s, for some 1 ≤ s < T , is

naturally given by

µ̂s:T = arg max
T∑
t=s

(Xt − µ)2 ⇒ µ̂s:T =
1

T − s+ 1

T∑
t=s

Xt.

Since the statistical model assumes that the observations in the sample are iid, the n-step

ahead forecast X̂T+n conditional on the observed sample Xs, . . . , XT is

X̂T+n = E(XT+n|Xs, . . . , XT ) = µ̂s:T .

If the assumptions imposed by the statistical model are correct, then the model is well-

specified and the DGP consists of a sequence of iid N(µ0, 1) random variables with some

unknown µ0. In this special case, it is optimal to use the complete available sampleX1, ..., XT ,

and hence set s = 1. Furthermore, the MLE provides an unbiased forecast X̂T+n and it is

also the most accurate forecast among all unbiased estimators. We have that the bias is

zero,

Bias(X̂T+n) = E(X̂T+n −XT+n) = Eµ̂s:T − µ0 =
1

T − s+ 1

T∑
t=s

µ0 − µ0 = 0,

and the variance attains the Cramer-Rao lower bound (CRLB),

Var(X̂T+n) = Var(µ̂s:T ) =
1

(T − s+ 1)2

T∑
t=s

Var(Xt) =
1

T − s+ 1
= CRLB.

As a result, the forecast mean squared error (MSE) is the smallest among all the unbiased

forecasts and it becomes smaller by setting s = 1 and letting the sample size T increase,

that is

MSE(X̂T+n) =
(

Bias(X̂T+n)
)2

+ Var(X̂T+n) =
1

T − s+ 1
→ 0 as T − s+ 1→∞.

Unfortunately, this good state of affairs is not applicable to a model that is misspecified.
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Consider, for example, the case where the mean has a trend component; that is, the true

unknown DGP is Xt ∼ N(βt, 1). However, the statistical model still assumes that the data is

iid with Xt ∼ N(µ, 1). In this case, the MLE no longer provides the most accurate forecasts,

and most importantly, it is no longer optimal to make use of the entire sample of data

X1, . . . , XT . This interesting situation occurs because the MLE attempts to approximate the

distribution of the entire sample Xs, . . . , XT by minimizing the empirical Kullback-Leibler

divergence with respect to the true measure. To do so, the MLE becomes centered at the

value βT/2 when we use the complete sample (s = 1). However, since E(XT+1) = β(T + 1),

this is clearly not an interesting estimator when we are interested in forecasting accuracy

rather than fitting the distribution of past observations. An MLE that takes into account

only the last few sample values can greatly improve the forecast MSE. The optimal value

of 1 ≤ s < T finds a good compromise between the forecast bias (which decreases with s

increasing) and the forecast variance (which increases together with s). The forecast bias is

strictly decreasing in s since

Bias(X̂T+n) = Eµ̂s:T − EXT+n =
1

T − s+ 1

T∑
t=s

βt− β(T + n) = βn+
β

2
(T − s).

The forecast bias would be minimized by setting s = T and hence making use of only the

last observation XT in the sample. However, this strategy is not optimal in terms of the

MSE since the variance of the forecast produced by this MLE would be too large

Var(X̂T+n) = Var(µ̂s:T ) =
1

(T − s+ 1)2

T∑
t=s

Var(Xt) =
1

(T − s+ 1)
.

In order to minimize the MSE, it is instead better to make use of the information contained

in past data values, even if this comes at the cost of a larger forecast bias. This trade-off is

reflected in the MSE expression as given by

MSE(X̂T+n) =
(

Bias(X̂T+n)
)2

+ Var(X̂T+n) =
1

4
β2(2n+ T − s)2 + (T − s+ 1)−1.

Figure 1 below plots the 1-step-ahead forecast MSE as a function of s for the case T = 100

and β = 0.02. The figure shows that instead of using the entire sample X1, . . . , X100, it is

7



optimal to use only the last 12 observations X89, . . . , X100.
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Figure 1: One-step-ahead forecast MSE as function of s for T = 100 and β = 0.02.

The estimator µ̂s:T proposed above is essentially an MLE that gives zero weight to the

likelihood contributions from data before s, and unit weight to the contributions of the

remained observations. In essence, it is a WMLE of the form

µ̂T = arg max
T∑
t=1

`t(Xt;µ) · wt

where `t(Xt;µ) denotes the log likelihood contribution of the Xt observation and wt is the

weight function

wt =

 0, for 1 ≤ t < s,

1, for s ≤ t ≤ T.

This weight function is however unnecessarily restrictive, and it can be easily improved

upon, at least in terms of reducing the forecast MSE. Consider for example the case where

wt = ρT−t for some 0 < ρ ≤ 1. This weight function gives unit weight to the last observation

XT and decaying weights to past observations when 0 < ρ < 1. The WMLE then takes the

form

µ̂T =

∑T
t=s ρ

T−tXt∑T
t=s ρ

T−t
.

In the special case of ρ = 1, we obtain the usual MLE. It is also easy to show that

Bias(X̂T+1) =

∑T
t=s ρ

T−tβt∑T
t=s ρ

T−t
− β(T + 1), Var(X̂T+1) =

∑T
t=s ρ

2(T−t)(∑T
t=s ρ

T−t
)2 ,
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from which it follows that

MSE(X̂T+1) =
β2
(
ρT+1((ρ− 1)T + ρ+ s− sρ− 2) + ρs

)2

(ρ− 1)2 (ρs − ρT+1)2 +
(ρ− 1)

(
ρT+1 + ρs

)
(ρ+ 1) (ρT+1 − ρs)

.

Figure 2 presents the forecast MSE of the WMLE as a function of the parameter ρ together

with the optimal weight function. The first graph shows that the WMLE with ρ ≈ 0.89

considerably outperforms the standard MLE with uniform weight (ρ = 1) while the second

graph presents the optimal weight function for ρ = 0.89.
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Figure 2: One-step-ahead forecast MSE as function of ρ for T = 100 and β = 0.02 (left),
and optimal weight function wt = 0.89T−t (right).

These results are obviously not exclusive to the linear trending mean considered above.

On the contrary, any time-variation in the true mean that is not appropriately captured by

the statistical model will result in a non-constant optimal weight function that improves the

forecasting accuracy of the MLE. In fact, the WMLE opens the possibility for much more

complex weight functions than the simple exponential decay presented above. These weights

can optimally adapt to breaks in the DGP, cyclical fluctuations and others.

3 Weighted Maximum Likelihood Estimation

We consider the linear autoregressive (AR) model in our treatment of weighted maximum

likelihood estimation. The AR(p) model assumes that the time series {Xt}t∈Z is generated

by the dynamic stochastic process

Xt = α0 + α1Xt−1 + ...+ αpXt−p + εt, t ∈ Z, (1)
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where p ∈ N+ is the lag-order of the AR process, {εt}t∈Z is a sequence of iid innovations

with density pε(λ) indexed by the vector of parameters λ. For simplicity, we collect all

parameters in the vector θ := (α,λ) where α := (α0, . . . , αp). The parameter vector θ

is easy to estimate via the exact maximum likelihood method or via regression (based on

the conditional likelihood function). The autocorrelation function, the forecast function,

including forecast confidence bounds, and the impulse response function for the AR(1) model

rely on θ and given an estimate of θ, they can be readily computed.

When a dynamic model is well specified, the classical MLE produces optimal forecasts in

Kullback-Leibler divergence; see Blasques et al. (2015). In case of the Gaussian AR(p) model

as given by (1) with pε(λ) = N(0, σ2) and λ = σ2, the forecast function also minimizes the

mean squared error loss function. The main reason behind this result is that the in-sample

fit and out-of-sample forecasting performance are closely connected when the model is well

specified. However, in the case of a misspecified AR model, having a good in-sample fit over

the entire data set on the one hand, and having a good out-of-sample forecasting accuracy on

the other hand, become two separate problems. Our Proposition 3 in Section 4 shows that

for every misspecified AR model, there exists a non-constant sequence of parameters that

improves the approximation of the AR model to the true data-generating process, together

with the forecasting accuracy. We further show that the WMLE can help in finding such an

appropriate sequence of parameters, and that the WMLE outperforms the classical MLE.

3.1 The Estimator

Let w ∈ RT
+ denotes a weight vector with elements (w1, . . . , wT ) that defines the weight of

the log likelihood contribution at time t = 1, . . . , T . The weights wt are non-negative and

sum up to unity, that is
∑T

t=1wt = 1. For any given w, the WMLE θ̂(w) for the vector θ is

defined as

θ̂(w) := arg max
θ∈Θ

1

T

T∑
t=1

`t(θ) · wt, (2)

where `t(θ) denotes the logarithm of the conditional density of Xt given Xt−1, Xt−2, . . . , X1,

`t(θ) := log pε
(
et(α);λ

)
,
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and et(α) denotes the residual term

et(α) := Xt − α0 − α1Xt−1 − . . .− αpXt−p, t = p+ 1, . . . , T.

The fundamental difference between the WMLE and the classical MLE is the introduction

of weights for the log likelihood of different observations. Observations with relatively large

(small) weight will have a relatively larger (smaller) influence in the estimation of the param-

eter vector θ. As such, the WMLE parameter estimates will attempt to fit more accurately

the dynamics of the time series at certain periods of interest. Since the weight vector w

determines the parameter estimates, we consider the WMLE as a map θ̂ : Ω × RT
+ → Θ,

where Ω is the event space of the underlying probability space of interest. Similarly, given

the vector w, the random estimator maps elements of Ω to the parameter space Θ, that is

θ̂(w) : Ω→ Θ.

In order to analyze the out-of-sample forecasting performance of the AR(p) under the

WMLE estimates, it is important to define a class of weight vectors that use information

only until a certain point in time. In particular, we let wk, T
′ ≤ k ≤ T denote a weight

vector whose elements are uniformly set to zero for all t > k

wk = (w1, . . . , wk, 0, . . . , 0)′,

where all weight vectors have dimension T × 1. The weight vector wk defines a WMLE

θ̂(wk) that only makes use of the shorter sample X1, ..., Xk. Finally, we let W denote the

space of all weight matrices W and each wk corresponds to a row of W. Throughout, we

let the rows of W be normalized, for instance, to sum up to one.

In general, the WMLE estimates will differ from one time period to the next. For example,

the parameter estimate θ̂(wk) obtained using the sub-sample X1, ..., Xk, will typically be

different from the parameter estimate θ̂(wk+1) obtained using the sub-sample X1, ..., Xk+1.

For this reason, the WMLE can potentially be used to construct a sequence of parameter

estimates

θ̂(wk), θ̂(wk+1), θ̂(wk+2), ...

that describes the parameter instability in the AR(p).
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Our general framework of WMLE with its different weight sequences encompasses a

number of different well-known estimators. Next we highlight some of the relations between

the WMLE and well-known estimators.

3.2 Special Classes of Weights

The famous recursive least squares filter originally proposed by Gauss in 1821 in his work

‘Theoria combinationis observationum erroribus minimis obnoxiae’ and rediscovered by

Plackett (1950), consists of a sequence of estimators obtained recursively over a window of in-

creasing length. Recursive ML estimators can be obtained in the WMLE setting by defining a

matrix of weights W with rows wk having elements that satisfy wk,1 = wk,2 = · · · = wk,k = 1

for an increasing k.

The popular rolling window estimators with window size h used for improved forecasting

performance in Swanson (1998), Goyal and Welch (2003), Molodtsova and Papell (2009) and

Inoue et al. (2014), among others, are obtained as a special case of the WMLE by letting

the matrix of weights W with rows wk having elements that satisfy wk,t = 1 if k− t ≤ l and

wk,t = 0 otherwise, for some window length l and every k.

The elements of the weight vectors wk can be set a-priori or they can be estimated to

provide optimal AR(p) forecasts. For reasons of simplicity, computational efficiency, and,

most importantly, statistical efficiency, it will often be beneficial to parameterize the weight

function by a low-dimensional parameter vector ρ. Instead of estimating all elements of any

given weight vector wk individually, we can estimate a small number of coefficients in ρ

which determine the individual weights in a parametric fashion. For example, exponentially

decaying weights are obtained from a scalar parameter ρ and with the specification wk,t(ρ) =

ρ(k−t). This set of weights normalizes the weight of the most recent observation t = k to

unity wk,k = 1, and allows for data in the remote past to be given a lower weight during the

estimation of θ. The exponential class of weights contains the MLE as a special case (ρ = 1)

as well as WMLE based on a wide range of decay patterns (0 ≤ ρ < 1).

Another interesting class of weights is obtained by letting the elements of wk(ρ) depend

on lagged values of Xt and/or other variables of interest Zt. For example, in Section 5, we

show that forecasts of Industrial Production during the Great Recession, can be significantly
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improved by defining weights that make past recession periods more informative, and, at the

same time, downweight more recent observations. In particular, we use the NBER recession

indicator Zt and define the weights of the vector wk(ρ, Zt) as follows

wk,t(ρ, Zt) = ρ
(k−t)
1 (1 + (ρ2 − 1) · Zt),

where ρ = (ρ1, ρ2) with 0 ≤ ρ1 ≤ 1, ρ2 ≥ 1. This specification illustrates the generality of

our framework of weighing observations in the context of maximum likelihood estimation.

3.3 Estimation of Optimal Weights by Cross-Validation

The recursive and rolling window estimation techniques mentioned in Section 3.2, can provide

important insight into parameter instability, be it in the form of breaks, trends, seasonality or

random changes. However, those methods are not designed from the outset to optimize the

forecasting performance of the AR model. Instead, any improvements in forecast accuracy

are the result of an ad-hoc improvement in model specification. Indeed, rolling window

estimation will provide improved forecasts if it turns out that the exclusive use of recent

data is advantageous for forecasting. Similarly, time-varying parameter models, will deliver

improved forecast accuracy over their static parameter counterparts, if the specific weights

on past data introduced indirectly by the parameter updating equations happen to improve

the forecasting ability of the model. In this section we propose a cross-validation method

for finding the matrix of weights W that optimizes a secondary targeting function which

measures the forecasting performance of the AR(p) model. There are various popular choices

of targeting criterion functions that reflect forecasting accuracy. The mean absolute forecast

error (MAFE), the mean squared forecast error (MSFE), the out-of-sample log likelihood,

etc. If the MSFE is chosen then we say that the matrix of weights Ŵ is the best WMLE in

an n-step-ahead MSFE sense if

Ŵ = arg min
W

1

T − T ′ − n

T−n∑
k=T ′

(
X̂k+n

(
θ̂(wk)

)
−Xk+n

)2

(3)

where, as noted before, the WMLE θ̂ maps events ω ∈ Ω and weight vectors w ∈ RT
+ to

the parameter space, i.e. θ̂ : Ω× RT
+ → Θ, and T ′ defines the sample point from which the
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forecasting accuracy begins to be measured. A large T ′ gives us more data to estimate the

parameter vector θ by WMLE, but a small number of observations to evaluate the forecasting

accuracy of the model and optimize the weights. On the contrary, a small T ′ increases the

uncertainty in the estimation of θ but gives us a larger sample to determine the optimal

weights. When the matrix W is parameterized by a vector ρ, then the optimal weights are

defined as W(ρ̂) where

ρ̂ = arg min
ρ

1

H

T−n∑
k=T ′

(
X̂k+n

(
θ̂(wk(ρ))

)
−Xk+n

)2

, (4)

where we denote H := T −T ′−n. The optimization of the weights in either (3) or (4) relies

on the relation between weight vectors wk(ρ̂) and the parameter estimates in θ̂(wk(ρ̂)). The

optimization would be trivially simple if, for a given data sample, the mapping θ̂ : RT
+ → Θ

from weight vectors in RT
+ to point estimates in Θ were known analytically. In general,

however, this map is unknown analytically. As a result, we need to carry out the optimization

numerically.

The recursive algorithm designed to estimate the optimal weights is presented in the

display Algorithm 1 below. We start with a uniform unity weight function wt(ρ) = 1 ∀ t

and optimize the likelihood to obtain the standard MLE. Then we optimize the weights using

(4). Conditional on the new ρ̂, we can obtain a new WMLE. We iterate until convergence.

In Algorithm 1, QH(ρ) denotes the n-step-ahead forecasting performance criterion chosen

to optimize the weights, of which the MSFE in (4) is a special case.

This simple steepest-ascent algorithm has revealed itself to be fast and stable in our Monte

Carlo experiments reported in Appendix C and in our empirical application in Section 5.

Since the algorithm is initiated at the classical ML estimates, the WMLE will feature non-

uniform weights and differ from the MLE only when there is scope for improvement over the

MLE.

4 Theoretical Foundations for the Weighted MLE

The cross-validation optimization described in Algorithm 1 is intuitively appealing as it leads

to weights that improve the out-of-sample forecasting performance rather than the in-sample
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Algorithm 1.

———————————————————————————————————

1. Set ρ̂1 such that wk,t(ρ̂1) = 1 ∀ t ≤ k, and

obtain the ML estimates θ̂(wk(ρ̂1)), k = T ′, ..., T − n.

2. Given the ML estimates θ̂(wk(ρ̂1)), k = T ′, ..., T − n,
update the weights ρ̂2 in the direction of steepest

descent of the criterion function QH(ρ).

3. For j ≥ 2

If QH(ρ̂j) < QH(ρ̂j−1):

3.1. Given ρ̂j obtain θ̂(wk(ρ̂j)), k = T ′, ..., T − n.

3.2. Given the ML estimates θ̂(wk(ρ̂j)), k = T ′, ..., T − n,
update the weights ρ̂j+1 in the direction of steepest

descent of the criterion function QH(ρ).

3.3. Repeat step 3 with j = j + 1.

If QH(ρ̂j) ≥ QH(ρ̂j−1):

3.4 Collect (θ̂(ρ̂j−1), ρ̂j−1) and stop iterating.
———————————————————————————————————

fit of the AR(p) model. Below we provide theoretical foundations for this procedure.

First, we analyze the WMLE as a generalization of the classical MLE. In particular, we

show that if the AR(p) model is well specified, then the WMLE is asymptotically equivalent

to the MLE, and hence uncovers the true parameter vector and minimizes forecast errors.

On the other hand, we also show that, if the model is misspecified, then there exist non-

uniform weights that improve upon the MLE parameter estimates in terms of forecasting

performance. Furthermore, we show that our algorithm for finding optimal weights delivers

that WMLE outperforms the MLE under very general conditions. Second, we give condi-

tions under which our cross-validation procedure delivers a WMLE that provide optimal

forecasting performance. These results apply to a wide range of forecasting performance

criteria. Third, we implement a Diebold-Mariano test that can be used to infer whether the

improvements in forecasting accuracy from a change in weights are statistically significant

or not and we analyze the validity of the asymptotic distribution of the statistic.
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4.1 Asymptotic Properties of WMLE

The WMLE can be used to describe instability in the parameters of AR(p) models. For

example, the WMLE class has recursive estimators as well as rolling window estimators as

special cases. Proposition 1 shows that many DGPs can be written in the form of a time-

varying parameter AR(p) model with Gaussian innovations. For simplicity, we restrict our

attention to a DGP with stochastic contracting dynamics. This allows us to apply laws of

large numbers and central limit theorems.

The contracting dynamics are not necessary for the theory that follows, but they are

sufficient. As such, these results can be extended to a host of other settings that allow for

heterogeneous dynamics, deterministic components, etc. Apart from the general contracting

behavior, Theorem 1 still allows for a DGP with very general dynamics. Indeed, Xt can

depend nonlinearly on its past, as well as on a potentially very large vector Vt of variables

that may include not only innovations and random breaks, but also a wide range of exoge-

nous strictly stationary and ergodic (SE) variables with complex dynamics and temporal

dependence patterns.

The SE nature and bounded moments of the process {Xt}t∈Z are obtained using Theorem

3.1 of Bougerol (1993) and Theorem A10.1 of Blasques et al. (2014). The SE nature of the

time-varying AR(p) parameters is a direct consequence of Krengel’s Theorem. Below, we let

C1(X × V) denote the space of real-valued continuously differentiable functions defined on

the set X × V . Similarly, L(X ) denotes the space of Lipschitz continuous functions defined

on X , and LV (X ) := {Lv(X ), v ∈ V} denotes the class of functions that are Lipschitz on X

uniformly over v ∈ V .

Proposition 1. Let {Xt}t∈Z generated according to

Xt = φ(Xt−1, Vt) , t ∈ Z (5)

where

(i) {Vt}t∈Z is an SE nV -variate stochastic sequence

(ii) φ ∈ C1(X × V) and φ ∈ LV (X );

(iii) E|φ(x, Vt)|4 <∞ for some x ∈ X ; and
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(iv) E supx∈X |φ′x(x, Zt)|4 < 1.

Then the following time-varying AR(p) representation holds

Xt = α0,t + α1,tXt−1 + ...+ αp,tXt−p + εt , εt ∼ N(0, σ2
ε ) , t ∈ Z (6)

where {αi,t}t∈Z is SE for every i = 1, ..., p, and furthermore {Xt}t∈Z is also SE and has four

bounded moments E|Xt|4 <∞.

4.2 Conditions for Optimal WMLE Forecasting

A distinct feature of the WMLE estimator is the fact that it reduces to the MLE when the

weights are unnecessary or undesirable. Proposition 2 shows precisely the weights converge

in probability to unity when the model is well specified. Specifically, the cross-validation

method that we propose for estimating the weights ensures that the weighted likelihood

function converges in probability to the classical likelihood function as the size of the esti-

mation sample S := T ′ − p and cross-validation sample H := T − T ′ − n diverge to infinity

sequentially. The Monte Carlo evidence reported in Appendix C confirms that the weights

remain close to unity, even in finite sample dimensions that are typical in empirical studies.

Proposition 2. Let W be compact and suppose the conditions of Proposition 1 hold with

Vt = εt ∀ t ∈ Z and

φ(Xt−1, εt) = α0 + α1Xt−1 + ...+ αpXt−p + εt ∀ t ∈ Z.

Then the MSFE criterion in (3) ensures that ŵk,t
p→ 1 ∀ k and ∀ t ≤ k, as S → ∞ and

H →∞ sequentially, for any given forecasting horizon n ≥ 1 and lag order p ≥ 1.

By application of Berge’s Maximum Theorem, we obtain as a corollary that WMLE

converges in probability to the MLE as the cross-validation sample H diverges to infinity.

When both the cross-validation sample H and the estimation sample S diverge to infinity,

WMLE converges to the true parameter θ0 ∈ Θ, just as MLE does. The Monte Carlo

evidence reported in Appendix C reveals that WMLE performs well in finite samples.
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Corollary 1. Let the conditions of Proposition 2 hold. Then ‖θ̂(wk) − θ̂(1)‖ p→ 0 as

H →∞ and θ̂(wk)
p→ θ0 as S →∞ for k = T ′, ..., T and any given n ≥ 1.

Under incorrect model specification, recursive or rolling-window estimators, can often

improve upon full-sample estimators by allowing for time-varying parameters that better

capture the dynamics of the data at any given period of time. Similarly, the WMLE will

be able to improve the forecasting performance of the AR(p) by allowing for time-varying

parameters that can improve the out-of-sample performance of the model. The existence of

such a sequence of parameters is another simple, albeit important and general, consequence

of Proposition 1. Below we let MSFEn(θ) denote the n-step ahead mean squared error

achieved by the AR(p) model under some parameter vector θ ∈ Θ,

MSFEn(θ) = Et
(
Xt+n − X̂t+n(θ)

)
.

Corollary 2. Let the conditions of Proposition 1 hold, and suppose that

φ(Xt−1, Vt) 6= α0 + α1Xt−1 + · · ·+ αpXt−p + εt , εt ∼ N(0, σ2
ε ) ,

for every θ ∈ Θ and some t ∈ Z. Then there exists a non-constant sequence {θt}t∈Z of points

in Θ such that MSFEn(θt)<MSFEn(θ) for any given θ ∈ Θ and n ≥ 1.

Corollary 2 highlights that time-varying parameters can improve the forecasting of the

AR(p) when the model is a simplistic representation of the data. Corollary 1 reveals that the

WMLE will only deliver time-varying parameters in large samples, when the model is well

specified. Proposition 3 below focuses on the properties of the WMLE algorithm proposed

in the previous section. First, it highlights that the algorithm is designed to ensure that the

WMLE outperforms (or is at least as good as) the MLE in terms of the forecasting accuracy

of the AR(p) model in the cross-validation sample. Furthermore, Proposition 3 shows that

under appropriate regularity conditions, the WMLE algorithm will actually uncover the

weights that optimize the forecasting performance of the AR(p) model in the cross-validation

sample. We let ρ̂j denote the j-th iteration weights and we let QH(ρ) denote the mean
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squared error in the cross-validation sample obtained under ρ. We obtain

QH(ρ) :=
1

H

T−n∑
k=T ′

(
X̂k+n

(
θ̂(wk(ρ))

)
−Xk+n

)2

.

The Monte Carlo evidence reported in Appendix C and the empirical evidence for U.S.

Industrial Production in Section 5 reveal that the WMLE is indeed capable of significantly

improving the forecasting performance of the AR(p) model.

Proposition 3. For any given realized sample {xt}Tt=1, Algorithm 1 ensures that

QH(ρj+1) ≤ QH(ρj), ∀ j ≥ 1,

and hence the WMLE outperforms the MLE under the QH criterion.

If furthermore it holds that

sup
T

sup
ρ

∣∣∂θ̂(ρ)/∂ρ
∣∣ < 1, and sup

T
sup
θ

∣∣∂ρ̂(θ)/∂θ
∣∣ < 1.

Then ρj → ρ∗ and θ̂ → θ∗ as j →∞, for any given n ≥ 1.

The two main conditions of Proposition 3 ensure the contraction of θ̂ and ρ̂ as maps

θ̂ : ρ 7→ θ and ρ̂ : θ 7→ ρ. Since these maps are not known analytically, the contracting

behavior can only be verified numerically. This can be achieved by optimizing the derivatives

stated above, and ensuring that there maximum is less than one.

4.3 Test for Forecast Precision Improvement

The result established in Proposition 3 is important, but it ensures only that the WMLE

improves the finite sample MSFE. In other words, the algorithm discussed in Section 3.3 de-

livers weights that optimize the forecasting performance within the cross-validation sample.

However, due to sampling error it is impossible to ensure that the true forecasting perfor-

mance has improved from the MLE to the WMLE with some weight matrix W. We will use

a simple Diebold-Mariano (DM) test statistic to assess whether the improvement in forecast-

ing performance is statistically significant or not. Proposition 4 highlights the validity of the
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asymptotic distribution derived by Diebold and Mariano (1995) under the assumptions of

Proposition 1 when the null hypothesis compares the MLE against an alternative WMLE.

Below, we let MSFE(W) denote the MSFE achieved by the AR(p) model under the

WMLE with weight matrix W, and let W∗ denote the best possible WMLE weight matrix

for the AR(p) model

W∗ = arg min
W

MSFE(W).

Furthermore, we let MSFE(1) denote the MSFE achieved by the MLE. Under correct model

specification, we naturally have that MSFE(1)=MSFE(W∗). Proposition 4 states a DM

test with a null hypothesis of correct specification (both MLE and WMLE provide equal

forecasting accuracy)

H0 : MSFE(W∗) = MSFE(1)

against an alternative of incorrect specification (WMLE provides improved forecast accuracy)

H1 : MSFE(W) < MSFE(1).

Diebold (2015) discusses the question whether the DM assumptions hold in practice and

argues that it is an empirical issue for which there exist tests that one may wish to employ.

Below we let d̄k(wk) and Ste
(
dk(wk)

)
denote the sample average and standard error of the

MSFE difference between WMLE and MLE, at period k,

d̄k(wk) := uk(1)2 − uk(wk)
2 where uk(wk) :=

(
X̂k+n

(
θ̂(wk)

)
−Xk+n

)2
.

Proposition 4. Let the conditions of Proposition 1 hold. Then

d̄k(wk) / Ste
(
dk(wk)

) d→ N(0, 1), as T →∞,

for any given pair (T ′, n) under the null hypothesis H0 : MSFE(W∗) = MSFE(1), and

d̄k(wk) / Ste
(
dk(wk)

)
→∞, as T →∞,

under the alternative hypothesis H1 : MSFE(W) < MSFE(1).
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We regard the DM test as the natural tool for comparing the forecasts produced under

two WMLE estimates. In the more recent contributions of Giacomini and White (2006)

and Diebold (2015), the bulk of the literature has moved from testing forecasts to testing

models, evaluated at their pseudo-true parameters; see, for example, West (1996), and Clark

and McCracken (2001). Clearly, here we are not interested in testing different models, as

all the forecasts come from the same AR(p) model. Instead, we are interested in testing the

forecasts obtained under the different parameter estimates produced by WMLE and MLE.

4.4 Monte Carlo Evidence

We verify in a set of simulation experiments whether the small-sample properties match our

theoretical findings. We investigate the finite sample performance of WMLE in the context

of the basic AR(1) model and by means of our Monte Carlo simulation experiments. We

consider four data generating processes (DGP) for the time series yt, these are four departures

of the AR(1) model : (1) the basic AR(1) model with no departures, (2) with a time-varying

AR coefficient, (3) with a structural break for the AR coefficient, and (4) a regime-switching

AR coefficient. For each case, we assess whether the optimal weight function does improve

the one-step-ahead forecasting accuracy of the MLE. The forecasts are based on rolling-

window estimates. The WMLE method is only applied to the standard AR(1) model. Two

different weight functions are adopted: (a) the exponential weight function with wt = ρk−t1

with ρ ∈ [0, 1], and (b) the binary weight function with decay wt = ρ
(k−t)
1 (1 + (ρ2 − 1) · Zt)

where Zt is a predetermined indicator for the recession period. The exponential weight

method (a) is used in experiments (1), (2) and (3), while the binary weight method (b) is

used in experiment (4). More details for the Monte Carlo experiments and their results

are presented in Appendix C. The overall conclusions are as follows. In case the AR model

is well-specified as in DGP (1), we do not find any significant improvements in forecasting

accuracy. In effect, WMLE and MLE results are overall the same. However, in all three other

cases where the AR model is not correctly specified for the DGP, the WMLE succeeds in

producing higher maximized likelihood function values using non-uniform weight functions.

In particular, the increases in forecast precisions of WMLE compared to MLE are high and

they confirm the asymptotic findings in this Section.
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5 Empirical Illustrations

We study the empirical performance of our WMLE procedure for several economic relevant

applications. In Section 5.1, we focus on forecasting the yearly growth rate of monthly

U.S. Industrial Production Index (IPI) during the global recession of 2008. We find that

the WMLE can deliver a significantly better forecasting performance than the standard

MLE method. This result is achieved by increasing the weights associated with observations

coming from past recession periods. Moreover, we find that the improved out-of-sample fore-

casting accuracy delivered by WMLE is not driven by a single, or just a few, observations.

Instead, the improved forecasting performance is experienced throughout the entire valida-

tion sample. In Sections 5.2 and 5.3 we show that the improved forecasting performance

delivered by WMLE is not restricted to forecasting the IPI during a recession period. In

particular, Section 5.2 shows that the WMLE outperforms the MLE also during expansion

periods. Section 5.2 also illustrates that it is often important to allow for more complex

weight functions that allow for both ρ1 and ρ2 to be different from unity. In Section 5.3,

we show that the WMLE outperforms the MLE in other data sets as well. In effect, it

reveals that the WMLE method can, in some cases, improve the forecasting performance of

the model in a remarkable fashion. Finally, in Section 5.4, we focus on forecasting during

the COVID-19 recession. We find that even when simple exponential weights are used the

WMLE method can improve substantially the forecast accuracy especially in the presence

of a structural break.

5.1 Forecasting Industrial Production During Great Recession

We study whether the WMLE method improves the forecast accuracy for the growth in the

U.S. Industrial Production Index (IPI), when compared to the MLE method. The IPI growth

rate is a core indicator of the U.S. economy. The time series of U.S. IPI is monthly and our

sample covers the period from January 1950 until December 2009. We evaluate measures of

forecasting accuracy in terms of root mean squared error (RMSE) and mean absolute error

(MAE). We compare these for MLE and WMLE by means of the Diebold-Mariano (DM)

test for relative predictive accuracy.

We consider two window lengths of 25 years (period 1975–1999, contains 46 recession
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months) and 50 years (period 1950–1999, 85 recession months) for the estimation of the

parameters. We have 8 years (period 2000–2007, 8 recession months) for the cross-validation

of the forecasting accuracy. Finally, we take 1.5 years (period 2008–2009 June, contains

18 recession months) for the out-of-sample forecasting period. We report the results for

the forecast horizons of one month (n = 1) and one quarter (n = 4) ahead. The weight

functions are flexible and allow for a combination of binary and exponentially decaying

weights. The binary weights can be used to emphasize the weight of past recessions in the

estimation of parameters. The intuition behind this weighting scheme is that IPI observations

coming from past recession periods may be more informative about the dynamics of the

IPI during the global recession of 2008–2009. The exponential weights can be used to

weigh down observations from the remote past. The intuition that underlies the exponential

decay is straightforward: as the economy changes, observations far in the past are likely to

be less informative about the current dynamics of IPI than the more recent observations.

Specifically, the weight function for wk takes the form

wk,t = ρ
(k−t)
1 (1 + (ρ2 − 1) · Zt), 0 ≤ ρ1 ≤ 1, ρ2 ≥ 1,

where the indicator variable Zt ∈ {0, 1} is the NBER recession indicator. Setting ρ1 = ρ2 = 1

delivers standard MLE (unweighted). Naturally, when ρ1 < 1, past observations receive less

weight than recent ones. Similarly, when ρ2 > 1, observations from recession periods receive

more weights for estimation. Since the coefficients ρ1 and ρ2 are estimated using our cross-

validation method, we will infer from the data how strong these effects are.

For simplicity, we first set ρ1 = 1 and apply the WMLE method with a binary weight

function to an AR(1) model and an AR(p) model of which the number of lags p is selected by

means of the Akaike’s information criterion. We refer to the second model as the AR(AIC)

model. We focus on out-of-sample forecasting of the monthly U.S. IPI growth rate during the

NBER global recession period which spans from January 2008 to June 2009. We emphasize

that the sample for which the forecasting accuracy was evaluated was not used for estimating

the AR(1) parameters or the likelihood weights. Hence, the MLE estimator can potentially

outperform the WMLE estimator in this separate validation sample. Any improvement in

forecasting accuracy should only be expected if the WMLE method presents a substantial
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estimation advantage over the MLE.

The results are presented in Table 1 where we take the recession period in the year

2000 as our cross-validation period to determine the WMLE estimates that are used in the

global recession of 2008. We report the RMSE and MAE ratios for the WMLE against

MLE methods such that a ratio value smaller than unity indicates WMLE improvements

in forecast accuracy. We also report the p-values of the DM test (in parentheses) and the

cross-validation estimates of the WMLE parameter ρ2.

Table 1: AR Model Forecasting: Binary Weights for Recessions

RMSE MAE

n=1 n=4 n=1 n=4

Ratio ρ2 Ratio ρ2 Ratio ρ2 Ratio ρ2

(DM) (DM) (DM) (DM)

AR(1)
25 years 1.0908 35.5 0.8297∗ 27.7 0.8310 31.5 0.7919∗ 27.1

(0.3446) (0.0679) (0.1564) (0.0500)

50 years 0.9102∗∗ 15.7 0.7430∗∗ 12.3 0.8007∗∗∗ 13.8 0.5975∗∗∗ 11.1
(0.0262) (0.0241) (0.0011) (0.0000)

AR(AIC)
25 years 1.4909 137.5 0.9189 11.0 1.4039 228.5 0.9450 8.8

(0.1460) (0.2706) (0.1785) (0.3918)

50 years 0.9094∗ 15.9 0.7782∗ 9.7 0.8427∗∗ 25.7 0.6955∗∗∗ 11.5
(0.0667) (0.0523) (0.0153) (0.0021)

Table 1: WMLE forecasting results for monthly U.S. IPI growth rate for the AR(1) model and the AR(p)

model where p is imposed by the Akaike’s information criterion, this is AR(AIC). Rolling window samples

have length 25 and 50 years, starting from periods 1975-1999 and 1950-1999, respectively. The column

labeled Ratio shows the RMSE and MAE using the WMLE method of the AR model relative to the RMSE

and MAE, respectively, using the MLE method. Cases where the forecasting improvement is statistically

significant at the 90%, 95%, and 99% confidence levels are indicated by ∗, ∗∗, and ∗∗∗, respectively. Entries in

parentheses show the p-value of DM test. The column labelled “ρ2” contains its WMLE parameter estimates

for the binary weighting (1−ρ2) ·Zt where Zt ∈ {0, 1} is the NBER recession indicator. The cross-validation

sample is 2000–2007. The out-of-sample forecasts are computed for 2008–2009 June (18 months).

The results from Table 1 reveal that WMLE strongly outperforms MLE in the majority of

cases. The improvements of up to 31% in the forecasting accuracy of the AR(AIC) are quite

remarkable. The p-values of the Diebold-Mariano statistics reveal that forecast accuracy
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improvements relative to MLE are statistically significant at standard confidence levels.

Most importantly, the parameter estimates of ρ2 indicate that the improved performance is

due to giving more weight to past recession periods. We want to highlight that the improved

forecasting performance is not only achieved for the simple AR(1) model, which is likely to

be a misspecified model, but also for the AR(AIC) model, which in all cases has p > 1 in

the AR(p) model and is therefore more flexible as it includes more lags.

The cross-validation estimates of ρ2 vary over a wide range of values larger than one. The

more reasonable, smaller estimates of ρ2 lead to better results than the more extreme ones

(say those larger than 30). For example, consider the AR(AIC) model and the rolling window

estimation sample of 50 years, for the RMSE of the quarterly forecasting horizon (n = 4) we

have the estimate of 9.7 for ρ2. The estimate of 9.7 implies that observations coming from

a recession period receive almost 9 times more weight than observations coming from an

expansion period. Hence an observation in the recession year of 2000 is given approximately

the same weight as an observation in the 10 expansion years before 2000. Most importantly,

this weighting scheme leads to significant improvements in the RMSE as highlighted by the

ratio of 0.778. In contrast, the ρ2 estimate of 137.5 (obtained for the monthly forecast horizon

(n = 1) and the rolling window of 25 years) implies essentially that only the observations in

recession periods have an impact on the estimation; the data coming from expansion periods

are ignored. Such extreme estimates of ρ2 lead to poor results in out-of-sample forecasting

evaluations when compared to the standard MLE method.

To illustrate that the results reported in Table 1 are not driven by a single or by only

a few observations, we present in Figure 3 the accumulated RMSE statistics over the 18

months of our forecasting window of 2008 January to 2009 June, for both the MLE and

WMLE methods. Figure 3 shows these results for both the AR(1) and AR(AIC) model.

They clearly show that the performance of the WMLE method is preferred, in terms of

RMSE, for all time periods in the forecasting window. It is a strong empirical result that

the WMLE achieves better forecasting accuracy by outperforming the MLE over the entire

forecasting evaluation sample. Finally, the results for the weight function that combines

the exponential decaying weight (ρ1) and the binary weight for recession periods (ρ2) are

reported in Appendix C. From these results we can conclude that allowing for 0 < ρ1 ≤ 1

only leads to marginal improvements when compared to the results in Table 1.
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Figure 3: The accumulated root mean squared forecasting error from the MLE and WMLE methods during

the forecasting window of 2008–2009 June. These results are presented for both the AR(1) and AR(AIC)

models with a 50-year rolling window. The forecasts are computed for a forecasting horizon of n = 4 periods.

5.2 Forecasting Industrial Production During 2008-Expansion

Table 2: AR Model Forecasting: for Expansion Period,
with Exponential Decay (ρ1) and Binary (ρ2) Weights

n=1 n=4

Ratio ρ1 ρ2 Ratio ρ1 ρ2

(DM) (DM)

0.9708 0.977 53.6 0.9413* 1.000 2.2
(0.2748) (0.0986)

AR(AIC) 0.9126* 0.994 79.2 0.8709 0.998 8.8
(0.0983) (0.1609)

Table 2: WMLE forecasting results for monthly U.S. IPI growth rate. The ratios are based on the RMSE

statistics and a rolling window size of 25 years. The forecasts are computed for the expansion period 2001–

2007. For further explanations, we refer to Table 1.

Given the encouraging results as reported above, we have concluded that the WMLE

method can lead to improved forecasting performances for IPI growth during recession peri-

ods. We next investigate whether these improvements are not specific to the global financial

recession period only. Does the WMLE method also provide significant improvements in

forecasting accuracy during expansion periods? For this purpose, we replace the recession

indicator Zt by the expansion indicator (1−Zt) and take the NBER expansion period from

January 2001 to December 2007 as our forecasting evaluation sample. The results are re-
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ported in Table 2 that only focuses on the RMSE ratios and a rolling window size of 25

years; the full results, including the MAE ratios and the rolling window size of 50 years, are

provided in Appendix C. We learn from Table 2 that the WMLE method delivers higher

out-of-sample forecasting precisions in the evaluation sample when compared to those from

the MLE method. In two of these cases, the DM p-values show improvements that are

marginally statistically significant at the 90% confidence level.

In particular, Table 2 presents overall improvements in forecasting accuracy of up to 13%.

Although the magnitude of these improvements is not as impressive as in the recession case,

we still find statistically significant improvements in terms of the DM test. The improvements

are especially relevant when related to the forecasts of the AR(AIC) model which is a highly

competitive benchmark in many forecasting studies. In any case, improvements in forecasting

accuracy are expected to be smaller in the expansion case rather than in the recession case.

The main reason is that the number of observations originating from economic expansion

periods outnumbers by far the number of observations originating from recession periods.

As a result, the total weight that expansion periods have in the likelihood criterion is much

larger. It leads to ML parameter estimates that are already adequate for expansion periods.

As a result, there is a smaller margin for obtaining an improvement for the WMLE method.

5.3 Forecasting Other Economic Variables During 2008-Recession

To show that the WMLE method can also be effective for other relevant economic time

series in delivering notable improvements in forecasting accuracy, we present two additional

illustrations. We consider the monthly economic time series of the U.S. Unemployment Rate

and U.S. Total Non-Farm Payrolls and focus again on forecasting these variables during the

global recession of 2008. In Table 3 we report the RMSE and MAE ratios obtained from

the same out-of-sample forecasting study as done for U.S. Industrial Production. The tables

with full estimation results for the two time series, including the estimates for ρ1 and ρ2, are

presented in Appendix C.

In the upper part of Table 3, the RMSE and MAE ratios are presented for the monthly

time series of the U.S. Unemployment Rate. These results show that the WMLE is capable

of delivering significant reductions in the out-of-sample forecasts. In particular, we report
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RMSE reductions of up to 34% for the monthly forecasts from the AR(1) model, and MAE

reductions of up to 23% for the forecasts from the AR(AIC) model, both at a quarterly

horizon. The lower part of Table 3 is for the forecasting of the monthly time series of

the U.S. Non-Farm Payrolls during the global recession. For the AR(1) model, remarkable

reductions of up to 48% in the out-of-sample forecasting RMSE are obtained, and reductions

of more than 50% in the MAE, at both monthly and quarterly forecasting horizons. Even

more convincingly, for the AR(AIC) we find reductions of more than 25% in the RMSE and

over 40% in the MAE. Most of these reductions are statistically significant at any reasonable

confidence level.

Table 3: AR Model Forecasting: Other Economic Time Series

RMSE Ratio MAE Ratio

n=1 n=4 n=1 n=4

U.S. Monthly Unemployment Rate

AR(1) 0.6814*** 0.7746* 0.7162** 0.7421*
(0.0023) (0.0788) (0.0266) (0.0586)

AR(AIC) 0.8710 0.8480 0.8235* 0.7780
(0.1136) (0.2922) (0.0915) (0.1567)

U.S. Monthly Total Non-farm Payrolls

AR(1) 0.5212*** 0.5455** 0.4401*** 0.4582*
(0.0000) (0.0155) (0.0000) (0.0003)

AR(AIC) 0.6700*** 0.6369 0.6087*** 0.5659
(0.0060) (0.1715) (0.0009) (0.1538)

Table 3: WMLE forecasting results for two other economic time series. The forecasts are computed over

the sample period 2008 January - 2009 June. We refer to Table 1 for further explanations.

5.4 Forecasting During the COVID-19 Recession

We also study the forecasting performance of the WMLE method during the COVID-19

recession. The COVID-19 global recession is one of the deepest recessions in the world

history and it is characterized by a huge decline in economic activity in many sectors as well
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as increased uncertainty. Therefore, in our application, we consider two time series: the U.S.

Economic Policy Uncertainty Index (EPUI) proposed by Baker et al. (2016) and the first

differences of the U.S. Weekly Economic Index (WEI) constructed by Lewis et al. (2020).

The former is based on the U.S. newspapers and it characterizes policy uncertainty, while

the latter is constructed using ten indicators of the U.S. real economic activity which cover

consumer behavior, labor market, and production.

For the daily time series of the U.S. EPUI, we take the estimation and cross-validation

samples spanning from 1 February 2018 until 1 February 2020, and for the U.S. Weekly

Economic Index (WEI) from 5 January 2008 until 1 February 2020 with the rolling windows’

length of 550 days and 533 weeks, respectively. Then for the cross-validation, we have

180 days (around half a year) for the EPUI and 96 weeks (around 2 years) for the WEI.

Starting from 1 February 2020, right before the recession began, we then use 121 days

(3 months) and 33 weeks, respectively, for the out-of-sample forecasts. To compare the

forecasting performance we consider one-step-ahead forecasts (n = 1) and exponentially

decaying weights for the WMLE.

In Table 4 we report the RMSE and MAE ratios for the WMLE against the MLE method.

We find that for the U.S. EPUI series the WMLE method substantially outperforms the

standard MLE method and the improvements are of up to 16%. Moreover, this result is

significant at a 1% level. These improvements most likely occur due to the presence of a

structural break in the series as during the coronavirus pandemic the policy uncertainty

increased substantially since the middle of March 2020, shortly after the recession started.

Therefore, the data far in the past became less relevant for forecasting and receive much lower

weights since the end of March 2020. Furthermore, in Figure 4 the accumulated RMSEs for

MLE and WMLE are similar in February but, after the break, the accumulated RMSE based

on the MLE is much higher, which again supports the idea that after the break the AR model

is misspecified and then the WMLE method is preferable for forecasting. This is in line with

the findings of the Monte Carlo experiment B.3 with a structural break.

For the U.S. WEI, the WMLE method slightly outperforms the standard MLE based

on the RMSE but the difference in the forecast accuracies is not significant (Table 4). In

Figure 4 we also observe that at one moment the WMLE outperforms MLE but overall

their performance is comparable. This result could be explained by the fact that the series
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exhibited a large downturn at the end of March and after that quickly started bouncing

back. The WMLE method reacts quicker to the downturn but then the difference in forecast

accuracies disappears. This is in line with the theoretical findings discussed in Section 4 that

in some cases the WMLE method simplifies to a standard MLE. Overall we can conclude

that the use of the WMLE method appears to be highly beneficial for accurate economic

forecasting.

Table 4: AR Model Forecasting: COVID-19 recession

RMSE Ratio MAE Ratio
n=1 n=1

U.S. Daily Economic Policy Uncertainty Index

AR(1) 0.8184*** 0.8355***
(0.0014) (0.0062)

U.S. Weekly Economic Index

AR(1) 0.9875 1.0138
(0.6831) (0.8780)

Table 4: WMLE forecasting results for two economic time series during the COVID-19 recession. The

forecasts are computed over the sample period 1 February 2020–31 May 2020 and 1 February 2020–12

September 2020 for the EPUI and WEI, respectively. We refer to Table 1 for further explanations.
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Figure 4: The accumulated root mean squared forecasting error for the MLE and WMLE methods during

the forecasting window of 1 February 2020–31 May 2020 for the EPUI and 1 February 2020–12 September

2020 for the WEI. The forecasts are computed for a forecasting horizon of n = 1 periods.

30



6 Conclusion

We have introduced a new weighted maximum likelihood estimation (WMLE) method that

weighs the likelihood function contributions of individual observations differently for the

purpose to deliver optimal forecasting accuracy for linear autoregressive models. We have

shown how to estimate the optimal weights using a cross-validation method. We further

have investigated the asymptotic properties of WMLE and we have considered four Monte

Carlo experiments for studying the finite-sample properties. In empirical illustrations, we

have analyzed the forecast accuracy of the WMLE method compared to standard MLE for

several key economic indicators during the global recession of 2008–2009, the 2008 expansion,

and the COVID-19 recession. The analyses have revealed that the WMLE can substantially

improve forecast accuracy. In particular, forecast precision during recession periods can

be significantly improved by increasing the weights of the most recent observations or by

increasing the weights of observations corresponding to similar recession periods in the past.

We have made the case that econometricians may need to give past recessions more attention

for providing more accurate forecasts during periods of recessions and financial crises. In

further work we can extend the method towards other linear dynamic models, including

the autoregressive moving average model, and towards multivariate specifications such as

the vector autoregressive model. Nonlinear extensions of the model classes can also be

considered but may require an extended theoretical foundation.
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Technical Appendix

A Proofs of Theorems and Propositions

Proof of Proposition 1. Theorem 3.1 in Bougerol (1993) implies that the sequence {Xt}t∈N
initialized at X1 = x and generated according to (5) for every t ∈ N, converges exponentially

almost surely (e.a.s) to an SE limit sequence {Xt}t∈Z, initialized in the infinite past, as long

as {Vt}t∈Z is an SE nV -variate stochastic sequence, φ ∈ C1(X ,V), E log+ |φ(x, Vt)| < ∞

and E log supx∈X |φ′x(x, Zt)| < 0. The first two conditions are directly given by (i) and (ii).

The two remaining conditions are implied by (iii) and (iv). The four bounded moments of

{Xt}t∈Z are ensured by conditions (i)-(iv) (Blasques et al. (2014), Proposition SA.1).

The AR(p) representation follows trivially by re-writing the Xt as follows

Xt = φ(Xt−1, Vt)− εt + εt

=
φ(Xt−1, Vt)− εt
ψ0 + Ψ(L)Xt

(ψ0 + Ψ(L)Xt) + εt

where Ψ(L) denotes the lag polynomial Ψ(L) = ψ1L+ · · ·+ ψp(L
p), and finally defining

αi,t :=

(
φ(Xt−1, Vt)− εt

)
ψ0 + Ψ(L)Xt

ψi , for i = 0, 1, ..., p.

The SE nature of αi,t, i = 0, ..., p, follows directly from Krengel’s Theorem (Akcoglu and

Krengel (1979)) since every αi,t is a measurable function of SE variables.

Proof of Proposition 2. Under the conditions of Proposition 1, we have that {Xt}t∈Z is

weakly stationary. Since furthermore, the Gaussian AR(p) model is well specified, it fol-

lows immediately that the Gaussian MLE converges to the true parameter as S → ∞,

i.e. θ̂(1)
p→ θ∗0(1) = θ0 under the usual regularity conditions.

Application of a continuous mapping theorem as S →∞ implies that

ut(θ̂(1)2 ≡ X̂k+n

(
θ̂(1)

)
−Xk+n

p→ ut(θ
∗
0(1))2 ≡ X̂k+n

(
θ0

)
−Xk+n.

As a result, the limit as S → ∞ of the n-step-ahead MSFE forecast criterion based on H
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observed forecast errors under the true parameter θ0 = θ∗0(1) is given by

QH(1) :=
1

H

H∑
t=1

ut(θ
∗
0(1))2.

Since ut(θ0) ∀ t is a measurable function of {εt}t∈Z, which are SE, by Krengel’s theorem

(Akcoglu and Krengel (1979)) the sequence {ut(θ0)}t∈Z is also SE, and an application of the

ergodic theorem then yields

QH(1)
p→ Eut(θ∗0(1))2 as H →∞.

Finally, note that Algorithm 1 is always initialized at a weight matrix W satisfying ŵk,t =

1 ∀ k and ∀ t ≤ k. As a result, in the limit as S → ∞ and H → ∞, the probability that

ŵk,t 6= 1 for some (k, t) is given by

P(ŵk,t 6= 1) = P
(
Eut(θ∗0(wk))

2 < Eut(θ∗0(1))2
)

= 0

for any weight vector wk with some element wk,t 6= 1 at some pair (t, k).

Proof of Proposition 3. The first claim follows trivially from the design of Algorithm 1. The

second claim follows by noting that both the AR parameter vector θ̂ and the weight param-

eter vector ρ̂ satisfy a recursive relation

θ̂j+1 = θ̂(ρ̂(θ̂j)) and ρ̂j+1 = ρ̂(θ̂(ρ̂j)) ∀ j ≥ 1.

It is well known that the uniform unit bound on the derivative ensures the stability of the

recursion towards a unique global fixed point for any initialization.

Proof of Proposition 4. By Propositions 1 and 2, the MLE can only perform as well as the

WMLE if the model is well specified. As a result, the condition that MSFE(W∗) = MSFE(1)

ensures that the model is well specified under the null.

Under the conditions of Proposition 1, the data {Xt}t∈Z is SE with four bounded mo-

ments. Since the MLE and WMLE are constant over k, it follows immediately that both

uk(1)2 and uk(1)2 are weakly stationary. The DM assumptions are thus satisfied under H0
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since MSFE(W∗) = MSFE(1) ensures also that Ed̄k(wk) = 0.

B Simulation Experiment

We investigate the finite sample performance of the WMLE method in the context of AR(1)

model using Monte Carlo simulation. We consider four different data generating processes

(DGP) for the time series yt. Among these four different AR(1) processes, the autoregressive

coefficient could be time-invariant, time-varying, regime switching or subject to a structural

break. We aim to investigate in which cases the optimal weight function can improve the

forecasting accuracy of the MLE. We concentrate on one-step ahead forecasts based on

rolling-window method with window length k. Although we consider four different data

generating processes in the simulation experiment, our WMLE method is based on the

ordinary AR(1) model as given by

yt = α + βyt−1 + εt, (7)

where intercept α and autoregressive coefficient β are treated as fixed and unknown, and

where εt is an i.i.d. normally distributed variable with mean zero and unknown variance σ2
ε .

We consider two kinds of weight functions which we apply in Monte Carlo experiment:

the exponential weight function (wt = ρk−t1 , where ρ ∈ [0, 1]) and the binary weight function

with decay (wt = ρ
(k−t)
1 (1+(ρ2−1)·Zt), where Zt is the predetermined indicator for recession

period). The exponential weight function is applied in the first three experiments; while the

binary weight function with decay is applied in the last experiment.

B.1 Experiment 1: Time-Invariant AR(1) model

In the first experiment, the data are generated by an AR(1) model with time-invariant

parameters and the WMLE parameter, ρ1, is estimated based on Equation (7). The data

generation process (DGP) is specified by:

DGP: yt = α + βyt−1 + εt, εt ∼ N(0, σ2
ε ) (8)
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where α = 0.13, β = 0.5 and εts are i.i.d distributed with variance σ2
ε = 0.5. The exponential

weight function is considered when applying WMLE algorithm and we use Equation (7) with

the estimates, θ̂(wk(ρ̂)), from the WMLE to calculate the forecasts.

In Experiment 1, we generate a time series by the AR(1) model. The rolling-window

length, k, is selected to be 120 and forecasts are made for time period t = 701 . . . 760. The

generated data are considered as monthly data. For each simulated data set, we carry out

WMLE and use the resulting estimates to calculate the one-step-ahead forecasts. Since the

model is accurately specified we expect that the estimated WMLE parameter, ρ1, is close to

1, which means the original AR(1) model can already provide accurate forecasts.
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Figure 5: Simulation results for Experiment 1. The data are generated by an AR(1) model
and the WMLE parameter, ρ1, is estimated based on Equation (7). Exponential weight
function is applied. The left panel presents the simulation density of WMLE parameter, ρ1,
over 1,000 simulations. The rights panel presents the average sample weights and its 90%
confidence bound.

The left panel of Figure 5 shows the simulation density of WMLE parameter, ρ1, in

Experiment 1. The simulated parameters peak at 1. To be precise, the simulated parameter

mean is 0.9953 and the median is 1. In the setup, we restrict our weight parameter to be

between 0 and 1, so in this case we shall put more attention on the median of the simulation

results rather than the mean. The feature of the simulated distribution indicates that the

WMLE method can hardly improve forecasting accuracy. Such finding is consistent with

Proposition 2 in Section 4 which shows the weights converge in probability to unity when

the model is well specified. The right panel of Figure 5 shows the respective average sample

weight and its 95% confidence bounds.
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B.2 Experiment 2: Time-varying AR(1) model

In the second experiment, the time series are generated by an AR(1) model with time-varying

coefficient, β, and the WMLE parameter, ρ1, is estimated based on Equation (7). The data

generation process (DGP) is specified by:

DGP: yt = α + βtyt−1 + εt, εt ∼ N(0, σ2
ε ) (9)

βt = 0.5 + 0.5 sin(2πt/B), (10)

where α = 0.13 and εts are i.i.d distributed with variance σ2
ε = 0.5. The coefficient, β is

varying between 0 and 1 with respect to business cycle length B = 72. The exponential

weight function is considered when applying WMLE algorithm and we use Equation (7)

with the estimates, θ̂(wk(ρ̂)), from the WMLE to calculate the forecasts.
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Figure 6: Illustration of DGP for Experiment 2.

In Experiment 2, we generate a time series of size T = 760. The generated data are

considered as monthly data. We consider a DGP which includes a six-year business cycle,

which is the average U.S. business cycle length. The rolling-window size is set to be 60 which

is a bit shorter than the business cycle. An illustration of such DGP is shown in Figure 6.

Forecasts are made for time period t = 701 . . . 760. In this experiment, the time series imply

instability of the coefficients in the model and the original AR(1) model is misspecified, thus

the WMLE parameter ρ1 is expected to be smaller than 1. This means recent observations

are more relevant to the forecasts in the future.

The left panel in Figure 7 presents the simulated density of WMLE parameter, ρ1. The
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Figure 7: Simulation results of the WMLE method over 1,000 simulations. The data are
generated by an AR(1) model with the time-varying coefficient, β, and the WMLE param-
eter, ρ1, is estimated based on Equation (7). The exponential weight function is applied.
The left panel presents the simulated density of the WMLE parameter, ρ1. The right panel
shows the average sample weights and its 90% confidence bound.

right panel shows the average sample weights and its 90% confidence bound. The right panel

of Figure 7 shows that both the mean and the median of the simulated WMLE parameter,

ρ1, is smaller than 1. The general picture of Figure 7 is that when the time series contains

certain time-varying components in it and the considered forecasting model is misspecified,

the MLE method can improve forecasting accuracy by putting more weights to the recent

observation. Such finding is also consistent with Proposition 3 in Section 4.

B.3 Experiment 3: AR(1) Model with a Structural Break

In Experiment 3, the data are generated by an AR(1) model with a structural break in the

coefficient, β, and the WMLE parameter, ρ1, is estimated based on Equation (7). The data

generation process (DGP) is specified by:

yt = α + βtyt−1 + εt, εt ∼ N(0, σ2
ε ) (11)

βt = 0.2 + 0.7It, (12)

where α = 0.13 and εts are i.i.d normally distributed with variance σ2
ε = 0.5. The indicator

It is set to It = 0 for t < 420 and It = 1 for t ≥ 420. The exponential weight function is

considered when applying WMLE algorithm and we use Equation (7) with the estimates,
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θ̂(wk(ρ̂)), from the WMLE to calculate the forecasts.
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Figure 8: Illustration of DGP for Experiment 3.

In Experiment 3, we generate a time series with size T = 760. The rolling-window length,

τ , is selected to be 120. The break-point is set to t = 420. We evaluate the forecasting

performance in three different forecasting periods . The first forecasting period is the period

before the break-point (BB) starting from t = 360. The second one is the period right

after the break-point (JAB) starting from t = 444 and the last one is the period long after

(LAB) the break-point starting from t = 492. For all cases, we evaluate the forecasting

performances of 60 observations. The generated data are considered as monthly data. This

means, the length of forecasting period is 5 years. Figure 8 presents a realization of the

data from Experiment 3. When forecasts are calculated before the break point, the time

series is generated by an ordinary AR(1) model and the weighted ML method converges to

the classical ML method, while the simulated WMLE parameter is expected to be 1. When

forecasts are calculated just after the break point, the data before the break point are less

relevant for calculating future forecasts, thus the WMLE parameter, ρ1, will be significantly

smaller than 1. As the forecasting point is getting far away from the break point, the WMLE

parameter ρ1 moves generally back to 1 again.

Figure 9 presents the density of WMLE parameter, ρ1, in Experiment 3. The WMLE

method can hardly improve forecasting accuracy for the forecasting period before the break-

ing point because the forecasting model is well specified just as the finding of Experiment

1. For the forecasting period right after the structural break the simulated mean of the

WMLE parameter is 0.93485, which indicates more weight should be put on recent observa-

tion in order to provide better forecasts. Finally, for the period long after structural break,
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Figure 9: Simulation densities of WMLE parameter, ρ1, over 1,000 simulations. The data
are generated by an AR(1) model with a structural break in the coefficient, β, and the
WMLE parameter, ρ1, is estimated based on Equation (7). Exponential weight function is
applied. The upper-left panel presents the simulated densities for three forecasting periods:
the period before the breaking point (BB), the period just after the breaking point (JAB)
and the period long after the breaking point (LAB). The upper-right panel presents the
average sample weights and its 90% bound for forecasting period before the breaking point.
The bottom-left panel presents the average sample weights and its 90% bound for forecasting
period right after the breaking point. The bottom-right panel presents the average sample
weights and its 90% bound for forecasting period long after the breaking point.
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fewer observations before the breaking point are included in the estimation window and the

WMLE parameter tends to peak at 1 again.

B.4 Experiment 4: regime-switching AR(1) model

In Experiment 4, the data are generated by an AR(1) model with a two-state regime-

switching coefficient, β, and the WMLE parameters are estimated based on Equation (7).

The data generation process (DGP) is specified by:

yt = α + βtyt−1 + εt, εt ∼ N(0, σ2
ε ) (13)

βt = 0.9− 0.7It, (14)

where α = 0.13 and εts are i.i.d normally distributed with variance σ2
ε = 0.5. It is a

predetermined recession indicator. A value of 1 indicates a recessionary period; while a

value of 0 indicates an expansionary period. Model is estimated using the binary weight

function with decay.

series 

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

0

5

series 

Figure 10: Illustration of DGP for Experiment 4.

In Experiment 4, we generate a time series with size T = 720. The rolling-window length,

τ , is selected to be 120. Forecasts are made for time period t = 709 . . . 720. The generated

data are considered as monthly data. The time series we generated follows a 6-year business

cycle, where a 61-month expansion is followed by an 11-month recession. Notice that the

forecasting period we considered is the last recession period in the simulated series. An

illustration of the DGP is shown in Figure 10.
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The time series is estimated for (7) using WMLE algorithm with binary weight function

and we use the estimates, θ̂(wk(ρ̂)), from the WMLE to calculate the forecasts. Simulated

densities of the weight parameters using binary weight function with decay are presented

in Figure 11. The simulated binary parameter ρ2 tends to have value larger than 1, which

indicates that when calculating forecasts during recessions, more attention should be paid

to the past recessions as discussed in the previous section. Moreover, parameter ρ1 has peak

near one. To be precise, the simulated parameter mean is 0.9781 and the median is 1. This

result indicates that by using binary weight function we do not observe strong evidence of

decaying weights in the past observations.
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Figure 11: Simulation results of the WMLE method using binary weight function, over 1,000
simulations. The data are generated by an AR(1) model with a two-state regime switching
coefficient, β. The WMLE parameters are estimated based on Equation (7). The upper-left
panel presents the simulated density of parameter ρ1. The upper-right panel presents the
simulated density of parameter ρ2. The bottom panel presents the median sample weights
and its 90% bound for the selected forecasting period.

C Further Empirical Findings

We provide further (rolling-window) forecasting results for our empirical illustrations on the

basis of different weight functions within the WMLE procedure. Tables 5 and 6 present the

forecasting results for the monthly time series of U.S. IPI growth rate and obtained from

the AR(1) model and the WMLE procedure with binary and decaying weights. Table 6

presents the results for an expansion period. Tables 7 and 8 present the forecasting results

for the monthly time series of U.S. Unemployment Rate and U.S. Total Non-farm Payrolls,

respectively.
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Table 5: AR Model Forecasting Results: Binary Weight with Decaying

RMSE MAE

n=1 n=4 n=1 n=4

Window Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
25-year 1.0908 1.000 35.5 0.8297* 1.000 27.7 0.8310 1.000 31.5 0.7919* 1.000 27.1

(0.3446) (0.0679) (0.1564) (0.0500)
50-year 0.9108** 1.000 15.7 0.7423** 1.000 12.3 0.8007*** 1.000 13.8 0.5975*** 1.000 11.1

(0.0268) (0.0244) (0.0011) (0.0000)
AR(AIC)
25-year 1.4691 0.999 119.0 0.9189 1.000 11.1 1.4131 1.000 250.0 0.9450 1.000 8.8

(0.1481) (0.2707) (0.1754) (0.3918)
50-year 0.9293 0.998 15.9 0.7782* 1.000 9.7 0.8427** 1.000 25.7 0.6955*** 1.000 11.5

(0.1292) (0.0523) (0.0153) (0.0021)

Table 5: Rolling-window forecasting results for monthly U.S. IPI growth rate. Entries Ratio show the root mean-squared-forecast-
error (RMSE) or mean-absolute-error (MAE) using the WMLE method for the AR model relative to RMSE or MAE using normal
ML method. Columns labelled ρ1 and ρ2 show the optimal weight parameter for the combined weight function. The forecasts were
computed over the sample period 2008Jan–2009June.
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Table 6: AR Model Forecasting Results: Binary Weight with Decaying, Expansion Period

RMSE MAE

n=1 n=4 n=1 n=4

window length Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
25-year 0.9708 0.977 53.6 0.9413* 1.000 2.2 0.9652 0.967 32.5 1.0000 1.000 1.0

(0.2748) (0.0986) (0.2397) (0.8536)
50-year 0.9605 0.977 129.3 1.0000 1.000 1.0 0.9530 0.967 32.2 1.0000 1.000 1.0

(0.2456) () (0.1943) ()
AR(AIC)
25-year 0.9126* 0.994 79.2 0.8709 0.998 8.8 0.9430 0.990 71.9 0.9154 0.993 12.6

(0.0983) (0.1609) (0.1452) (0.1632)
50-year 0.9727 0.990 47.3 1.0155 0.999 1.0 0.9487 0.989 71.8 1.0686 0.994 1.0

(0.2604) (0.8852) (0.1332) (0.9716)

Table 6: Rolling-window forecasting results for monthly U.S. IPI growth rate. Entries Ratio show the root mean-squared-forecast-
error (RMSE) or mean-absolute-error(MAE) using WMLE method of the AR model relative to RMSE or MAE using normal ML
method. Columns labelled ρ1 and ρ2 show the optimal weight parameter for the combined weight function. The forecasts were
computed over the sample period 2001Jan–2007Dec.
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Table 7: AR Model Forecasting Results: U.S. Unemployment Rate

RMSE MAE

n=1 n=4 n=1 n=4

Window Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
25-year 0.6626*** 1.000 72.3 0.7449* 1.000 79.8 0.7095** 0.999 202.9 0.7596* 1.000 300.7

(0.0009) (0.0541) (0.0153) (0.0642)
50-year 0.6814*** 0.996 40.8 0.7746* 1.000 15.3 0.7162** 0.994 482.2 0.7421* 1.000 38.8

(0.0023) (0.0788) (0.0266) (0.0586)
AR(AIC)
25-year 0.8694 1.000 7.2 1.0291 0.946 1.0 0.9159 1.000 6.8 0.8398 0.952 1.0

(0.1010) (0.5258) (0.2351) (0.3481)
50-year 0.8710 1.000 13.0 0.8480 0.998 14.3 0.8235* 1.000 39.7 0.7780 1.000 19.5

(0.1136) (0.2922) (0.0915) (0.1567)

Table 7: Rolling-window forecasting results for monthly U.S. Unemployment. Entries Ratio show the root mean-squared-forecast-
error(RMSE) or MAE using WMLE method of the AR model relative to RMSE or MAE using normal ML method. Columns
labelled ρ1 and ρ2 show the optimal weight parameter for the combined weight function. The forecasts were computed over the
sample period 2008Jan–2009June.
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Table 8: AR Model Forecasting Results: U.S. Total Non-farm Payrolls

RMSE MAE

n=1 n=4 n=1 n=4

Window Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
25-year 0.5860*** 1.000 66.5 0.7019 1.000 56.0 0.5027*** 1.000 83.3 0.5943* 1.000 58.1

(0.0010) (0.1672) (0.0002) (0.0883)
50-year 0.5212*** 1.000 18.4 0.5455** 1.000 18.0 0.4401*** 1.000 33.4 0.4582*** 1.000 25.3

(0.0000) (0.0155) (0.0000) (0.0003)
AR(AIC)
25-year 0.7688** 0.990 7.4 0.8236 1.000 32.1 0.6393*** 0.992 7.5 0.7253 0.997 16.4

(0.0348) (0.2893) (0.0059) (0.1954)
50-year 0.6700*** 1.000 8.7 0.6369 0.990 39.0 0.6087*** 1.000 6.4 0.5659 0.989 23.2

(0.0060) (0.1715) (0.0009) (0.1538)

Table 8: Rolling-window forecasting results for monthly U.S. Total Non-farm Payrolls. Entries Ratio show the root mean-squared-
forecast-error (RMSE) or MAE using WMLE method of the AR model relative to RMSE or MAE using normal ML method.
Columns labelled ρ1 and ρ2 show the optimal weight parameter for the combined weight function. The forecasts were computed
over the sample period 2008Jan-2009June.
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