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Abstract. We offer a theory of how the combination of budget constraints and insurance 

drives up prices. A natural context for our theory is the health care market, where drug 

prices can be very high. Our model predicts that monopoly prices for orphan drugs are 

inversely related to the prevalence up until a maximum price. This is supported by 

empirical evidence in the literature. As a result, prices of drugs sold by a monopoly 

treating rare serious diseases are doomed to go sky high. 
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1. Introduction 

There is widespread concern about drug prices.1 According to AHIP (2016)2 almost half 

of the studied 150 specialty medications has a price of more than 100,000$ per patient 

per year. The yearly costs of some of those drugs exceed 500,000$. Clearly, this exceeds 

the budget of many households. This is also shown by Shrank et al. (2006), Gagne et al. 

(2014), and Kesselheim et al. (2016). They report that, at least in the US, a considerable 

group of patients cannot even afford to follow prescribed treatments because the drugs 

are too expensive. Many of these drugs treat rare diseases. Prices are especially high for 

medication treating rare diseases. For instance, Messori et al. (2010) and Medic et al. 

(2017) show that prices for orphan drugs3 in European countries are inversely related to 

the prevalence of the disease. 

We offer a simple theory which explains how budget constraints and optional 

insurance interact to drive up prices. In our model, this leads to a largely inverse relation 

between prices and prevalence. The market for health care is a perfect and relevant 

example of where this can occur. To simplify our exposition, we frame our model within 

this context. 

Consider a monopoly selling an orphan drug and consider the effects of having that 

drug covered by insurance. First, it reduces financial risks. For simplicity, we ignore this 

by assuming risk neutral individuals.4 Second, it allows individuals, who cannot afford 

the drug ex post, to buy insurance policy at a much lower price ex ante, see, e.g., De Meza 

(1983) and Nyman (1999). In a perfectly competitive insurance market, if only 1 out of 

10 individuals gets ill, the policy price is only 1/10th of the drug price. Those who can 

afford the insurance but not the drug, gain access to the drug through the insurance. They 

will choose to buy insurance provided that the price of the drug does not exceed its 

 
1 See, e.g., “Poll: Voters are angry about prescription drug costs”, Opinion, The Hill, 05/24/2019, and “What 
to expect in EU health in the year ahead: drug pricing will dominate the debate”, Politico Europe, 
12/18/2019. 
2 AHIP (2016), High-Priced Drugs: Estimates of Annual Per-Patient Expenditures for 150 Specialty 
Medications. AHIP is the US trade association of the health insurance community.  
3 The definition of orphan drugs is country-specific, but always refers to cures for diseases which both very 
rare and are either life threatening or have other severe consequences for the quality of life. See, e.g., 
McCabe et al. (2005), for orphan drugs’ prevalence thresholds in the US, EU, UK, Japan, and Australia. 
4 Our main results continue to hold with risk averse individuals. 



expected benefit to patients. In this way insurance expands the demand for the drug. 

Another consequence is that every time the prevalence rate of the disease is halved, the 

price of the drug can double without affecting the insurance price and, thus, the demand. 

We will see that the optimal price of the firm approximates this inverse relation to the 

prevalence of the disease. 

Table 1 shows the lifetime prevalence (LTP) for some diseases which can be fatal or 

otherwise detrimental to a patient’s well-being. E.g., the odds that an individual will get 

multiple sclerosis (MS) is about 0.00189. Our model suggests that if the expected 

disutility of MS is large compared to the average income in society, inclusion of MS 

medication in insurance could drive the price up by roughly a factor 500, with a maximum 

of the expected disutility of a MS patient.5 

The intuition for our results is that health insurance expands what an individual can 

afford. This is relevant only if the benefit derived from the good exceeds the individual’s 

ability to pay. With health, more than with common goods like apples, purchasing 

decisions are driven by what the patient can afford rather than by taste. Individuals only 

buy the policy or the drug if they have enough budget. This is illustrated by a considerable 

empirical literature which reports that individual income/budget is the most significant 

and powerful driver for different sorts of insurance (see, e.g., Yuan and Jiang 2015 for 

China).  

 
5 Our model considers the case of a single effective drug, supplied by a monopolist, in the absence of 
countervailing buyer power. 

Disease LTP Source 
Breast Cancer 0.125 Feuer et al. (1993) 
Congenital Heart Disease 0.01311 (children), 

0.0612 (adults)  
Marelli et al. (2014) 

Active epilepsy 0.004 MacDonald et al. (2000) 
Parkinson’s Disease 0.002 MacDonald et al. (2000) 
Amyotrophic Lateral Sclerosis 0.0008 – 0.0043 Johnston et al. (2006) 
Multiple Sclerosis 0.00189 Eaton et al. (2010) 
Crohn’s Disease 0.00230 Eaton et al. (2010) 
Pemphigus 0.00007 Eaton et al. (2010) 
Primary Biliary Cirrhosis 0.00013 Eaton et al. (2010) 

Table 1. Lifetime Prevalence (LTP) for selected diseases 



This limits the scope of our analysis to diseases which are severe. Cures for throat 

aches or other minor complaints are unlikely to be affected by the mechanism described 

in this paper. Given that the disease is severe enough, the prevalence of the disease and 

its severity play different roles. The rarity of a disease affects the extent to which this 

mechanism increases the price. The expected benefit of the drug determines the maximum 

price the drug can obtain. 

The literature offers other explanations for why drugs for rare diseases tend to be 

expensive. One explanation, and this is what pharmaceutical companies often claim, is 

that these drugs are expensive because they need to recover development costs in a 

smaller market (see, e.g., Bosanquet et al., 2003). This is a sunk cost fallacy. An 

alternative explanation is that high development costs lead to less entry, especially in 

smaller markets. As a result, firms in smaller markets are less likely to face competition, 

which results in higher prices. We are not satisfied with this explanation for two reasons. 

First, for the case of orphan drugs, most markets are a monopoly (see, e.g. Simoens, 

2011), so there is little variation in the amount of competition. Second, Kesselheim (2016) 

does not find a positive correlation between development costs and prices. As 

development costs drive the entry decision, such a correlation should exist if the market 

entry decision causes the inverse relationship between prices and market size (disease 

prevalence). 

There is a substantial literature on drug prices from other perspectives. A large part 

of this literature studies price controls and regulations; see, e.g., Scott Morton (1997), 

Duggan and Scott Morton (2006 and 2010), Sood et al. (2009), Brekke et al. (2011). In 

our model we focus on a monopolist that is free of such controls. Another part analyses 

how drug manufacturers’ market power is affected either by the size and bargaining 

power of private insurers (see, e.g., Lakdawalla and Sood 2009, and Lakdawalla and Yin 

2015) or through market competition (see, e.g., Gaynor et al. 2000). In our model, we 

consider a simple case of a price-setting monopoly, without competition or countervailing 

market power. This makes our model especially relevant for orphan drugs. Lakdawalla 

(2018) provides an overview on these topics and many others, related to the economics 

of the pharmaceutical industry. Our model provides a theoretical explanation of why the 

drug prices and disease prevalence can be inversely related. 

Finally, the access provided through insurance was discussed earlier by, among 

others, De Meza (1983) and Nyman (1999). However, unlike this earlier literature, we 



explore the consequences on the pricing of the products accessed via the insurance. Our 

findings clearly show the relevance of this approach. 

The paper is organized as follows. In the following section, we provide an example 

which illustrates the main idea of the paper. The model is presented in Section 3 and is 

then analyzed in Section 4. Section 5 concludes and discusses some remaining issues. 

Appendix contains all proofs. 

2. Example 

Consider a unit mass of risk neutral individuals. Each individual has a budget 𝑤𝑤, and 

individual budgets are uniformly distributed on the [0,1] interval. Each individual has a 

chance 𝑞𝑞 ∈ �0, 1
2
� of becoming ill, a patient. An individual who does not fall ill is healthy 

and receives utility 𝑢𝑢H(𝑤𝑤) = 𝑤𝑤. The utility of an untreated patient is 

𝑢𝑢S(𝑤𝑤) = 𝑢𝑢H(𝑤𝑤) − 𝑠𝑠 = 𝑤𝑤 − 𝑠𝑠, 

where 𝑠𝑠 is the utility loss due to the disease. For this example, we assume that the 

consequences of getting this disease are severe, namely 𝑠𝑠 > 1. Consequently, the 

individual’s willingness to pay for preventing this loss is equal to his budget. 

There is a cure for the disease, a drug, which is supplied by a monopolist. The 

monopolist has zero production cost and sets price 𝑝𝑝. Buying the drug cures the disease, 

preventing utility loss 𝑠𝑠. The utility of a patient who buys the drug is 

𝑢𝑢D(𝑤𝑤,𝑝𝑝) = 𝑢𝑢H(𝑤𝑤 − 𝑝𝑝) = 𝑤𝑤 − 𝑝𝑝  

Without insurance, an individual buys the drug if and only if he is a patient, if he can 

afford the drug, i.e. 𝑝𝑝 ≤ 𝑤𝑤, and if the price does not exceed the benefit, i.e. 𝑝𝑝 ≤ 𝑠𝑠. Thus, 

the demand for the drug in case of no insurance is 

𝐷𝐷NI(𝑝𝑝) = 𝑞𝑞 ℙ𝕣𝕣{𝑝𝑝 ≤ 𝑠𝑠,  𝑝𝑝 < 𝑤𝑤} = �𝑞𝑞
(1 − 𝑝𝑝),  if 𝑝𝑝 ≤ 1

              0,  if 𝑝𝑝 > 1  

Maximizing monopoly profit 𝜋𝜋NI(𝑝𝑝) = 𝑝𝑝𝐷𝐷NI(𝑝𝑝) yields optimal monopoly price 𝑝𝑝NI = 1
2
 

and a profit level of 𝜋𝜋NI(𝑝𝑝NI) = 1
4
𝑞𝑞. 

Suppose now that a competitive insurance market is available, where individuals can 

buy full insurance against premium r, 𝑟𝑟 = 𝑞𝑞𝑞𝑞. In return, insured patients receive the drug 

for free. Insured individual receives utility 

𝑢𝑢I(𝑤𝑤, 𝑟𝑟) = 𝑢𝑢H(𝑤𝑤 − 𝑟𝑟) = 𝑤𝑤 − 𝑟𝑟  



Individuals with budget 𝑤𝑤 ∈ [0, 𝑟𝑟) can afford neither drug nor insurance. They remain 

uninsured and untreated if ill. Individuals with budget 𝑤𝑤 ∈ [𝑟𝑟,𝑝𝑝) can only afford the 

insurance, and individuals with budget 𝑤𝑤 ∈ [𝑝𝑝, 1] can afford both. 

If 𝑝𝑝 < 𝑠𝑠, the expected benefit of the insurance, 𝑞𝑞𝑞𝑞, exceeds its cost, 𝑟𝑟 = 𝑞𝑞𝑞𝑞. That 

means that all individuals with budget 𝑤𝑤 ∈ [𝑟𝑟,𝑝𝑝) become insured and, therefore, acquire 

the drug from the monopolist. All individuals with budget 𝑤𝑤 ∈ [𝑝𝑝, 1], if there are any, 

either buy the policy when healthy or buy the drug if they become ill. In both cases, they 

get the drug when ill. 

If 𝑝𝑝 > 𝑠𝑠 > 1, individuals buy neither insurance (because its cost exceeds the benefit) 

nor drug (its price is above the budget). Thus, the total demand for the drug in case of 

insurance is 

𝐷𝐷I(𝑝𝑝) = 𝑞𝑞 ℙ𝕣𝕣{𝑝𝑝 ≤ 𝑠𝑠,  𝑞𝑞𝑞𝑞 ≤ 𝑤𝑤} = �𝑞𝑞(1 − 𝑞𝑞𝑞𝑞),  if 𝑞𝑞𝑞𝑞 ≤ 1 and 𝑝𝑝 ≤ 𝑠𝑠
0,  otherwise   

Maximizing monopoly profit 𝜋𝜋I(𝑝𝑝) = 𝑝𝑝𝐷𝐷I(𝑝𝑝) yields optimal monopoly price 𝑝𝑝I =

min � 1
2𝑞𝑞

, 𝑠𝑠� and a profit level of 

𝜋𝜋I(𝑝𝑝I) = �
                   14,  if 2𝑞𝑞𝑞𝑞 > 1
𝑞𝑞𝑞𝑞(1 − 𝑞𝑞𝑞𝑞),  otherwise

  

This leads to two important observations. 

First, if 𝑠𝑠 is large enough (𝑠𝑠 ≥ 1
2𝑞𝑞

), the insurance premium 𝑟𝑟 = 1
2
, is equal to the 

drug’s price in the case of no insurance, 𝑝𝑝NI = 1
2
. Therefore, for large enough values of 𝑠𝑠, 

insurance does not help additional people to get access to the drug. Regardless of whether 

insurance is available, the only people who have access to the drug are those who have a 

budget of ½ or more. However, in the case without insurance they pay 𝑝𝑝NI = 1
2
 

conditional upon being ill. With insurance, they pay 𝑟𝑟 = 1
2
 regardless of their health. 

Consequently, insurance raises the revenue of the firm by factor 1/𝑞𝑞. 

Second, this simple example shows that the optimal monopoly drug price 𝑝𝑝I in case 

of insurance and the incidence6 𝑞𝑞 are inversely related, provided 𝑝𝑝I ≤ 𝑠𝑠. Every time the 

incidence is halved, the optimal price doubles, until 𝑝𝑝I reaches its upper bound 𝑠𝑠. The 

reason for this result is straightforward. The optimal price is wholly determined by the 

budget constraints of the population, and the insurance relaxes it. If the probability of 

 
6 In the static environment of this paper, both the incidence and the prevalence equal 𝑞𝑞. 



becoming ill is halved, the policy price is also halved. This creates additional demand, 

resulting in stronger incentives for the firm to raise its price. Effectively, the policy price 

𝑟𝑟 plays the same role as the drug price 𝑝𝑝 does without insurance. Eventually, when the 

incidence is so low that 1
2𝑞𝑞

> 𝑠𝑠, the optimal price is 𝑠𝑠. 

3. Model 

The model generalizes the example of the previous section. As before, there is a mass of 

individuals. Each individual faces an exogeneous probability 𝑞𝑞 ∈ (0,1) of becoming ill, 

a patient, as a result of a severe disease. Otherwise the individual is healthy. In contrast 

to the previous example, individuals do not only differ in income but also in the health 

damage caused by the disease if ill. There is a monopolist, a supplier of a drug that is the 

only cure for the disease. The drug cures the disease immediately and fully.7 The 

monopolist sets price 𝑝𝑝 to maximize its profits and has no costs of production. Finally, 

there may exist an insurance market. If it exists, individuals can also buy a policy that 

covers the treatment cost, i.e., drug price 𝑝𝑝, in case of illness. Policy price 𝑟𝑟 is competitive 

𝑟𝑟 ≝ 𝑞𝑞𝑞𝑞  

so that insurance companies get zero profit. If an insured becomes a patient, he acquires 

the drug and the insurance company pays the bill. 

Ex ante, individuals are characterized by (𝑤𝑤, 𝑠𝑠) ∈ ℜ+
2 , where 𝑤𝑤 is the budget of an 

individual and 𝑠𝑠 is his utility loss in case of getting the disease and not being cured by the 

drug. Both 𝑤𝑤 and 𝑠𝑠 are independent random variables that follow distributions 𝐹𝐹𝑤𝑤(𝑥𝑥) and 

𝐹𝐹𝑠𝑠(𝑥𝑥) on [0,∞). The corresponding distribution density functions and hazard rates exist 

and are denoted by 

𝑓𝑓𝑤𝑤(𝑥𝑥) ≝ 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐹𝐹𝑤𝑤(𝑥𝑥), 𝑓𝑓𝑠𝑠(𝑥𝑥) ≝ 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐹𝐹𝑠𝑠(𝑥𝑥), and 

𝜆𝜆𝑤𝑤(𝑥𝑥) ≝ 𝑓𝑓𝑤𝑤(𝑥𝑥)
1−𝐹𝐹𝑤𝑤(𝑥𝑥), 𝜆𝜆𝑠𝑠(𝑥𝑥) ≝ 𝑓𝑓𝑠𝑠(𝑥𝑥)

1−𝐹𝐹𝑠𝑠(𝑥𝑥) 

We assume both 𝑓𝑓𝑤𝑤(𝑥𝑥) and 𝑓𝑓𝑠𝑠(𝑥𝑥) are continuous, and we denote population means 𝔼𝔼[𝑤𝑤] 

and 𝔼𝔼[𝑠𝑠] by: 

𝑠̅𝑠 ≝ 𝔼𝔼[𝑠𝑠] = ∫ 𝑠𝑠 𝑑𝑑𝑑𝑑(𝑠𝑠)∞
0  and 𝑤𝑤� ≝ 𝔼𝔼[𝑤𝑤] = ∫ 𝑤𝑤 𝑑𝑑𝑑𝑑(𝑤𝑤)∞

0  

 
7 The assumption of full recovery is not essential for our results but simplifies the analysis. 



We assume that, on average, 𝑠𝑠 is much larger than 𝑤𝑤, i.e., 𝑠̅𝑠 ≫ 𝑤𝑤� . Under this assumption, 

individuals suffer a much greater loss of utility in case of illness than the loss of the 

average population budget (for some individuals, however, it can be true that 𝑠𝑠 < 𝑤𝑤�  or 

𝑤𝑤 > 𝑠̅𝑠). In other words, we consider a severe disease which is likely to be fatal or results 

in the loss of basic functionalities. Whenever necessary we make additional assumptions 

on the distributions. 

Individuals receive the following payoffs. Healthy uninsured individuals receive 𝑢𝑢H, 

where 

𝑢𝑢H(𝑤𝑤) ≝ 𝑤𝑤  

Uninsured patients who do not buy the drug receive utility 𝑢𝑢S: 

𝑢𝑢S(𝑤𝑤, 𝑠𝑠) ≝ 𝑢𝑢H(𝑤𝑤)− 𝑠𝑠 = 𝑤𝑤 − 𝑠𝑠  

Uninsured patients who buy the drug are cured, and receive utility 𝑢𝑢D: 

𝑢𝑢D(𝑤𝑤,𝑝𝑝) ≝ 𝑢𝑢H(𝑤𝑤 − 𝑝𝑝) = 𝑤𝑤 − 𝑝𝑝  

Finally, insured individuals are always cured if ill and receive expected utility 𝑢𝑢I: 

𝑢𝑢I(𝑤𝑤, 𝑟𝑟) ≝ 𝑞𝑞𝑢𝑢D(𝑤𝑤, 𝑟𝑟) + (1 − 𝑞𝑞)𝑢𝑢H(𝑤𝑤 − 𝑟𝑟) = 𝑤𝑤 − 𝑟𝑟  

The timing of the model is as follows. First, individuals learn their budgets, 𝑤𝑤. Second, 

if an insurance market exists, individuals decide whether to buy the insurance. Third, 

individuals learn whether they are patients and, if so, they learn 𝑠𝑠. Fourth, insured patients 

get the drug. Uninsured patients decide whether to buy the drug. Finally, payoffs are 

realized. 

In the next section, we compute and compare the monopoly prices in the absence of 

the insurance market, and when the insurance market is present. 

4. Analysis 

Consider the case without insurance. Let the monopoly charge price 𝑝𝑝 > 0 for the drug. 

Only individuals with 𝑤𝑤 > 𝑝𝑝 can afford the drug, and only individuals with 𝑠𝑠 > 𝑝𝑝 are 

willing to buy the drug.8 Thus, the demand for the drug is 

𝐷𝐷NI(𝑝𝑝) = 𝑞𝑞 ℙ𝕣𝕣{𝑠𝑠 > 𝑝𝑝,  𝑤𝑤 > 𝑝𝑝} = 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝐹𝐹𝑠𝑠(𝑝𝑝)�  

and the monopoly profit in this case is 

 
8 In the demand expressions that follow, we use strict inequalities for notational simplicity. 



𝜋𝜋NI(𝑝𝑝) ≝ 𝐷𝐷NI(𝑝𝑝)(𝑝𝑝 − 𝑐𝑐) = 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝐹𝐹𝑠𝑠(𝑝𝑝)�(𝑝𝑝 − 𝑐𝑐)  

Maximizing 𝜋𝜋NI(𝑝𝑝) yields the following result. 

Proposition 1. 

In the absence of the insurance market, the profit-maximizing monopoly price 𝑝𝑝𝑁𝑁𝑁𝑁 always 

exists, is generically unique, increases in 𝑐𝑐, and satisfies the following condition: 

𝑝𝑝NI = 1
𝜆𝜆𝑤𝑤(𝑝𝑝NI)+𝜆𝜆𝑠𝑠(𝑝𝑝NI)

+ 𝑐𝑐 (1) 

When the hazard rates 𝜆𝜆𝑤𝑤(𝑝𝑝) and 𝜆𝜆𝑠𝑠(𝑝𝑝) are non-decreasing, equation (1) uniquely 

determines 𝑝𝑝NI (for exponential distributions, where 𝜆𝜆𝑤𝑤(𝑝𝑝) and 𝜆𝜆𝑠𝑠(𝑝𝑝) are constant, (1) 

defines 𝑝𝑝NI explicitly). Optimal monopoly price 𝑝𝑝NI is increasing in 𝑐𝑐 and independent 

of 𝑞𝑞, which is both the incidence and prevalence of the disease in our model. Incidence 𝑞𝑞 

only determines the size of the drug market. In contrast, 𝑞𝑞 plays a crucial role when an 

insurance market is present. 

Now consider the case where individuals can buy insurance. Individuals with budget 

𝑤𝑤 ∈ (𝑟𝑟,𝑝𝑝) can either buy the policy, which yields utility 𝑢𝑢I(𝑤𝑤, 𝑟𝑟), or remain uninsured, 

which yields expected utility 

(1 − 𝑞𝑞)𝑢𝑢H(𝑤𝑤) + 𝑞𝑞 𝔼𝔼[𝑢𝑢S(𝑤𝑤)] = 𝑤𝑤 − 𝑞𝑞𝑠̅𝑠  

Clearly, these individuals only buy insurance if 𝑟𝑟 ≤ 𝑞𝑞𝑠̅𝑠, i.e., if 𝑝𝑝 ≤ 𝑠̅𝑠. Expected utility of 

individuals with 𝑤𝑤 > 𝑝𝑝 from remaining uninsured is 

(1 − 𝑞𝑞)𝑢𝑢H + 𝑞𝑞 𝔼𝔼[max{𝑢𝑢S,𝑢𝑢D}] = 𝑤𝑤 − 𝑞𝑞 𝔼𝔼[min{𝑠𝑠,𝑝𝑝}] > 𝑤𝑤 − 𝑞𝑞𝑞𝑞 = 𝑢𝑢I  

These individuals do not buy insurance. They buy the drug only if they become ill and 

the realized value of 𝑠𝑠 is larger than 𝑝𝑝. In other words, not buying insurance at price 𝑟𝑟 =

𝑞𝑞𝑞𝑞 has an option value: a patient whose 𝑠𝑠 turns out to be smaller than 𝑝𝑝 prefers not to buy 

the drug. 

Thus, the demand for drugs from the insured for 𝑝𝑝 ≤ 𝑠̅𝑠 is 

𝐷𝐷I(𝑝𝑝) = 𝑞𝑞 ℙ𝕣𝕣{𝑞𝑞𝑞𝑞 < 𝑤𝑤 < 𝑝𝑝} = 𝑞𝑞�𝐹𝐹𝑤𝑤(𝑝𝑝) − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)� (2) 

and 𝐷𝐷I(𝑝𝑝) = 0 for 𝑝𝑝 > 𝑠̅𝑠. The demand for drugs from the uninsured is 

𝐷𝐷U(𝑝𝑝) = 𝐷𝐷NI(𝑝𝑝) = 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝐹𝐹𝑠𝑠(𝑝𝑝)� (3) 

for any 𝑝𝑝. Note that 𝐷𝐷U(𝑝𝑝) > 0 even if 𝑝𝑝 > 𝑠̅𝑠. This demand comes from wealthy 

uninsured patients whose health damage 𝑠𝑠 is high. The profits from selling to respectively 

insured and uninsured patients are: 



𝜋𝜋I(𝑝𝑝) = �𝑞𝑞�𝐹𝐹𝑤𝑤(𝑝𝑝) − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐), for 𝑝𝑝 ≤ 𝑠̅𝑠
0,                                                 for 𝑝𝑝 > 𝑠̅𝑠

 , and  

𝜋𝜋U(𝑝𝑝) = 𝜋𝜋NI(𝑝𝑝) = 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1 − 𝐹𝐹𝑠𝑠(𝑝𝑝)�(𝑝𝑝 − 𝑐𝑐)  

The total monopoly profit is, therefore 

𝜋𝜋T(𝑝𝑝) ≝ �𝜋𝜋
I(𝑝𝑝) + 𝜋𝜋NI(𝑝𝑝),  if 𝑝𝑝 ≤ 𝑠̅𝑠

𝜋𝜋NI(𝑝𝑝),                  if 𝑝𝑝 > 𝑠̅𝑠
  

Figure 1 illustrates which individual types buy the drug through insurance (contributing 

to 𝐷𝐷I(𝑝𝑝)) and which types buy the drug on their own (contributing to 𝐷𝐷U(𝑝𝑝)). 

If insurance is available, the monopoly has two options. First, it can charge price 𝑝𝑝 >

𝑠̅𝑠 (so that no one buys insurance) and sell only to uninsured patients. Second, it can charge 

price 𝑝𝑝 ≤ 𝑠̅𝑠 and benefit from the insurance market too. Both options can be optimal. The 

latter case, 𝑝𝑝 ≤ 𝑠̅𝑠, is the most interesting situation. A sufficient condition for this case is 

that the monopoly price without insurance, 𝑝𝑝NI, does not exceed the average benefit of 

the drug, 𝑠̅𝑠. If 𝑝𝑝NI > 𝑠̅𝑠, then it is possible that the monopolist prefers selling only to 

wealthy patients. The relationship between 𝑝𝑝NI and 𝑠̅𝑠 depends on the production cost of 

the drug, 𝑐𝑐. 

Lemma 1. 

For given distributions 𝐹𝐹𝑠𝑠(𝑥𝑥) and 𝐹𝐹𝑤𝑤(𝑥𝑥), there is a threshold cost level 𝑐𝑐̅ ∈ (0, 𝑠̅𝑠) such 

that 𝑝𝑝𝑁𝑁𝑁𝑁 > 𝑠̅𝑠 when 𝑐𝑐 > 𝑐𝑐̅, 𝑝𝑝𝑁𝑁𝑁𝑁 < 𝑠̅𝑠 when 𝑐𝑐 < 𝑐𝑐̅, and 𝑝𝑝𝑁𝑁𝑁𝑁 = 𝑠̅𝑠 when 𝑐𝑐 = 𝑐𝑐̅. 



For illustration, we provide an explicit expression for 𝑐𝑐̅ for exponential distributions, 

where 𝜆𝜆𝑤𝑤(𝑝𝑝) and 𝜆𝜆𝑠𝑠(𝑝𝑝) are constant. In this case, 𝜆𝜆𝑠𝑠 = 1
𝑠̅𝑠
, 𝜆𝜆𝑤𝑤 = 1

𝑤𝑤�
, 𝑝𝑝NI = 1

𝜆𝜆𝑤𝑤+𝜆𝜆𝑠𝑠
+ 𝑐𝑐, so 

that 

𝑐𝑐̅ = 1
𝜆𝜆𝑠𝑠
− 1

𝜆𝜆𝑤𝑤+𝜆𝜆𝑠𝑠
= 𝑠̅𝑠2

𝑠̅𝑠+𝑤𝑤�
  

When 𝑠̅𝑠 is large, 𝑐𝑐̅ is also large, condition 𝑐𝑐 < 𝑐𝑐̅ is likely to hold, and monopoly price 𝑝𝑝NI 

is below 𝑠̅𝑠. This is our leading example that we consider below. For the completeness of 

the analysis, we also consider the case of high production cost, 𝑐𝑐 > 𝑐𝑐̅, afterwards. 

4.1. Case 𝒑𝒑𝐍𝐍𝐍𝐍 ≤ 𝒔𝒔� 

Unless production cost 𝑐𝑐 is too high, the original monopoly price 𝑝𝑝NI in case of no 

insurance is lower than the expected health damage 𝑠̅𝑠 of a patient. In this case, even 

without changing its price, monopoly gets additional demand and, therefore, additional 

profit when insurance is available. It is easy to see that choosing any price 𝑝𝑝 > 𝑠̅𝑠 is strictly 

sub-optimal with insurance. Indeed, for any 𝑝𝑝 > 𝑠̅𝑠: 

𝜋𝜋T(𝑝𝑝) = 𝜋𝜋NI(𝑝𝑝) ≤ 𝜋𝜋NI(𝑝𝑝NI) < 𝜋𝜋T(𝑝𝑝NI)  

due to 𝜋𝜋I(𝑝𝑝) > 0 for 𝑝𝑝 ∈ (𝑐𝑐, 𝑠̅𝑠]. Thus, an optimal monopoly price is bounded by 𝑠̅𝑠. We 

denote it by 𝑝𝑝I: 

Figure 1. Composition of demands 𝐷𝐷U(𝑝𝑝) (dotted area) and 𝐷𝐷I(𝑝𝑝) (shaded area), for 

𝑝𝑝 ≤ 𝑠̅𝑠. When 𝑝𝑝 > 𝑠̅𝑠, area for 𝐷𝐷I(𝑝𝑝) disappears. 
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𝑝𝑝 

𝑠̅𝑠 



𝑝𝑝I ≝ arg max
𝑝𝑝∈[𝑐𝑐,𝑠̅𝑠]

𝜋𝜋T(𝑝𝑝) (4) 

Price 𝑝𝑝I is the optimal monopoly price when 𝑝𝑝NI < 𝑠̅𝑠. 

In case of rare diseases, when 𝑞𝑞 is small, opening the insurance market always leads 

to an increase of the monopoly price, as the following proposition states. 

Proposition 2. 

For all 𝑞𝑞 small enough, if 𝑝𝑝𝑁𝑁𝑁𝑁 < 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 > 𝑝𝑝𝑁𝑁𝑁𝑁, and if 𝑝𝑝𝑁𝑁𝑁𝑁 = 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠, i.e., ∃𝑞𝑞� >

0: ∀𝑞𝑞 ∈ (0, 𝑞𝑞�): if 𝑝𝑝𝑁𝑁𝑁𝑁 < 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 ∈ (𝑝𝑝𝑁𝑁𝑁𝑁 , 𝑠̅𝑠], and if 𝑝𝑝𝑁𝑁𝑁𝑁 = 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠. 

By setting price 𝑝𝑝 ≤ 𝑠̅𝑠, monopoly gets profit 𝜋𝜋T(𝑝𝑝) = 𝜋𝜋I(𝑝𝑝) + 𝜋𝜋NI(𝑝𝑝). Profit 𝜋𝜋NI(𝑝𝑝) 

attains its maximum at 𝑝𝑝 = 𝑝𝑝NI. Profit 𝜋𝜋I(𝑝𝑝) from sales through insurance turns out to be 

increasing on 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠] when 𝑞𝑞 is small. The reason is surprising: demand for insurance 

increases in the drug price 𝑝𝑝, until 𝑝𝑝 = 𝑠̅𝑠. Indeed, the derivative of (2) is positive for small 

𝑞𝑞. To see why, consider Figure 2 and let the price increase by 𝑑𝑑𝑑𝑑. 

Due to the price increase, the firm loses the demand 𝐷𝐷I(𝑝𝑝) from insured in Area A, 

because these people cannot afford the insurance anymore. At the same time, the firm 

gains the demand 𝐷𝐷I(𝑝𝑝) in Areas B and C. Without the price increase, these individuals 

prefer to wait and see whether they become ill and, if so, how badly. With the price 

increase, they cannot afford the drug on their own and switch to insurance. 

Now, the sizes of Areas B and C do not depend on the likelihood of getting ill, 𝑞𝑞. In 

contrast, Area A does depend on 𝑞𝑞: it shifts to the left and shrinks. Area A becomes 

negligible if 𝑞𝑞 is small enough. Because 𝑓𝑓𝑤𝑤(∙) is bounded, also the demand lost on Area 

A becomes negligible when 𝑞𝑞 is small enough. Therefore, for 𝑞𝑞 small enough, the price 

effect of areas B and C dominates that of area A and demand 𝐷𝐷I(𝑝𝑝) is upward sloping. 

As a result, profit 𝜋𝜋I(𝑝𝑝) increases in 𝑝𝑝 for any 𝑝𝑝 ≤ 𝑠̅𝑠. This gives the monopoly an 

additional incentive to raise its price if it is still below 𝑠̅𝑠. Therefore, 𝑝𝑝I > 𝑝𝑝NI if 𝑝𝑝𝑁𝑁𝑁𝑁 < 𝑠̅𝑠 

and 𝑝𝑝I = s̅ if 𝑝𝑝𝑁𝑁𝑁𝑁 = 𝑠̅𝑠. 



Proposition 2 is an asymptotic result. However, 𝑝𝑝I > 𝑝𝑝NI is a pretty common 

phenomenon, as the following proposition demonstrates. 

Proposition 3. 

Let 𝐹𝐹𝑤𝑤(𝑥𝑥) and 𝐹𝐹𝑠𝑠(𝑥𝑥) be twice differentiable and let hazard rates 𝜆𝜆𝑤𝑤(𝑥𝑥) and 𝜆𝜆𝑠𝑠(𝑥𝑥) be non-

decreasing. If 𝑝𝑝𝑁𝑁𝑁𝑁 < 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 ∈ (𝑝𝑝𝑁𝑁𝑁𝑁 , 𝑠̅𝑠], and if 𝑝𝑝𝑁𝑁𝑁𝑁 = 𝑠̅𝑠 then 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠. 

The measure of marginal individuals in area A is proportional to 𝜆𝜆𝑤𝑤(𝑞𝑞𝑞𝑞) whereas in areas 

B and C it is proportional to 𝜆𝜆𝑤𝑤(𝑝𝑝). For non-decreasing hazard rate (NDHR) distributions, 

𝜆𝜆𝑤𝑤(𝑞𝑞𝑞𝑞) ≤ 𝜆𝜆𝑤𝑤(𝑝𝑝). As a result, the total effect of a price change on 𝜋𝜋I(𝑝𝑝) is non-negative 

for any 𝑞𝑞. 

Many frequently used continuous distributions are NDHR distributions, including 

the uniform, exponential, normal, and logistic distribution, and (for some parameter 

values) the gamma distribution, the Weibull distribution, power function distributions, 

the Pareto distribution (more on NDHR distributions can be found in Barlow et al., 1963). 

Thus, irrespective of 𝑞𝑞, the availability of insurance increases the monopoly price for a 

large variety of distributions. But how large is the increase? The following proposition 

partly answers this question. 

A 

C 

D 

Figure 2. Effects of a marginal price change from 𝑝𝑝 to 𝑝𝑝 + 𝑑𝑑𝑑𝑑 on demands 𝐷𝐷I(𝑝𝑝) and 

𝐷𝐷U(𝑝𝑝). 
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Proposition 4. 

Let 𝐹𝐹𝑠𝑠(𝑥𝑥) first-order stochastically dominate 𝐹𝐹𝑤𝑤(𝑥𝑥), i.e., 𝐹𝐹𝑤𝑤(𝑥𝑥) ≥ 𝐹𝐹𝑠𝑠(𝑥𝑥), let 𝑓𝑓𝑠𝑠(𝑥𝑥) ≤ 1
𝑥𝑥
, 

and let 𝑝𝑝𝑁𝑁𝑁𝑁 ≤ 𝑠̅𝑠. Then, 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠 for all 𝑞𝑞 small enough, i.e., ∃𝑞𝑞� > 0: ∀𝑞𝑞 ∈ (0, 𝑞𝑞�): 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠. 

In case of very rare diseases for which 𝑞𝑞 is small, the monopoly raises its price 𝑝𝑝I all the 

way up to the expected benefit of getting rid of the decease, 𝑠̅𝑠. In case of severe diseases, 

this amount 𝑠̅𝑠 can be very large, well above the average population budget 𝑤𝑤� . Then the 

monopoly price goes through the roof. 

The reason for this striking result is as follows. Consider any price 𝑝𝑝 < 𝑠̅𝑠, so that all 

individuals want to have access to the drug ex ante. If 𝑞𝑞 is small, then almost all 

individuals will be able to afford insurance. Then, a marginal increase in 𝑝𝑝 has two 

negative effects on monopoly profit: (i) some individuals cannot afford the insurance 

anymore (area A), and (ii) fewer uninsured are ill enough to buy it (area D). The first 

effect is negligible if 𝑞𝑞 is small, and the second effect is proportional to 𝑓𝑓𝑠𝑠(𝑝𝑝). Therefore, 

if and 𝑞𝑞 and 𝑓𝑓𝑠𝑠 are small enough, as Proposition 4 specifies, the negative effects are 

dominated by the positive effects. The two positive effects are: (i) all uninsured with 

budget 𝑤𝑤 = 𝑝𝑝 become insured, and those with small health damage, 𝑠𝑠 < 𝑝𝑝, start acquiring 

the drug (area C); and (ii) every sale has a higher profit margin. A marginal increase in 

price is therefore profitable for any 𝑝𝑝 < 𝑠̅𝑠, resulting in optimal price 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠. 

The results of Proposition 2 and Proposition 4 apply to sufficiently rare diseases. We 

now study how prices and profits depend on 𝑞𝑞 if the disease is more common, but 

detrimental to a person’s well-being. To this end, we take an arbitrary CDF 𝐹𝐹(𝑥𝑥) with 

support [0,∞), continuous density 𝑓𝑓(𝑥𝑥) and the hazard rate 𝜆𝜆(𝑥𝑥), and consider a family 

of utility loss distributions parametrized by 𝛼𝛼 ∈ (0,1]: 

𝐹𝐹𝑠𝑠(𝑥𝑥|𝛼𝛼) ≝ 𝐹𝐹(𝛼𝛼𝛼𝛼) (5) 

The corresponding distribution density is 𝑓𝑓𝑠𝑠(𝑥𝑥|𝛼𝛼) = 𝛼𝛼𝛼𝛼(𝛼𝛼𝛼𝛼) and the hazard rate is 

𝜆𝜆𝑠𝑠(𝑥𝑥|𝛼𝛼) = 𝛼𝛼𝛼𝛼(𝛼𝛼𝛼𝛼). It can be seen that in the limit when 𝛼𝛼 → 0, the CDF 𝐹𝐹𝑠𝑠(𝑥𝑥|𝛼𝛼) of the 

utility loss 𝑠𝑠, its distribution density 𝑓𝑓𝑠𝑠(𝑥𝑥|𝛼𝛼) and the hazard rate 𝜆𝜆𝑠𝑠(𝑥𝑥|𝛼𝛼) all converge to 

zero (pointwise for any 𝑥𝑥 and uniformly for any 𝑥𝑥 ≤ 𝑋𝑋 < ∞). The expected utility loss 𝑠̅𝑠 

in this limit goes to infinity. The following proposition states the result. 



Proposition 5. 

Let 𝐹𝐹𝑠𝑠(𝑥𝑥) be defined as 𝐹𝐹𝑠𝑠(𝑥𝑥|𝛼𝛼) in (5). In the limit when 𝛼𝛼 → 0, insurance policy price 

𝑟𝑟∗ = 𝑞𝑞𝑝𝑝𝐼𝐼 satisfies 

𝑟𝑟∗ = 1
𝜆𝜆𝑤𝑤(𝑟𝑟∗) + 𝑞𝑞𝑞𝑞 (6) 

and the total monopoly profit 𝜋𝜋𝑇𝑇(𝑝𝑝𝐼𝐼) is 

𝜋𝜋T(𝑝𝑝𝐼𝐼) = 1−𝐹𝐹𝑤𝑤(𝑟𝑟∗)
𝜆𝜆𝑤𝑤(𝑟𝑟∗)  (7) 

The policy price 𝑟𝑟∗ is increasing in 𝑞𝑞. When 𝐹𝐹𝑤𝑤(𝑥𝑥) is a NDHR distribution, then the 

optimal drug price 𝑝𝑝𝐼𝐼 and the profit 𝜋𝜋𝑇𝑇(𝑝𝑝𝐼𝐼) are decreasing in 𝑞𝑞. 

When the hazard rate 𝜆𝜆𝑠𝑠(𝑥𝑥) is small, the utility loss 𝑠𝑠 from the disease for almost all 

patients becomes very large and plays (almost) no role in determining optimal monopoly 

price 𝑝𝑝I: all uninsured who can afford it buy the drug after becoming ill with probability 

almost one. The measure of individuals in area C in Figure 2 is small because 𝑓𝑓𝑠𝑠(𝑝𝑝) is 

small, and that of area D is small because 𝐹𝐹𝑠𝑠(𝑝𝑝) is small. This limit case effectively 

coincides with the example presented in Section 2, where 𝑠𝑠 > 𝑤𝑤 for all individuals. 

Because all patients in area B have access to the medication for both prices, the optimal 

policy price 𝑟𝑟∗ in (6) is determined by Area A alone. 

When 𝑐𝑐 = 0, expression (6) which determines the policy price 𝑟𝑟∗ (with insurance) is 

identical to expression (1) that determines the drug price 𝑝𝑝NI (without insurance) at 𝜆𝜆𝑠𝑠 =

0, i.e., 𝑟𝑟∗ = 𝑝𝑝NI. Without insurance, all individuals with 𝑤𝑤 > 𝑝𝑝NI pay price 𝑝𝑝NI ex-post 

and only when they become ill, i.e., with probability 𝑞𝑞 (they all have 𝑠𝑠 > 𝑝𝑝NI with 

probability almost one in the limit when 𝛼𝛼 → 0). With insurance, the same individuals 

pay the same price 𝑟𝑟∗ = 𝑝𝑝NI but now ex-ante and for the policy, i.e., with probability one. 

As a result, due to insurance, monopoly profit increases by the factor of 1
𝑞𝑞
, the same result 

as in the example of Section 2. This explains the monotonicity of 𝜋𝜋T(𝑝𝑝I) in 𝑞𝑞. 

Considering the case where marginal costs are not negligible, equation (6) shows 

that the inverse relation between drug price and disease prevalence is a slight 

simplification. Rather, the profit margin on the drug is inversely related to the incidence, 

while the term 𝑞𝑞𝑞𝑞 shows that the drug’s marginal costs are just shared by the insured. The 

upshot is that if marginal costs are relatively high, insurance creates less upward pressure 

on the price, and access to the drug increases: 𝑟𝑟∗ < 𝑝𝑝NI. 



Expressions (6) and (7) in Proposition 5 are only approximations for 𝑟𝑟∗ and 𝜋𝜋I. 

Moreover, for positive (and small) hazard rates 𝜆𝜆𝑠𝑠(𝑥𝑥) they are only valid when 𝑝𝑝I < 𝑠̅𝑠. 

Inevitably, for small incidental probabilities 𝑞𝑞, the drug price 𝑟𝑟
∗

𝑞𝑞
 becomes larger than 𝑠̅𝑠. 

Then, results of Proposition 4 hold (the assumptions of Proposition 4 always hold in the 

limit when 𝛼𝛼 → 0). In this case, 𝑝𝑝I = 𝑠̅𝑠. Combining Proposition 4 and Proposition 5 we 

conclude that for small hazard rates 𝜆𝜆𝑠𝑠(𝑥𝑥), 𝑝𝑝I can be approximated by 𝑝𝑝𝐴𝐴I , where 

𝑝𝑝𝐴𝐴I (𝑞𝑞) = min �𝑠̅𝑠, 1
𝑞𝑞
𝑟𝑟𝐴𝐴∗�, and 𝑟𝑟𝐴𝐴∗ solves 𝑟𝑟𝐴𝐴∗ = 1

𝜆𝜆𝑤𝑤�𝑟𝑟𝐴𝐴
∗�

+ 𝑞𝑞𝑞𝑞 

Figure 3 presents (numerically computed) functions 𝑝𝑝I(𝑞𝑞) and 𝑝𝑝𝐴𝐴I (𝑞𝑞) for 𝑐𝑐 = 0.1 and with 

exponential distributions with 𝜆𝜆𝑤𝑤 = 1, which is a normalization, and 𝜆𝜆𝑠𝑠 = 0.2, (for these 

parameter values, 𝑞𝑞� ≈ 0.212). Overall, the approximation is rather good; the relative 

difference between 𝑝𝑝I and 𝑝𝑝𝐴𝐴I , i.e., the relative approximation error, is less than 18%. This 

result is in line with empirical findings that prices for orphan drugs are inversely related 

to the prevalence of the disease, see, e.g., Messori et al. (2010) and Medic et al. (2017). 

Figure 3 also shows that for 𝜆𝜆𝑠𝑠 > 0, the policy price 𝑟𝑟∗ is decreasing in 𝑞𝑞 for its large 

values (in the example, for 𝑞𝑞 > 0.375). In the limit when 𝜆𝜆𝑠𝑠 → 0, the policy price 𝑟𝑟∗ 

become strictly increasing for all 𝑞𝑞, as Proposition 5 claims. 

Figure 3 also presents total monopoly profit 𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� as a function of 𝑞𝑞. For 

relatively large incidental probabilities when 𝑝𝑝I(𝑞𝑞) < 𝑠̅𝑠, it is decreasing in 𝑞𝑞, as 

Proposition 5 states. For small values of 𝑞𝑞, when 𝑝𝑝I(𝑞𝑞) = 𝑠̅𝑠, monopoly profit is almost 

linear in 𝑞𝑞: a higher incidence increases the number of the ill without any strong effects 

on 𝑟𝑟∗, which is already almost zero. 

In the limit when 𝛼𝛼 → 0 and 𝑐𝑐 = 0, monopoly profit is independent of 𝑞𝑞: 𝑟𝑟∗ is 

independent of 𝑞𝑞 and satisfies (6): 𝑟𝑟∗𝜆𝜆𝑤𝑤(𝑟𝑟∗) = 1. By (7), 𝜋𝜋T is independent of 𝑞𝑞 too. That 

is why both 𝑟𝑟∗ and 𝜋𝜋T are so flat in Figure 3 for large values of 𝑞𝑞 > 𝑞𝑞�, when 𝑐𝑐 = 0.1. For 

small incidental probabilities, when 𝑝𝑝I(𝑞𝑞) = 𝑠̅𝑠, both 𝑟𝑟∗ and 𝜋𝜋T are increasing in 𝑞𝑞. 

Indeed, 𝑟𝑟∗(𝑞𝑞) = 𝑞𝑞𝑠̅𝑠 in this case, and at 𝑞𝑞 = 0: 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� = �1 − �1 − 𝐹𝐹𝑤𝑤(𝑠̅𝑠)�𝐹𝐹𝑠𝑠(𝑠̅𝑠)� (𝑠̅𝑠 − 𝑐𝑐) > 0  



Thus, the total monopoly profit 𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� attains its maximum at a certain incidental 

probability 𝑞𝑞∗, its value 𝑞𝑞∗ ≈ 0.198 is also shown in Figure 3.9 

In the limit, when diseases are rare and severe, the optimal price is capped by 𝑠̅𝑠. 

Suppose indeed that 𝑝𝑝I(𝑞𝑞) = 𝑠̅𝑠. Then, a marginal increase in 𝑞𝑞 has two effects on demand. 

First, more people who have access to the drugs, possibly through insurance, become 

actual patients and will use the drug. This positive effect on demand is large, because 

almost the whole population has access to the drug. Second, because the price is already 

capped, it does not respond to the increase in 𝑞𝑞. Consequently, the insurance premium, 

𝑟𝑟 = 𝑞𝑞𝑞𝑞 increases in 𝑞𝑞, reducing the number of people who can afford the insurance. This 

effect decreases demand. When 𝑞𝑞 is very small, this negative effect on demand is of the 

second order, because it only affect the 𝑞𝑞 share of individuals, namely those who fall ill. 

Therefore, demand and profits increase in 𝑞𝑞, when 𝑞𝑞 is very small. When 𝑞𝑞 is larger, the 

negative effect becomes stronger so that the demand for drugs, and even the monopoly 

profit may decline in 𝑞𝑞. In fact, according to Proposition 5, the monopoly profit 

 
9 According to our numerical simulations, 𝑞𝑞∗ is of the order of 𝜆𝜆𝑠𝑠/𝜆𝜆𝑤𝑤 for small values of the latter ratio. 

 

Figure 3.  Optimal monopoly price 𝑝𝑝I(𝑞𝑞) (thin solid curve) and its approximation 

𝑝𝑝𝐴𝐴I (𝑞𝑞) (dot-curve), policy price 𝑟𝑟∗(𝑞𝑞) (dash-curve), left axes, and total monopoly 

profit 𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� (thick curve), right axes, as functions of 𝑞𝑞 for 𝜆𝜆𝑤𝑤 = 1, 𝜆𝜆𝑠𝑠 = 0.2, and 

𝑐𝑐 = 0.1. 
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𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� decreases in 𝑞𝑞 when 𝑝𝑝I(𝑞𝑞) < 𝑠̅𝑠, i.e. when 𝑞𝑞 > 𝑞𝑞�. Moreover, due to the 

envelope theorem, 𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� is continuously differentiable in 𝑞𝑞 at 𝑞𝑞 = 𝑞𝑞�. Hence, 

𝜋𝜋T�𝑝𝑝I(𝑞𝑞)� decreases in 𝑞𝑞 at 𝑞𝑞 = 𝑞𝑞�. This implies that monopoly profit attains its 

maximum in 𝑞𝑞 when the resulting drug price is already capped by 𝑝𝑝I = 𝑠̅𝑠. Figure 3 also 

illustrates that for 𝑞𝑞 ≥ 𝑞𝑞�, the negative effect of a larger incidence (a lower optimal price) 

dominates the positive effect (more drug sales), resulting in lower profits. 

4.2. Case 𝒑𝒑𝐍𝐍𝐍𝐍 > 𝒔𝒔� 

Let us now consider the case 𝑝𝑝NI > 𝑠̅𝑠 or, equivalently, 𝑐𝑐 > 𝑐𝑐̅. For 𝑝𝑝NI ≤ 𝑠̅𝑠, Proposition 3 

shows that under quite general assumptions (NDHR distributions), the optimal drug price 

in case of insurance is 𝑝𝑝I defined in (4), and it is higher than 𝑝𝑝NI. Now we extend 

Proposition 3 to the case 𝑝𝑝NI > 𝑠̅𝑠. We denote the optimal drug price by 𝑝𝑝∗. We show that 

when 𝑝𝑝NI > 𝑠̅𝑠, the availability of insurance does not increase the optimal price above 𝑝𝑝NI, 

but that it may decrease the optimal price back to 𝑠̅𝑠. 

Suppose that 𝑐𝑐 = 𝑐𝑐̅ so that 𝑝𝑝NI = 𝑠̅𝑠. Under conditions of Proposition 3 or Proposition 

4, 𝑝𝑝I = 𝑠̅𝑠. In this case, the optimal drug price is 𝑝𝑝∗ = 𝑝𝑝I = 𝑠̅𝑠. Suppose now that 𝑐𝑐 

increases so that 𝑝𝑝NI > 𝑠̅𝑠. With insurance, the monopoly has two options. First, it can set 

𝑝𝑝 > 𝑠̅𝑠. Because insurance is too expensive, as 𝑟𝑟 = 𝑞𝑞𝑞𝑞 > 𝑞𝑞𝑠̅𝑠, no one is willing to buy 

insurance. Consequently, demand is unaffected by the availability of insurance, and the 

best price above 𝑠̅𝑠 is 𝑝𝑝NI. Hence, if 𝑝𝑝∗ > 𝑠̅𝑠, then 𝑝𝑝∗ = 𝑝𝑝NI. Second, it can lower its price 

to 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠]. For these prices, price 𝑝𝑝 = 𝑝𝑝I is optimal, and the latter is 𝑝𝑝I = 𝑠̅𝑠, so that 

𝑝𝑝∗ = 𝑠̅𝑠. 

Thus, when 𝑝𝑝NI > 𝑠̅𝑠, the monopoly only needs to compare two candidate prices: 𝑠̅𝑠 

and 𝑝𝑝NI. Whether the higher profit margin at 𝑝𝑝∗ = 𝑝𝑝NI > 𝑠̅𝑠 or additional sales (via the 

insurance) at 𝑝𝑝∗ = 𝑝𝑝I = 𝑠̅𝑠 is the best option, depends on 𝑐𝑐. When 𝑐𝑐 is just above 𝑐𝑐̅, 𝑝𝑝NI is 

just above 𝑝𝑝I = 𝑠̅𝑠, by continuity. Then, selling through the insurance market creates a 

jump in drug sales whereas the effect on the profit margin is negligible. In this case, 𝑝𝑝∗ =

𝑠̅𝑠 is the best option. However, 𝑝𝑝∗ = 𝑝𝑝NI is clearly the best option when 𝑐𝑐 ≥ 𝑠̅𝑠. Thus, there 

exists some marginal cost threshold 𝑐𝑐∗ ∈ (𝑐𝑐̅, 𝑠̅𝑠), such that 𝑝𝑝∗ = 𝑠̅𝑠  is optimal if 𝑐𝑐 < 𝑐𝑐∗, 

and 𝑝𝑝∗ = 𝑝𝑝NI is optimal if 𝑐𝑐 > 𝑐𝑐∗. The following proposition summarizes these results. 



Proposition 6. 

Let hazard rates 𝜆𝜆𝑤𝑤(𝑥𝑥) and 𝜆𝜆𝑠𝑠(𝑥𝑥) be non-decreasing. Then, there exists a threshold 𝑐𝑐∗ ∈

(𝑐𝑐̅, 𝑠̅𝑠) such that if 𝑐𝑐 > 𝑐𝑐∗ then 𝑝𝑝∗ = 𝑝𝑝𝑁𝑁𝑁𝑁 > 𝑠̅𝑠, and if 𝑐𝑐 ∈ (𝑐𝑐̅, 𝑐𝑐∗) then 𝑝𝑝∗ = 𝑝𝑝𝐼𝐼 = 𝑠̅𝑠. 

Figure 4 illustrates Proposition 6 for exponential distributions with 𝜆𝜆𝑤𝑤 = 1, 𝜆𝜆𝑠𝑠 = 0.2, and 

𝑞𝑞 ≤ 0.2. Monopoly price 𝑝𝑝NI increases linearly in 𝑐𝑐 (due to (1)) and, according to Lemma 

1, becomes 𝑝𝑝NI > 𝑠̅𝑠 when 𝑐𝑐 > 𝑐𝑐̅ ≈ 4.17. When cost 𝑐𝑐 is high, namely when 𝑐𝑐 > 𝑐𝑐∗ ≈

4.998, optimal monopoly price 𝑝𝑝∗ = 𝑝𝑝NI > 𝑠̅𝑠 = 5. Monopoly sells only to the wealthy 

patients. Opening the insurance market does not make sense in this setting. The 

monopolist does not change its price, and no individual buys insurance because its price 

𝑟𝑟∗ = 𝑞𝑞𝑝𝑝∗ is higher than the expected utility loss 𝑞𝑞𝑠̅𝑠.  

For 𝑐𝑐 ∈ (𝑐𝑐̅, 𝑐𝑐∗), opening the insurance market induces the monopoly to lower its price 

from 𝑝𝑝NI > 𝑠̅𝑠 to 𝑝𝑝∗ = 𝑝𝑝I = 𝑠̅𝑠. By doing so, monopoly gets less revenue from wealthy 

uninsured patients, but makes additional sales through insurance to the less-wealthy 

insured patients. For 𝑐𝑐 < 𝑐𝑐̅, according to Proposition 4, opening the insurance market 

induces the monopoly to raise its price from 𝑝𝑝NI < 𝑠̅𝑠 to 𝑝𝑝∗ = 𝑝𝑝I = 𝑠̅𝑠. In both cases, the 

drug price is 𝑠̅𝑠 and is independent of 𝑐𝑐. Only when 𝑐𝑐 > 𝑐𝑐∗, the drug price is 𝑝𝑝NI > 𝑠̅𝑠 and 

 

Figure 4.  Optimal monopoly prices 𝑝𝑝NI(𝑐𝑐) (dotted line) and 𝑝𝑝∗(𝑐𝑐) (solid curve) as 

functions of unit production cost 𝑐𝑐, for 𝜆𝜆𝑤𝑤 = 1, 𝜆𝜆𝑠𝑠 = 0.2, and 𝑞𝑞 ≤ 0.2. 
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is increasing in 𝑐𝑐. In case of extremely severe diseases, when consumer willingness to 

pay is very large, 𝑐𝑐 < 𝑐𝑐̅ < 𝑐𝑐∗ is likely to occur, and 𝑝𝑝I = 𝑠̅𝑠 is the outcome. 

5. Discussion and Conclusion 

This paper shows how the combination of budget constraints and optional insurance 

drives up prices, and why prices relate inversely to the incidence of the insured event. A 

natural fit is the health market. When drugs are covered by insurance, demand for the 

drugs is largely dependent on the insurance premium rather than the drug price. This gives 

the producing firm incentives to increase its price. As a result, when the health damage 

of the disease is large and its incidence is low, the policy price becomes about as large as 

the drug price before insurance is available. The drug price is then inversely proportional 

to the incidental probability until it hits its ceiling, the expected health damage. 

These results are obtained by assuming that an individual’s budget is the determinant 

of his purchasing decisions. This keeps the model simple. Nonetheless, our asymptotic 

results are quite robust and hold in a large variety of settings. 

For instance, health insurance policies may also include a deductible (a fixed amount 

per year that is not insured), a co-payment (a fixed amount per treatment that is not 

insured), or a coinsurance (a percentage of the expenses that is not insured). Our model 

can easily accommodate these changes. In all these cases, the drug price hits the ceiling, 

the expected benefit of the drug, when the incidence 𝑞𝑞 and the hazard rate 𝜆𝜆𝑠𝑠 vanish. With 

coinsurance 𝛽𝛽, for example, when the drug price is 𝑝𝑝, the competitive policy price is 𝑟𝑟 =

 𝑞𝑞𝑞𝑞(1 − 𝛽𝛽). In addition, insured patients need to pay 𝛽𝛽𝛽𝛽. Thus, only individuals with 

budget 

𝑤𝑤 > 𝑞𝑞𝑞𝑞(1 − 𝛽𝛽) + 𝛽𝛽𝛽𝛽 = (𝑞𝑞(1 − 𝛽𝛽) + 𝛽𝛽)𝑝𝑝  

can afford insurance. Therefore, our asymptotic results (when 𝑞𝑞,𝛼𝛼 → 0) for optimal 

monopoly price 𝑝𝑝I continue to hold if we replace incidence 𝑞𝑞 by 𝑞𝑞CI, where 

𝑞𝑞CI ≝ 𝑞𝑞(1 − 𝛽𝛽) + 𝛽𝛽 = 𝑞𝑞 + (1 − 𝑞𝑞)𝛽𝛽  

In the example of Figure 3, optimal monopoly price is 𝑝𝑝I = 𝑠̅𝑠 as long as 𝑞𝑞CI < 𝑞𝑞� ≈ 0.212. 

Coinsurance reduces the drug price when 𝑞𝑞CI > 𝑞𝑞�. 

With deductible 𝑑𝑑, when the drug price is 𝑝𝑝, the competitive policy price is 𝑟𝑟 =

 𝑞𝑞(𝑝𝑝 − 𝑑𝑑). In addition, insured patients need to pay 𝑑𝑑. Thus, only individuals with budget 



𝑤𝑤 > 𝑞𝑞(𝑝𝑝 − 𝑑𝑑) + 𝑑𝑑 = 𝑞𝑞𝑞𝑞 + (1 − 𝑞𝑞)𝑑𝑑  

can afford insurance. Also in this case, monopoly profit monotonically increases in price 

until the latter reaches the boundary 𝑠̅𝑠, and all asymptotic results of our model continue 

to hold. 

The model can be extended by introducing a probability 𝑡𝑡 that the drug successfully 

treats the disease. In this case, the price ceiling is determined by the expected benefit of 

the drug, 𝑡𝑡𝑠̅𝑠. Correlation between budget 𝑤𝑤 and health damage 𝑠𝑠 can also be introduced 

into the model. Then, the ex-ante expected health damage for an individual may depend 

on his budget, and the monopoly needs to account for this. Nevertheless, if the expected 

damage is large for all budgets, the optimal price will be large as well. Alternatively, 

health care providers (drug gatekeepers) can be introduced into the model, who only 

prescribe the drug if the realized health damage exceed a certain threshold (e.g., the price 

of the drug). In this case, all individuals are facing the same unavoidable background risk 

(of becoming sufficiently ill), and all our results continue to hold. 

Our model focuses on the case where individuals have a choice whether they are 

insured or not. When health insurance is in part mandatory or state-provided, as it is in 

many European countries, insurance in our model should be seen as a supplementary 

insurance rather than the mandatory package. Whether prevalence affects the price in the 

mandatory insurance depends on the bargaining power of the authority deciding upon 

inclusion of the drugs and that of the firm. If the authority works with a maximum budget 

for a disease, a similar effect may well occur. 

We do not provide a social welfare analysis of our results; it does not make much 

sense without accounting for individual risk attitudes. Yet, our results speak loudly to the 

R&D investment decision of the pharmaceutical firms, as the expected profits of a new 

drug depend significantly on whether it is likely to be included into (national) health 

insurance plans. Moreover, they also speak to (i) the incentives of pharmaceutical 

companies to invest into lobbing activity for including their drugs into those plans, and 

to (ii) the need for countervailing buyer power by the insurance companies or the 

government if the potential drug price increase (due the inclusion in health insurance 

packages) exceeds what a social planner would consider optimal. 
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Appendix 

Proof of Proposition 1. 

Function 𝜋𝜋NI(𝑝𝑝) is continuously differentiable on 𝑝𝑝 ∈ [𝑐𝑐,∞), positive on 𝑝𝑝 ∈ (𝑐𝑐,∞), 

satisfies 𝜋𝜋NI(𝑐𝑐) = 0 and 𝜋𝜋NI(𝑝𝑝) = 0 when 𝑝𝑝 → ∞ (this is so because the assumed 

existence of the means 𝑤𝑤�  and 𝑠̅𝑠 implies that distributions 𝐹𝐹𝑤𝑤(𝑥𝑥) and 𝐹𝐹𝑠𝑠(𝑥𝑥) approach one 

sufficiently fast when 𝑥𝑥 → ∞). Therefore, there is a maximizer 𝑝𝑝NI of 𝜋𝜋NI(𝑝𝑝), 𝑝𝑝NI ∈

(𝑐𝑐,∞), which satisfies the F.O.C.: 

0 = 𝑑𝑑𝜋𝜋NI

𝑑𝑑𝑑𝑑
= 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝐹𝐹𝑠𝑠(𝑝𝑝)��𝜆𝜆𝑤𝑤(𝑝𝑝) + 𝜆𝜆𝑠𝑠(𝑝𝑝)� � 1

𝜆𝜆𝑤𝑤(𝑝𝑝)+𝜆𝜆𝑠𝑠(𝑝𝑝) + 𝑐𝑐 − 𝑝𝑝�  

from which (1) follows. 

When (1) has multiple solutions (i.e., multiple extreme points of 𝜋𝜋NI), we denote 

them by 𝑝𝑝∗, the associated profit levels 𝜋𝜋NI(𝑝𝑝∗) are generically (w.r.t. cost parameter 𝑐𝑐) 

distinct so that 𝑝𝑝NI is generically unique. The monotonicity of 𝑝𝑝NI(𝑐𝑐) is rather standard 

and can be shown as follows. Let 𝑐𝑐0 ≥ 0 and define function 

𝐺𝐺(𝑝𝑝, 𝑐𝑐) ≝ 𝜋𝜋NI�𝑝𝑝NI(𝑐𝑐0)� − 𝜋𝜋NI(𝑝𝑝)  

on 𝑝𝑝 ∈ [𝑐𝑐0,𝑝𝑝NI(𝑐𝑐0)]. Since demand 𝐷𝐷NI(𝑝𝑝) strictly decreases in 𝑝𝑝, function 𝐺𝐺(𝑝𝑝, 𝑐𝑐) 

strictly increases in 𝑐𝑐: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑝𝑝, 𝑐𝑐) = 𝐷𝐷NI(𝑝𝑝)− 𝐷𝐷NI�𝑝𝑝NI(𝑐𝑐0)� > 0 for 𝑝𝑝 < 𝑝𝑝NI(𝑐𝑐0) 

Because 𝐺𝐺(𝑝𝑝, 𝑐𝑐0) ≥ 0 by construction, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

> 0 implies that 𝐺𝐺(𝑝𝑝, 𝑐𝑐1) > 0 for any 𝑐𝑐1 > 𝑐𝑐0 

and any 𝑝𝑝 ∈ �𝑐𝑐0,𝑝𝑝NI(𝑐𝑐0)�. Hence, any price 𝑝𝑝 ∈ �𝑐𝑐0,𝑝𝑝NI(𝑐𝑐0)� is suboptimal. It follows 

that 𝑝𝑝NI(𝑐𝑐1) ≥ 𝑝𝑝NI(𝑐𝑐0). 

By the definition 𝑝𝑝NI(𝑐𝑐), the F.O.C. above holds for price 𝑝𝑝 = 𝑝𝑝NI(𝑐𝑐0) at 𝑐𝑐 = 𝑐𝑐0.  

Since its RHS is increasing in 𝑐𝑐, the F.O.C. necessarily fails for price 𝑝𝑝 = 𝑝𝑝NI(𝑐𝑐0) at 𝑐𝑐 =

𝑐𝑐1 > 𝑐𝑐0, so that price 𝑝𝑝 = 𝑝𝑝NI(𝑐𝑐0) does not satisfy the F.O.C. and cannot be optimal. 

Therefore, 𝑝𝑝NI(𝑐𝑐1) > 𝑝𝑝NI(𝑐𝑐0). This ends the proof. ■ 

Proof of Lemma 1. 

Optimal price 𝑝𝑝NI(𝑐𝑐) is strictly increasing, satisfies (1) and 𝑝𝑝NI(𝑐𝑐) > 𝑐𝑐. Hence, there is a 

number 𝑐𝑐̅, 𝑐𝑐̅ < 𝑠̅𝑠, such that 𝑝𝑝NI(𝑐𝑐̅) = 𝑠̅𝑠. Then, 𝑝𝑝NI(𝑐𝑐) > 𝑠̅𝑠 for 𝑐𝑐 > 𝑐𝑐̅ and 𝑝𝑝NI(𝑐𝑐) < 𝑠̅𝑠 for 

𝑐𝑐 ∈ (0, 𝑐𝑐̅). If 𝑐𝑐̅ = 0, then 𝑝𝑝NI(𝑐𝑐) > 𝑠̅𝑠 for any 𝑐𝑐 > 0. ■ 



Proof of Proposition 2. 

We define per-accident monopoly profit functions as follows: 

 𝜋𝜋�NI(𝑝𝑝, 𝑐𝑐) ≝ 1
𝑞𝑞
𝜋𝜋NI(𝑝𝑝) = �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝐹𝐹𝑠𝑠(𝑝𝑝)�(𝑝𝑝 − 𝑐𝑐)

𝜋𝜋� I(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) ≝ 1
𝑞𝑞
𝜋𝜋I(𝑝𝑝) = �𝐹𝐹𝑤𝑤(𝑝𝑝) − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐)

𝜋𝜋�U(𝑝𝑝, 𝑐𝑐) ≝ 1
𝑞𝑞
𝜋𝜋U(𝑝𝑝) = 𝜋𝜋�NI(𝑝𝑝, 𝑐𝑐)

𝜋𝜋�T(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) ≝ 1
𝑞𝑞
𝜋𝜋T(𝑝𝑝) = 𝜋𝜋� I(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) + 𝜋𝜋�NI(𝑝𝑝, 𝑐𝑐)

  

Optimal monopoly prices 𝑝𝑝NI and 𝑝𝑝I, which maximize 𝜋𝜋NI(𝑝𝑝) and 𝜋𝜋T(𝑝𝑝) 

correspondingly, also maximize 𝜋𝜋�NI and 𝜋𝜋�T. We show below that for small values of 𝑞𝑞, 

𝜋𝜋�I(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) increases on 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠], i.e., 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
> 0. Combined with the F.O.C.  𝜕𝜕𝜋𝜋�

NI

𝜕𝜕𝜕𝜕
(𝑝𝑝NI) =

0 we obtain 𝜕𝜕𝜋𝜋�
T

𝜕𝜕𝜕𝜕
(𝑝𝑝NI) > 0. Therefore, 𝑝𝑝I ∈ (𝑝𝑝NI, 𝑠̅𝑠] for 𝑝𝑝NI < 𝑠̅𝑠 and 𝑝𝑝I = 𝑠̅𝑠 for 𝑝𝑝NI = 𝑠̅𝑠, 

and the result follows. 

Let us consider the marginal profit function 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) on 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠]: 

𝜕𝜕𝜋𝜋�I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) = �𝐹𝐹𝑤𝑤(𝑝𝑝) − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)� + �𝑓𝑓𝑤𝑤(𝑝𝑝) − 𝑞𝑞𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐) (8) 

Because 𝑓𝑓𝑤𝑤(𝑥𝑥) is bounded, 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) uniformly converges to 𝜕𝜕𝜋𝜋�

I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 0) > 0 in the 

limit when 𝑞𝑞 → 0. Hence, there exists a 𝑞𝑞� > 0 such that 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) > 0 for all 𝑞𝑞 ∈ (0, 𝑞𝑞�) 

and all 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠]. This ends the proof. ■ 

Proof of Proposition 3. 

The proof follows a similar idea as the proof of Proposition 2 does: we show that for all 

𝑞𝑞 ∈ (0,1), 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
> 0 so that 𝜋𝜋�I(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) increases on 𝑝𝑝 ∈ [𝑐𝑐,𝑝𝑝NI]. Consequently, 𝑝𝑝I ∈

(𝑝𝑝NI, 𝑠̅𝑠] for 𝑝𝑝NI < 𝑠̅𝑠 and 𝑝𝑝I = 𝑠̅𝑠 for 𝑝𝑝NI = 𝑠̅𝑠, and the result follows. 

Evaluating (8) at 𝑞𝑞 = 1 yields 𝜕𝜕𝜋𝜋�
I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 1) = 0. In the rest of the proof, we show that 

𝜕𝜕2𝜋𝜋�I

𝜕𝜕𝑝𝑝𝑝𝑝𝑝𝑝
< 0 so that 𝜕𝜕𝜋𝜋�

I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 𝑞𝑞) > 𝜕𝜕𝜋𝜋�I

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 1) = 0 for 𝑞𝑞 < 1. Differentiating (8) yields: 

𝜕𝜕2𝜋𝜋�I

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= −�𝑝𝑝𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) + �𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) + 𝑞𝑞𝑞𝑞𝑓𝑓𝑤𝑤′ (𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐)�  

Since 𝜆𝜆𝑤𝑤(𝑥𝑥) is non-decreasing, we obtain 

𝜆𝜆𝑤𝑤′ (𝑥𝑥) = 𝑓𝑓𝑤𝑤′ (𝑥𝑥)
�1−𝐹𝐹𝑤𝑤(𝑥𝑥)�

+ 𝑓𝑓𝑤𝑤2(𝑥𝑥)

�1−𝐹𝐹𝑤𝑤(𝑥𝑥)�2
≥ 0 → 𝑓𝑓𝑤𝑤′ (𝑥𝑥) ≥ −𝜆𝜆𝑤𝑤(𝑥𝑥)𝑓𝑓𝑤𝑤(𝑥𝑥)  

so that 



𝜕𝜕2𝜋𝜋�I

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≤ −𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) �𝑝𝑝 + �1 − 𝑞𝑞𝑞𝑞𝜆𝜆𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐)�  

Next, as 𝑝𝑝𝜆𝜆𝑤𝑤(𝑞𝑞𝑞𝑞) < 𝑝𝑝𝜆𝜆𝑤𝑤(𝑝𝑝) due to 𝑞𝑞 < 1, we obtain 
𝜕𝜕2𝜋𝜋�I

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
< −𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) �𝑝𝑝 + �1 − 𝑝𝑝𝜆𝜆𝑤𝑤(𝑝𝑝)�(𝑝𝑝 − 𝑐𝑐)�  

Finally, for NDHR distributions, (1) uniquely determines 𝑝𝑝NI. Since the RHS of (1) is not 

increasing in 𝑝𝑝NI, it follows that for all 𝑝𝑝 ∈ (𝑐𝑐,𝑝𝑝NI]: 

𝑝𝑝 ≤ 1
𝜆𝜆𝑤𝑤(𝑝𝑝)+𝜆𝜆𝑠𝑠(𝑝𝑝) + 𝑐𝑐 → 𝜆𝜆𝑤𝑤(𝑝𝑝) < 1

𝑝𝑝−𝑐𝑐
  

Hence, 

𝜕𝜕2𝜋𝜋�I

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
< −𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞)�𝑝𝑝 + �1 − 𝑝𝑝 1

𝑝𝑝−𝑐𝑐
� (𝑝𝑝 − 𝑐𝑐)� = −𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞)(𝑝𝑝 − 𝑐𝑐) < 0  

This ends the proof. ■ 

Proof of Proposition 4. 

We use the notation developed in the proof of Proposition 2. Let us consider the marginal 

profit function 𝜕𝜕𝜋𝜋�
T

𝜕𝜕𝜕𝜕
. Using 𝐹𝐹𝑠𝑠(𝑝𝑝) ≤ 𝐹𝐹𝑤𝑤(𝑝𝑝) < 1 and 𝑓𝑓𝑠𝑠(𝑝𝑝) ≤ 1

𝑝𝑝
, we write 𝜕𝜕𝜋𝜋�

T

𝜕𝜕𝜕𝜕
 at 𝑞𝑞 = 0 as 

follows: 
𝜕𝜕𝜋𝜋�T

𝜕𝜕𝜕𝜕
= �1 − �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)�𝐹𝐹𝑠𝑠(𝑝𝑝)�+ �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��𝜆𝜆𝑤𝑤(𝑝𝑝)𝐹𝐹𝑠𝑠(𝑝𝑝) − 𝑓𝑓𝑠𝑠(𝑝𝑝)�(𝑝𝑝 − 𝑐𝑐)

  > �1 − 𝐹𝐹𝑠𝑠(𝑝𝑝)� − �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)�𝑓𝑓𝑠𝑠(𝑝𝑝)(𝑝𝑝 − 𝑐𝑐)

  > �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1− 𝑓𝑓𝑠𝑠(𝑝𝑝)(𝑝𝑝 − 𝑐𝑐)� > �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)� �1 − 1
𝑝𝑝

(𝑝𝑝 − 𝑐𝑐)�

  = �1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)� 𝑐𝑐
𝑝𝑝

> 0

  

Hence, 𝜕𝜕𝜋𝜋�
T

𝜕𝜕𝜕𝜕
(𝑝𝑝, 𝑐𝑐, 0) > 0. Since 𝜕𝜕𝜋𝜋�

T

𝜕𝜕𝜕𝜕
 is uniformly continuous in 𝑞𝑞 on 𝑝𝑝 ∈ [𝑐𝑐, 𝑠̅𝑠], there exists 

𝑞𝑞� > 0 such that 𝜕𝜕𝜋𝜋�
T

𝜕𝜕𝜕𝜕
> 0 for any 𝑞𝑞 ∈ (0, 𝑞𝑞�). This, in turn, implies that optimal monopoly 

price is 𝑝𝑝T = 𝑠̅𝑠 for 𝑞𝑞 ∈ (0, 𝑞𝑞�). This ends the proof. ■ 

Proof of Proposition 5. 

We explicitly add parameter 𝛼𝛼 to the argument lists of the monopoly profit function 𝜋𝜋T: 

𝜋𝜋T(𝑝𝑝,𝛼𝛼) = 𝑞𝑞�𝐹𝐹𝑤𝑤(𝑝𝑝) − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐) + 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑝𝑝)��1 − 𝐹𝐹𝑠𝑠(𝑝𝑝|𝛼𝛼)�(𝑝𝑝 − 𝑐𝑐)  

In the limit when 𝛼𝛼 → 0, for any 𝑋𝑋 > 0 and any 𝑝𝑝 ≤ 𝑥𝑥: 

𝜋𝜋T(𝑝𝑝, 0) = 𝑞𝑞�1 − 𝐹𝐹𝑤𝑤(𝑞𝑞𝑞𝑞)�(𝑝𝑝 − 𝑐𝑐) and (9) 

𝜕𝜕𝜋𝜋T

𝜕𝜕𝜕𝜕
(𝑝𝑝, 0) = 𝑞𝑞𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) � 1

𝜆𝜆𝑤𝑤(𝑞𝑞𝑞𝑞) + 𝑞𝑞𝑞𝑞 − 𝑞𝑞𝑞𝑞� = 𝑞𝑞𝑓𝑓𝑤𝑤(𝑞𝑞𝑞𝑞) � 1
𝜆𝜆𝑤𝑤(𝑟𝑟) + 𝑞𝑞𝑞𝑞 − 𝑟𝑟�  

from which (6) follows. Plugging (6) into (9) yields (7). 



Monotonicity of 𝑟𝑟 can be shown in the same way as the monotonicity of 𝑝𝑝NI is shown 

in the proof of Proposition 1. When 𝐹𝐹𝑤𝑤(𝑥𝑥) is a NDHR distribution, the monotonicity of 

𝜋𝜋T follows immediately from (7). To show the monotonicity of 𝑝𝑝I, we set 𝑟𝑟∗ = 𝑞𝑞𝑝𝑝I(𝑞𝑞) 

in (6) and differentiate it w.r.t. 𝑞𝑞. This results in: 
𝑑𝑑𝑝𝑝I

𝑑𝑑𝑑𝑑
= − 𝜆𝜆𝑤𝑤(𝑟𝑟∗)+𝑟𝑟∗𝜆𝜆𝑤𝑤′ (𝑟𝑟∗)

𝑞𝑞2�𝜆𝜆𝑤𝑤2 (𝑟𝑟∗)+𝜆𝜆𝑤𝑤′ (𝑟𝑟∗)�
< 0 (10) 

This ends the proof. ■ 

Remark. Optimal price 𝑝𝑝I(𝑞𝑞) is decreasing in 𝑞𝑞 under a weaker condition than the NDHR 

of 𝐹𝐹𝑤𝑤(𝑥𝑥). Analyzing (10) results in the following sufficient condition: 

𝜆𝜆𝑤𝑤′ (𝑥𝑥) > −min �𝜆𝜆𝑤𝑤2 (𝑥𝑥), 1
𝑥𝑥
𝜆𝜆𝑤𝑤(𝑥𝑥)�  

Similarly, profit 𝜋𝜋T is decreasing in 𝑞𝑞 when 𝜆𝜆𝑤𝑤′ (𝑥𝑥) > −𝜆𝜆𝑤𝑤2 (𝑥𝑥). 

Proof of Proposition 6. 

Let us define function 𝐻𝐻(𝑐𝑐) as follows: 

𝐻𝐻(𝑐𝑐) ≝ 𝜋𝜋T(𝑝𝑝I) − 𝜋𝜋NI(𝑝𝑝NI)  

It has the following properties. First, 𝐻𝐻(𝑐𝑐̅) > 0, because 𝜋𝜋T(𝑝𝑝I) > 𝜋𝜋NI(𝑝𝑝NI) at 𝑐𝑐 = 𝑐𝑐̅. 

Second, 𝐻𝐻(𝑠̅𝑠) < 0, because 𝜋𝜋NI(𝑝𝑝NI) > 𝜋𝜋T(𝑝𝑝I) = 0 at 𝑐𝑐 = 𝑠̅𝑠. Third, 𝐻𝐻′(𝑐𝑐) < 0 on [𝑐𝑐̅, 𝑠̅𝑠], 

because, due to the envelope theorem: 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜋𝜋T(𝑝𝑝I) = 𝜕𝜕

𝜕𝜕𝜕𝜕
��𝐷𝐷NI(𝑝𝑝I) + 𝐷𝐷I(𝑝𝑝I)�(𝑝𝑝I − 𝑐𝑐)� = −𝐷𝐷NI(𝑝𝑝I) − 𝐷𝐷I(𝑝𝑝I)  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜋𝜋NI�𝑝𝑝NI(𝑐𝑐)� = − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐷𝐷NI�𝑝𝑝NI(𝑐𝑐)� − 𝑐𝑐� = −𝐷𝐷NI�𝑝𝑝NI(𝑐𝑐)�  

so that 

𝐻𝐻′(𝑐𝑐) = 𝐷𝐷NI�𝑝𝑝NI(𝑐𝑐)� − 𝐷𝐷I(𝑝𝑝I) − 𝐷𝐷NI(𝑝𝑝I) ≤ −𝐷𝐷I(𝑝𝑝I) < 0  

for 𝑐𝑐 ∈ [𝑐𝑐̅, 𝑠̅𝑠]. Hence, there exists a unique number 𝑐𝑐∗ ∈ (𝑐𝑐̅, 𝑠̅𝑠) defined by 𝐻𝐻(𝑐𝑐∗) = 0 such 

that 𝐻𝐻(𝑐𝑐) > 0 on (𝑐𝑐̅, 𝑐𝑐∗) and 𝐻𝐻(𝑐𝑐) < 0 on (𝑐𝑐∗, 𝑠̅𝑠). This ends the proof. ■ 
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