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Abstract

Probit models with endogenous regressors are commonly used models in economics
and other social sciences. Yet, the robustness properties of parametric estimators in these
models have not been formally studied. In this paper, we derive the influence functions
of the endogenous probit model’s classical estimators (the maximum likelihood and the
two-step estimator) and prove their non-robustness to small but harmful deviations from
distributional assumptions. We propose a procedure to obtain a robust alternative es-
timator, prove its asymptotic normality and provide its asymptotic variance. A simple
robust test for endogeneity is also constructed. We compare the performance of the robust
and classical estimators in Monte Carlo simulations with different types of contamination
scenarios. The use of our estimator is illustrated in several empirical applications.

Keywords: Binary outcomes, Probit model, Endogenous variable, Instrumental variable, Ro-

bust Estimation

∗Department of Econometrics, Econometric Institute, Erasmus University Rotterdam, The Netherlands. E-
mail: Naghi@ese.eur.nl. Naghi acknowledges partial support from EU Horizon 2020, Marie Sk lodowska-Curie
individual grant (No. 797286).
†Department of Econometrics, Econometric Institute, Erasmus University Rotterdam, The Netherlands.

E-mail: Varadi@ese.eur.nl
‡Corresponding author. Department of Econometrics, Econometric Institute, Erasmus University Rotter-

dam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands. E-mail: Zhelonkin@ese.eur.nl.

1



1 Introduction

Probit models are widely used binary outcome specifications in economics and social science

studies (see for example Cameron and Trivedi (2005), Wooldridge (2010) for a standard text-

book treatment). To account for common empirical challenges driven by endogeneity issues,

most empirical applications resort to probit models that accommodate endogenous regressors.

An endogenous probit model can be represented by the regression system

y1i = x>1iγ1 + x>2iγ2 + ε1i, (1)

y2i = I(x>1iβ + αy1i + ε2i ≥ 0), (2)

where x1i is a p1 × 1 vector of exogenous regressors, x2i is a p2 × 1 vector of instrumental

variables (IV) and y1i is an endogenous continuous regressor. The error terms ε1i and ε2i follow

a bivariate normal distribution with variances σ2
1, σ2

2 = 1 and correlation ρ, I(A) denotes an

indicator function which is equal to one if A is true and zero otherwise, and i = 1, . . . , N .

For simplicity of exposition we consider the case of one endogenous variable (Wooldridge 2010,

Section 15.7.2). The intercepts are included in γ1 in equation (1) and in β in equation (2).

Note that for identification we need p2 ≥ 1. Also, x2 needs to be a significant predictor of y1

and needs to be uncorrelated with the error terms.

Equation (1) is a reduced form equation which explains the endogenous variable in terms

of strictly exogenous variables including instruments. The IV’s are excluded from (2), which is

the equation of interest. The model (1)-(2) is typically estimated by the Maximum Likelihood

Estimator (MLE) or by two-step procedures. A well used two-step procedure, the estimator of

Rivers and Vuong (1988), employs the Ordinary Least Squares (OLS) estimator for (1), then

the probit MLE is fitted for (2). In the MLE step, the first step residuals ε̂1 are used as an

additional regressor, i.e., the linear predictor in (2) becomes αy1i + x>1iβ + ε̂1iλ. An important

virtue of this approach is that it leads to a simple test of exogeneity of y1, by testing the
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null H0 : λ = 0. The above mentioned parametric estimators heavily rely on distributional

assumptions. Unfortunately, even when the normality assumption is approximately correct,

the estimators and tests can become unstable. If there are outliers in the data, the classical

parametric estimators can become arbitrarily biased (see for example Ronchetti and Trojani

(2001) for the context of GMM estimation, Freue et al. (2013) for the instrumental variable

setting, and Zhelonkin et al. (2016) for the sample selection model).

In this paper we study the robustness properties (to small data contamination) of paramet-

ric estimators of the endogenous probit model: the MLE and the two-step estimator of Rivers

and Vuong (1988). As it turns out that these estimators are not robust, we propose robust

alternatives. Throughout this paper we assume that the parametric model holds approxi-

mately, i.e., a certain (small) proportion of data can come from an unknown contaminating

model. The simplest example of this type of contamination is contamination by outliers. More

specifically, we assume that the true data generating process is the Huber (1964) gross-error

model Fε = (1 − ε)F + εG, where ε denotes a (small) contamination proportion. Then, we

are interested in the estimation of the model F , which is the model (1)-(2), although the data

can come from Fε. We treat G as an unknown/arbitrary contamination. In a recent paper,

Bonhomme and Weidner (2018) refer to the gross-error model from above as nonparametric

contamination.

Note that if a practitioner concludes that the model F is not applicable even approximately,

then the alternative would be to use a semi- or nonparametric approach, see Blundell and Powell

(2004). The semi- or nonparametric approaches directly estimate Fε. Although these methods

are more flexible, the flexibility comes at a cost of identification, efficiency and computational

difficulties. Our robust approach is parametric in nature and hence it identifies exactly the

same parameters as a fully parametric case. The price to pay is a small loss of efficiency if the

model F holds exactly. However, in the presence of contamination, as we show in the simulation
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study below, the classical estimators become less efficient than the robust alternative.

By means of the influence function approach (Hampel et al. 1986) we prove the non-

robustness of classical estimators of the endogenous probit model in Section 2. In Section 3

we propose a robust two-step estimator and, as a by-product, a robust test for endogeneity.

Section 4 analyzes the performance of the classical and robust estimators under different types

of contamination. Three empirical applications in Section 5 illustrate the use of the proposed

estimator. Finally, Section 6 concludes.

2 Robustness Properties

In this section we investigate the robustness properties of classical endogenous probit estima-

tors. To this end, we start with deriving the influence function (IF) of the two-step estimator,

then we briefly discuss the properties of the IF of the maximum likelihood estimator.

We consider a parametric probit model with endogeneity (1)-(2), denoted by Fθ, where

θ = (α, β, γ1, γ2, ρ, σ1) lies in Θ, a compact subset of R× R2p1 × Rp2 × [0, 1]× R+. Let FN be

the empirical distribution function with mass 1/N at each observation zi = (x1i, x2i, y1i, y2i),

with i = 1, . . . , N . Let F be the distribution function of zi. To make the notation more concise,

let us denote z1i = (x1i, x2i, y1i) and z2i = (x1i, y1i, y2i).

The two-step estimator can be expressed as a solution of the empirical counterpart of the

following system of M-estimators ∫
Ψ1{z1;S(F )}dF = 0, (3)∫

Ψ2[z2;h{z1;S(F )}, T (F )]dF = 0, (4)

where Ψ1 and Ψ2 denote the score functions of the first and second step estimators, respectively.

In the case of the Rivers and Vuong (1988) estimator, the score functions are

Ψ1{z1;S(F )} = (y1 − x>1 γ1 − x>2 γ2)
(
x1
x2

)
, (5)
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Ψ2[z2;h{z1;S(F )}, T (F )] = {y2 − Φ(x̃>δ)} φ(x̃>δ)

Φ(x̃>δ){1− Φ(x̃>δ)}
x̃, (6)

where x̃ = (x>1 , y1, h)>, δ = (β>, α, λ)>, and h is a function that connects two estimation

steps, i.e., h{z1;S(F )} = y1 − x>1 γ1 − x>2 γ2, which in our case expresses the residuals in the

first step estimator. The density and the cumulative distribution function of the standard

normal distribution are denoted by φ and Φ, respectively.

2.1 Influence Function

For a statistical functional T (F ) the influence function (IF) is defined (Hampel 1974) as

IF(z;T, F ) = lim
ε→0

[T{(1− ε)F + ε∆z} − T (F )]/ε,

where ∆z is a point mass at z. The IF characterizes the standardized asymptotic bias of the

estimator due to contamination ε. If the IF is unbounded then the worst possible bias in the ε

neighborhood of F can be infinite. Hence, for an estimator to be (locally) robust, a bounded

IF is required.

Let us start with the IF of the first step. The IF for the OLS estimator is known (Hampel

et al. 1986) and is given by

IF(z;S, F ) = M1Ψ1{z1;S(F )},

where M1 is a constant matrix given by

M1 = −
∫ (

x1x
>
1 x1x

>
2

x2x
>
1 x2x

>
2

)
dF.

The IF is clearly unbounded in both dependent variable y1 and covariate space (x1, x2).

Now, the estimator of the second step depends on an outcome of the first step. Thus, the

IF of the estimator of the second step depends on the IF of the first step. The connection

is formulated in the following proposition. The derivations of Proposition 1 are given in

Appendix A.
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Proposition 1. For model (1)-(2), the IF of the Rivers-Vuong two-step estimator is

IF(z;T, F ) = M−1
2

(
Ψ2[(x1, y1, y2);h{(x1, x2, y1);S(F )}, T (F )] +

∫
AdF · IF(z;S, F )

)
, (7)

where M2 is a probit Hessian matrix and
∫
AdF is a constant matrix given in the Appendix.

Note that the score function Ψ2 is unbounded. In addition, the second step estimator also

inherits unboundedness of the IF from the first step, since the IF of the second step linearly

depends on the IF of the first step. Hence, the entire two-step estimator is not robust.

Remark 1: Notice that the IF of the full information MLE is also unbounded. For complete-

ness, the score functions are given in Appendix B. In this case the estimation of the parameters

of the two equations (1)-(2) is not separable. Thus, the robustification of this estimator is much

more complex than that of the two-step estimator as it requires complicated consistency cor-

rections which can lead to numerical instability. Hence, in this paper, we proceed with the

robust version of the two-step estimator.

3 Robust Estimation and Test for Endogeneity

In this section we propose a robust estimator for the endogenous probit model and construct

a simple robust test for endogeneity.

3.1 Robust Two-Step Estimator

The expression of the IF of the two-step estimator derived in Proposition 1 formalizes the

non-robustness problem and paves the way to construct a robust estimator. The IF in (7)

contains two sources of unboundedness. The first source is the IF of the estimator of the first

step, while the second is the unbounded score function of the probit MLE. Thus, it is clear

that as the first step we need to have a bounded-influence estimator for the linear regression.

The topic of robustness in linear regressions is well-studied (Hampel et al. 1986, Maronna et al.
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2006) and there are a large number of robust alternatives to OLS. One can use for example

the MM-estimator (Yohai 1987) or an M-estimator of Mallows type. With the M-estimator of

Mallows type the deviations in the dependent variable y1 and covariates (x1, x2) are bounded

separately. The score function is as follows

Ψr
1{z1;S(F )} = ψc(y1 − x>1 γ1 − x>2 γ2)ω1(x1, x2), (8)

where ψc is the Huber function defined by

ψc(e) =

{
e, |e| ≤ c,
c · sgn(e), |e| > c,

(9)

and where the tuning constant c can be chosen to ensure a certain level of asymptotic efficiency

(we used c = 1.345, as recommended in Hampel et al. (1981)). The weight function ω1 is based

on the robust Mahalanobis distance d(x1, x2):

ω1(x1, x2) =

{
(x1, x2)

>, if d(x1, x2) ≤ c̃,
(x1, x2)

>c̃/d(x1, x2), if d(x1, x2) > c̃.
(10)

Given that the squared Mahalanobis distance follows a χ2-distribution, we use the 5% critical

level for the choice of c̃. The expectation and covariance matrix for the robust Mahalanobis

distance are estimated by the Minimum Covariance Determinant (MCD), see Rousseeuw and

Van Driessen (1999).

In the second estimation step we need to use the estimated error terms from step one.

Since the first step can be estimated robustly, we can then compute the error ĥ = y1 −

x>1 γ̂1− x>2 γ̂2 without modifications. The idea is that if there are large errors due to outliers or

misspecification, then they will be transferred to the second stage, where a robust estimator

needs to be used, as the score function is unbounded. For the second step we propose to

replace the probit MLE by the robust version of the quasi-likelihood estimator, which is also a

Mallows-type M-estimator. We use the procedure proposed by Cantoni and Ronchetti (2001)

for generalized linear models. The score function is

Ψr
2{z;h, T (F )} = ν(z2;µ)ω2(x̃)µ′ − a(δ), (11)
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where a(δ) = (1/N)
∑N

i=1E{ν(z2i;µi)}ω2(x̃i)µ
′ ensures Fisher consistency with the expectation

taken with respect to the conditional distribution of y2|x̃. The weight functions ν(·, ·) and ω2(·)

are defined below, µi = Φ(x̃>i δ) and µ′i = ∂µi/∂δ. The weight function

ν(z2i;µi) = ψc(ri)
1

V 1/2(µi)
, (12)

where ri = (y2i − µi)/V 1/2(µi) are Pearson residuals, V (µi) = Φ(x̃>i δ){1 − Φ(x̃>i δ)}, and ψc

is a Huber function defined in (9) with a possibly different tuning constant. As advocated by

Cantoni and Ronchetti (2001), the suitable value for c is 1.345. The weights on the covariate

space ω2(·) can be computed in the same way as in the first step (10), i.e., based on the robust

Mahalanobis distance. A second option is ω2(x̃i) =
√

1−Hii, where Hii is the i’th diagonal

element of the hat matrix H = X̃(X̃>X̃)−1X̃>. Notice that the weights based on the hat

matrix were a first option suggested by Cantoni and Ronchetti (2001). In the case of the

endogenous probit model, our simulation study suggests that the weights based on the robust

Mahalanobis distances provide a more robust performance with respect to data contamination.

However, applications in economics and social science often have covariate spaces that contain a

lot of dummy variables. This can make the MCD’s work computationally unstable. Hence, the

hat matrix-based weights can still be viable alternatives. Finally, the expectation E{ψc(ri)}

in the a(δ) term in (11) can be computed explicitly and equals to

E

[
ψc

{
y2i − µi
V 1/2(µi)

}]
= ψc

{
−µi

V 1/2(µi)

}{
1− Φ(x̃>i δ)

}
+ ψc

{
1− µi
V 1/2(µi)

}
Φ(x̃>i δ). (13)

The properties of the proposed estimator are formalized in the following proposition.

Proposition 2. Under the regularity condition stated in Appendix C, the two-step estimator

defined by the score functions (8) and (11) is robust, consistent and asymptotically normal,

with asymptotic variance defined by

V (T, F ) = M (Ψr
2)
−1
∫
{Υ1(z)Υ1(z)> + Υ2(z)Υ2(z)>}dFM (Ψr

2)
−1 , (14)
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where

M (Ψr
2) = −

∫
∂

∂δ
Ψr

2(z;h, T )dF,

Υ2(z) = Ψr
2(z;h, T ), and

Υ1(z) =

∫
∂

∂ζ
Ψr

2{z2; ζ, S(F )}
(
x1
x2

)
dF

{∫
∂

∂γ
Ψr

1(z1; γ)dF

}−1
Ψr

1(z1;S).

The proof of Proposition 2 is given in Appendix C.

3.2 Testing for Endogeneity

When using the two-step estimator, testing for the endogeneity of y1 is straightforward. It

is a standard t-test testing if the coefficient λ is equal to zero. Denote the test statistic by

τ =
√
NT (F )/V (T, F )1/2, where V (T, F ) denotes the asymptotic variance of the estimator at

the model.

We study the behavior of the test statistic under contamination. We make a von Mises

(1947) expansion of the test statistic:

√
N

T (Fε)

V (T, Fε)1/2
=
√
N

T (F )

V (T, F )1/2
+ ε

{
√
N
IF (z;T, F )

V (T, F )1/2
+

√
N

2
T (F )

CV F (z;T, F )

V (T, F )3/2

}
+ o(ε),

(15)

where CV F (z;T, F ) is the change-of-variance function (Hampel et al. 1981). The change-of-

variance function is analogous to the IF in the sense that it quantifies the influence of a small

amount of contamination on the variance of an estimator. The von Mises expansion in (15)

provides an approximation for the bias of the test statistic at the contaminated model. The

behavior of the t-test statistic was studied in different contexts (Avella-Medina 2020, Zhelonkin

et al. 2016). It is clear that the bias of the test statistic depends on the IF and CVF, however,

the term containing the CVF is of higher order. Hence, from a practical perspective, for a stable

performance of the test, the estimator with a bounded IF is required, while the boundedness

of the CVF is desirable.
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Remark 2: In the interest of brevity, we do not make a complete derivation of the CVF

for our problem. The derivation of the CVF for general two-step M-estimators can be found

in Zhelonkin (2013). In our case, the CVF depends on the score functions of both estimators

and on the second derivatives of the score from the second step. Thus, it follows that the

Rivers and Vuong (1988) estimator has an unbounded CVF. Our proposed robust estimator

has bounded score functions, and hence possesses a more stable variance estimator.

As a simple robust alternative to test endogeneity, i.e., H0 : λ = 0 against HA : λ 6= 0, we

propose to use a t-test based on the robust estimator of λ. The standard error can be obtained

by estimation of the asymptotic variance in (14). The natural estimator is the sandwich

estimator (Eicker 1967, Huber 1967, White 1980). The second term in (14) corresponds to the

asymptotic variance of the one-step probit robust quasi-likelihood estimator and is estimated

by

M̂ (Ψr
2)
−1 1

N

N∑
i=1

Υ̂2(zi)Υ̂2(zi)
>M̂ (Ψr

2)
−1 ,

where M̂ (Ψr
2) and Υ̂2(z) denote the sample versions of M (Ψr

2) and Υ2(z), respectively. The

first term in (14) contains the asymptotic variance of the robust linear regression estimator

given by (8), premultiplied and postmultiplied by the constant matrix as follows

M̂ (Ψr
2)
−1 1

N

N∑
i=1

Υ̂1(zi)Υ̂1(zi)
>M̂ (Ψr

2)
−1 = M̂ (Ψr

2)
−1 1

N

N∑
i=1

∂Ψr
2i

∂γ

×V̂ar(S, F )

(
1

N

N∑
i=1

∂Ψr
2i

∂γ

)>
M̂ (Ψr

2)
−1 ,

where

∂Ψr
2i

∂γ
=
∂Ψr

2{z2i;h, T (F )}
∂h

(
x1i
x2i

)
.

4 Simulation Study

In this simulation study we illustrate the performance of the proposed robust estimator relative

to the the non-robust alternatives: the MLE and the classical two-step estimator. We focus on
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a setup with no contamination and then on two simple contamination scenarios: contamination

by outliers and contamination of the distribution of the errors.

First we generate the uncontaminated data. To this end, we generate one exogenous vari-

able x1 and one instrument x2 independently from each other following a standard normal

distribution. The error terms follow a bivariate normal distribution with variances equal to 1

and correlation 0.5. The parameters are γ1 = (0, 1)>, γ2 = 0.5, α = 1, and β = (0, 1)>. The

sample size is N = 2000 and we repeat the study 500 times.

The results of the estimation without contamination are reported in Table 1, columns 2

and 3 and in Figure 1. Both the non-robust estimators (MLE and two-step) and the robust

estimator (as described in Section 3.1) perform well. The biases are close to zero. As expected

from the theory, the robust estimator is less efficient - the efficiency loss is approximately

15% relative to the two-step estimator. We have also tried the MM-estimator instead of the

Mallows-type for the first step regression and the performance is similar (not reported here).

In order to study the robustness of the estimators we now add contamination. With prob-

ability ε = 0.01 we replace the original observations by outliers. We consider two types of

outliers: first when the point mass is at (x1, x2, y1, y2) = (2, 2,−2, 1); second when the point

mass is at (x1, x2, y1, y2) = (−2,−2, 2, 0). Although the setup is simple, the detection of con-

tamination is not straightforward. The leverage outliers in the covariate space of the reduced

form equation are two standard deviations away from the mean, which is not straightforward

to detect with standard exploratory analysis. The endogenous variable y1 has a standard devi-

ation of approximately 1.5. Moreover, x1 in the equation of interest becomes a good leverage

point, while it was a bad leverage point in the reduced form equation.

The results of the estimation with this first contamination are summarized in Table 1,

columns 4-7 and Figure 2 and Figure 3. It is clear that both non-robust estimators are biased,

while the robust alternative is nearly unbiased. As expected from the theory, the robust
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estimator allows for a small bias, but it is controlled and it looks negligible. The efficiency of

the non-robust estimators is also affected. In the estimation of the reduced form equation, the

non-robust estimators become less efficient than the robust estimator.

The second contamination scenario is the contamination of the distribution of the error

terms. The setup is the same as above, but with probability 10% we generate error terms

from a bivariate t−distribution with 2 degrees of freedom. We present the results in Figure 4

and Table 2. This contamination is less severe than the one by outliers. However, it is clear

that our robust estimator outperforms the MLE and the two-step estimator. Notice that the

non-robust estimators become less efficient (for many parameters) than our robust estimator.

5 Empirical Applications

In this section we illustrate the use of the robust estimator in three different settings. The

first two examples revisit empirical studies about the causal effect of education on the body

mass index (BMI), and about the impact of immigration on US natives’ decision to major in

science and technology. The third example uses a data set employed in Stata to illustrate the

estimation of probit models with a continuous endogenous regressor. We present the estimation

results with both the proposed robust estimator and the classical two-step estimator. In the

first application, the results given by the classical and robust estimator are the same; in the

second application we observe mild differences between the two sets of results; in the final

example the robust estimates are clearly different from the classical estimates.

5.1 The Causal Effect of Education on the Body Mass Index

Our first empirical application revisits the paper by Brunello et al. (2013) on the causal impact

of years of schooling on adult BMI. The authors argue that the main empirical challenges in

estimating the causal effect of education on health (for which the BMI constitutes a proxy)
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is reverse causality (improved health, as a result of a better BMI, can reduce dropout rates

and improve cognitive skills); or the existence of some unobservable variables that affect both

education and health (such as parental background or attitude towards risk). To overcome

these challenges, the causal impact is identified by the exogenous variation induced by the

number of compulsory years of education in a given country. Control variables include: age

and its square, dummy variables for year-of-birth, survey year and country, and second-order

polynomials in age interacted with country dummies – to capture smooth changes over time

in education and BMI.

Brunello et al. (2013) focus on European countries and pool together data from the Eu-

ropean Community Household Panel (ECHP), the Survey of Health, Ageing, and Retirement

in Europe (SHARE), the English Longitudinal Survey of Ageing (ELSA), the German So-

cioeconomic Panel (SOEP), and the British Household Panel Survey. The authors start with

estimating ordinary least squares (OLS) and two-stage least squares (2SLS) regressions for

males and females separately and find that education has a protective role on the BMI for

females, but no significant effect is found for males. Next, they estimate the probability of

being overweight and obese using probit models where they treat years of schooling as both

exogenous and endogenous. To this end, they construct a dependent variable which takes

value one when the BMI is greater than 25 for the overweight category, and greater than 30

for the obese category. The results indicate that education reduces the probability of being

overweight, for women. Finally, they delve into the potential mechanism that could explain

the protective effect of education and the gender differences.

We focus here on their endogenous probit specifications and revisit these with the two-

step estimator of Rivers and Vuong (1988)) and our proposed robust estimator. We report

the results on the main variable of interest: number of years of schooling. In this empirical

example we find that the classical and robust estimates (as well as their standard errors) are
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close to each other for both females and males and for both overweight and obese groups. The

robust estimates confirm the results of the original paper and the significance of the coefficients

remains the same. Thus, for this first empirical application, we can conclude that there are no

violations of the distributional assumptions and the classical estimator is reliable.

5.2 The Impact of Immigration on US Natives’ Decision to Major
in Science and Engineering

As a second example, we revisit the paper by Orrenius and Zavodny (2015) which examines

whether immigration affects US natives’ decision to major in STEM (science, technology,

engineering, and mathematics) fields. The effect can go both ways: immigrants may crowd

out US natives from STEM fields or they can have positive spillovers (such as positive peer

effects, as foreign students tend to be among the best in their home countries) on US natives

and thus attract or retain them in those fields. The paper uses US data from the American

Community Survey (ACS) that records information on college majors, demographics and labor

market outcomes, as well as Census data to compute immigrant share measures.

To answer the question of how the probability of majoring in a STEM field is related

to immigrant shares, the authors use linear probability models (LPM) where the dependent

variable is equal to one if the individual majored in a STEM field. Two measures of immigrant

share variables are used, separately: immigrant share while in high school and immigrant share

while in college. In the original paper, the immigrant share measures are merged with the ACS

data by individuals’ cohort and their state of birth. The control variables include: age and

its square, dummy variables for race/ethnicity, state and cohort fixed effects, measures of the

relative labor market attractiveness of STEM jobs (the fraction of STEM employed college

graduates to non-STEM employed graduates, the change in this fraction in the past 10 years,

the ratio of log average STEM annual earning to non-STEM earning, and the change in this

ratio in the past 10 years). Additionally, some specifications also include state-specific linear
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time trends to control for smooth changes within states that could affect the probability of US

natives to major in STEM fields.

An important concern in the study is that the variable immigrant shares could be endoge-

nous. Factors that determine immigrants to choose to live in a state, may also affect natives’

choice to major in a STEM field (for example, the Internet boom in the Silicon Valley in the

1990s). If the controls from above do not fully account for such factors, the OLS estimates will

be biased. Thus, the authors present results based on two instruments: the 1960 distribution

of immigrant across states and the lagged immigrant composition within states.1 The main

results indicate that women are less likely to major in STEM fields, when the immigrants share

is higher in their college cohort. In contrast, the effect on men is not significant.

We revisit with our robust estimation approach the regression specifications for females

with state and cohort fixed effects, and with labour market controls. We focus on the specifi-

cations that use the lagged immigrant composition within states as instrument. Instead of IV

regressions of linear probability models, we work here with endogenous probit specifications.

Table 4 in the appendix summarizes the results. Two points are worth to be noted. First,

our classical two-stage probit estimates are negative and thus support the linear probability

results of the original paper. Second, the robust estimates change sign in most cases, indicating

a positive (although not significant) effect of immigrant shares on the probability of women

to major in a STEM field. These differences between the classical and robust estimates might

cast doubt on the distributional assumptions of the model.

5.3 Modelling Women’s Decision to Work

In our final application we work with the data set employed in Stata which exemplifies the

estimation of probit models with continuous endogenous regressors (command ivprobit). This

1See Orrenius and Zavodny (2015) for the motivation of these instruments and a detailed description on
how they are constructed.
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is a hypothetical data set on 500 two-parent households with the aim of fitting a labor-supply

model, i.e., to model whether the women is employed. The dependent variable is equal to

one if the woman is employed and zero otherwise. The decision to work is assumed to be a

function of the number of children at home (kids), the number of years of schooling that the

women completed (fem educ), and other household income (other inc). The variable other inc

is treated as endogenous, as unobserved shocks affecting the household’s other income might

also affect the woman’s decision to work. Thus, the number of years of schooling completed

by the man (male educ) is considered as an instrument.

For this empirical example, we perform a sensitivity analysis of the estimators. We start

by fitting the model and estimating it with the two-step estimator of Rivers and Vuong (1988)

and our proposed robust estimator on the clean data set. Then, we contaminate the data and

study the behavior of the two estimators. For the robust versions, we employ both the MM-

estimator of (Yohai 1987) and the M-estimator of Mallows type. For both these estimators, we

try two different estimation options: one with weights using MCD, and one without weights on

the covariate space. The results on the clean data set are reported in Table 5, where step1.res

denotes the first step residuals. We notice that the estimates given by the classical and the

robust estimators are close to each other, have the same sign, and the significance level is

preserved. The standard errors are again similar in magnitude.

We now contaminate the data by changing the employment status of 10 employed women

who have no kids and have the highest number of years of education (16 years in this data

set). The estimates are reported in Table 6. We notice that the estimates for fem educ and

kids are underestimated if we use the classical two-step estimator. In addition, the significance

levels for kids changes. Notice also that the coefficient on the first stage residuals changes

significance level indicating endogeneity only at 10% level, while the significance level was 1%

in the clean data. The robust estimators, however, perform better: the estimates are closer
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to the values obtained in the cleaned data, while the coefficient on the first stage residuals is

significant at 5% level.

6 Conclusion

The paper introduced robust estimators for the endogenous probit model which provide reliable

estimates in the presence of small but harmful deviations from the model’s assumptions. Monte

Carlo simulations show a good performance of the robust estimator relative to the classical

estimators in different contamination scenarios.

Our robust procedure can serve the applied researcher in several ways. First, as illustrated

by our empirical example on the effect of education on BMI, if the classical and robust esti-

mates are close, it is an indication that the distributional assumptions hold and the classical

estimators can be trusted. In this case, we view our estimator as a useful addition to the

applied researcher’s toolkit for various robustness checks typically performed in applied work.

Second, if the researcher already has doubts about the modelling assumptions in the prelimi-

nary data analysis (for example notices atypical but valid observations), our proposed approach

can serve as a stand-alone method. Of course, if the distributional assumption do not hold

even approximately, the applied researcher should resort instead to semi- and nonparametric

methods.
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A Derivation of Proposition 1

We derive the IF of the Rivers-Vuong two-step estimator. The first step is OLS for which the

IF is known. Using our notation we have

IF{(x1, x2, y1);S, F} = −
∫ (

x1x
>
1 x1x

>
2

x2x
>
1 x2x

>
2

)
dF · (y1 − x>1 γ1 − x>2 γ2)

(
x1
x2

)
. (16)

Then, we use the result for the two-step M-estimators from Zhelonkin et al. (2012).

IF(z2;T, F ) = M−1
2 (Ψ2[(x1, y1, y2);h{(x1, x2, y1), S(F )}, T (F )]

+

∫
∂

∂ζ
Ψ2{z2; ζ, S(F )}∂h{(x1, x2, y1); η}

∂η
dF · IF(z1;S, F )

)
, (17)

where M2 is the probit Hessian matrix given by

M2 =

∫
φ(x̃>δ)2

Φ(x̃>δ){1− Φ(x̃>δ)}
x̃x̃>dF, (18)

∂h{(x1, x2, y1); η}
∂η

=
∂
{
y1 − (x>1 , x

>
2 )γ
}

∂γ
=

(
x1
x2

)
, (19)

where γ = (γ>1 , γ
>
2 ). Finally, the derivative ∂Ψ2/∂ζ is defined as follows

∂Ψ2{z2; ζ, S(F )}
∂ζ

=
∂

∂ζ

([
y2 − Φ

{
(x>1 , y1, ζ)δ

}] φ{(x>1 , y1, ζ)δ}
Φ{(x>1 , y1, ζ)δ}[1− Φ{(x>1 , y1, ζ)δ}]

δ

)
.

(20)

B IF of the joint MLE

The log-likelihood function for an observation i is given by

li = y2i log Φ(ui) + (1− y2i) log{1− Φ(ui)}+ log φ

(
y1i − x>1iγ1 − x>2iγ2

σ1

)
− log σ1,

where

ui =
x>1iβ + αy1i + ρ(y1i − x>1iγ1 − x>2iγ2)/σ1

(1− ρ2)1/2
.

Since MLE is the particular case of an M-estimator, its IF is known to be proportional to the

score function (Hampel et al., 1986). Hence the IF is (un)bounded if the score function is

(un)bounded. The score functions for different parameters are as follows:

∂l

∂γj
= −y2

φ(u)

Φ(u)

ρxj/σ1
(1− ρ2)1/2

+ (1− y2)
φ(u)

{1− Φ(u)}
ρxj/σ1

(1− ρ2)1/2
+

1

σ2
1

(y1 − x>1iγ1 − x>2iγ2)xj, (21)
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for j = 1, 2.

∂l

∂β
= φ(u)

[
y2 − Φ(u)

Φ(u){1− Φ(u)}

]
x1

(1− ρ2)1/2
, (22)

∂l

∂α
= φ(u)

[
y2 − Φ(u)

Φ(u){1− Φ(u)}

]
y1

(1− ρ2)1/2
. (23)

The score functions in (22) and (23) are structurally the same as (6). It is clear that all the

score functions in (21)-(23) are unbounded.

C Assumptions and Proof of Proposition 2

Denote Ψr(z; θ) =
{

Ψr
1(z1; γ)>,Ψr

2(z; γ, δ)>
}

. Assume that the following regularity conditions

(adapted from Duncan 1987) hold:

1. zi, for i = 1, . . . , N , is a sequence of independent identically distributed random vectors

with distribution F defined on a space Z.

2. The parameter space Θ is a compact subset of R× R2p1 × Rp2 × [0, 1]× R+.

3.
∫

Ψr(z; θ)dF = 0 has a unique solution θ0 in the interior of Θ.

4. Ψr(z; θ) and ∂
∂θ

Ψr(z; θ) are measurable for each θ in Θ, continuous for each z in Z,

and there exist F -integrable functions ξ1 and ξ2 such that for all θ ∈ Θ and z ∈ Z
|Ψr(z; θ)Ψr(z; θ)T | ≤ ξ1 and | ∂

∂θ
Ψr(z; θ)| ≤ ξ2.

5.
∫

Ψr(z; θ)Ψr(z; θ)>dF is non-singular for each θ ∈ Θ.

6.
∫
∂Ψr(z; θ0)/∂θdF is finite and non-singular.

Proof of Proposition 2. Consistency and asymptotic normality follow from Theorems 1-4 in

Duncan (1987). The asymptotic variance reduces to two terms. This is because the error

terms ε1 in the first step and y2− x̃>δ in the second step are independent by construction and

thus Υ1(z)Υ2(z)> and Υ2(z)Υ1(z)> vanish after integration.
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Table 1: Bias and Standard Deviation of the MLE, two-step and robust estimators for the
parameters of the outcome equation (2), at the model, and under two types of contamination

N = 1000 Not contaminated y2 = 1 y2 = 0

Bias Std.Dev. Bias Std.Dev. Bias Std.Dev.

MLE
γ10 0.000 0.022 −0.046 0.024 0.045 0.025
γ11 0.001 0.022 −0.093 0.029 −0.092 0.030
γ2 0.000 0.022 −0.092 0.029 −0.091 0.029
β0 −0.002 0.043 0.050 0.045 −0.054 0.044
β1 −0.001 0.071 −0.056 0.109 −0.057 0.110
α 0.003 0.134 0.260 0.127 0.258 0.130
ρ 0.006 0.072 −0.454 0.114 −0.450 0.124

Two-step
γ10 0.000 0.022 −0.046 0.024 0.045 0.025
γ11 0.001 0.022 −0.093 0.029 −0.092 0.030
γ2 0.000 0.022 −0.092 0.029 −0.091 0.029
β0 −0.003 0.050 0.051 0.045 −0.054 0.045
β1 0.009 0.119 −0.203 0.114 0.114 0.116
α 0.006 0.112 0.114 0.124 0.567 0.126
ρ 0.009 0.112 −0.530 0.116 −0.526 0.126

Robust
γ10 0.000 0.023 −0.014 0.023 0.013 0.024
γ11 0.001 0.023 −0.030 0.024 −0.030 0.025
γ2 0.000 0.023 −0.029 0.024 0.028 0.024
β0 −0.003 0.055 −0.009 0.055 −0.004 0.056
β1 0.008 0.142 0.014 0.146 0.012 0.146
α 0.015 0.135 −0.019 0.141 −0.018 0.140
ρ 0.004 0.136 0.017 0.152 0.016 0.152



Table 2: Bias and Standard Deviation of the MLE, two-step and robust estimators, when the
errors are contaminated by the t−distribution with 2 degrees of freedom

γ10 γ11 γ2 β0 β1 α ρ

MLE
Bias 0.000 −0.002 0.000 −0.001 −0.066 −0.065 −0.103

Std.Dev. 0.033 0.033 0.032 0.043 0.101 0.142 0.143

Two-step
Bias 0.000 −0.002 0.000 −0.001 −0.090 −0.096 −0.093

Std.Dev. 0.033 0.033 0.032 0.049 0.135 0.120 0.132

Robust
Bias 0.002 −0.002 0.000 0.001 0.003 −0.010 −0.008

Std.Dev. 0.023 0.024 0.024 0.055 0.149 0.133 0.136

Table 3: Classical two-step and robust estimates of the causal effect of education on BMI

Panel A:
Males

Overweight Obese
Two-Step Robust Two-Step Robust

Years of
Schooling

-0.009
(0.068)

-0.021
(0.073)

-0.011
(0.08)

-0.012
(0.094)

Panel B:
Females

Overweight Obese
Two-Step Robust Two-Step Robust

Years of
Schooling

-0.107 **
(0.042)

-0.119 **
(0.056)

-0.077
(0.054)

-0.101
(0.082)

Notes: Significance at 1% ’***’, significance at 5% ’**’, significance at 10% ’*’.



Table 4: Classical two-step and robust estimates of the causal effect of immigrant shares on
US natives’ (females) decision to major in a STEM field

Panel A:
College

State and Cohort
Fixed Effects

Labor market
controls

Two-step Robust Two-step Robust
Immigrant Share
While in College

-0.026
(0.059)

-0.026
(0.069)

-0.011
(0.053)

0.005
(0.074)

Panel B:
High School

State and Cohort
Fixed Effects

Labor market
controls

Two-step Robust Two-step Robust
Immigrant Share
While in High School

-0.021
(0.027)

0.009
(0.043)

-0.016
(0.025)

0.024
(0.044)

Table 5: Classical two-step and robust estimates - Stata Example on Clean Data

Two-Step MM - weights MM - no weights M - weights M - no weights
Intercept 0.396 0.607 0.492 0.625 0.497

(0.477) (0.518) (0.485) (0.52) (0.487)
fem educ 0.227 *** 0.214 *** 0.217 *** 0.213 *** 0.217 ***

(0.027) (0.03) (0.028) (0.03) (0.028)
kids -0.196 *** -0.179 *** -0.194 *** -0.177 *** -0.192 ***

(0.048) (0.053) (0.05) (0.053) (0.05)
other inc -0.058 *** -0.06 *** -0.058 *** -0.06 *** -0.058 ***

(0.009) (0.01) (0.009) (0.01) (0.009)
step1.res 0.024 *** 0.027 *** 0.024 ** 0.027 *** 0.024 **

(0.009) (0.01) (0.01) (0.01) (0.01)

Notes: Significance at 1% ’***’, significance at 5% ’**’, significance at 10% ’*’.



Table 6: Classical two-step and robust estimates - Stata Example on Contaminated Data

Two-Step MM - weights MM - no weights M - weights M - no weights
Intercept 0.339 0.653 0.476 0.638 0.48

(0.463) (0.512) (0.473) (0.513) (0.474)
fem educ 0.164 *** 0.19 *** 0.176 *** 0.19 *** 0.176 ***

(0.025) (0.029) (0.026) (0.029) (0.026)
kids -0.105 ** -0.14 *** -0.132 *** -0.14 *** -0.13 ***

(0.046) (0.052) (0.048) (0.052) (0.048)
other inc -0.047 *** -0.057 *** -0.051 *** -0.057 *** -0.051 ***

(0.008) (0.01) (0.009) (0.01) (0.009)
step1.res 0.017 * 0.026 ** 0.019 ** 0.025 ** 0.019 **

(0.009) (0.01) (0.009) (0.01) (0.009)

Notes: Significance at 1% ’***’, significance at 5% ’**’, significance at 10% ’*’.

(MLE) (2−step) (robust)

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Stage 2: Bias β0

(MLE) (2−step) (robust)

−
0

.2
0

.0
0

.2
0

.4
0

.6

Stage 2: Bias β1

(MLE) (2−step) (robust)

−
0

.2
0

.0
0

.2
0

.4

Stage 2: Bias α

(MLE) (2−step) (robust)

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Stage 2: Bias λ

Figure 1: Biases of parameter estimates of the equation of interest at the model
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