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1 Introduction

One of the key goals of empirical research in economics is to estimate the

causal effect of a variable of interest on a targeted outcome. To avoid bi-

ases in the coefficients of interest due to omitted variables, particularly in

observational studies, it is often desirable to include a large number of con-

trols. However, even when the number of raw covariates is relatively small,

the inclusion of technical controls (e.g. dummy variables for geographical

location, time periods, etc.), interactions and transformations can lead to

settings in which the number of covariates is large relative to the sample

size.

Machine learning (ML) methods can potentially be useful in such set-

tings. However, standard ML prediction models are aimed for fundamen-

tally different problems than most of the empirical work in economics. ML

methods are designed and optimized for predicting the outcome in a test

sample.1 Thus, a model is selected by optimizing the goodness of fit on the

held-out test set. In contrast, in empirical economic research, the goodness

of fit of a model is oftentimes reduced when estimating a causal effect, and

the predictive accuracy is sacrificed in order to learn more deeply about a

fundamental relationship that can guide policy decisions and counterfac-

tual predictions (Athey and Imbens, 2019). These fundamental differences

will eventually generate biased estimates if standard ML techniques, de-

signed for prediction, are used in the context of causal inference.2 Nev-

ertheless, a new and rapidly growing econometric literature is making ad-

vances in the problem of using ML methods for causal inference questions

(see, e.g., Chernozhukov et al., 2018a; Athey et al., 2018; Wager and Athey,

2018; Chernozhukov et al., 2018b). This literature brings in new insights

and theoretical results that are novel for both the ML and the economet-

rics/statistics literature. Despite these advances, the empirical economics

literature has not started yet to fully exploit the strengths of these new

1Note that by ’prediction’ here, we do not mean ’forecasting’. Rather, we refer to
a setting where we observe both the outcome and the features/covariates in a training
sample and the aim is to predict the outcomes for each observation in an independent
test sample, based on the actual values of the covariates in that test sample.

2The main underlying reason is that high dimensional regression adjustments such as
lasso, ridge, elastic net etc., shrink the estimated effects by construction, and ignoring
this shrinkage will lead to biased treatment effect estimates.
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modern causal inference methods.

The aim of this paper is to contribute to the general understanding of

when and how ML methods add value to economic causal analysis. To

this end, we revisit a number of influential papers with causal ML methods

and compare the results with the traditional methods used in the original

study. We highlight the relevance and additional gains that causal machine

learning methods bring to the table relative to the standard econometric

approaches. In our analysis, we focus on both the average treatment effect

(ATE) and heterogeneous treatment effects (HTE). We provide evidence

that causal ML methods can improve the credibility of causal analysis, and

can help identify relevant heterogeneity in treatment effects that may be

missed with traditional methods.

When interested in the ATE, we employ the double/debiased machine

learning (DML) method of Chernozhukov et al. (2017); when the focus is

on heterogeneous treatment effects (HTE), we work with the random forest

method of Wager and Athey (2018), and with the generic machine learn-

ing method for heterogeneous treatment effects developed by Chernozhukov

et al. (2018b). These are newly developed causal machine learning methods

for the estimation of the ATE and HTE with well established theoretical

properties. We re-examine a set of relatively recent but influential stud-

ies that span a variety of topics in applied economics, published in the

following journals: The Quarterly Journal of Economics, American Eco-

nomic Journal: Macroeconomics, American Economic Journal: Applied

Economics. We choose papers for which the full replication data set is

available either on the journal’s website or on the authors’ website. For the

ATE, we revisit three observational studies: the study of Djankov et al.

(2010) on the effect of corporate taxes on investment and entrepreneur-

ship, the analysis of Alesina et al. (2013) on the long-term effect of plough

agriculture on gender norms, and the paper by Nunn and Trefler (2010)

on the effect of skill-biased tariffs on long-term economic growth. For the

HTE, we select one observational study and one randomized control trial:

we extend the observational study by DellaVigna and Kaplan (2007), which

investigates the effect of Fox News on the Republican vote share, and the

analysis by Loyalka et al. (2019) on the effect of a teacher training random-

ized intervention on student performance. All these papers include careful
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econometric analyses of the main research question and mechanisms, which

we do not aim to re-examine in full. We instead focus on analyzing the

main questions.

Our findings show important differences in the ATE and HTE estimates

compared to the traditional methods, both in terms of size of the treatment

effect estimates, and in terms of statistical significance. From our results,

we derive four main observations about the reasons why causal machine

learning methods are relevant for causal analysis and add value relative to

the traditional methods. These observations are supported by the theoret-

ical econometrics literature on causal ML (see, for example, Athey et al.,

2018; Chernozhukov et al., 2018b; Wager and Athey, 2018).

Firstly, causal ML methods are powerful tools in using data to recover

complex interactions among variables and flexibly estimate the relationship

between the outcome, the treatment indicator and covariates. This feature

is key when drawing inference based on the assumption that the treatment

is unconfounded as in the case of most of the revisited studies, since this

assumption is not testable. As some covariates can be correlated with both

the treatment variable and the outcome, failing to condition on all relevant

confounders may lead to biased estimates for the treatment effect. For ex-

ample, for the effect of corporate taxes on investment and entrepreneurship,

the original analysis in Djankov et al. (2010) shows a negative and signifi-

cant effect of corporate taxes on investment and entrepreneurship, but the

authors show that these results do not survive when conditioning on all

the potential controls at once. However, when implementing DML, we ob-

tain larger estimates compared to Djankov et al. (2010), which are often

statistically significant. Similarly, our DML results for the effect of plough

cultivation on gender roles suggest a larger effect of the plough compared to

the findings in Alesina et al. (2013), when we use the instrumental variable

strategy employed in the original analysis. Furthermore, our analysis of the

effect of skill-biased tariffs on growth suggests a smaller effect compared

to Nunn and Trefler (2010), which is often not statistically significant. We

thus argue that the DML estimates are more robust to potential nonlinear

confounders.3

3It is important to note here that the idea of estimating treatment effects without
making parametric assumptions about the way in which the covariates enter the equa-
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Secondly, causal ML methods allow for the inclusion of a large number of

covariates, even when the sample size is relatively small, by assuming that

the model is sparse, (i.e., only a small number of covariates are relevant),

and using regularized regressions. For instance, in the study by Djankov

et al. (2010) and in some of the specifications in Alesina et al. (2013) and

Nunn and Trefler (2010), the number of “raw” covariates is large compared

to the sample size, thus taking into account all possible nonlinear terms,

such as interactions and transformations, would not be possible when using

traditional methods. Indeed, only a limited set of prespecified nonlinear

terms is included in Alesina et al. (2013), no nonlinear terms other than

logarithms are considered in Nunn and Trefler (2010), and no nonlinear

terms are included in Djankov et al. (2010). In contrast, by using the DML

method we ensure that our results take into account all potentially relevant

confounders at once, both linearly and nonlinearly.

Thirdly, the use of causal ML methods allows to implement systematic

model selection. ML methods search for the best functional forms by es-

timating and comparing a wide range of alternative model specifications;

the model selection is thus data-driven and fully documented. For example,

our results for the effect of corporate taxes, originally explored by Djankov

et al. (2010), show that the data-driven model selection implemented by

DML, which keeps a smaller set of influential confounding factors from

among a large set of potential controls, leads to larger coefficients in abso-

lute value and lower standard errors compared to OLS regressions where

all the covariates are included. With the traditional approach to model

selection, uncertainty about the correct specification of the model can lead

to choices that are relatively ad hoc; different specifications may lead to dif-

ferent point estimates, which in turn may lead to different policy decisions.

Moreover, we further illustrate how these methods are also very useful tools

for supplementary analyses or robustness checks. Typically, supplementary

analysis is performed by presenting a number of selected regression specifi-

cations, while the approach of causal ML methods is more systematic, and

ensures that important transformations of covariates that are not consid-

tion has already been considered in the semiparametric econometrics literature (see the
review paper of Imbens and Wooldridge, 2009, and Imbens and Rubin, 2015) . However,
in practice, these semiparametric kernel methods quickly break down if they have to deal
with more than a few covariates.
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ered relevant a priori are not missed. For instance, when revisiting the OLS

robustness analysis of Alesina et al. (2013), the DML results show small

and insignificant treatment effects, in contrast to the original robustness

regressions. Furthermore, our analysis of Nunn and Trefler (2010) shows

that the main results are not robust to flexibly controlling for a data-driven

function of the covariates.

Finally, causal machine learning methods prove to be very useful when

one is interested in estimating heterogeneous treatment effects. As causal

ML methods can handle many covariates potentially responsible for effect

heterogeneity in a systematic way, it is less likely that relevant hetero-

geneous effects will be missed, compared to manually modelling different

interaction terms. This feature is exemplified by our analysis of the het-

erogeneous effects of Fox News on the Republican vote share first explored

by DellaVigna and Kaplan (2007) and of the teacher training intervention

studied by Loyalka et al. (2019): our results reveal drivers of heterogeneity

that were unexplored in the original analysis. In addition, note that causal

ML methods tailored for estimating heterogeneous treatment effects pro-

vide valid confidence intervals in high dimensional settings, as opposed to

traditional methods where standard p-values for single hypothesis testing

are not reliable. This is due to the multiple hypothesis testing problem,

which can occur when researchers search iteratively for treatment effect

heterogeneity, over a large number of covariates.4,5

The econometric theory literature on adapting standard machine learn-

ing techniques to causal inference questions is by now fast growing. See for

example Chernozhukov et al. (2017), Chernozhukov et al. (2018a), Athey

et al. (2018), Farrell et al. (2018) Colangelo and Lee (2020) for the ATE;

and Athey and Imbens (2016), Wager and Athey (2018), Athey and Wa-

4While solutions have been proposed to correct for the issue of multiple hypothesis
testing (for example, List et al., 2016), when the number of covariates is large, the power
of these approaches to detect heterogeneity is low (Athey and Imbens, 2017).

5A related issue is the ex-post selection of significant heterogeneous effects. To avoid
this problem, in randomized control trials researchers are often required to specify before
the experiment which heterogeneous effects they are interested to look into, in order to
avoid searching for, and only reporting, significant effects. However, this limits the
ability of the researcher to find unexpected relevant heterogeneity. Causal ML methods
ensure that relevant heterogeneity is not missed while also providing valid confidence
intervals. In addition, in observational studies, where pre-analysis plans are not common
practice, causal ML methods can be particularly useful.
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ger (2019), Chernozhukov et al. (2018b), Semenova et al. (2018) for the

HTE. In the statistics literature, estimation of HTE with machine learning

methods has been the focus in Hill (2011), Imai et al. (2013), Su et al.

(2009), Zeileis et al. (2008), among others. A few papers started employ-

ing the above mentioned methods in interesting early applications. See for

example, Davis and Heller (2017b), Davis and Heller (2017a), Knaus et al.

(2020), Strittmatter (2019) and Bertrand et al. (2017) for the causal ran-

dom forest, and Deryugina et al. (2019) for the generic machine learning.

In what follows, we present our methodology and main findings on the

ATE using double machine learning in Section 2. The methodology and

analysis of HTE via the causal random forest is summarized in Section

3. Section 4 focuses on the methodology and analysis of HTE using the

generic machine learning method. Finally Section 5 concludes.

2 Average Treatment Effects with Double

Machine Learning

This section contains the analysis on the ATE for the effect of corporate

taxes on investment and entrepreneurship (Djankov et al., 2010), the effect

of plough agriculture on gender roles (Alesina et al., 2013), and the effect

of skill-biased tariffs on growth (Nunn and Trefler, 2010), using the double

machine learning method (Chernozhukov et al., 2017).

2.1 Methodology: Double Machine Learning

The method is suitable in settings with a large number of covariates relative

to the sample size (either because the number of raw covariates is large to

begin with, or there is a large number of technical controls), where typical

non-parametric kernel or spline methods break down.

The main model specification of the method, in the notation of Cher-

nozhukov et al. (2018a), is the partially linear regression:

Y = Dθ0 + g0(X) + U (1)
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D = m0(X) + V (2)

where Y is the outcome, D is the treatment variable of interest, X is

a (high-dimensional) vector of controls, and U and V are disturbances.

Equation (1) is the main equation of interest and the parameter θ0 is the

treatment effect we would like to estimate. In this model, θ0 quantifies the

average treatment effect. The second equation is not of direct interest, but

it keeps track of the dependence of the treatment on confounders. The

covariates are related to the treatment through the function m0(X) and to

the outcome variable through the function g0(X). While m0(X) and g0(X)

can be nonlinear, the treatment variable, D, enters the model linearly (and

additively). In observational studies, the function m0 is typically nonzero,

which means that the treatment assignment is not random, but depends

on the covariates. The partially linear regression model is also extended to

a partially linear IV model to allow for endogenous treatment. We refer to

this model as DML-IV.

A first idea one might have for estimating θ0 with ML methods would

be to use a predictive-based ML approach and predict Y using D and

X to obtain Dθ̂0 + ĝ0(X). This can be done for example by an iterative

method that alternates between estimating g0 with some ML method and θ0

with OLS. While this ’naive’ ML approach will have very good prediction

performances, the iterative ML estimator will be heavily biased with a

slower than 1/
√
n convergence rate. The primarily reason for this poor

performance is the bias introduced by regularization. In order to optimize

prediction and avoid overfitting the data with complex functional forms,

ML methods use regularization and shrink the less important coefficients

towards zero. This reduces overfitting by decreasing the variance of the

estimator but at the same time introduces bias. The bias in estimating g0

transfers to the parameter of interest θ0. The issue is similar to the omitted

variable bias.

To overcome regularization bias, Chernozhukov et al. (2017) propose

‘double machine learning’ i.e., solving two predictions problems instead of

one. First, a ML model is fitted for m0 in the treatment equation, and the

effect of X is partialed out from D to get the residuals V̂ = D − m̂0(X).
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Second, a ML method is fitted for g0 in the outcome equation and the

residuals Ŵ = Y − ĝ0(X) are obtained.6 Finally, the residuals Ŵ are

regressed on the residuals V̂ to obtained the ‘debiased’ machine learning

estimator, θ̌0. It can be shown that by orthogonalizing D with respect to

X and eliminating the effect of confounders by subtracting an estimate of

g0, θ̌0 removes the effect of regularization bias.7

However, θ̌0 is still subject to bias due to overfitting. For instance, when

ĝ0 is overfit, it will mistake noise for signal and thus it will pick up some

of the noise U from the outcome equation. If U and V are correlated, the

estimation error in ĝ0 will be correlated with V . To break this correlation

and avoid bias due to overfitting, one can rely on sample splitting. To this

end, the data is partitioned into two subsamples: a main sample and an

auxiliary sample. The ML models for the two nuisance functions m0 and

g0 are fit on the auxiliary sample, while the residual on residual regression

to obtain θ̌0 is fit on the main sample.

A drawback of sample splitting is that the estimator of the parameter

of interest θ0 is obtained using only the main sample, which can lead to loss

of efficiency. However, one can switch the role of the main and auxiliary

samples (procedure called cross-fitting) and average the results, which will

lead to a more efficient estimator. In addition, one can perform a K-fold

version of the cross-fitting procedure, where the size of each fold is n/K.

Each sample partition or fold is successively taken as the main sample while

the complement for each fold will be the auxiliary sample. One can take

then the average of the estimates over the K-folds. To make the results

robust to data partitioning, the splitting in folds procedure is performed

S times, and the final DML estimator is the mean (or median) over the

splits. The median version is more robust to outliers and this is the one we

use in the applications.

6The nuisance functions m0 and g0 can be estimated with a variety of ML methods
such as: lasso, regression trees, random forest, boosting, neural networks, or hybrid
methods.

7This is because the scaled estimation error,
√
n(θ̌0− θ0), contains now a term based

on the product of two estimation errors (the estimation errors in m̂0 and in ĝ0), which
vanishes faster than the equivalent term obtained from using the naive estimator that
depends on the estimation error of ĝ0.
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2.2 Applications with Double Machine Learning

2.2.1 The Effect of Corporate Taxes on Investment and En-

trepreneurship

Description of Original Analysis. The first paper that we revisit us-

ing causal machine learning methods investigates the relationship between

corporate taxes on investment and entrepreneurship (Djankov et al., 2010).

This is an observational study that shows a negative effect of corporate

taxes on investment and entrepreneurship, by estimating OLS country-

level regressions with different measures of corporate tax rates for the year

2004. The sample includes a set of 50-85 countries, depending on the

specification. In the original paper, four outcome variables are examined:

investment as a percentage of GDP, FDI as a percentage of GDP, business

density per 100 people, and the average entry rate. Three measures of cor-

porate taxes are considered: statutory corporate tax rates, actual first-year

corporate income tax liability of a new company, and the tax rate which

takes into account actual depreciation schedules going five years forward.

The original paper reports the results for several regression specifica-

tions with different sets of control variables, to account for potential con-

founders that correlate with corporate tax rates, and are also determinants

of the outcomes.8 Djankov et al. (2010) present regression results where the

first three sets of covariates are added separately. A final robustness check

includes all control variables (12 in total) in the same regression. In the

specifications which include only one set of controls at a time, the paper

shows a negative and statistically significant effect of corporate taxes on

entrepreneurship and investment. However, when adding all the controls,

the relationship is still negative, but the coefficients are smaller in size and

no longer statistically significant.

DML Analysis. We revisit the final robustness check of the paper,

which includes all four sets of covariates at the same time, using the DML

partially linear model. Table 1 presents the results. Columns (1) to (7)

8The first set of controls includes measures of other taxes; the second set includes
measures for the number of other tax payments made and for tax evasion; the third set
includes measures for institutions; the fourth set includes measures of inflation. Section
A.1 of the Appendix includes more details on the regressions estimated in Djankov et al.
(2010) and describes the control variables.
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Table 1: The Effect of Corporate Taxes on Investment and Entrepreneur-
ship

(1) (2) (3) (4) (5) (6) (7) (8)
Lasso Reg. Tree Boosting Forest Neural Net. Ensemble Best OLS

Panel A: Investment 2003-2005

Statutory corporate tax rate -0.074 -0.069 -0.068 -0.07 -0.056 -0.066 -0.071 -0.064
(0.09) (0.072) (0.076) (0.087) (0.102) (0.087) (0.088) (0.098)

First-year effective tax rate -0.114 -0.129 -0.154 -0.144 -0.122 -0.13 -0.133 -0.117
(0.094) (0.087) (0.093) (0.096) (0.097) (0.092) (0.095) (0.106)

Five-year effective tax rate -0.187 -0.182 -0.211 -0.21 -0.217 -0.216 -0.207 -0.189
(0.089) (0.089) (0.092) (0.097) (0.103) (0.095) (0.101) (0.118)

Observations 61 61 61 61 61 61 61 61

Panel B: FDI 2003-2005

Statutory corporate tax rate -0.148 -0.157 -0.153 -0.14 -0.085 -0.133 -0.114 -0.030
(0.083) (0.086) (0.092) (0.094) (0.093) (0.088) (0.09) (0.066)

First-year effective tax rate -0.141 -0.194 -0.178 -0.157 -0.136 -0.161 -0.137 -0.1
(0.091) (0.081) (0.081) (0.074) (0.078) (0.08) (0.079) (0.071)

Five-year effective tax rate -0.147 -0.177 -0.167 -0.165 -0.139 -0.157 -0.14 -0.095
(0.084) (0.073) (0.074) (0.077) (0.082) (0.077) (0.076) (0.081)

Observations 61 61 61 61 61 61 61 61

Panel C: Business density

Statutory corporate tax rate -0.062 -0.092 -0.069 -0.07 -0.056 -0.066 -0.06 -0.034
(0.066) (0.072) (0.061) (0.063) (0.077) (0.069) (0.064) (0.083)

First-year effective tax rate -0.104 -0.156 -0.124 -0.122 -0.105 -0.114 -0.1 -0.068
(0.076) (0.082) (0.07) (0.069) (0.085) (0.072) (0.07) (0.092)

Five-year effective tax rate -0.091 -0.139 -0.122 -0.107 -0.115 -0.114 -0.104 -0.070
(0.076) (0.08) (0.071) (0.067) (0.087) (0.074) (0.075) (0.103)

Observations 60 60 60 60 60 60 60 60

Panel D: Average entry rate 2000-2004

Statutory corporate tax rate -0.112 -0.147 -0.141 -0.127 -0.067 -0.112 -0.106 -0.029
(0.073) (0.068) (0.064) (0.065) (0.084) (0.067) (0.069) (0.086)

First-year effective tax rate -0.130 -0.144 -0.143 -0.125 -0.131 -0.126 -0.117 -0.083
(0.072) (0.064) (0.065) (0.066) (0.086) (0.07) (0.072) (0.094)

Five-year effective tax rate -0.154 -0.153 -0.164 -0.164 -0.191 -0.168 -0.167 -0.133
(0.084) (0.069) (0.07) (0.07) (0.091) (0.08) (0.077) (0.103)

Observations 50 50 50 50 50 50 50 50

Raw covariates 12 12 12 12 12 12 12 12

Notes: Analysis of Table 5D of Djankov et al. (2010) using DML. Column 8 reports
the original paper estimates. Standard errors are reported in parentheses. Standard
errors adjusted for variability across splits using the median method are reported
for the DML estimates. The number of covariates does not include the treatment
variable.

display the DML point estimates for the effect of corporate taxes on in-

vestment and entrepreneurship, using different ML methods to estimate

the nuisance functions. Further details on how the DML estimates are

obtained, the methods used and the tuning parameters are described in

Section A.1 of the Appendix.

We notice that all the DML point estimates have negative signs and

generally similar magnitudes across the ML methods. Compared to the
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original paper results with the full set of covariates, reported in column (8),

the magnitude of the DML coefficients is higher in absolute value, and the

standard errors are lower in most regressions. Additionally, the results are

statistically significant, at least at the 10% level, in half (42 out of 84) of the

regressions. The main difference between our and Djankov et al. (2010)’s

approach is that the original paper results are based on the assumption

of linearity and additivity of the conditional expectations, while the DML

method allows for a more flexible specification. Thus, our findings are more

robust to potential nonlinear confounders compared to the original paper

estimates. A researcher might be interested in investigating what are these

nonlinear terms that make the estimates different. However, this can be

a challenging task when ML methods (such as neural networks, hybrid

methods etc.) are used to estimate the nuisance functions. What can

potentially be done is analyzing the lasso coefficients that are not shrunk

to zero and looking for nonlinearities among these. As an example, we

show in Figure B.1 the most relevant among the nonlinear terms selected

by the lasso, for one of the DML regressions reported in Table 1. Here, we

note that several nonlinear terms appear in both the treatment nuisance

function m̂(·) and in the outcome nuisance function ĝ(·).9 This is suggestive

of the fact that there are nonlinearities that are correlated with both the

treatment variable and the outcome. These were missed by the analysis

in the original paper, and their omission could lead to biased coefficients

of the corporate taxes variables. In this case, controlling for all relevant

confounders strengthens the main results of the original analysis: in many

cases the DML treatment effect estimates are larger in absolute value, and

statistically significant.

This empirical example is also useful to illustrate a typical trade-off

that the applied researcher might face. On the one hand, the researcher

wants to control for as many potential confounders as possible, in order to

improve the credibility of the unconfoundedness assumption. On the other

hand, naively controlling for a large set of covariates, especially when the

sample size is small, can lead to imprecise estimates and larger standard

errors. Notice that in this example, the authors implement a ”kitchen sink”

9Further details about the lasso coefficients analysis are reported in Section A.1 of
the Appendix.
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regression and control for all the covariates at once, resulting in larger

standard errors than the ones that we obtain. The DML method helps

with this trade-off by improving the credibility of the unconfoundedness

assumption (as it captures more flexibly the effect of confounders), but, at

the same time, it implements a data-driven variable selection technique to

keep a smaller set of influential confounding factors from among a large set

of potential controls, thus resulting in lower standard errors.

2.2.2 The Effect of Plough Agriculture on Gender Roles

Description of Original Analysis. The study by Alesina et al. (2013)

examines the relationship between historical plough agriculture and gender

roles. The mechanism is the following: since the plough requires physical

strength to be operated, in areas where plough agriculture was widespread,

men had an advantage in agriculture compared to women. This would re-

sult in societies in which men worked in farming, whereas women’s work

would be performed mainly within the home. The division of labour by

gender would translate into norms and cultural beliefs about the role of

women in the society, which would still persist nowadays, even after soci-

eties have moved out of agriculture as the main economic activity.

In the paper, the authors present results using country-level and individual-

level regressions. We revisit the main question addressed in the original

paper, focusing on the country-level results, as the majority of the re-

gressions reported in the original paper are based on this data. For the

country-level baseline regressions, estimated with OLS, three contempo-

rary outcome variables are examined as measures of gender roles: female

labour force participation, the share of firms with a woman among its prin-

cipal owners, and the proportion of seats held by women in the national

parliament. The treatment variable measures the share of individuals in

each country whose ancestors practiced plough agriculture. The baseline

regressions control for income, income squared, and for measures of the

historical characteristics of the ethnicities living in a country. Continent

fixed effects are added in some specifications.10

As mentioned by Alesina et al. (2013), concerns about potential endo-

10More details on the regressions and the control variables from the study of Alesina
et al. (2013) are described in Section A.2 of the Appendix.
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geneity in the baseline regressions arise. It is possible that plough agricul-

ture may have been more common in countries that had less equal gender-

role attitudes. This would cause the OLS estimates to be biased away from

zero. Moreover, plough agriculture may have been more likely in areas

where economic development was historically higher. If historical and con-

temporary economic development are correlated, and more economically

advanced countries tend to have higher female labour force participation

and more equal gender roles, OLS estimates may be biased towards zero.

To tackle these issues, the following two solutions are offered in the paper.

First, motivated by the thought that the potential bias may be partly due

to observable characteristics, a number of additional controls are included

in the regressions. These include both historical and contemporary con-

trols.11 Second, the authors use an instrumental variable approach, which

exploits the fact that plough adoption is correlated with the suitability of

the land for cereal crops that would benefit, and crops that would not ben-

efit, from the plough. To this end, two instruments for plough adoption

are constructed, based on the analysis by Pryor (1985). The first is the

suitability for ”plough-positive” (i.e. which benefit most from the plough)

cereal crops, and the second is the suitability for ”plough-negative” (i.e.

which benefit least from the plough) cereal crops.12

DML Analysis. In our analysis, we re-examine both the country-level

OLS and IV regressions, applying the DML method. For the OLS analysis,

we begin by estimating a DML partially linear model that only includes the

baseline set of controls as raw covariates. We then revisit the robustness

analysis of this specification, by including as raw covariates the largest set of

controls used in the robustness checks (this corresponds to Table 7, column

8 of the original paper), to which we also add the continent fixed effects.13

This amounts to a total of 36 raw covariates. For the IV analysis, as noted

11The additional controls are listed in Section A.2 of the Appendix
12See Alesina et al. (2013) for details on the data used and how the instruments are

constructed. The paper also shows that the two instruments, indeed, predict plough
adoption.

13When revisiting the robustness analysis with DML, we include continent fixed ef-
fects, even though the original paper did not include them in their most complete ro-
bustness checks. As causal ML methods can handle a large number of covariates, we
include all the covariate which were considered in the original paper, to ensure that all
potential confounders are taken into account.
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in Alesina et al. (2013), the main concern with the instrumental variable

strategy is the possibility that suitable areas for different crops could be

correlated with geographic characteristics that have an effect on gender

norms through other channels, besides plough adoption (i.e., the exclusion

restriction might not hold). Therefore, for the IV analysis, in addition to

the baseline controls and in line with the original paper, we consider the geo-

climatic characteristics the authors use in their IV robustness checks (Table

A14 of the Online Appendix of the original paper). To these variables, we

again add the continent fixed effects. Further details on how the DML

estimates are obtained and the tuning choices are described in Section A.2

of the Appendix.

Table B.2 reports the results of the DML partially linear model that

replicates the baseline regression. In accordance with the original paper, the

treatment effect estimates are negative and statistically significant. They

are also close to the original estimates (reproduced here for convenience

in column 8 of Table B.2), and reassuringly, fairly stable across the ML

methods. We find however very different results when carrying out the

robustness analysis of this baseline specification with the DML method.

Panel A of Table 2 reports the results. While the effect is still negative,

albeit much smaller in absolute value, statistically significance is now lost.

Interestingly, when Alesina et al. (2013) include all covariates at once (the

estimate is reproduced in the last column of our Table 2), the treatment

effect becomes smaller in absolute value, compared to when groups of co-

variates are added separately (see their Table 7, columns 1 to 7), or com-

pared to the baseline specification (reproduced in column 8 of our Table

B.2). With DML, the treatment effect of interest does not only become

smaller, but also statistically insignificant.

Our findings up to this point would lead us to (mistakenly) conclude

that the negative effect of plough adoption on attitudes towards gender

roles may not be as large as suggested by the original analysis, and that

the effect is not statistically significant. However, our estimates from the

DML partially linear model may still be subject to endogeneity. While

flexibly controlling for a large number of covariates can account for the

confounding effect of observed characteristics, the remaining concern is that

plough adoption may be correlated with unobserved characteristics that
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also affect the outcome. The instrumental variable approach suggested

by Alesina et al. (2013) can alleviate this potential issue. We consider

the same instruments as in the paper (described above) and we turn to

re-evaluating the results by estimating a DML - IV model. Panel B of

Table 2 reports the results. As in the original analysis, the estimated

coefficients have a negative sign, and they are now statistically significant

at the 10% level for most of the ML methods, with the exception of neural

networks and ensemble. It is interesting to note that the magnitude of the

coefficients is larger than in the DML partially linear model (both baseline

and extended). This is consistent with the original paper, which also finds

that the IV coefficients are larger than the OLS estimates. It is worth to

further notice that compared to the IV results of the original paper, our

DML - IV findings suggest an even larger effect of the plough adoption

on female labour force participation. We attribute this to causal machine

learning methods being able to control for a large number of covariates

in a more flexible way.14 Overall, when looking at both the robustness

analysis and the IV analysis and comparing them to the baseline results,

we notice that our estimates move in the same direction as the original

paper estimates, but our estimates move even more, supporting the idea

that DML controls more flexibly for relevant covariates.

This empirical example is a good illustration to show the gains from

combining modern ML tools with quasi-experimental methods such as

instrumental variables. While causal ML methods can make the uncon-

foundedness assumption more plausible by flexibly controlling for observed

confounders, they cannot account for unobserved confounders. In such

settings, the researcher could combine causal ML methods with quasi-

14As explained above, our DML specification differ from the original paper’s robust-
ness analysis because it considers nonlinearities and it includes continent fixed effects.
Therefore, the differences between the DML and the original estimates could, in princi-
ple, be driven by the continent fixed effects, and not by the nonlinearities. The original
paper shows that adding the continent fixed effects to the baseline specification leads
to very small changes in the OLS estimates (see Table 4 in the original paper), while
it results in larger changes in the IV case (see Table 8 in the original paper). However,
even in the IV case, including the continent fixed effects only increases the absolute size
of the plough coefficient by 3-4 percentage points, while the DML coefficients exceed
the OLS and 2SLS estimates by more than double that amount (with the except of the
neural network and ensemble estimates). Thus, we conclude that allowing for a more
flexible nuisance function is likely to be driving at least part of the differences between
the DML and the 2SLS (and OLS) estimates.
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experimental methods such as IV, which potentially overcomes biases caused

by unobserved factors. Integrating the two methods could provide powerful

tools for the researcher’s toolkit.

Furthermore, this empirical paper illustrates how causal machine learn-

ing methods can serve as useful tools for the empirical researcher to perform

supplementary analyses. In order to support the credibility of the empirical

evidence, researchers typically report a number of different model specifi-

cations and evaluate the sensitivity of estimates to these alternatives –

similar to the above-mentioned robustness checks performed in the original

paper. The usual approach to evaluating the variability of estimates to dif-

ferent model specifications can be somewhat ad-hoc and not a systematic

way of implementing sensitivity analysis. In addition, relevant covariates

or interactions of these covariates which are not considered important a

priori by the researcher might be missed. Instead, causal machine learning

methods use systematic algorithms that compare a wide range of model

specifications for the nuisance functions and choose the one that best fits

the data. This makes them more robust methods for sensitivity analyses

than the current practice in the literature. Indeed, the example discussed

here shows that the robustness analysis performed with DML suggest differ-

ent conclusions compared to the original paper’s robustness checks. Thus,

we view causal machine learning methods as promising tools for sensitivity

analysis in empirical work.

2.2.3 The Effect of Skill-Biased Tariffs on Growth

Description of Original Analysis. The study by Nunn and Trefler

(2010) investigates the relationship between skill-biased tariffs, i.e., a tar-

iff structure that disproportionately favours skill-intensive industries, and

long-term economic growth. The authors develop a theoretical framework

based on Grossman and Helpman (1991) that shows how tariffs that fo-

cus on skill-intensive industries can lead to a disproportional expansion

of skill-intensive industries, which then leads to higher long-term growth.

Furthermore, using both cross-country and industry level data, the pa-

per provides evidence of a positive relationship between the two variables,

and delves into the mechanisms of this relationship. The findings suggest
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that the mechanisms from the theoretical framework can explain only part

of the total correlation between skill-biased tariffs and growth. The pa-

per attributes the remaining part of the correlation to the endogeneity of

skill-biased tariffs, and in particular to the relationship between institu-

tions and the skill-bias of tariffs: countries with good institutions tend to

protect more skill-intensive industries.

In Nunn and Trefler (2010), three measures of the skill-bias of tariffs

in the initial time period are used:15 the correlation between the indus-

try tariffs and the industry’s skill-intensity, and two measures based on

the difference between the log average tariffs in skill-intensive industries

and log average tariffs in unskilled-intensive industries, which use different

cut-off values for industry skill-intensity. In the country-level estimates,

the outcome is log annual per capita GDP growth, and the regressions in-

clude a set of control variables.16 The country-level regressions includes 63

observations.

For the industry-level estimates, the outcome variable is the average

annual log change in industry output in each country, and the regressions

include all the controls that appear in the country-level regressions, plus

industry fixed effects. These regressions include 1004 data data points for

59 countries. An additional variable (the initial industry tariff) is included

in some specifications to capture a potential mechanism: skill-biased tariffs

can shift resources towards skill-intensive industries that generate positive

externalities, thus leading to higher long-term growth. Thus, industries

that have higher initial tariffs should have higher long-run output. If this

channel can explain the effect of skill-bias on growth, the coefficient of the

skill-bias of tariffs would decrease in size when this variable is included in

the regression.

DML Analysis. We revisit the country and industry-level regressions

reported in Tables 4 (columns 1, 2 and 4), Table 5 (columns 1, 2 and 4) and

Table 6 (columns 1, 3 and 7) of Nunn and Trefler (2010). Further details on

15The initial time period is 1972 for 21 countries, 1980–83 for 30 countries and 1985-87
for 12 countries. The end period is 2000 for most countries, except for 3 of them, for
which data ends in 1996. See Nunn and Trefler (2010), Table 1 for a list of the countries
included and the respective time periods.

16Further details on the regressions estimated by Nunn (2007) and on the control
variables are described in Section A.3 of the Appendix.
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how the DML estimates are obtained and on the tuning parameter values

are reported in Section A.3 of the Appendix.

Table 3 shows the results of the DML partially linear model using

country-level data. The DML treatment effect estimates are considerably

smaller than the original paper’s across all ML methods and across the

three different treatment variables. Moreover, the estimated effects are not

statistically significant, except the coefficients estimated using the lasso,

which are significant at the 10% level. Additionally, we report the DML

results using the industry-level data set (Table B.3 and Table B.4 show the

results with and without including the initial industry tariff respectively).

Similarly to the country-level estimates, the industry-level estimates are

not statistically significant across all methods, except for the boosting es-

timates, which are significant at the 10% level.

Overall, the DML results suggest that the correlation between skill-

biased tariffs and long-term economic growth is not robust to controlling

for an unknown function of the average tariff level, country characteristics,

initial production structure, cohort and region fixed effects. Indeed, the

fact that the DML estimates are insignificant points to the presence of

nonlinear confounding effects that are not accurately captured by the OLS

regressions.

It is worth noting here that the original paper attributes most of the

correlation found between the treatment variables and long-term growth

to the endogeneity of the skill-biased tariff variables, arising from the fact

that skill-biased tariffs are more likely in countries with better institutions.

Interestingly, in this example the country-level DML estimates are in line

with the notion that the direct effect of the skill bias of tariffs is smaller

than what is estimated by the OLS regressions. Finally, our results only

concern the relationship between skill-biased tariffs and long-run economic

growth, and not the relationship between skill-biased tariffs and institu-

tions, or between institutions and long-run growth, which are examined in

the original paper. Thus, our findings are consistent with the alternative

mechanism described in Nunn and Trefler (2010), i.e. the existence of a

causal relationship between institutions and economic growth.
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3 Heterogeneous Treatment Effects with

Causal Random Forest

This section focuses on the analysis of HTE for the effect of Fox News on

Republican voting (DellaVigna and Kaplan, 2007) using the causal random

forest method (Wager and Athey, 2018).

3.1 Methodology: Causal Random Forest

The causal random forest method is an adaptation of the original random

forest for prediction, introduced by Breiman (2001), to the problem of

causal inference. In this section, we start by briefly presenting the general

idea of standard regression trees used for prediction, after which we describe

how causal trees and causal random forests work.

The idea of regression trees is to partition (or split) the data into groups

based on the values of the covariates. The groups that are eventually

obtained are referred to as leaves. First, one starts with the whole data set

as one group. Then, for each value of each covariate, the regression tree

algorithm forms candidate splits, by placing all observations that have a

covariate value that is lower than than the current value in the left leaf, and

all observation for which their covariate value is greater than the current

value in the right leaf. Among all these candidate splits, the one that is

implemented is the one that minimizes an in-sample criterion function, such

as the mean squared error (MSE) of the outcome variable within a leaf.17

For each of the two new leaves, the algorithm repeats the procedure until a

stopping rule18 is reached, resulting in a tree-format partition of the data.

Using the terminal leaves, when the purpose is prediction, the outcome

variables of out-of-sample observations can be predicted by determining

which terminal leaf a new observation belongs to, based on the values of

the covariates, and assigning as its predicted outcome the mean of the

outcomes in that leaf.

17This mean squared error is computed as the sum of the squared differences between
the outcomes of each unit within a leaf and the mean of these units in the leaf.

18The stopping criteria can be for example: a pre-specified maximum number of leaves,
the iteration when the minimizing split gives a covariate over which the observations
have been already split by, or the iteration when the proposed split does not decrease
the mean squared error any further.
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Next, we turn to the causal random forest method of Wager and Athey

(2018) which builds on the causal tree method of Athey and Imbens (2016).

For the causal tree, first, a percentage p from the sampleN is drawn without

replacement. Then, the subsample n = p ∗ N is further randomly split in

half to form a training sample ntr and an estimation sample ne. Using

only the training sample ntr, for each value of each covariate candidate

splits are formed and a regression tree as described above is constructed.

The key difference in the causal case compared to the prediction case is

the objective function that is optimized when determining the split to be

implemented.

Due to the fundamental problem of causal inference, directly training

machine learning methods on the difference Yi(1) − Yi(0), i.e., the differ-

ence of the outcomes that observation i would have experienced with and

without the treatment, is not possible, as we do not observe both outcomes

for any individual unit. Thus, instead of minimizing an infeasible MSE,

Athey and Imbens (2016) propose to maximize a criterion function that re-

wards a split that increases the variance of treatment effects across leaves

and penalizes a split that increases within-leaf variance. The goal is to

accurately estimate treatment effects within leaves, while preserving het-

erogeneity across leaves. The split is performed if it increases the criterion

function, compared to no split. When no more splits can be done, the tree

constructed based on the first subsample is defined.

The subsequent step involves turning to the estimation sample ne, and

based on the covariates, sorting each observation in this sample into the

same tree. Using only the estimation sample, the treatment effect in each

leaf is computed as τ̂l = ȳlt− ȳlc i.e., the mean outcome difference between

treated (t) and control (c) observations within a leaf (l). The final step

consists in returning to the full sample of N observations, examining to

which leaf each observation belongs based on the values of their covariates,

and assigning that leaf’s treatment effect as the predicted treatment effect

of the observation. Given that estimates from a single tree can have a high

variance, the whole algorithm described above is repeated for a number of

B subsamples on which a number of B trees are obtained that eventually

form a causal random forest. The predicted treatment effect for each unit

will be the average of predictions for that particular observation across the
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trees.

Notice that independent samples are used for: i) growing the tree (split-

ting the data), and ii) estimating treatment effects within each leaf of the

tree. This property is called honesty. Honesty leads to two desirable char-

acteristics: it reduces bias from overfitting, and it makes the inference valid,

since the asymptotic properties of the treatment effect estimates are the

same as if the structure of the tree had been exogenously given.19 Wager

and Athey (2018) establish consistency and the first asymptotic normality

results for random forests which are then extended for the causal setting.

For valid confidence intervals, a consistent estimator of the asymptotic vari-

ance is proposed, based on an infinitesimal jackknife for random forests.

Further details regarding the tuning parameters of the causal random for-

est are provided in Section A.4 of the Appendix.

3.2 Application: The Effect of Fox News on the Re-

publican Vote Share

Description of Original Analysis. In this section we revisit and further

analyze the study by DellaVigna and Kaplan (2007). This paper examines

the impact of media bias on voting outcomes. Specifically, it analyzes the

impact of the entry of a conservative cable television channel, Fox News,

on the Republican Party’s vote share in the United States. To identify the

causal effect of Fox News on voting, the authors investigate whether towns

where Fox News became available between 1996 and 2000 experienced an

increase in the vote share for the Republican Party in Presidential elections

during the same time period. The estimation is performed on a data set

at the town level, comprising information on 9256 towns.

We consider the main outcome variable, i.e. the change in the vote

share for the Republican party between 1996 and 2000. The treatment

variable is a dummy indicating whether Fox News had become available

19Sample splitting, in general, can be inefficient as part of the data is not used.
However, this loss of precision does not happen in the case of causal random forests.
This is because although no observation is allowed to be used within the same tree for
both partitioning the covariate space and estimation, when the data is subsampled and
the forest is obtained based on many trees, each individual unit will appear in both the
training sample and the estimation sample of some tree.
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between 1996 and 2000. To capture potential confounders, a number of

control variables are included in the regressions.20

DellaVigna and Kaplan (2007) find a positive effect of Fox News on

the Republican vote share. Moreover, they explore heterogeneity along a

selected set of town characteristics: the number of available cable channels,

the share of urban population, and whether the town is in a swing or

Republican district. They do this by adding to the regression interaction

effects of these covariates with the treatment variable.21

Causal Forest Analysis. We perform the HTE analysis using the

causal random forest method. Exploring heterogeneous effects is important

for this study, in order to understand whether there are town or district

characteristics that act as effect modifiers. While the average effects are

informative for the impact of Fox News on the whole sample, it is often the

case that treatment effects are not homogeneous. It is possible that the

effect of Fox News was concentrated in some areas only. Understanding

better the characteristics of the areas which saw the strongest and weakest

responses can shed light on the mechanisms. The aim of this exercise is two-

fold. First, we take an agnostic view about the nature of heterogeneity, and

we investigate whether there are town or district characteristics which are

treatment effect modifiers. Second, we examine whether the HTE analysis

from the original paper matches the results from the causal ML methods.

We focus on one of the two preferred specifications from the original

paper: the one that includes district fixed effects. We present results for

two versions of the causal random forest, which account for district-level

effects in different ways. In the first set of results, we include in the analysis

dummy variables indicating the congressional district where the town is

located. In the second set of results, we implement a cluster-robust version

of the random forest developed by Athey and Wager (2019), where we treat

each district as a separate cluster. The advantage of the cluster-robust

causal forest is that it does not assume that clusters have an additive effect

on the outcome. Further details on the clustered-robust causal forest and

tuning parameter values used for the analysis are discussed in Section A.4

20Further details on the regressions and on the control variables in DellaVigna and
Kaplan (2007) are described in Section A.4 of the Appendix.

21The findings are reported in Table 6 of the original paper.
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Table 4: Fox News - Causal Forest: Average treatment effects and test for
heterogeneity

(1) (2)
District dummies Cluster-robust

Fox News effect (ATE) 0.0065 0.0065
(0.0016) (.0027)

Fox News effect above median 0.013 0.0072
(0.0024) (0.0028)

Fox News effect below median -0.0033 0.0044
(0.0021) (0.0048)

95% CI for the difference (0.01009, 0.02255) (-0.00806, 0.01374)
Observations 9256 9256

Notes: This table reports the estimated average treatment effect and a test for overall
heterogeneity using the causal forest. Standard errors are reported in parentheses.
***, ** and * * indicate significance at the 1%, 5% and 10% levels respectively.

of the Appendix.

We begin by discussing the average treatment effect. The results are

presented in Table 4. As in the original analysis, we find a positive and

significant effect of Fox News on the Republican vote share, both when

including district dummies, and when implementing the clustered-robust

causal forest; however, the standard error in the clustered forest is larger.

Our results suggest that in towns where Fox News became available the

Republican party obtained a higher vote share by 0.65 percentage points

on average, compared to towns where Fox News was not available. The

ATE estimates are similar to the original paper estimates, which range

between 0.004 and 0.007 (reported in Table 4 of DellaVigna and Kaplan,

2007, columns 4-7).

Next, we want to assess whether the causal forest can recover hetero-

geneity of treatment effects. As pointed out in Athey and Wager (2019),

we can group observations according to whether their estimated out-of-bag

conditional average treatment effect (CATE) is above or below the median

CATE, and we can estimate the average treatment effect separately for

these two subgroups. These are reported in Table 4 as Fox News effect

above median and Fox News effect below median. The difference between

the two subgroup estimates is large when including district dummies, sug-

gesting that there is potential for heterogeneity, and it is statistically sig-

nificant, as indicated by the fact that the 95% confidence interval for the
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difference between the two estimates does not contain zero (see column 1 of

Table 4). However, the same heuristic test for the clustered-robust forest

does not detect significant heterogeneity in the treatment effect. This could

indicate that heterogeneity in the model with district dummy variables is

overstated, because the dummy variables cannot appropriately capture the

district-specific effects. The cluster-robust causal forest offers a more flex-

ible way to capture district-specific effects, and may be more suitable in

this case.22

Although the results of the test for overall heterogeneity are mixed, it

is still possible for heterogeneity to be present along some of the covariates.

Hence, we investigate whether any of the included covariates are possible

sources of heterogeneity. To do this, for each variable, we split the sample

in two parts, based on whether the value of the covariate of interest is below

and above the median, and we estimate the average treatment effect for

the two subsamples. Table 5 reports the HTE results along the variables

that appear to be significant determinants of heterogeneity in both speci-

fications, while B.5 and B.6 report the results for the remaining variables.

In addition, to gain further insight into which variables are more important

for heterogeneity, we compute a measure of variable importance (Athey and

Wager, 2019).23 Tables B.7 and B.8 report the variable importance measure

for the covariates included in the district dummy variable specification and

for the clustered-robust forest, respectively. We note that for both speci-

fications, the variable importance measure is decreasing smoothly and we

do not observe any variable that clearly stands out in terms of importance.

Our results in Table 5 show that three variables appear to be significant

determinants of heterogeneity (at least at the 10% level) in both specifica-

tions: the change in employment between 1990 and 2000, the share of the

population with education level equal to high school degree, and the 10th

decile in number of cable channels available. We observe that the effect

of Fox News on Republican voting is stronger in towns that experienced

a smaller increase in the employment rate between 1990 and 2000. This

finding may relate to the phenomenon of economic voting, i.e. the fact

22Athey and Wager (2019) find a similar result in their application, when comparing
the causal forest without clustering with the cluster-robust version.

23See Section A.4 of the Appendix for details on how this measure is constructed.
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Table 5: Fox News - Causal Forest: HTE analysis

(1) (2) (3)
CATE below median CATE above median p-value difference

Panel A: District dummies
Employment rate, diff. btw. 2000 and 1990 0.00928 0.00064 0.00656

(0.00244) (0.00203)
Share high school degree 2000 0.00805 -7e-05 0.00884

(0.00226) (0.00213)
Decile 10 in no. cable channels available 0.00877 -0.0044 6e-05

(0.00192) (0.00264)

Panel B: Cluster-robust
Employment rate, diff. btw. 2000 and 1990 0.00938 2e-04 0.06885

(0.00254) (0.00436)
Share high school degree 2000 0.00859 -0.00179 0.05296

(0.00303) (0.00442)
Decile 10 in no. cable channels available 0.00857 -0.00495 0.02033

(0.00289) (0.00506)

Notes: This table reports the effect of Fox News on the Republican vote share
for towns with values below (column 1) and above (column 2) the median of each
variable. Column 3 presents the p-value for the null of no difference between the
estimates in columns 1 and 2. Standard errors are reported in parentheses.

that voters tend to reward incumbents during periods of economic pros-

perity (e.g. Fair, 1978; Kramer, 1971; Lewis-Beck and Stegmaier, 2000;

Pissarides, 1980). Areas that experienced lower economic growth (and a

smaller increase in employment) may have been more easily persuaded to

vote Republican in 2000, since prior to the Presidential election of 2000 a

Democratic President (Bill Clinton) had been in power for two consecutive

mandates. Moreover, we observe a larger effect of Fox News in towns where

the share of population with education level equal to high school degree is

below median. We also find a larger positive effect of Fox News in towns

where the 10th decile in the number of cable channels is below median,

while the effect is negative and insignificant in towns where this variable is

above median.24

Next, we investigate whether the findings regarding heterogeneity from

the original paper are confirmed with the causal forest. DellaVigna and

Kaplan (2007) found a larger effect of Fox News on the Republican vote

share in towns with a smaller number of cable channels available when

including district fixed effects. While we do not observe significant hetero-

geneity along this variable, our results for the 10th decile in the number

24The median value for the 10th decile in number of cable channels is zero; hence,
towns with value of this variable above median correspond to towns that are in the top
decile in terms of number of cable channels available.
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of cable channels are in line with the findings of the original analysis, and

hence suggest that the effect of Fox News diminishes in the presence of

higher competition in cable channels. It is also interesting to note that the

number of cable channels emerges as the variable with the highest impor-

tance score in both specifications, which further points to the importance of

this variable for heterogeneity. When investigating heterogeneity along the

political orientation of the district, we confirm the findings of DellaVigna

and Kaplan (2007): we observe no significantly different effect for swing

districts, and we obtained mixed results for Republican districts, as we

find a significantly smaller effect of Fox News in Republican districts (at

the 10% level) when including district dummies, but not with the cluster-

robust forest.25 However, in contrast to the original analysis, we do not

find a significant difference in the effect of Fox News in rural versus urban

towns, despite this being the only heterogeneity result that is robust in all

specifications in DellaVigna and Kaplan (2007).

In conclusion, our analysis of the HTE of Fox News on Republican

voting confirms some of the findings from DellaVigna and Kaplan (2007),

namely the presence of heterogeneity along the number of cable channels

and no robust heterogeneous effects for districts with different political ori-

entations, but as opposed to the original paper it does not show different

effects for urban and rural areas. The analysis with the causal forest further

uncovers additional heterogeneity that was previously unexplored, such as

a larger effect in towns that experienced a smaller increase in the employ-

ment rate, and a larger effect in towns with a lower share of population

with high school degree. Finally, including district dummy variables re-

sults in the causal forest detecting more heterogeneity in treatment effects

compared to the cluster-robust version, both when implementing the over-

all heterogeneity test and when analysing the HTE in terms of individual

covariates. However, the model with district dummy variables could over-

state the heterogeneity compared to the cluster-robust forest if the district

dummies do not appropriately capture the district-specific effects. This

points to the need of a more careful treatment of the issue of clustered ob-

servations when employing causal random forests for empirical applications

25DellaVigna and Kaplan (2007) found mixed results for Republican districts in dif-
ferent specifications.
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(Athey and Wager, 2019).

4 Heterogeneous Treatment Effects

with Generic Machine Learning

This section focuses on the analysis of HTE for the effect of a teacher train-

ing intervention (Loyalka et al., 2019) using the generic machine learning

method (Chernozhukov et al., 2018b).

4.1 Methodology: Generic Machine Learning

A different causal ML approach for HTE is the generic machine learning

method of Chernozhukov et al. (2018b). To make inference possible, the

method does not focus directly on the HTEs, but on features of HTEs

such as: the best linear predictor of the heterogeneous effects (BLP), the

group average treatment effects (GATES) sorted by the groups induced by

machine learning proxies, and the average characteristics of the units in

the most and least affected groups, or classification analysis (CLAN). The

generic machine learning method is thus useful for empirical work as: (1) it

allows detection of heterogeneity in the treatment effect, (2) computes the

treatment effect for different groups of observations (such as least affected

or most affected groups), and (3) describes which covariates are correlated

the most with the heterogeneity.

The approach is based on random splitting of the data into an auxil-

iary and a main sample. The two samples are approximately equal in size.

Based on the auxiliary sample, a ML estimator, called proxy predictor,

is constructed for the conditional average treatment effect (CATE). Any

generic ML method can be used for this approximation (e.g., elastic net,

random forest, neural network, etc.). The proxy predictors are possibly

biased and consistency is not required. We simply take them as approxi-

mations and use them to estimate and make inference on features of the

CATE. Based on the main sample and the proxy predictors, we can com-

pute the estimates of interest: BLP, GATES and CLAN, and then make

inference relying on many splits of the data in auxiliary and main samples.

We give a brief description on how the method works in practice. Let Y
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be the outcome of interest, D the binary treatment variable, and Z a vector

of covariates. Define b0(Z) = E[Y (0)|Z], the baseline conditional average

and s0(Z) = E[Y (1)|Z] − E[Y (0)|Z], the conditional average treatment

effect (CATE). Using the auxiliary sample we obtain ML estimators (or

proxy predictors) for the baseline conditional average and the conditional

average treatment effect. As mentioned above, these are possibly biased

predictors and consistency is not required. Then, for each unit in the main

sample, we compute the predicted baseline effects, B(Z) and the predicted

treatment effects, S(Z). Note that the predicted treatment effects, S(Z),

are obtained as the difference between the predictions for the treatment

group model and the control group model. Following the notation from

Chernozhukov et al. (2018b), the BLP parameters are obtained using the

main sample, by estimating the following regression by weighted OLS, with

weights 1/(p(Z)(1− p(Z)):

Y = α′X1 + β1(D − p(Z)) + β2(D − p(Z))(S(Z)− S(Z)) + ε, (3)

where X1 = [1, B(Z)], p(Z) = P [D = 1|Z] is the propensity score, and

S(Z) is the average of the predicted treatment effect estimates on the main

sample. The control B(Z) is included to improve efficiency. Note that the

component (D − p(Z)) is part of the regressor (D − p(Z))(S(Z)− S(Z)).

Thus, it orthogonalizes this regressor to all other covariates that are func-

tions of Z. The coefficient β1 gives the average treatment effect, while β2

quantifies how well the proxy predictor approximates the treatment hetero-

geneity. If β2 is different from zero, it means that there exists heterogeneity

in the treatment effects.

Once we obtain the predicted treatment effects, we can divide the ob-

servations from the main sample in group: G1, G2, . . . , GK , based on their

treatment effects. In our empirical applications, we choose K = 5, such

that group G1 contains the observations with the lowest 20% treatment ef-

fects and G5 contains observations with the highest 20% treatment effects.

Then, using again the main sample, we obtain the sorted group average
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treatment effects by estimating the weighted regression:

Y = α′X1 +
K∑
k=1

γk(D − p(Z)) · 1(Gk) + ν, (4)

where 1(Gk) is an indicator function for whether an observation is in group

k, and where the weights are the same as in (3). The parameters γk give

the average effect in each group (GATES). Also, if the difference γk − γ1
is significantly different from zero, we again have evidence for treatment

effect heterogeneity between the most affected and least affected groups.

Lastly, we can analyze the properties or characteristics of the most

affected and least affected groups, via Classification Analysis (CLAN). Let

g(Y, Z) be a vector of characteristics of an observation. We can compute

average characteristics of the most affected and least affected group i.e.,

δ1 = E[g(Y, Z)|G1] and δ2 = E[g(Y, Z)|GK ], the parameters of interest

being averages of variables directly observed. Similarly to GATES, we can

compute and make inference on the difference δk − δ1.

4.2 Application: The Effect of Teacher Training on

Student Performance

Description of Original Analysis. We reanalyze a large-scale random-

ized experiment that investigates the effect of a teacher professional de-

velopment (PD) program in China on student achievement and on other

student and teacher outcomes. The experiment was first studied by Loy-

alka et al. (2019). Three hundred mathematics teachers, each employed in

different schools across one province, took part in the intervention. The

teachers were randomly assigned to one of the different treatment arms: PD

only; PD plus a continuous follow-up with additional material and tasks

for the trainees; PD plus an evaluation of the extent to which the teachers

remembered the content of the training sessions; or no PD (control group).

The PD intervention consisted of lectures and discussions.

Randomization was implemented at the school level, and in each school

one teacher was nominated to participate in the intervention. The main

results are obtained by estimating a cross-sectional regression, where the

treatment variable is a dummy indicating the treatment arm that the school
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was assigned to. The data was collected at three points in time: at baseline,

midline and endline. Outcomes are measured at midline, or endline, and

the main outcome of interest is student math achievement.26 The control

variables include student characteristics, teacher characteristics and class

size.27

The original paper finds no significant effect of the PD intervention on

students’ achievement after one academic year, neither for the PD inter-

vention alone, nor for the PD combined with the follow up and/or the

evaluation treatments. The authors also do not find any effect on other

outcomes, such as teacher knowledge or student motivation. The lack of

effectiveness of the program is attributed to several factors: the content

was too theoretical, the PD was delivered passively, and teachers could

face constraints in the implementation of the suggested practices in the

schools. Furthermore, the paper analyzes heterogeneous treatment effects,

by interacting the treatment variable with a number of student and teacher

characteristics: student’s household wealth, baseline achievement level, the

amount of training the teacher has received prior to the intervention, stu-

dent and teacher gender, whether the teacher has a college degree and

whether the teacher majored in math. The findings suggest that the effect

of the treatment on students’ achievement can differ by teacher characteris-

tic; however, no heterogeneous effects are found in terms of characteristics

of students.

Generic ML Analysis. We extend the analysis of HTE conducted in

the original paper, by implementing the generic machine learning method

developed by Chernozhukov et al. (2018b). Exploring heterogeneous treat-

ment effects is particularly relevant for this intervention, because a small

and insignificant estimate for the ATE could hide significant heterogene-

ity. Our aim is to dig deeper into the analysis of heterogeneous treat-

ment effects. First, we investigate whether there is significant heterogeneity

in treatment effects; second, we analyze whether causal machine learning

methods, by implementing a systematic search for heterogeneity across a

large number of covariates, can offer additional insights about the charac-

26As Loyalka et al. (2019) show similar results when estimating the impact of the in-
tervention at midline or endline, we focus on the outcome variables measured at endline.

27Section A.5 of the Appendix describes the regressions and the control variables.
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Table 6: Teacher Training - Generic Method: Best Linear Predictor

(1) (2)
ATE (β1) HET (β2)

Estimate 0.002 0.651

90% Confidence Interval (-0.068,0.072) (0.312,0.990)

p-value 1.000 0.0003

Observations 10006 10006

Notes: The estimates are obtained using neural network to produce the proxy pre-
dictor S(Z). The values reported correspond to the medians over 100 splits.

teristics of those who benefited from the program and those who did not,

compared to the traditional methods used in the original paper.

In our analysis, we focus on the main outcome of interest, i.e. student

math achievement. Since the results in the original paper are consistently

close to zero when comparing the three different treatment arms with the

control group, we choose to only analyze one of the treatment arms, corre-

sponding to the PD intervention plus the evaluation. The sample that we

use includes 10,006 students in 201 schools. We follow Loyalka et al. (2019)

and cluster standard errors at the school level. In addition to the full set

of controls included in the original paper, we also add to our analysis other

variables that could be treatment effect modifiers: the baseline values of

a number of student-level variables, plus variables indicating teachers be-

haviour in the classroom, evaluated by students at baseline.28

The generic method can be used in conjunction with a range of ML tools

and Chernozhukov et al. (2018b) provide two measures (Best BLP and Best

GATES) to compare the performance of the different ML methods used for

the estimation of the proxy predictors. We consider the following methods:

elastic net, neural network, and random forest. Based on the results of

the Best BLP and Best GATES analysis, reported in Table B.9 of the

Appendix, we choose to further work with the neural network.29

28These additional variables are described Section A.5 of the Appendix. In Loyalka
et al. (2019), the baseline value of the outcome variable is included as a control. Hence,
the baseline characteristics described above are not included in all regressions in the
original analysis. However, we consider these characteristics as potential drivers of
heterogeneity; therefore, we include the baseline values of all available variables in our
heterogeneity analysis.

29Further details on the Best BLP and GATES measures and on the tuning parameters
used in this analysis are discussed in Section A.5.
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Figure 1: Teacher Training - Generic Method: GATES

Notes: The estimates are obtained using neural network to produce the proxy pre-
dictor S(Z). The point estimates and 90% confidence intervals correspond to the
medians over 100 splits.

We first analyze whether overall heterogeneity in treatment effects can

be detected. We present results for the best linear predictor (BLP) of the

CATE in Table 6. In line with the original paper, the estimated ATE,

given by the coefficient β1, is small (the estimated impact of the PD is

0.002 standard deviations) and not significantly different from zero. The

estimated β2 is instead large and significantly different from zero, which

indicates that there is heterogeneity in treatment effects. Next, we estimate

the group average treatment effects (GATES). We split the sample into five

groups, based on the quintiles of the ML proxy predictor S(Z). This analysis

reveals further insights into the extent of heterogeneity. Table B.10 of the

Appendix reports the GATE in the top and bottom quintile and shows that

the GATE in the top quintile is positive, whereas for the bottom quintile

the estimated GATE is negative. Both estimates are statistically significant

at the 10% level. The difference between the GATE for the top and the

bottom quintile is significant, which confirms the presence of heterogeneity

in treatment effects. Additionally, Figure 1 reports the GATES estimate

and the 90% confidence interval for the five quintiles, as well as for the whole

sample (the ATE is represented as a blue dashed line, and the confidence
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Table 7: Teacher Training - Generic Method: Classification Analysis

(1) (2) (3)
20% most affected 20% least affected p-value for the difference

Teacher college degree 0.039 0.800 0.000
(0.019,0.059) (0.780,0.820)

Teacher training hours 2.447 1.684 0.000
(2.399,2.494) (1.636,1.731)

Teacher ranking 0.666 0.405 0.000
(0.635,0.697) (0.374,0.437)

Student age 14.18 13.73 0.000
(14.11,14.25) (13.65,13.80)

Teacher experience (years) 16.18 13.16 0.000
(15.60,16.76) (12.58,13.74)

Student female 0.417 0.555 0.000
(0.385,0.449) (0.523,0.587)

Teacher age 37.51 35.01 0.000
(37.02,38.00) (34.52,35.50)

Student math score at baseline -0.029 0.169 0.005
(-0.088,0.031) (0.110,0.229)

Student baseline math anxiety 0.298 -0.219 0.000
(0.236,0.360) (-0.281,-0.157)

Class size 52.87 64.37 0.000
(51.82,53.93) (63.32,65.43)

Notes: This table shows the average value of the teacher and student characteristics
for the most and least affected groups. The estimates are obtained using neural
network to produce the proxy predictor S(Z). 90% confidence intervals are reported
in parenthesis. The variables Student math score at baseline and Student baseline
math anxiety are normalized. The values reported correspond to the medians over
100 splits.

interval as two red dashed lines). Notice that for the three middle quintiles

the effect of the teacher training intervention is not significantly different

from zero.

We then turn to analysing the possible sources of heterogeneity, by

implementing the Classification Analysis (CLAN). Thus, we analyze further

the top and botton quintile in terms of ATE, for which the effect of the

PD intervention is positive and negative respectively. In particular, we

compare the student and teacher characteristics in the two groups. As a

large number of covariates is available, we focus on the ten covariates for

which the correlation with the proxy predictor, S(Z), is highest, reported

in Table 7. Table B.11 in the Appendix shows the CLAN analysis for the

remaining covariates.30

We start by analyzing the characteristics of the teachers whose students

belong to the least and most affected group. Interestingly, the variable in-

30Table B.12 reports the correlation for each of the covariates with S(Z).
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dicating whether the teacher has a college degree or not is the variable

that is most correlated with the proxy predictor, and it was the only one

among the variables tested which was found to be a treatment effect mod-

ifier across all treatment arms in the original paper. The students in the

top quintile are more likely to be taught by a teacher who does not have

a college degree, compared to the students in the bottom quintile. This

is consistent with the results from Loyalka et al. (2019), who found that

the intervention has a negative effect on students whose teachers have a

college degree, but a positive effect on students whose teachers are less

qualified. Hence, the PD may help teachers who are less qualified, but, for

more qualified teachers, the benefits of the intervention on their students

do not outweigh the negative effect of the teachers being absent from the

classroom in order to participate in the intervention. Whether or not the

teacher majored in math is found to be a potential driver of heterogeneity

with the generic method (the results are reported in Table B.11), whereas

in the original paper it was not found to be significant when considering

the effect of the PD plus evaluation, which we focus on.31 The direction

of the effect is consistent with what was found in the original analysis:

the students in the top quintile are more likely to have been taught by a

teacher who does not have a major in math, compared to the students in

the bottom quintile. It is also interesting to note that the number of hours

of training that the teacher received prior to the intervention, which is not

found to be a determinant of heterogeneity in the original paper, is higher

in the most affected group compared to the least affected group.32 This

may reflect the fact that teachers who have had more training in the past

may be able to better implement the suggestions from the PD intervention.

Table 7 shows that teacher rank, experience and age are higher in the most

affected group compared to the least affected group. This is consistent with

the existence of a similar mechanism: teachers who have more experience

31When considering the PD plus follow-up, the authors find a significant negative
effect on the scores of students whose teachers majored in math relative to the scores of
those whose teachers did not.

32The variable indicating teacher training hours previous to the intervention is a
categorical variable, based on the terciles of the continuous variable. As the continuous
variable is not included in the replication data set of the original paper, for our analysis
we use this categorical variable, which takes values 1 to 3, where 3 is the top tercile in
the number of training hours.
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may be able to better implement the suggestions from the PD interven-

tion. As the PD is mainly theoretical, having had other types of training,

or having more experience, may be helpful for an effective implementation

of the practices learned during the PD.

We then examine whether any of the student characteristics are poten-

tial drivers of heterogeneity. In contrast to the findings in Loyalka et al.

(2019), who did not find heterogeneity in terms of student features, we find

that students in the most affected group differ in terms of several char-

acteristics compared to students in the least affected group. Among the

most correlated with the heterogeneity score (listed in Table 7) are student

age and gender: students in the most affected group are on average about

half a year older than students in the least affected group, and the most

affected group includes a larger share of male students. Additionally, stu-

dents in the most affected group, on average, have a lower baseline math

score, and tend to be more anxious about math. Thus, teacher PD could be

more beneficial for weaker students, and for students who are more anxious

about the subject. Finally, class size appears to be a possible determinant

of heterogeneity: students who benefit more from the PD tend to be in

smaller classes. This result suggests that in smaller classes it may be easier

for teachers to implement some of the practices introduced during the PD

training. For instance, Loyalka et al. (2019) mention having students work

together in small groups as one of the techniques that were suggested in

the PD; this technique is likely to be easier to implement in smaller classes.

In conclusion, our analysis confirms the presence of heterogeneous ef-

fects of the teacher PD intervention, and uncovers a rich set of potential

determinants of heterogeneity. With the GATES analysis, we are able to

show that the achievement of students belonging to the bottom quintile is

negatively affected by the intervention, while the achievement of students

in the top quintile is positively affected by the intervention. This confirms

what was suggested by Loyalka et al. (2019): that there is a group of stu-

dents who benefits from the intervention, and a group who does not. In

addition, the GATES analysis shows that the effect is not significantly dif-

ferent from zero for the students belonging to the middle quintiles. With

the CLAN analysis, we can obtain a clearer picture of the characteristics of

the groups who benefit and who do not from the intervention, compared to
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the original HTE analysis. In line with Loyalka et al. (2019), we find that

teacher characteristics such as having a college degree or having a major in

math are potential determinants of heterogeneity. However, our study un-

covers additional differences (that were not identified in the original paper)

between the least and the most affected groups, in terms of both teacher

and student characteristics, such as teacher’s rank, experience, age and

number of training hours, as well as student’s gender, age, baseline math

score, baseline math anxiety and class size.

5 Conclusion

Our main message is that appropriately combining predictive methods with

causal questions adds value to traditional methods and should be more

often explored in applied research. We argue that in each revisited study

the researcher would have benefited from employing causal ML methods

and would have gained additional insights not provided by standard causal

inference tools.

When the researcher works with an observational study and is interested

in the ATE, causal machine learning methods can improve the credibility

of causal analysis by making the unconfoundedness assumption more plau-

sible – as causal ML methods control for potential confounders in a more

flexible way; implement a systematic model selection; and are robust ap-

proaches for sensitivity analysis.33 If the researcher is interested in HTE,

causal machine learning methods can ensure that relevant heterogeneity

and its determinants are not missed, or falsely discovered due to multiple

hypothesis testing issues. Also, causal ML methods can be used to uncover

heterogeneity ex-post, without being bound to explore HTE only for the

specific subgroups indicated in the pre-analysis plan.

33Note then even if the empirical study is a randomized control trial and controlling
for confounding factors is not necessarily needed, the use of causal machine learning
methods can improve efficiency and provide more precise estimates with lower standard
errors and tighter confidence intervals.
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A Details on Revisited Studies and Imple-

mentation of Causal ML Methods

A.1 The Effect of Corporate Taxes on Investment

and Entrepreneurship

Details on the Original Analysis. In Djankov et al. (2010), the baseline

regression equation is the following:

yc = α + βtaxesc + XcΓ + εc,

where c is an index for country. Four different outcome variables are ex-

amined: investment as a percentage of GDP, FDI as a percentage of GDP,

business density per 100 people, and the average entry rate (measured as

percentage). Three separate measures of corporate taxes are considered.

The first is the statutory corporate tax rates, which is the marginal tax

rate on income a corporation has to pay assuming the highest tax bracket.

The second is the actual first-year corporate income tax liability of a new

company, relative to pre-tax earnings. The third is the tax rate which takes

into account actual depreciation schedules going five years forward.

The term Xc denotes the control variables, aimed at capturing the ef-

fect of potential confounding factors. This is an observational study, in

which tax rates are not randomly assigned across countries. It is likely

that there will be factors which are correlated with both the treatment

(corporate tax rates), and with the outcomes (measures of entrepreneur-

ship and investment). To deal with this issue, the effect of corporate taxes

on the outcomes is estimated by adding several control variables to the

regressions. The first set of control variables are measures of other taxes:

the sum of other taxes payable in the first year of operation, VAT tax, sales

tax, and the highest national rate on personal income tax. The second set

of covariates include the logarithm of the number of tax payments made

(which is used as a measure of the burden of tax administration), an in-

dex of tax evasion, and the number of procedures to start a business. The

third set of controls are institutional variables: a property rights index,

an indicator of the rigidity of employment laws, a measure of a country’s
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openness to trade, and the log of per capita GDP. The fourth set of covari-

ates are measures of inflation: average inflation in the previous ten years,

and seigniorage, which captures government reliance on printing money.

Details on the DML Analysis. The results are based on 100 splits

and 2 folds. The point estimates are calculated as the median across splits,

and the standard errors are adjusted for the variability across sample splits

using the median method, see Chernozhukov et al. (2018a).

We use two hybrid ML methods in our analysis. Ensemble is a weighted

average of estimates from lasso, boosting, random forest and neural net-

works, the weights being chosen to give the lowest average mean squared

out-of-sample prediction error. Best chooses the best method for estimat-

ing the nuisance functions in terms of the average out-of-sample prediction

performance among all the other methods.

The lasso estimates are based on `1-penalized regressions with the penalty

parameter obtained through 10-fold cross-validation. As controls, for the

lasso we consider the set of all raw covariates as well as first-order interac-

tions. For the rest of the ML methods, we consider the set of raw covariates

as controls. The regression tree method fits a CART (classification and re-

gression tree) tree with a penalty parameter (that restricts the tree from

overfitting and makes sure that only splits that are considered “worthy” are

implemented) obtained with 10-fold cross validation. The random forest

estimates are obtained using 1000 trees, while the Boosting estimates are

obtained with 1000 boosted regression trees. For the boosting, the mini-

mum number of observations in trees’ terminal nodes is set to 1 and the

bag.fraction parameter is set to 0.5, except for Panel D of Table 1, where it

is increased to 0.8. For the neural networks we used 2 neurons and a decay

parameter of 0.01; the activation function is set to the linear function.34

For the analysis of nonlinear terms with lasso, we examine the estimated

nuisance functions for the outcome average entry rate and the treatment

variable first-year effective tax rate. In our analysis, for the estimation of

the two nuisance functions, the lasso selects among the simple covariates,

and their two-way interactions.35 It is interesting to note that a large

34In general, the activation function can be set to the linear function for regression
problems (when the outcome is continuous) and to the logistic function for classification
problems (when the outcome is categorical).

35For the lasso estimation, depending on the application, other nonlinear terms could
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number of interaction terms is selected. Figure B.1 depicts the seven largest

interaction terms and their coefficients in the treatment nuisance function

m̂(·) and in the outcome nuisance function ĝ(·).36 The lasso coefficients

are calculated as the median coefficients across splits. Among these, some

appear in both nuisance functions (the coefficients of the common terms

are depicted in purple in Figure B.1). A particular issue that appears with

the lasso when the interest is on analyzing the interaction terms is worth

mentioning here. Since the lasso implements regularization by shrinking the

smallest coefficients to zero, it is possible that interaction terms are included

in the regression, but the coefficients of the raw covariates forming the

interactions are shrunk to zero. It is thus important to check whether the

raw covariates forming these interactions also appear in the regression. If

the coefficients on the raw covariates are shrunk, the coefficient of the ’pure’

interaction terms might not be properly captured and the found interaction

terms might actually reflect the effect of the raw covariates, diminishing

the importance of our uncovered nonlinearities. Thus, when analyzing

the relevance of the interaction terms, we are careful to only report the

coefficients of the interactions for which both main effects are included in

the lasso estimation. The lasso coefficients of all the raw covariates are

reported in Table B.1 of the Appendix.

A.2 The Effect of Plough Agriculture on Gender Roles

Details on the Original Analysis. Alesina et al. (2013) consider several

empirical strategies and data sets. They start with OLS regressions per-

formed using country-level and micro-level data. Then, to tackle possible

endogeneity issues, the paper follows two approaches: first, several poten-

tial confounders are included in the regressions; second, an instrumental

variable strategy is used.37 Our focus is on the country-level regressions.

The baseline OLS country-level results in the original analysis (reported

in Table 4 of Alesina et al., 2013) are obtained by estimating the following

be added, such as the squares of the covariates, or three-way interactions.
36It is important to note here that we do not make inference using the lasso coeffi-

cients, but just analyze the magnitude of the coefficients, as a measure of the covariates’
importance for predicting the outcome and the treatment variables.

37The instrumental variable strategy is summarized in Section 2.2.2.
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regression:

yc = α + βplough usec + XH
c Γ + XC

c Π + εc,

where c stands for country. In the paper, three outcome variables are ex-

amined as measures of gender roles: female labour force participation, atti-

tudes about women’s work, and attitudes about women as leaders. The first

outcome variable is an indicator variable that equals one if the individual

is in the labor force in 2000; the second is the share of firms with a woman

among its principal owners in the period 2003-2010; finally, the third is the

proportion of seats held by women in the national parliament in 2000. The

treatment variable, plough usec, is calculated as the estimated proportion

of individuals living in a country with ancestors that used the plough in

pre-industrial agriculture. The vector XH
c includes historical ethnographic

variables at the country level. These controls capture the historical char-

acteristics of ethnicities living in a country, and they are meant to account

for differences between ethnicities that historically adopted the plough and

those that did not. They include: ancestral suitability for agriculture,

fraction of ancestral land that was tropical or subtropical, ancestral do-

mestication of large animals, ancestral settlement patterns, and ancestral

political complexity. The vector XC
c denotes contemporary country-level

controls: natural log of real per capita GDP, and its square. These are

included as the level of economic development is believed to have an im-

pact on female labour force participation, and the square of per capita

GDP is intended to capture the observed U-shaped relation between the

two variables. Continent fixed effects are also added in some specifications.

The extended set of controls includes additional historical and contem-

porary controls. Just as with the baseline controls, the additional historical

controls are measures of the characteristics of the ancestors of the current

population living in a country. These are: the intensity of agriculture;

the proportion of subsistence provided by hunting and by the herding of

large animals; the fraction of countries’ ancestors without land inheritance

rules, with patrilocal post-marital residence rules, and with matrilocal post-

marital rules; the fraction of countries’ ancestors with a nuclear and an

extended family structure; the average year the ethnicities were sampled
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in the Ethnographic Atlas. The contemporary controls are: years of civil

and interstate conflicts (1816-2007); terrain ruggedness; whether a country

was under a communist regime after WWII; the fraction of a country’s

population with European descent; oil production per capita; agricultural,

manufacturing and services shares of GDP; and the fraction of a coun-

try’s population who is Catholic, Protestant, other Christian, Muslim, and

Hindu. Alesina et al. (2013) provide the rationale for including each of

these controls, and details on how the variables are constructed.

The geo-climatic characteristics included in the IV analysis are: terrain

slope, soil depth, average temperature, average precipitation. In the origi-

nal paper, the geo-climatic characteristics are added linearly, in quadratic

forms, and as linear interactions.

Details on the DML Analysis. As in the previous example, the

results are obtained with 100 splits and 2-fold cross-fitting. We report

median estimates of the coefficients across the splits, and standard errors

adjusted for the variability across sample splits using the median method.

The values of the tuning parameters are the same as in the first example.

A.3 The Effect of Skill-Biased Tariff on Growth

Details on the Original Analysis. For the country-level results, Nunn

and Trefler (2010) estimate the following regression equation:

ln yc1/yc0 = α + βSBSBτc0 +Xc0βX + εc,

where ln yc1/yc0 is the log annual per capita GDP growth in country c be-

tween the beginning and the end of the time period considered, SBτc0 is

a measure of initial skill-bias of tariffs, and Xc0 represents the controls.

Three measures of the skill-bias of tariffs are used: the first is the correla-

tion between the industry tariffs and the industry’s skill-intensity, while the

second and third are based on the difference between the log average tar-

iffs in skill-intensive industries and log average tariffs in unskilled-intensive

industries (the two measures differ in the choice of the cut-off value for in-

dustry skill-intensity, with the second using a lower cut-off than the third).

The controls include: the log of the initial average level of tariffs in the

country, three country characteristics measured at the initial period (the
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log of GDP per capita, the log of human capital, and the log of the ratio of

investment-to-GDP), cohort fixed effects (to account for the fact that coun-

tries have different initial time periods), region fixed effects (accounting for

10 different regions), and two measures of initial production structure (the

log of output in skill-intensive and in unskilled-intensive industries sepa-

rately).

Additionally, Nunn and Trefler (2010) estimate the following regression

equation, using industry-level data:

ln qic1/qic0 = βqlnqic0 + βτ lnτic0 + βElnτ̄c0 + βSBSBτc0 +Xc0βX + αi + εic,

where lnqic1/qic0 is the average annual log change in industry output in

industry i and country c; lnqic0 is the log of industry output in the initial

period; τic0 is the log initial-period tariff; ln τ̄c0 is the average tariff, SBτc0

is one of the three measures of skill-bias of tariffs, and αi are industry fixed

effects. The variable Xc0 indicates the controls which are the same as in

the country-level regressions.

The original results show a strong, positive correlation between skill-

biased tariffs and long-term per capita income growth at the country level

(Table 4 in Nunn and Trefler, 2010). The correlation is strong also between

the skill bias of tariffs and industry output growth, with and without in-

cluding the initial industry tariff in the regression (Tables 5 and 6 in Nunn

and Trefler, 2010 respectively). The fact that the size of the coefficient of

skill-biased tariffs remains large when adding the variable initial industry

tariffs suggests that the mechanism highlighted in the model, i.e. skill-

biased tariffs shifting resources towards skill-intensive industries, cannot

fully account for the correlation between the treatment variable and long-

term growth. Nunn and Trefler (2010) further show, with country-level

regressions, that the model mechanism can explain up to one quarter of

the total correlation between the skill bias of tariffs and long-term growth

(Table 7 in the original paper). The paper then investigates other alter-

native mechanisms that can explain the independent effect of skill-biased

tariffs on output growth in Sections V, VI and VII, in the original paper.

Details on the DML Analysis. As in the previous examples, the

results are obtained with 100 splits and 2-fold cross-fitting. We report
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median estimates of the coefficients across splits, and standard errors are

adjusted for the variability across sample splits using the median method.

The tuning choices are the same as in the previous two examples except

for Neural Network in the country-level regressions where the estimates are

obtained using 3 neurons and a decay parameter of 0.001.

A.4 The Effect of Fox News on the Republican Vote

Share

Details on the Original Analysis. To produce the main results (see Ta-

ble IV in the original paper), the authors estimate the following regression:

vR,Presk,j,2000−v
R,Pres
k,j,1996 = βdFOXk,2000+Γ2000Xk,2000+Γ00−90Xk,00−90+ΓcCk,2000+θj+εk,j,

where k denotes a town in a congressional district j. The dependent vari-

able is the change in Republican vote share between the 1996 and the 2000

presidential elections. The treatment variable dFOXk,j,2000 is an indicator vari-

able taking the value of 1 for towns where Fox News was available by the

year 2000, and 0 otherwise. The regression includes demographic controls

at the town level: total population, the employment rate, the share of

African Americans and of Hispanics, the share of males, the share of the

population with some college education, the share of college graduates, the

share of high school graduates, the share of the town that is urban, the

marriage rate, the unemployment rate, and average income. These con-

trols are added both as levels in 2000 (Xk,2000) and as changes between

1990 and 2000 (Xk,00−90), and aim at capturing possible confounders that

could be correlated with both the availability of Fox News and voting. In

addition to the demographic controls, the regression includes a set of ca-

ble system features, denoted by Ck,2000, which are potentially correlated

with the treatment variable. These are deciles in the number of chan-

nels provided and in the number of potential subscribers. Finally, fixed

effects (congressional district fixed effects or county fixed effects) denoted

by θj, are added to capture trends in voting that might be common to a

geographical area and also correlated with Fox News availability. In the

original analysis, standard errors are clustered at the cable company level.
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The paper also tests whether Fox News increased voter turnout and the

Republican vote share in the Senate election.

The results from the heterogeneity analysis of DellaVigna and Kaplan

(2007) show a negative but insignificant effect for swing district. Addition-

ally, the authors find that the effect of Fox News on the Republican vote

share is significantly smaller in towns where the number of cable channels

is higher, suggesting a negative impact of higher competition on the effect

of Fox News. Moreover, the effect is found to be significantly larger in

more urban areas and smaller in more Republican districts. Regarding the

latter two findings, the authors point out that in rural areas and in Re-

publican districts the Republican party tends to have a larger vote base to

begin with, thus diminishing the share of voters that could potentially be

convinced by Fox News. Out of the four effects, only the differential effect

for urban population is significant in both main specifications (county and

district fixed effects). The interaction of the treatment variable with the

Republican district variable is only significant when including county fixed

effects, but not when including district fixed effects, and the opposite is

true for the interaction of the treatment with the number of cable chan-

nels. The authors also make a note that they find a smaller effect in the

South, but this result is not reported in their paper, and we do not focus

on it in our analysis.

Details on the Analysis with the Causal Random Forest. There

are a number of parameters to be set in the causal random forest, algorithm

such as the number of trees, the size of the subsample, and the minimum

number of control and treatment units in each leaf. The number of trees

is typically chosen as a trade-off between computation times and the test

error rate. A larger number of trees reduces the Monte Carlo error due to

subsampling, which means that the treatment effect predictions will vary

less across different forests. A higher number of minimum treatment and

control units will lead to bigger leaves and a less deep tree. This will

predict less heterogeneity. A smaller number will increase the variance as

the treatment effect will be estimated with too few observations in a given

leaf. Setting a smaller subsample size will decrease the dependence across

trees, but will increase the variance of each estimate in a tree. The sizes of

the training and estimation samples are typically fixed to 50% of the drawn

51



subsample. If there are reasons to allocate more observations to one or the

other sample, these proportions can be changed. In the algorithm, there

is also a standard parameter for the number of covariates considered for a

split, before building a tree, within a forest.38 This is often set to bK/3c
in the literature, where K is the total number of covariates.

In our analysis, the tuning parameter values are optimised via cross-

validation, except the number of trees which is set to 2000. We performed

sensitivity analysis with different values for the number of trees (1000 and

5000). The results are available upon request.

In the cluster-robust causal forest (Athey and Wager, 2019), when con-

structing the subsample on which the forest is trained, we do not directly

draw observations, but clusters. In addition, in the final step, when con-

structing the predicted out-of-bag treatment effects, an observation is con-

sidered out-of-bag if its cluster was not drawn in the subsample.

The variable importance measure reported in Tables B.7 and B.8 takes

into account the proportion of splits over all trees for a particular variable,

weighted by depth, and it is useful for describing which covariates influence

the most the final estimates when employing the causal forest, as the in-

terpretability of a single tree is lost in this case. Recall from the main text

that in the causal forest splits are performed if they maximize a criterion

function that rewards splits that increase the variance of the treatment ef-

fect across leaves, while penalizing splits that increases the variance within

a leaf. Hence, higher values for this measure indicate higher importance in

terms of heterogeneity of treatment effects.

38This makes random forests different from bagged trees. In bagged trees the num-
ber of predictors considered for a split is equal to the total number of covariates the
researcher considers, while in random forests, the number of predictors is strictly less
than this total number. The procedure ’decorrelates’ the trees (as the trees will be less
similar) and the aggregation of predictions across trees will have a lower variance.
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A.5 The Effect of Teacher Training on Student Per-

formance

Details on the Original Analysis. In Loyalka et al. (2019), the main

results are obtained by estimating the following regression equation:

Yi,j = α0 + α1Dj +Xijα + τk + εi,j,

where Yi,j is the outcome, measured at midline or endline, for student i in

school j ; Dj is a dummy variable indicating the treatment assignment; the

vector Xij includes the control variables, measured at baseline; τk indicates

the block fixed effects.39 The main outcome of interest, student achieve-

ment, is measured with a 35-minutes mathematics test at endline. The

full set of control variables includes students characteristics (age, gender,

parent educational attainment, household wealth), class size, and teacher

characteristics (gender, age, experience, education level, rank, a teacher cer-

tification dummy, and a dummy indicating whether the teacher majored in

math).

The findings from the heterogeneity analysis suggest that the program

has a small positive effect on achievement of students taught by less qual-

ified teachers and a negative effect on students whose teachers are more

qualified. In addition, some evidence of heterogeneity is found in terms

of whether or not the teachers majored in math, with a negative effect on

achievement for those students whose teachers did major in math (this ef-

fect is only found when comparing the PD plus follow up with the control

group).

Details on the Generic ML Analysis. In addition to the full set of

controls included in the original paper, we add to our analysis the following

variables: the baseline values of a number of student-level variables (math

self concept, math anxiety, intrinsic motivation for math, instrumental mo-

tivation for math, time spent each week studying math), plus a number of

variables indicating teachers behaviour in the classroom, evaluated by stu-

dents at baseline (instructional practices of teacher, teacher care, classroom

39The schools were randomized within blocks. A block is defined by the year of
study the student is enrolled in (i.e. grades 7, 8, or 9), and by the two agencies that
implemented the intervention. Hence, the total number of blocks is six.
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management of teacher, teacher communication).

The generic ML method takes into account two sources of uncertainty:

estimation uncertainty, as the final estimates of interest are obtained con-

ditional on the auxiliary sample, and splitting uncertainty, as the data is

randomly split in many auxiliary and main samples. The point estimates

are obtained as the median estimates over the different splits of the data.

The confidence intervals are constructed by taking the medians of the lower

and upper bounds over the random splits. Their nominal level is adjusted

to 90% to account for the splitting uncertainty. In a similar way, the p-

values are computed based on the median of many random conditional

p-values, with nominal level adjusted again for splitting uncertainty.

The Best BLP and Best GATES measures are based on maximizing the

correlation between the proxy predictor of the conditional average treat-

ment effect, S(Z), and the true conditional treatment effect, s0(Z) (see

Chernozhukov et al., 2018b). Table B.9 shows that this correlation is the

largest for the Neural Network. Therefore, we carry out the HTE analysis

using the Neural Network.

The values of the tuning parameters were optimized via cross-validation

for the Elastic Net and Neural Network. For the random forest they are

set to default values to save on computation time. For the random forest,

the number of trees is set to 2000 and the number of covariates considered

for a split is set to K/3, which gives a value of 8.
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B Additional Tables and Figures

Table B.1: The Effect of Corporate Taxes on Entrepreneurship: Lasso
Coefficients of Raw Covariates

(1) (2)
Outcome: Treatment variable:

Average Entry Rate First-year Effective Tax Rate

Log of number of tax payments -0,402 0,017
Procedures to start a business -0,006 0,001
Seigniorage 2004 -0,003 0
Other taxes -0,001 0,003
Rigidity of employment 0 0
Average inflation (1995-2004) 0 0
PIT top marginal rate 0 0,01
IEF Property Right Index 0 0,001
VAT and sales tax 0 -0,005
Tax evasion (GCR) 0,009 -0,004
Log GDP pc 2003 0,011 -0,02
EFW Freedom to Trade Internationally Index 0,305 -0,619

Notes: The table shows the lasso coefficients of the raw covariates, obtained by
estimating the nuisance functions g(·) (column 1) and m(·) (column 2). The lasso
coefficients are calculated as the median over splits.
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Table B.5: Fox News - Causal Forest: HTE analysis with district dummies

(1) (2) (3)
CATE below median CATE above median p-value for the difference

Population, diff. btw. 2000 and 1990 0.00413 (0.00242) 0.00806 (0.00189) 0.20027
Share with high school degree, diff. btw. 2000 and 1990 0.0086 (0.00199) 0.0029 (0.0027) 0.08938
Share with some college, diff. btw. 2000 and 1990 0.00736 (0.00207) 0.0039 (0.00227) 0.26069
Share with college degree, diff. btw. 2000 and 1990 0.00757 (0.00272) 0.00582 (0.00191) 0.59872
Share male, diff. btw. 2000 and 1990 0.00949 (0.00222) 0.0035 (0.00231) 0.06126
Share African American, diff. btw. 2000 and 1990 0.00629 (0.00243) 0.00666 (0.002) 0.90674
Share Hispanic, diff. btw. 2000 and 1990 0.00428 (0.00238) 0.00737 (0.00208) 0.32866
Unemployment rate, diff. btw. 2000 and 1990 0.00366 (0.00238) 0.00866 (0.00224) 0.12612
Married, diff. btw. 2000 and 1990 0.00698 (0.00202) 0.00562 (0.00257) 0.67592
Median income, diff. btw. 2000 and 1990 0.00628 (0.00224) 0.00653 (0.0023) 0.93661
Share urban, diff. btw. 2000 and 1990 0.00517 (0.00203) 0.00945 (0.0025) 0.18368
Population 2000 0.00492 (0.00252) 0.00662 (0.00164) 0.57185
Share with some college 2000 0.00328 (0.00204) 0.00964 (0.00249) 0.04809
Share with college degree 2000 0.00556 (0.00253) 0.00679 (0.00185) 0.6946
Share male 2000 0.0055 (0.00194) 0.00976 (0.00277) 0.20794
Share African American 2000 0.0025 (0.00271) 0.00739 (0.00172) 0.12759
Share Hispanic 2000 0.00136 (0.00225) 0.00799 (0.00217) 0.03386
Employment rate 2000 0.00557 (0.00232) 0.00771 (0.00215) 0.50069
Unemployment rate 2000 0.00541 (0.00214) 0.00741 (0.00235) 0.52906
Share married 2000 0.00683 (0.00228) 0.00585 (0.00229) 0.76121
Median income 2000 0.00501 (0.00218) 0.00712 (0.00223) 0.50006
Share urban 2000 0.00441 (0.0024) 0.00673 (0.0019) 0.44815
No. potential cable subscribers 2000 0.00818 (0.00238) 0.00594 (0.00169) 0.44436
Decile 1 in no. potential cable subscribers 0.00661 (0.0016) -0.00787 (0.01626) 0.37539
Decile 2 in no. potential cable subscribers 0.00664 (0.00165 ) 0.00084 (0.00861) 0.50799
Decile 3 in no. potential cable subscribers 0.00612 (0.00151) 0.0171 (0.0065) 0.0999
Decile 4 in no. potential cable subscribers 0.00634 (0.0017) 0.0077 (0.00393) 0.75084
Decile 5 in no. potential cable subscribers 0.00667 (0.00174) 0.00357 (0.00371) 0.44915
Decile 6 in no. potential cable subscribers 0.00669 (0.00171) 0.00471 (0.00463) 0.68762
Decile 7 in no. potential cable subscribers 0.00668 (0.0017) 0.00531 (0.00492) 0.79269
Decile 8 in no. potential cable subscribers 0.00758 (0.00168) -0.00131 (0.00405) 0.04239
Decile 9 in no. potential cable subscribers 0.0071 (0.00167) 0.00226 (0.00317) 0.17685
Decile 10 in no. potential cable subscribers 0.0045 (0.00207) 0.01139 (0.00188) 0.01393
No. cable channels available 2000 0.00816 (0.00684) 0.0065 (0.00148) 0.812
Decile 1 in no. cable channels available 0.00645 (0.0017) 0.00149 (0.02648) 0.85167
Decile 2 in no. cable channels available 0.00655 (0.00153) 0.01884 (0.0383) 0.74845
Decile 3 in no. cable channels available 0.00657 (0.00161) 0.00758 (0.01372) 0.94203
Decile 4 in no. cable channels available 0.00747 (0.00155) -0.0101 (0.01332) 0.18996
Decile 5 in no. cable channels available 0.00553 (0.00158) 0.02402 (0.01216) 0.13149
Decile 6 in no. cable channels available 0.00569 (0.00164) 0.01323 (0.00648) 0.25923
Decile 7 in no. cable channels available 0.00585 (0.00192) 0.00953 (0.00253) 0.24565
Decile 8 in no. cable channels available 0.0068 (0.00178) 0.00355 (0.00398) 0.45524
Decile 9 in no. cable channels available 0.00576 (0.00181) 0.01239 (0.00288) 0.05169
Swing district 0.00685 (0.00201) 0.00602 (0.00272) 0.80599
Republican district 0.00693 (0.00187) 0.00084 (0.00264) 0.06021

Notes: The table reports the effect of Fox News on the Republican vote share
for towns with values below (column 1) and above (column 2) the median of each
variable. Column 3 presents the p-value for the null of no difference between the
estimates in columns 1 and 2. Standard errors are reported in parentheses. The
estimates are obtained from the causal random forest that includes district dummy
variables. As we are not interested in exploring heterogeneity along the congressional
districts, the HTE results for district dummy variables are omitted from the table.
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Table B.6: Fox News - Causal Forest: HTE analysis with cluster-robust
causal forest

(1) (2) (3)
CATE below median CATE above median p-value for the difference

Population, diff. btw. 2000 and 1990 0.00357 (0.00398) 0.00829 (0.00299) 0.34201
Share with high school degree, diff. btw. 2000 and 1990 0.0088 (0.00311) 0.00225 (0.00323) 0.14407
Share with some college, diff. btw. 2000 and 1990 0.00809 (0.00281) 0.00194 (0.00431) 0.23202
Share with college degree, diff. btw. 2000 and 1990 0.00709 (0.00317) 0.00604 (0.00329) 0.8194
Share male, diff. btw. 2000 and 1990 0.00975 (0.00356) 0.00308 (0.00268) 0.13407
Share African American, diff. btw. 2000 and 1990 0.00547 (0.00346) 0.007 (0.00298) 0.7364
Share Hispanic, diff. btw. 2000 and 1990 0.00369 (0.00383) 0.00755 (0.00286) 0.41946
Unemployment rate, diff. btw. 2000 and 1990 0.00328 (0.00304) 0.00872 (0.00308) 0.20834
Married, diff. btw. 2000 and 1990 0.00622 (0.00327) 0.00639 (0.00339) 0.97002
Median income, diff. btw. 2000 and 1990 0.0065 (0.00354) 0.00609 (0.00282) 0.92735
Share urban, diff. btw. 2000 and 1990 0.00527 (0.00273) 0.00881 (0.00372) 0.44257
Population 2000 0.00577 (0.00398) 0.00636 (0.0027) 0.9022
Share with some college 2000 0.00532 (0.00321) 0.00785 (0.00376) 0.60916
Share with college degree 2000 0.00545 (0.00296) 0.00672 (0.00318) 0.76975
Share male 2000 0.00459 (0.00259) 0.01138 (0.00529) 0.24942
Share African American 2000 0.00198 (0.00518) 0.00731 (0.00265) 0.35943
Share Hispanic 2000 0.00071 (0.00378) 0.00825 (0.00314) 0.1245
Employment rate 2000 0.0043 (0.00293) 0.00892 (0.00416) 0.36452
Unemployment rate 2000 0.00539 (0.0027) 0.00728 (0.0035) 0.66907
Share married 2000 0.00684 (0.00278) 0.00561 (0.00355) 0.78466
Median income 2000 0.00546 (0.00381) 0.00648 (0.00272) 0.82677
Share urban 2000 0.00534 (0.00404) 0.00647 (0.00276) 0.81683
No. potential cable subscribers 2000 0.00744 (0.00616) 0.00587 (0.00285) 0.81685
Decile 1 in no. potential cable subscribers 0.00653 (0.00264) -0.00486 (0.0162) 0.48767
Decile 2 in no. potential cable subscribers 0.00655 (0.00268) 0.00209 (0.0116) 0.70797
Decile 3 in no. potential cable subscribers 0.00594 (0.00258) 0.01893 (0.0111) 0.25437
Decile 4 in no. potential cable subscribers 0.00628 (0.00256) 0.00734 (0.00928) 0.91234
Decile 5 in no. potential cable subscribers 0.00677 (0.00273) 0.00051 (0.00724) 0.4189
Decile 6 in no. potential cable subscribers 0.00691 (0.00278) 0.00113 (0.00592) 0.37691
Decile 7 in no. potential cable subscribers 0.00685 (0.00241) 0.00351 (0.01161) 0.77827
Decile 8 in no. potential cable subscribers 0.00741 (0.00283) -0.00051 (0.004) 0.10608
Decile 9 in no. potential cable subscribers 0.00683 (0.00294) 0.00274 (0.00409) 0.41683
Decile 10 in no. potential cable subscribers 0.004 (0.00384) 0.01147 (0.00369) 0.16066
No. cable channels available 2000 0.00562 (0.00773) 0.00678 (0.00255) 0.88643
Decile 1 in no. cable channels available 0.00646 (0.00274) -0.00726 (0.03324) 0.68079
Decile 2 in no. cable channels available 0.00644 (0.00265) 0.01768 (0.01293) 0.39453
Decile 3 in no. cable channels available 0.00672 (0.00267) 0.00203 (0.01179) 0.69811
Decile 4 in no. cable channels available 0.00816 (0.00263) -0.01645 (0.01506) 0.10755
Decile 5 in no. cable channels available 0.00484 (0.00251) 0.02998 (0.01806) 0.16774
Decile 6 in no. cable channels available 0.00537 (0.00289) 0.0133 (0.0045) 0.13846
Decile 7 in no. cable channels available 0.00602 (0.00304) 0.00867 (0.0042) 0.60869
Decile 8 in no. cable channels available 0.00675 (0.00291) 0.00327 (0.00503) 0.54915
Decile 9 in no. cable channels available 0.00543 (0.0027) 0.0139 (0.00631) 0.21689
Swing district 0.00634 (0.00308) 0.00736 (0.00515) 0.86489
Republican district 0.00665 (0.00286) 0.00079 (0.00604) 0.38064

Notes: The table reports the effect of Fox News on the Republican vote share
for towns with values below (column 1) and above (column 2) the median of each
variable. Column 3 presents the p-value for the null of no difference between the
estimates in columns 1 and 2. Standard errors are reported in parentheses. The
estimates are obtained from the cluster-robust causal forest.
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Table B.7: Fox News - Causal Forest: Variable importance with district
dummies

Variable Importance (%)

No. cable channels available 2000 6.52
No. potential cable subscribers 2000 5.23
Share employed, diff. btw. 2000 and 1990 4.9
Share African American 2000 4.74
Share married 2000 4.39
Unemployment rate, diff. btw. 2000 and 1990 4.22
Decile 10 in no. cable channels 2000 4.16
Employment rate 2000 3.67
Share with high school degree, diff. btw. 2000 and 1990 3.56
Share with some college 2000 3.55
Population, diff btw. 2000 and 1990 3.41
Share male, diff btw. 2000 and 1990 3.38
Share Hispanic, diff btw. 2000 and 1990 3.27
Median income, diff btw. 2000 and 1990 3.25
Median income 2000 3.22
Share Hispanic 2000 3.21
Share married, diff btw. 2000 and 1990 3.07
Share African American, diff btw. 2000 and 1990 3.02
Population 2000 3.01
Employment rate 2000 2.72
Share with some college, diff btw. 2000 and 1990 2.67
Share male 2000 2.55
Share with college degree 2000 2.49
Share with college degree, diff btw. 2000 and 1990 2.23
Share with high school 2000 2.14
Decile 10 in no. potential cable subscribers 2.08
Share urban population, diff btw. 2000 and 1990 1.9
Decile 7 in no. cable channels available 1.75
Decile 9 in no. cable channels available 1.54
Share of urban population 2000 1.4
Republican district 0.78
Decile 8 in no. cable channels available 0.75
Swing district 0.74
Decile 9 in no. potential cable subscribers 0.36
Decile 8 in no. potential cable subscribers 0.07
Decile 7 in no. potential cable subscribers 0.02
Decile 6 in no. cable channels available 0.01

Notes: The table reports the importance of each variable obtained from the causal
forest with district dummies. Variables with importance lower than 0.01% are omit-
ted.
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Table B.8: Fox News - Causal Forest: Variable importance in cluster-robust
causal forest

Variable Importance (%)

No. cable channels available 2000 10.4
No. potential cable subscribers 2000 8.22
Share with some college 2000 4.79
Unemployment rate, diff. btw. 2000 and 1990 4.35
Decile 9 in no. cable channels 4.16
Decile 10 in no. cable channels 4.09
Employment rate, diff. btw. 2000 and 1990 3.86
Share African American 2000 3.59
Median income 2000 3.39
Population, diff. btw. 2000 and 1990 3.31
Median income, diff. btw. 2000 and 1990 3.1
Share married 2000 2.9
Share male, diff. btw. 2000 and 1990 2.88
Decile 7 in no. cable channels 2.84
Unemployment rate 2000 2.56
Share African American, diff. btw. 2000 and 1990 2.55
Share Hispanic, diff. btw. 2000 and 1990 2.5
Share married, diff. btw. 2000 and 1990 2.4
Share Hispanic 2000 2.38
Share with high school degree, diff. btw. 2000 and 1990 2.28
Share urban, diff. btw. 2000 and 1990 2.23
Share male 2000 2.2
Decile 10 in no. potential cable subscribers 2.19
Population 2000 2.14
Share with some college, diff. btw. 2000 and 1990 2.08
Share with college degree 2000 1.98
Employment rate 2000 1.79
Share with college degree, diff. btw. 2000 and 1990 1.58
Share with high school degree 2000 1.57
Share urban 2000 1.55
Republican district 1.37
Swing district 0.98
Decile 8 in no. cable channels 0.97
Decile 9 in no. potential cable subscribers 0.51
Decile 8 in no. potential cable subscribers 0.21
Decile 7 in no. potential cable subscribers 0.06
Decile 6 in no. cable channels 0.03
Decile 6 in no. potential cable subscribers 0.02

Notes: The table reports the importance of each variable obtained from the cluster-
robust causal forest. Variables with importance lower than 0.01% are omitted.
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Table B.9: Teacher Training - Generic Method: Comparison of ML meth-
ods

(1) (2) (3)
Elastic net Neural network Random forest

Best BLP 0.012 0.014 0.011

Best GATES 0.115 0.121 0.099

Notes: The table compares the performance of the three ML methods used to pro-
duce the proxy predictors. The performance measures Best BLP and Best GATES
are computed as medians over 100 splits.

Table B.10: Teacher Training - Generic Method: GATES of most and least
affected groups

(1) (2) (3)
20% most affected 20% least affected Difference

Effect of teacher training on student achievement 0.164 -0.179 0.365

90% Confidence Interval (0.048,0.279) (-0.301,-0.058) (0.198,0.533)

p-value 0.011 0.092 0.001

Notes: The estimates are obtained using neural network to produce the proxy pre-
dictor S(Z). The values reported correspond to the medians over 100 splits.
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Table B.11: Teacher Training - Generic Method: Classification Analysis

(1) (2) (3)
20% most affected 20% least affected p-value for the difference

Baseline instructional practices of teacher 0.211 0.053 0.000
(0.149,0.272) (-0.009,0.114)

Teacher’s baseline classroom management 0.065 0.074 0.000
(0.003,0.127) (0.012,0.136)

Teacher gender 0.529 0.536 1.000
(0.497,0.562) (0.504,0.568)

Teacher certification dummy 0.970 1.000 0.000
(0.962,0.977) (0.992,1.008)

Student’s baseline instrumental motivation for math -0.111 0.224 0.000
(-0.173,-0.050) (0.162,0.285)

Student’s baseline time spent each week studying math -0.073 0.204 0.000
(-0.142,-0.004) (0.135,0.273)

Student’s baseline math self-concept -0.380 0.317 0.000
(-0.441,-0.319) (0.256,0.378)

Teacher majored in math 0.309 0.507 0.000
(0.278,0.340) (0.475,0.538)

Mother education level 0.570 0.425 0.000
(0.538,0.602) (0.393,0.457)

Teacher’s baseline communication -0.088 0.251 0.000
(-0.152,-0.025) (0.187,0.314)

Student’s baseline intrinsic motivation for math -0.294 0.299 0.000
(-0.356,-0.232) (0.237,0.362)

Baseline teacher care -0.165 0.311 0.000
(-0.228,-0.103) (0.249,0.374)

Household asset index -0.421 0.240 0.000
(-0.491,-0.351) (0.170,0.310)

Father education level 0.583 0.589 1.000
(0.551,0.614) (0.557,0.621)

Notes: The table shows the average value of the teacher and student characteristics
for the most and least affected groups. The estimates are obtained using neural
network to produce the proxy predictor S(Z). Confidence intervals with 90% nominal
level are reported in parenthesis. All variables, except Teacher gender, Teacher
certification dummy, Teacher majored in math, Mother education level and Father
education level are normalized. The values reported correspond to the medians over
100 splits.
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Table B.12: Teacher Training - Generic Method: Correlation of the covari-
ates with S(Z)

Variable Correlation

Teacher college degree -0.237
Teacher training hours 0.125
Teacher ranking 0.116
Student age 0.111
Teacher experience (years) 0.101
Student female -0.094
Teacher age 0.089
Math score at baseline (normalized) 0.075
Student baseline math anxiety 0.063
Class size -0.060
Baseline instructional practices of teacher 0.053
Teacher’s baseline classroom management 0.051
Teacher gender -0.045
Teacher certification dummy 0.036
Student’s baseline instrumental motivation for math 0.025
Student’s baseline time spent each week studying math 0.022
Student’s baseline math self-concept -0.021
Teacher majored in math -0.016
Mother education level 0.009
Teacher’s baseline communication -0.008
Student’s baseline intrinsic motivation for math 0.008
Baseline teacher care -0.006
Household asset index -0.005
Father education level -0.003

Notes: The table reports the correlation of each covariate with the proxy predictor
S(Z).
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Figure B.1: Corporate Taxes on Entrepreneurship: Lasso Coefficients of
Interaction Terms

Figure 2.1: m̂(·)

Figure 2.2: ĝ(·)

Notes: The figure plots the seven largest lasso coefficients of the interaction terms,
obtained estimating the nuisance functions m(·) and g(·). Colons indicate interac-
tions of variables. The treatment variable D, is the first year effective corporate tax
rate. The dependent variable Y is the average entry rate. The lasso coefficients are
calculated as the median over splits.
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