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Abstract

This paper estimates the marginal accident externality of driving in Central London by ex-

ploiting variation in traffic flow induced by the London Congestion Charge Zone using an in-

strumental variable approach. The charge attributed to a 9.4% reduction in traffic flow, which

resulted in a less than proportional 6.0% and 7.6% decrease in accidents and slight injuries, and

a 6.5% increase in serious injuries/fatalities. Our preferred estimates indicate that the accident,

slight injuries, and serious injuries/fatalities rate elasticities with respect to traffic flow are -0.36,

-0.19 and -1.65 respectively. These estimates imply that the marginal external benefit of road

safety from an additional kilometre driven is approximately £0.16. The marginal accident exter-

nality is positive, as the marginal driver along congested roads decreases the risk and severity of

traffic collisions for other road users by slowing others down and increasing awareness.
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1 Introduction

When drivers decide to take the road, they do not only undertake the risk of getting into a traffic ac-
cident themselves, but they also increase or decrease the accident risk of other road users, inducing
negative or positive accident externality. The externality is negative when the accident elasticity
with respect to flow is larger than one, i.e. an additional driver leads to more than proportional
increase in traffic accidents (Vickrey, 1968), causing the social marginal cost of driving to exceed
private marginal cost. While some studies have shown that the accident externality of driving is
negative (Vickrey, 1968; Parry, 2004; Edlin & Karaca-Mandic, 2006; Romem & Shurtz, 2016),
this relationship is less clear for congested cities.

Positive accident externalities from driving are more likely to be found in heavily congested
cities such as New York, Jakarta, Bangkok, Rome and London.1 Although heavier traffic may in-
crease the risk of accidents, the marginal driver along congested roads slows down other motorists,
reducing the severity of traffic collisions (Shefer & Rietveld, 1997; Verhoef & Rouwendal, 2004).
More vehicles on roads could also heighten the awareness of drivers, reducing the probability of
collisions. Under these circumstances, an additional driver is likely to cause a less than propor-
tional increase, or even a decrease in the number and severity of traffic accidents, making roads
safer. Knowledge about the sign and the size of the marginal accident externality of driving is
particularly relevant for congested cities where a road tax is considered. Policymakers wish to be
informed whether the optimal Pigouvian road tax that addresses the two main road externalities –
congestion and accident externalities – is higher or lower than a road tax that considers only travel
time delays.2

Quantifying the accident externalities of driving and the impacts of policies aiming to mitigate
these externalities are important given the enormous cost accidents impose to society. In 2015, road
accidents inflict more than 160,000 injuries and 1,700 fatalities across the United Kingdom (UK),
imposing an estimated cost of £10.3 billion to society. While the average accident cost per driver
appears high, these figures do not inform about the magnitude or sign of the external accident costs
from an additional driver.3 Consider a car collision, e.g. on a pedestrian, or between two cars,

1To clarify, accident externality is positive (negative) when the additional driver leads to a less (more)
than proportional increase in the risk of accidents.

2Environmental externalities of car use are relatively small. For example, on highways, the marginal
travel time external cost is of the same size as the marginal accident external cost, whereas the marginal
environmental external cost is an order of magnitude smaller, see Small & Verhoef (2007).

3As highlighted by studies such as Vickrey (1968) and Edlin & Karaca-Mandic (2006), the tort law
system, which recovers damages from the party liable for the accident, provides sufficient incentives for
drivers to drive carefully, but does not provide adequate incentives on how much to drive, which makes the
marginal accident externality of driving of key interest.
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that would not have happened if one driver chooses to drive less. The driver only expects to incur
the average accident cost for the additional kilometer driven - i.e. the accident cost of all drivers
combined divided by the total distance driven - instead of the marginal accident cost to society. If
the marginal external cost is positive (negative), i.e. the marginal cost exceeds (are less than) the
driver’s expected cost, then driving may be too cheap (expensive), causing people to drive beyond
(below) socially-optimal levels (Jansson, 1994).

In this study, we quantify the accident externality associated with driving by estimating how
traffic flow affects the likelihood and severity of traffic collisions using an instrumental variable
(IV) approach. We provide causal estimates by exploiting the plausibly exogenous variation in
traffic flow induced by the London Congestion Charge Zone (CCZ). The CCZ is a preferred in-
strument as it allow us to examine the accident externality from driving along congested roads,
a margin that policy makers is particularly interested in. The CCZ was implemented in 2003 to
reduce traffic along the most congested roads in Central London. The policy curtails road traffic by
imposing a fee on drivers commuting into the zone during chargeable hours. Put differently, we are
comparing changes in traffic flow and collision outcomes for areas inside and outside the charge
zone before and after the charge is enforced. Because collision outcomes are discrete variables, we
estimate count models with the CCZ as an IV using a control function approach.4

Our headline finding is that while the charge attributed to a 9.4% reduction in traffic flow, it
resulted in a less than proportional 6.0% and 7.6% decrease in accidents and injuries, and a 6.5%
increase in serious injuries/fatalities. From these estimates, one can derive the accident, slight
injury, serious injury and fatality rate elasticity with respect to traffic flow by taking the estimated
elasticity of various collision outcomes with respect to traffic flow and subtract by 1. The accident,
slight injuries, and serious injuries/fatalities rate elasticities with respect to traffic flow are -0.36,
-0.19 and -1.65 respectively. These findings show that the accident externality of driving is positive
as the marginal driver along congested roads slows down the average driving speed, decreasing the
risk and severity of traffic collisions for other road users. Further analyses show that the implied
marginal external benefit of road safety from an additional kilometer driven around Central London
is £0.16. These findings suggest that curtailing traffic flow is unlikely to be an efficient strategy to
improve road safety for congested roads around city centre.

Our identification strategy hinges on the assumption that the CCZ is affecting traffic colli-
sions between the charge and non-charged zone only through changes in traffic flow induced by

4For linear specifications, such an approach provides identical estimates as a two-staged least square
(2SLS) approach. However, the latter cannot be applied to count and other non-linear models (Wooldridge,
2015). In the control function approach, one uses the traffic flow residuals from the first-stage regression as
a control variable in the second-stage regression to partial out the endogenous variation in traffic flow. We
provide additional details in Section 5.
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the charge. This assumption could be violated if the charge is affecting traffic collisions through
changing the composition of traffic, vehicles and drivers in the zone. This is plausible as some
vehicle types like motorcycles and bicycles are omitted from paying the charge. Substitution to
other non-charged transportation modes could attribute to a surge in 2-wheel vehicles or pedes-
trians (using public transit) along footpaths in the zone that could increase the probability and
severity of traffic collisions.5 We adopt the following strategies in response to these challenges.
First, we progressively constrain our analysis to areas close the charge boundary (up to 2km). The
idea is that, given that motorists driving into the charge zone must pass by areas right outside the
zone, traffic composition is likely to be similar between areas around the charge boundary even if
the charge has substantially affected the composition of traffic. Second, we directly test whether
there is a change in composition of traffic inside the charge zone with a battery of balancing tests.
Specifically, we examine whether there are significant changes in the (1) characteristics of drivers
and vehicles involved in collisions, (2) the type of traffic flow and (3) the type of accidents in the
charge zone after the charge is enforced. Finally, we control for driver and vehicle characteristics
involved in collisions and limit our analyses to accidents that involve charged vehicles only in our
robustness tests. Overall, all these analyses suggest that the charge is unlikely to have affected
collision outcomes through means other than changes in traffic flow.

Despite the importance of estimating the accident externality associated with driving, empiri-
cal evidences are few and far between, with often contrasting results reported by studies that apply
different empirical strategies for different countries. In his seminal paper, Vickrey (1968) focuses
on highways in California and concludes that the accident rate elasticity is about 1.5. Shefer &
Rietveld (1997) suggest that more traffic does not necessarily increase accident costs in Germany,
Israel and US after observing fewer traffic fatalities during morning peak hours when vehicle miles
travelled are the highest. They suggest that lower driving speeds could explain why collisions are
less deadly. Several studies document findings suggesting positive accident externalities associ-
ated with driving. Fridstrøm & Ingebrigtsen (1991) report that the elasticity between traffic flow
and accident rates is around 0.47 for Norway. Zhou & Sisiopiku (1997) further observe an inverse
”U”-shaped relationship between accident rates and traffic flow in Detroit, US. Accident rates are
the highest when traffic flow is the lowest and decrease dramatically as traffic flow increases. Ac-
cidents involving serious injuries/fatalities, conversely, decrease with traffic flow.

The major issue with these cross-sectional studies is that they do not account for the endoge-
nous relationship between traffic flow and accidents. If drivers prefer safer routes that are less
prone to accidents, roads with heavy traffic could end up being less accident prone, causing a

5In cities such as New York and London, roads are typically shared with cyclists and pedestrians, so a
large share of accident injuries involving cars is incurred by non-car road users, whereas single-car accidents
are rare. This is in sharp contrast to highways where single-car accidents are more common (Parry, 2004).
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downward bias to the relationship between traffic flow and collision outcomes. In addition, roads
with heavier usage typically have different designs and receive more funding for maintenance,
inducing a spurious relationship between traffic flow and collision outcomes. Using temporal vari-
ation in traffic flow and collision outcomes is unlikely to address these issues as minor road works
are often unobserved but have major influence on traffic flow and collision outcomes. This could
explain why the estimated relationship between traffic density and accidents is often mixed and
inconclusive between studies.

There are a few papers that address these empirical challenges. Edlin & Karaca-Mandic (2006)
estimate traffic accident externalities by examining how annual traffic flow increases the cost of
insurance across U.S states. After instrumenting traffic density with the number of registered
vehicles and licensed drivers due to concerns of measurement error, their study shows that an
additional driver increases insurance premiums for all other drivers by around $1,725- $2,150 per
annum in California. These effects are the strongest for states with the heaviest traffic. One concern
raised by Parry et al. (2007) is that insurance cost, which covers the property damage associated
with traffic collisions but not the injury costs, constitutes a small proportion of cost associated with
accidents. Romem & Shurtz (2016) extend the literature by exploiting the exogenous variation
in traffic from the observance of Jewish Sabbath in Israel to measure how traffic flow affects the
probability of collisions. Using a regression discontinuity design, they report that the accident rate
elasticity is between -0.3 and 1. An additional driver only increases accident risk for others when
the traffic is heavy after the Sabbath ended. The authors conclude that the relationship between
traffic flow and accidents is likely non-monotonic.6

This study contributes to the existing literature in at least three ways. First, we improve the
estimation between traffic flow and accidents from exploiting the plausibly exogenous variation in
traffic flow from the implementation of the London Congestion Charge. We carefully estimate the
causal relationship by eliminating other plausible factors that could bias our estimates through a
battery of specifications. Second, we estimate the marginal effect of driving on accidents induced
by road pricing, measuring how the marginal driver affects road safety along highly congested
roads. The margin we are examining is paramount to policy makers who are most concerned
about reducing driving externalities along congested roads. Given the non-linear (and even non-
monotonic) relationship between traffic flow and accidents, previous estimates for other countries
at a different margin are unlikely to be applicable to our context. Our findings also inform about the

6In these studies, differences in accident externalities due to differences between vehicles are ignored.
When a driver chooses a heavier vehicle, he/she imposes an externality on other road users who are more
likely to get more severely injured when involved in a collision. Van Ommeren et al. (2013) and Anderson
& Auffhammer (2014) report almost identical estimates for the marginal external costs of car weight per ac-
cident for the Netherlands and the US, suggesting that the weight externality is proportional to the marginal
external accident cost of flow estimated in the current paper.

5



impact of the congestion charge on road safety.7 Third, we employ detailed micro information on
accident severity (e.g. light and serious injuries/deaths) and road users involved in accidents (e.g.
car drivers, pedestrians, cyclists) allow us to examine how additional traffic impacts the severity of
collisions. This allow us to accurately quantify the external accident cost associated with driving
that is not covered in insurance premiums.

Our study shows that the charge has effectively reduced traffic flow and accidents in the zone,
but accidents have become more severe probably due to faster driving speeds after congestion is
alleviated. These results imply that the optimal road toll could be less than the road toll based
on travel time only. Furthermore, these findings highlight the importance of employing comple-
mentary instruments, such as speed bumps, speed limits and cameras, to regulate driving speed or
the variance of driving speed between vehicles once traffic becomes more free-flowing. As in any
other study, one may question the external validity of our results. We emphasise, therefore, that
our results are applicable to other major congested cities around the world, but are not informative,
for example, about the accident externalities of driving on non-congested highways.

The remainder of this paper is structured as follows. In section 2, we provide the theoretical
framework. Section 3 provides an overview on the Congestion Charge in London. Section 4
outlines the data and Section 5 illustrates the identification strategy. Findings are then discussed in
Section 6 and 7, and Section 8 concludes.

2 Theoretical framework

In this section, we explain the main theoretical concepts introduced by Vickrey (1968). We are
interested to estimate the marginal external accident cost of driving, which is the external cost
imposed on society from an additional driver through the change in the probability and severity
of traffic collisions. We define traffic flow as F and an additional driver who decides to take the
road will increase F. We focus on the marginal driver with a demand for a trip that depends neg-
atively on the price paid for the journey, which includes the expected accident cost, A(F ). When
deciding to drive, the driver increases traffic flow and changes the expected cost of accidents for
other drivers. More specifically, we wish to know the consequences of a congestion charge (as in

7Our study differs from studies such as Li et al. (2012) and Green et al. (2016) that focus on the (reduced
form) impact of a congestion charge on traffic accidents. In this paper, we rely on the policy to identify
how the marginal driver affects road safety. One cannot derive the marginal external accident cost from
these studies without considering the impact of the policy on traffic flow. Furthermore, their results could
be driven by changes in traffic and driver composition due to the charge. We attempt to address these
identification challenges using a variety of strategies that we will discuss in-depth in Section 5.
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London, Singapore) that reduces travel time losses by reducing traffic flow, and therefore, by de-
sign, affecting the external accident cost of driving. For simplicity, we do not distinguish between
different types of accidents and assume that the monetary cost of an accident is standardised to 1.8

The number of accidents, Y , is assumed to be an increasing function of traffic density, D,
as well as of speed, S, in line with previous literature (Verhoef & Rouwendal, 2004; Edlin &
Karaca-Mandic, 2006).9 Traffic density increases with traffic flow (∂D/∂F > 0), while speed is
decreases with traffic flow (∂S/∂F < 0). It follows that the number of accidents is a function of
flow (Y = Y (D(F ), S(F )) = Y (F )), but the sign of the flow effect is ambiguous. On roads with
low or moderate levels of congestion, it is plausible that the density effect dominates such that
the number of accidents is an increasing function of traffic flow. However, along highly congested
roads, speed effect could dominate such that the number of accidents could reduce with an increase
in traffic flow.

We observe the total number of accidents (per area) in our data. The driver’s expected accident
cost, i.e. the accident rate A(F ), can be written as Y/F . We assume that the effect of flow on the
number of accidents, Y , has the following functional form: Y = expλ+βlogF , where β is the
elasticity of the number of accidents with respect to traffic flow. This is the main parameter of
interest from our estimations when we regress collision counts against traffic flow holding all other
factors constant. It then follows that the marginal number of accidents ∂Y/∂F is equal to βY/F ,
hence the marginal accident externality equals βY/F − Y/F = [β − 1]Y/F . This is also known
as the accident rate elasticity with respect to traffic flow. Consequently, there is no externality
when β = 1. There is a marginal external cost when β > 1, and a marginal external benefit when
β < 1. In other words, the marginal driver only increases the collision risk for other road users
when β > 1. Otherwise, the presence of an additional driver actually reduces the risk of other road
users getting into accidents, conferring a benefit to other road users.

3 Background

The Congestion Charge Zone (CCZ) was implemented on the 17th February 2003. It covered a
total of 21 square kilometres and encompassed the financial centre (Bank), parliament and govern-
ment offices (Palace of Westminster), major shopping belts (Oxford Circus) and tourist attractions

8We relax this assumption in subsequent analyses as we examine how traffic flow affects accident prob-
ability and severity, before monetizing these estimates to compute the marginal external cost/benefit associ-
ated with driving.

9We assume away drivers’ decisions regarding vehicle weight, and self-chosen speed, both of which may
also imply an externality. Hence, we assume away that drivers optimally trade off between choosing their
own speed and accident risk (Verhoef & Rouwendal, 2004). One justification for this assumption is that tort
law provides sufficient incentives to drive carefully.
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Figure 1: Map of the Original Congestion Charge Zone (CCZ) & Western Extension Zone (WEZ)
Source: Transport for London (TfL)

(Trafalgar Square, Westminster Abbey, Big Ben, St Paul Cathedral etc). To reduce confusion and
for convenience, the initial Congestion Charge Zone will be abbreviated as the CCZ and the West-
ern Extension Zone, which was later on introduced but quickly abolished, will be abbreviated as
WEZ. As the WEZ was short-lived and did not materially improve traffic conditions, we will see
that the use of the WEZ cannot convincingly be used as an instrument. Hence, our paper will focus
on the CCZ.

Figure 1 shows the CCZ, the shaded area enclosed by a dash line. The boundary was drawn to
isolate the most congested areas in Central London. It is bordered by major inner ring roads such
as Edgeware, Vauxhall Bridge, Pentonville, Park Lane, Marylebone, Tower Bridge and Victoria
to divert traffic displaced by the charge. Drivers travelling on these roads are not required to pay
unless they turn into the zone.

Commuters driving into the CCZ between 7:00am and 6:30pm from Monday to Friday ex-
cluding public holidays are required to pay a one-time daily flat fee of £5.00.10 Residents living in
the zone and within discount zones outside are entitled to a 90% waiver to the charge for their first

10The rationale for levying a flat fee, other than the difficulty in imposing time-varying fees to reduce
congestion during peak hours, is that vehicular flow on roads seems fairly uniform across the day.
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registered vehicle.11 Other groups excluded from paying the charge include public transport (taxis
and buses), motorcycles, bicycles, environmentally-friendly vehicles (battery powered or hybrid
cars), vehicles driven by disabled individuals (blue badge holders), vehicles with 9 seaters or more
and emergency service vehicles.

The tax levied increased to £8.00 on the 4th July 2005 to further reduce traffic and raise
revenues. On the 19th of February 2007, charging was extended to Central West London (known
as the Western Extension Zone) because of congestion in that area. Operating hours of the charge
were reduced by half an hour from 7:00am to 6:00pm. The westward extension is circumvented
by Harrow Road, Scrubs Lane, West Cross Route, the Earls Court One-Way system, Chelsea
Embankment and the River Thames to the South. This area is marked with pink stripes in Figure
1. However, under tremendous pressure from residents and businesses in West London, the WEZ
was scrapped on the 24th of December 2010.12

Impact assessment by Transport for London (TfL) showed significant improvement in traffic
conditions after the charge was enforced in 2003. These results are very consistent to those re-
ported in this study. Travel speeds were almost 20% higher (from 14.3km to 16.7km per hour) and
minutes of delay fell by 30% (TfL, 2003a). This was due to a 27% overall drop in the number
of private automobiles in Central London.13 No evident displacement of traffic into neighbouring
uncharged roads and weekends were recorded as traffic conditions were fairly similar compared to
those during pre-charged periods. A change in composition of inbound traffic into the zone was
also observed: the flow of bicycles, buses and taxis went up by 28%, 21% and 22% respectively.
Surveys conducted echoed similar findings with the majority of the drivers switching to public
transport and others travelling during off-charging hours (TfL, 2005). Though the number of com-
muters using rail did not increase, the number of bus passengers during morning peak periods were
38% higher (TfL, 2004).

These results are expected as these vehicle types are omitted from the charge. We acknowledge
that increases in bicycles and buses suggest that the charge could have affected collision outcomes
via changing the composition of traffic in the charge zone, violating the exclusion restriction. We
adopt a variety of strategies to alleviate this concern, including one that limits the analysis to areas
very close to the charge boundary as these areas are more likely to share similar traffic composition.
We provide more details in Section 5. Overall, evidences provided by TfL suggest that the charge

11These discount zones are shaded in grey for the CCZ and in purple-striped for the WEZ as shown in
Figure 1. Residents living in these areas are entitled to the discount due to parking and severance issues.

12We observe that the WEZ did not materially improve traffic conditions after its introduction. For more
information, refer to Table A2 in Data Appendix. We provide detail interpretation of these findings in
subsequent sections.

13We present similar results in this paper. Depending on specifications, we document traffic reductions of
between 9.4% and 13.0%. For more information, refer to Tables 3 and 4.
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significantly reduced traffic flow in the charge zone and we exploit this substantial improvement in
traffic conditions to measure the accident externality of driving.

4 Data

To estimate the accident externality of driving, we rely on two main data sets together with a variety
of auxiliary data. First, we rely on STATS 19 Road Accident Database that provides detailed
information for each reported accident that involved an injury or fatality to the Police Force.14 For
each accident, we observe location, time, date, road conditions, age and gender of driver, vehicle
type, number of injuries, seriousness of injuries and fatalities (pedestrians and inside the vehicle).
We calculate annual collision outcomes per Lower Super Output Area (LSOA) from the year 2000
to 2014, distinguishing between number of accidents, slight injuries, serious injuries/fatalities.15

Fatal accidents rarely occur (there are slightly more than hundred fatal traffic accidents in London
annually) and almost all LSOAs (about 94%) do not have any fatal accident recorded in a year.
Hence, we aggregate serious injuries and fatalities into one category when measuring severity of
traffic collisions.16

Second, we obtain the Average Annual Daily Traffic Flow (AADF) collected at each count
point (CP) from the Department of Transport (DfT). There are a total of 2,523 CPs in London and
most of them clustered around Central London as shown in Figure 2. Each site is counted manually
by a trained enumerator on a neutral day for a twelve hour period to provide junction-to-junction
traffic flow. A neutral day is a weekday between March and October, excluding public holidays
and school holidays. Traffic on these days is reflective of an ”average” day across the year. Traffic
flow is reported for different vehicles, distinguishing between buses and coaches, cars and taxis,
light and heavy good vehicles, pedal cycles and motorcycles. We compute the annual average daily
traffic flow for each LSOA by taking the average of traffic flow reported by count points within the
LSOA boundary.

14It is possible that accidents involving light injuries are under-reported to the Police but this should be
less of an issue for accidents involving serious injuries as well as fatalities. As long as the probability of
reporting of accidents is random across time and is not correlated with the enforcement of the CCZ, which
seems plausible, then this under-reporting should not affect our estimates.

15Lower Layer Super Output Areas (LSOAs) are boundaries delineated for census data collection and
reporting. There are a total of 4,835 LSOAs across London with an average size of 0.325 square kilometers,
housing around 1,700 residents from 675 households. These areas align to form 33 Local Area Districts
(LAD) across London.

16We have also estimated models for serious injuries and fatalities separately. These results can be found
in Table A3 in Data Appendix. We find that our effects are largely driven by serious injuries. Hence, when
computing the monetary value of accident externalities associated with the charge in Table 7, we rely only
on the monetized values of serious injuries to more conservatively measure the cost of accidents.
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Figure 2: The London Congestion Charge Zone (CCZ & WEZ) and location of count points (de-
noted in triangle) where average annual daily traffic flow is recorded

Information on the boundaries of the CCZ and WEZ are collected from the shapefiles pro-
vided by Transport of London (TfL). Using Geographic Information Systems (GIS) mapping, we
categorize whether LSOAs are inside or outside the charge zone based on whether the centroid
of the LSOA is within the zone. For 17 LSOAs, the charge boundary cuts through the LSOA. 17

This shows that the charge boundary is not determined by census administrative zones. To avoid
erroneously classifying LSOAs outside the charge zone as treated areas and vice versa, we omit
these 17 areas, which are at both sides of the charge boundary, from our analysis. 18

We supplement additional information on the average earnings, number of hours worked, num-
ber of jobs and job density from the Annual Labour Force Survey. We also collected data on pop-
ulation size and % of population from 18 to 25 years old from Nomis Population Estimates. All
these data are reported annually at Local Authority District levels. We further collected informa-
tion on daily weather conditions, which include precipitation, temperature, relative humidity and
wind speed, from 212 monitoring stations across London maintained by London Air Quality Net-
work (LAQN). We match each LSOA to the nearest monitoring station based on proximity from
the centroid and annual measures are computed by averaging daily measures across the year. For

17To visualize, refer to the shaded LSOAs that overlapped with the CCZ in Figure A1 in Data Appendix.
18In unreported analyses, we incorporate these areas in our regressions and document largely similar

findings. These results are available upon request.
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further details on the definition of these variables, refer to Table A1 in Data Appendix.

5 Identification Strategy

To estimate the effects of traffic on the probability and severity of traffic collisions, a typical
specification takes the following form:

Y n
jt = exp(αnj + βnlogFjt +X ′jtφ

n + τnt + εnjt), εnjt = νnjt + εnjt (1)

where Y n
jt is the counts for n collision outcome, which includes Accidents, Injuries, Serious In-

juries & Fatalities, in area j at year t. Because collision outcomes follow an implicit count process
and only take non-negative integer values, using Ordinary Least Squares (OLS), which specifies a
conditional mean function that takes negative values, could yield inconsistent estimates (Cameron
& Trivedi, 2013). Hence, we implement Poisson count regression models estimated using Pseudo
Maximum Likelihood. Fjt is the average annual daily traffic flow (AADT) in neighbourhood j
at year t. The key variable of interest, βn, measures the percentage change for different collision
outcomes from a 1% change in traffic flow, i.e. the elasticity of the expected number of acci-
dents/injuries with respect to traffic flow.19 To minimise salient differences between neighbour-
hoods, we further control for time-varying neighbourhood specific characteristics X ′jt (e.g popula-
tion size, % of young drivers etc) that could be correlated with Fjt and affect Y n

jt . α
n
j denotes area

fixed effects that partials out time-invariant area-specific unobservables that could correlate with
traffic flow and affect collision outcomes. τnt represents time fixed effects that captures the general
trends in for different collision outcomes over time. εnjt denotes the error term.

For consistent estimation, the least square estimator of βn requires E[εnjt|Fjt] = 0. This
assumption, however, is likely to be violated because of the endogenous relationship between
traffic flow and collision outcomes, which could be driven by omitted variable bias, measurement
error and reverse causality. The endogenous variation in traffic flow is denoted by νnjt. For instance,
roads that are frequently used could receive more funding for maintenance, which could result in
fewer accidents. Failure to adequately control for these factors, which could be unobserved to
researchers, could underestimate βn. Traffic collisions can also affect traffic flow if drivers are
attracted to safer roads that are less congested. This reverse causality, which cannot be easily

19For an additional driver to impose a negative accident externality to the rest of the road users, βn should
exceed 1 as a 1% increase in traffic corresponds to a more than 1% increase in collisions.
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addressed by controlling for observable differences, could again attribute to a downward bias to
βn.20 εnjt is assumed to be uncorrelated with all the right-hand side variables.

To overcome these challenges, we adopt a control function approach relying on the exoge-
nous variation in traffic induced by the London Congestion Charge. This method, which has
been adopted widely by Rivers & Vuong (1988), Blundell & Powell (2003), Blundell & Pow-
ell (2004) and Wooldridge (2015), allows for the estimation of non-linear models with continuous
endogenous variables. This is particularly relevant to our context as we are modelling discrete
non-negative collision outcomes with Poisson count regressions with continuous traffic flow as
the endogenous variable. Put differently, we are exploiting the local changes in charged traffic
flow induced by the Congestion Charge to understand how an additional driver can affect the risk
and severity of traffic collisions. The control approach is essentially a two-step approach, which
resembles closely to an instrumental variable approach, includes:

logFjt = λj + γCCZjt +X ′jtρ+ ψt + ejt, ejt = νjt + µjt (2)

Y n
jt = exp(αnj + βnlogFjt +X ′jtφ

n + τnt + δnêjt + εnjt) (3)

where Fjt is the annual average daily traffic flow for LSOA j at year t. CCZjt is an indicator
variable that takes the value of 1 if LSOA j is located in the Congestion Charge Zone after the
charge is implemented. Equation 2 is analogous to a first-stage regression and γ measures the
effectiveness of the charge on reducing traffic flow in the charge zone. We also present reduced
form estimates that measure the impact of the charge on road safety by replacing Fjt with various
collision outcomes. λj and αnj in equation 2 and 3 represent LSOA fixed effects that partial out
area-specific time-invariant unobservables, while ψt and τnt denote year fixed effects that control
for general trends in traffic and collisions over time. We further control for a vector of time-variant
area specific characteristics (population size, job density, proportion of population from 18 to 25
years old, annual pay and hours worked) and weather conditions (temperature, wind speed, rainfall
and humidity). We also partial out the effects of the implementation of the Western Extension
Zone (WEZ) on traffic flow and collisions. As emphasised above, we do not focus on the WEZ as
we report a negligible impact of the policy on traffic flow in our preferred specification, implying
that the extension of the zone is not a suitable instrument. 21 The ineffectiveness could explain

20This is reflected in our analysis as our estimates from naive Poisson regressions are 10-20 times smaller
than our estimates from control function approach in which we exploit the exogenous variation in traffic
flow from the Congestion Charge.

21These results are summarized in Table A2 in Data Appendix. We run several specifications to examine
the impact of the WEZ on traffic flow. First, we aggregate both areas (CCZ and WEZ) in column 1, before
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why the WEZ was prematurely terminated by the end of 2010 three years after enforcement.22 All
these controls are subsumed under vector X ′jt.

The first stage error term, ejt, can be decomposed into two components: (i) endogenous vari-
ation in traffic flow that is captured by νjt, and (ii) random variation in traffic flow that is denoted
by µjt. While we do not directly observe νjt, we are able to estimate ejt that captures the endoge-
nous variation in traffic flow (νjt) from equation (2). We plug in the first-stage residuals, êjt, into
Equation (3) as a control variable to partial out the endogenous variation in traffic flow. Equation
(3) is a non-linear control function that measures the elasticity between traffic flow and various
collision outcomes. This is essentially equation (1) other than the inclusion of êjt. For the control
function to consistently estimate βn, the assumption is that after controlling for êjt, E[εnjt|Fjt] = 0

as the error term, εnjt, is uncorrelated with traffic flow. This assumption only holds if the Conges-
tion Charge substantially reduces traffic flow such that γ < 0 (instrument relevance), and is only
affecting collision outcomes through changes in traffic flow (exclusion restriction).

There are several reasons why the exclusion restriction could be violated. For instance, the
charge could affect traffic collisions through changing the composition of traffic. As mentioned
earlier, two-wheelers, such as motorbikes and bicycles, are not required to pay the charge and the
CCZ could encourage commuters to switch to these modes.23 Transport for London (TfL) also
increase the number of bus routes and the frequency of buses to encourage drivers to switch to
public transit after the charge is enforced. Furthermore, the charge could also increase the number
of bigger more luxurious cars in the zone as wealthier drivers are more able to afford the charge.
These changes in traffic composition that correlate with the policy could increase the variance in
the weight of the vehicle fleet in the zone, affecting both the seriousness and probability of traffic
accidents (Van Ommeren et al., 2013; Anderson & Auffhammer, 2014).

We adopt the following approaches to mitigate these concerns. First, we minimize differences
in traffic composition by constraining the analysis to neighbourhoods around the charge boundary.
The idea is that commuters are likely to bypass these areas when commuting into the charge zone.
Hence, we progressively constrain our analysis up to areas within 2km from the charge boundary.

splitting these areas up to measure independently their effects on traffic in column 2. Next, in column 3,
we further examine the removal of the WEZ before focusing the analysis on WEZ only, removing areas
in the CCZ from the analysis in column 4. We further relax the parallel trend assumption by including
local authority specific trends, before limiting the analysis to neighbourhoods within 2km from the charge
boundary in columns 5 and 6. None of these specifications indicate that the WEZ has a significant impact
on traffic flow.

22The mayor of London then Boris Johnson was quoted saying that there was no significant downside for
the removal of the WEZ as it did not substantially increase congestion (BBC, 2011). These findings seem
fairly consistent with our results indicating that the policy is ineffectual to begin with.

23It is unlikely that residents living inside the charge zone will switch to un-charged vehicle modes as they
are entitled to a 90% discount to the charge as mentioned earlier.
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Second, we conduct a battery of balancing tests on driver and vehicle characteristics involved in
collisions. This is possible because the administrative database provided detailed information on
the age and gender of drivers, the engine size, the number and type of vehicles for each accident.
Therefore, we can directly test whether the driver and vehicle characteristics involved in collisions
in the zone changed after the charge is implemented. These regressions are analogous to equa-
tion (2) but we replace the dependent variable with the average driver and vehicle characteristics
involved in collisions. Finally, we estimate models that control for driver and vehicle characteris-
tics and models that exclude accidents related to uncharged vehicles only. This again ensures that
our estimates are not driven by changes in the composition of drivers or vehicle types due to the
congestion charge. Further details will be provided in the robustness section.

6 Results

6.1 Summary Statistics

Table 1 reports summary statistics for traffic flow, various collision outcomes, observable char-
acteristics associated with LSOAs, and average driver and vehicle characteristics involved in colli-
sions inside and outside of the charge zone. We then present similar statistics for areas outside but
within 2.5km from the CCZ boundary. 24 In total, there are 20,858 observations from 1661 LSOAs
(of which a minority, 68 LSOAs are inside the zone). When we limit the analysis to areas 2.5km
from the CCZ boundary, the number of observations drop by more than 3158 for 226 LSOAs, of
which almost one third is inside the zone.

Overall, we observe that roads within the CCZ are more dangerous. The number of collisions,
injuries and fatalities are higher compared to areas outside. On average, we are observing 28.2 ac-
cidents every year for LSOAs within the CCZ, attributing to 27.4 slight injuries, 4.1 serious injuries
and 0.15 fatalities. These collision statistics are substantially lower for areas just outside the charge
zone, although traffic flow differences are not that large (average daily traffic flow is only about 20
% lower inside the charge zone (19,008) compared to areas right outside (24,475)). There are on
average 11.8 collisions that resulted in 11.7 slight injuries, 1.62 serious injuries and 0.07 fatalities.
This disparity in collision outcomes is likely driven by differences in the road network, traffic and
pedestrian composition. For instance, there could be more pedestrians in the CCZ because of the
higher concentration of economic activities (e.g Central Business District, Shopping Belts along
Oxford Street), which could elevate the severity of collisions. This is supported by our data as
the number of jobs and job density are considerably higher for neighbourhoods within the charge

24We choose 2.5km as the cutoff because this distance incorporates all the LSOAs within the CCZ.
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Table 1: Summary statistics for LSOAs inside and outside of the Congestion Charge Zone

Outside CCZ Inside CCZ 2.5km Outside Within 2.5km
Collision & Traffic Outcomes
Accidents 8.55 28.21 11.75 16.86

(0.06) (1.24) (0.23) (0.44)
Slight Injuries 9.21 27.40 11.70 16.57

(0.07) (1.21) (0.24) (0.43)
Serious Injuries 1.15 4.10 1.62 2.39

(0.01) (0.19) (0.04) (0.07)
Deaths 0.07 0.15 0.07 0.10

(0.00) (0.01) (0.01) (0.01)
Traffic Flow (all) 24316.19 19007.53 24474.87 22778.23

(142.20) (289.59) (330.70) (249.21)
Accident/Flow (per thousand) 0.82 1.78 0.88 1.16

(0.02) (0.09) (0.06) (0.05)
Slight Injuries/Flow (per thousand) 0.89 1.73 0.86 1.13

(0.03) (0.09) (0.06) (0.05)
Serious Injuries/Flow (per thousand) 0.11 0.26 0.12 0.16

(0.00) (0.02) (0.01) (0.01)
Deaths/Flow (per thousand) 0.01 0.01 0.00 0.01

(0.00) (0.00) (0.00) (0.00)

Local Authority Characteristics
Gross Annual Pay 28109.12 33733.15 32619.46 32965.07

(33.42) (182.97) (107.13) (93.62)
Average Number of Hours Worked 37.53 37.15 37.22 37.20

(0.00) (0.03) (0.02) (0.02)
Average Number of Jobs 135596.44 353700.00 281513.31 303914.50

(654.00) (6076.61) (3992.70) (3389.44)
Job Density 0.80 7.04 1.74 3.39

(0.00) (0.55) (0.02) (0.18)
% of Population from 18 to 25 0.10 0.13 0.11 0.12

(0.00) (0.00) (0.00) (0.00)
Population Size 253179.69 218617.96 226277.20 223900.36

(385.41) (2241.46) (849.76) (911.53)

Driver & Vehicle Characteristics (involved in collisions)
% female 0.23 0.12 0.16 0.15

(0.00) (0.00) (0.00) (0.00)
Average age band 5.63 5.87 5.66 5.72

(0.01) (0.02) (0.02) (0.02)
Average number of vehicles 1.40 1.33 1.37 1.36

(0.00) (0.00) (0.00) (0.00)
Average engine size 1879.17 2224.53 1988.90 2062.88

(5.31) (25.31) (17.51) (14.54)
Average age of vehicle 5.57 4.52 5.02 4.86

(0.02) (0.05) (0.05) (0.04)

Sample Size 19878 980 2178 3158
No of LSOAs 1593 68 158 226

Table 1 records the means and standard error of means (in parenthesis) for (1) LSOAs outside the CCZ, (2) inside
the CCZ, (3) outside the CCZ but within 2.5km from the boundary, and (4) within 2.5km from the boundary inside
and outside the CCZ.
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zone. Higher concentration of commercial activities could also explain why residential population
is lower in the zone compared to areas outside. We also observe that households residing within the
charge zone are, on average, earning higher incomes than those living outside. These differences
in observable characteristics are smaller once we reduce our sample to areas within 2.5km from
the CCZ boundary.

While we do not observe stark differences in the average age of the drivers and the average
number of vehicles involved in collisions per accident between areas inside and outside the charge
zone, we find that cars involved in accidents have larger engine size and are, on average, newer in
the charge zone. These results are suggesting that drivers involved in collisions in the charge zone
are more affluent driving newer and bigger cars. Drivers involved in accidents in the charge zone
are also less likely to be females. Noticeably, these differences in driver and vehicle characteristics
are less discernible as soon as we limit our analysis to areas around the charge boundary.

6.2 Baseline Estimates

Table 2 reports the impact of the London Congestion Charge on traffic flow (Columns 1) and
various collision outcomes (Columns 2-4). These estimates are interesting as they measure the
efficacy of the CCZ in curtailing traffic and improving road safety. Our estimates suggest that
traffic flow is around 13.5% lower after the charge is implemented, which is around 2566 fewer
vehicles every day.25 Strong first-stage F-statistics (> 10) further verify the strength of the CCZ as
an instrumental variable. Corresponding to this reduction in traffic flow in the charge zone, we are
bserving a 6.9% and 9.7% reduction in accidents and minor injuries. This is around 1.9 and 2.6
fewer accidents and slight injuries per area every year. Our results are consistent with the findings
of Green et al. (2016) although our estimates are considerably smaller.26

An important departure in our findings is that the congestion charge increases severity of
traffic collisions. After the charge is enforced, the number of serious injuries/fatalities increase by

25This is computed by taking the exp(−0.1450) before subtracting by 1. Absolute effects are computed
by multiplying percentage changes with the mean dependent variable.

26Green et al. (2016) document a substantial 35% reduction in accidents, 25% in serious injuries and 35%
in fatalities. Differences in our estimates could stem from the disparity in the empirical strategy as we are
exploiting variation in collision outcomes between areas around London close to the charge boundary. In
contrast, they compare collision outcomes in the charge zone with 20 major cities across United Kingdom
using a difference-in-difference and synthetic control strategy. Another possible explanation is that there are
spillover reductions in traffic from the charge for areas outside the charge zone. This is supported by Green
et al. (2016) who document a 10 to 12% decrease in accidents for areas within 4km from the charge zone.
Nevertheless, subtracting these spillover effects from their headline estimates still yield a net reduction of
around 25% (35% - 10%), which is still considerably larger than our estimates. Hence, their results could be
capturing possible changes in traffic composition driven by the charge that could affect collision outcomes.
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Table 2: Baseline Estimates: Poisson First Stage & Reduced Form regres-
sions

(1) (2) (3) (4)
Traffic Accidents Slight Serious Inj

& Fatalities
CCZ -0.1450*** -0.0716*** -0.1017*** 0.1100***

(0.0270) (0.0248) (0.0288) (0.0387)
Obs 20863 20858 20852 20354
1st Stage F-stats 40.39
Mean Dep Variable 19007.53 28.21 27.40 4.31
No.of LSOAs 1663 1661 1660 1581
% ∆ (CCZ) -13.50 -6.91 -9.67 11.63

Dependent variable is the counts of various collision outcomes or the natural log
of traffic flow as denoted in the column headers. CCZ is a binary variable denot-
ing LSOAs in the charge zone after the charge is implemented. All regressions are
estimated with LSOA and year fixed effects. Other control variables include job
density, % of population from 18 to 25 years old, total population size, gross an-
nual income,hours worked collected at Local Authority Level at year t and mean
wind speed, temperature, precipitation and relative humidity collected at LSOA
level at year t. We estimate the first stage and reduced form effects of the CCZ
on traffic flow (Columns 1) and various collision outcomes (Columns 2-4) using
Ordinary Least Squares and Pseudo Poisson Maximum Likelihood regressions re-
spectively. Mean Dep Variable is the average daily traffic flow or traffic outcomes
in the CCZ before the charge is implemented. %∆ is the percentage change in
traffic flow and various collision outcomes and they are computed by taking expo-
nential of the estimated effects before subtracting by 1. 1st Stage F-stats reported
is the Kleibergen-Paap rk Wald F statistic from first stage regressions. Robust
standard errors (in parenthesis) are clustered at LSOA. * p<0.10, ** p<0.05, ***

p<0.01.

11.6%, which is around 0.50 more serious injuries/fatalities per area every year. This finding is
consistent with the idea that removing traffic along busy roads reduces bottlenecks and increases
travelling speed, resulting in more serious injuries. Indeed, initial estimates by TfL has shown
that driving speed in the CCZ are almost 20% higher, with time delays dropping by 30% (TfL,
2003a).27 Overall, this result suggests that an unintended consequence of alleviating congestion
along busy roads using the Congestion Charge is that accidents can become more severe.

Next, in Panel A of Table 3, we present control function estimates from the estimation of
equation (3) to estimate the causal effect of traffic flow on various collision outcomes. As men-
tioned earlier, we plug the residuals from first stage regressions (reported in Column 1 Table 2) in
equation 2 to partial out the endogenous variation in traffic flow. This is akin to the second stage of
an instrumental variable (IV) regression. We document that higher traffic flow is associated with

27Ideally, we will like to produce similar estimates between driving speed and various collision outcomes.
Micro-data for driving speed, however, is not readily available for us to examine this relationship.
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Table 3: Baseline Estimates: Control Functions & Naive Poisson Re-
gressions

(1) (2) (3)
Accidents Slight Serious Inj

& Fatalities
Panel A: Control Function
Ln(Traffic) (βn) 0.48*** 0.68*** -0.74***

(0.16) (0.19) (0.26)
Collision Rate Elasticity(βn-1) -0.52*** -0.32*** -1.74***

(0.16) (0.19) (0.26)
Panel B: Naive Poisson Regressions
Ln(Traffic) (βn) 0.02 0.02 -0.05

(0.02) (0.02) (0.04)
Collision Rate Elasticity(βn-1) -0.98*** -0.98*** -1.05***

(0.02) (0.02) (0.04)
Obs 20858 20852 20354
Mean Dep Variable 28.21 27.40 4.31
No.of LSOAs 1661 1660 1581

Dependent variable is the counts of various collision outcomes denoted in
the column headers. Ln(Traffic) is the natural logarithm of annual average
daily traffic flow. The sample size, mean dependent variable and number of
LSOAs are consistent across panel A and B. All regressions are estimated
with LSOA and year fixed effects. Other control variables include job den-
sity, % of population from 18 to 25 years old, total population size, gross
annual income,hours worked collected at Local Authority Level at year t and
mean wind speed, temperature, precipitation and relative humidity collected
at LSOA level at year t. In Panel A, we estimate the elasticity between traf-
fic flow and various collision outcomes using non-linear control functions. In
particular, we plug in residuals from first stage traffic flow regressions to ad-
dress the endogeneity concerns between traffic flow and collision outcomes.
In Panel B, we report the elasticity between traffic flow and various collision
outcomes from naive Poisson regressions. Collision Rate Elasticity is the elas-
ticity of various collision rates with respect to traffic flow and is computed by
subtracting the estimated βn with 1. Mean Dep Variable is the average daily
traffic flow or traffic outcomes in the CCZ before the charge is implemented.
Robust standard errors (in parenthesis) are clustered at LSOA. * p<0.10, **

p<0.05, *** p<0.01.

more accidents and slight injuries, congruent with the reduced form estimates reported in Table
2.28 Specifically, a 1% increase in traffic flow corresponds to a less than proportional 0.48% and
0.68% increase in the absolute number of accidents and slight injuries respectively. These results
imply that the marginal driver reduces the accident risk for other road users as the accidents and

28We also estimate similar regressions using a traditional IV approach using OLS. These results are sum-
marized in Table A5 in Data Appendix. To avoid omitting observations with 0 collision outcomes, we
transform our dependent variable by taking the natural logarithm of 1 + various collision outcomes. These
results are very similar in terms of direction and magnitude for accidents and slight injuries, but the esti-
mates for serious injuries/fatalities are quite different. The disparity in the estimated effects could be driven
by the substantial number of zeros for serious injuries/fatalities as severe accidents rarely happen. Logarithm
transformation for these outcomes could materially affect the estimated effects.
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slight injuries rate elasticity with respect to traffic flow are -0.52 and -0.32 respectively. This is
computed by subtracting βn with 1. Based on the standard errors reported in parenthesis below,
these collision rate elasticities across various outcomes are quite precisely estimated and are sta-
tistically smaller than one, confirming that the additional driver do not heighten the collision risk
for other road users.

While these estimates are noticeably smaller than previously reported by Romem & Shurtz
(2016) for Israel, a plausible explanation is that the accident-traffic flow relationship could be
non-monotonic and that we are estimating this relationship at a different margin. Roads are con-
siderably more congested around Central London and an additional driver along a busy road can
impose congestion externalities to other drivers. By slowing down driving speeds for other mo-
torists, the marginal driver could reduce the severity of traffic collisions for other road users. This
is supported by our results as in column 3 we document that a 1% increase in traffic flow leads to
a 0.74% reduction in the serious injuries/fatalities, which means that the serious injury and fatality
rate elasticity with respect to traffic flow is -1.74.

In Panel B, we further present elasticity estimates from naive Poisson regressions as a bench-
mark. These estimates are remarkably smaller. A 1% increase in traffic flow corresponds to a
0.021% and 0.020% increase in accidents and slight injuries, and a 0.047% decrease in serious in-
juries/fatalities. None of these estimates is precise enough to be statistically significant from zero.
These results corroborate with the idea that, without accounting for the endogenous relationship
between traffic density and collision outcomes, naive poisson estimates could underestimate the
accident-traffic relationship. For instance, planners could invest more in maintaining heavily used
roads to make them less accident prone. Failure to account for these road infrastructure budgets
(or omitted variables) could severely underestimate the relationship between traffic density and
accidents. Another explanation is that there could be due to attenuation bias driven by classical
measurement error. This could arise when traffic flow is imprecisely estimated and interpolated,
and could be further exacerbated when we exploit changes in traffic flow within LSOA over time.
The differences between naive Poisson estimates and our control function estimates suggest that
these empirical challenges are adequately addressed with our strategy.

6.3 Robustness Tests

Table 4 summarizes a battery of robustness and placebo tests to ensure that earlier estimates
are not spuriously driven by factors unrelated to traffic flow. Here, we report the reduced form
effects (Red) and control function elasticity estimates (Ctr) of traffic flow on Accidents, Slight
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Injuries, Serious injuries/Fatalities in Panel A to C. Panel D further reports first-stage regression
estimates that measures the impact of the Congestion Charge on traffic flow.29

Limit to Proximate areas: Our analyses so far incorporate areas across London. As mentioned,
the Congestion Charge could influence collision outcomes by changing the composition of traffic
in the charge zone. Some vehicle types, such as motorcycles, buses and bicycles, are omitted
from paying the charge. Incorporating areas further from the charge boundary runs the risk that
composition of traffic could be very different inside and outside the charge zone. Areas nearer to
the charge boundary, however, should share the same traffic composition as vehicles entering the
charge zone will need to bypass these areas.

Hence, in columns 1 and 2, we limit our analysis to areas within 2.5km from the charge bound-
ary. This is measured based on the euclidean distance of the centroid of the LSOA from the charge
zone boundary. This strategy constrain the analysis to around 15% of full sample, to 226 LSOAs
around the charge boundary. However, our results remain fairly comparable to earlier estimates.
Like before, we find that an additional driver do not impose a negative accident externality to other
road users as the estimated elasticity of the expected number of accidents/injuries with respect to
traffic flow is less than 1. Specifically, a 1% increase in traffic corresponds to a 0.64% and 0.81%
increase in accidents and minor injuries that is statistically different from zero and statistically
smaller than one. Although we find that a 1% increase in traffic reduces serious injuries/fatalities
by 0.65%, this relationship is no longer statistically different from zero at any conventional levels.
Nevertheless, we can conclude that it is improbable for the marginal driver to increase the severity
of traffic collisions around Central London.

Notably, compared to our baseline estimates from the full sample, these elasticity estimates are
larger because the impact of the CCZ on traffic flow around the charge boundary is less pronounced.
This is consistent with the findings from Green et al. (2016) who show that the congestion charge
has spillover reduction of traffic for areas circumventing the zone. We prefer estimates from these
analyses as they are less susceptible to possible changes in vehicle composition driven by the
congestion charge.

To visualize how these elasticity estimates change with distance from the CCZ boundary,
we further replicate our analysis for areas from 2km to 10km from the charge boundary at 1km
intervals and plot these estimates for various collision outcomes in Figure 3. In other words, we
are repeating the analysis by constraining the analysis to areas proximate to the charge boundary.
For instance, elasticity estimates at 5km incorporates areas within 5km from the charge boundary.
As observed, these elasticity estimates are quite stable in size across the distance bandwidths.

29Take note that all the control functions, estimated for the different collision outcomes, share a similar
first stage as the only endogenous variable here is traffic flow.
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Specifically, a 1% increase in traffic is associated with a 0.48-0.76% increase in accidents, a 0.64-
1.00% increase in slight injuries and 0.40-0.69% reduction in serious injuries/fatalities. These
estimates are noticeably less precise for serious injuries/fatalities and we can no longer conclude
they are statistically different from zero for areas within 6 km from the charge boundary. Even
so, these results show that estimated elasticity of the expected number of accidents with respect
to traffic flow is less than one across most of our estimates (8 out of 9 estimates), indicating that
there is no negative accident externality associated with the marginal driver along congested roads
in Central London.

Alternate Matching: Due to the way that we are matching traffic data to LSOAs, our analysis
only incorporates LSOAs with at least 1 count points (CPs) within the boundaries. This reduces
our sample considerably to 1663 LSOAs across London, which is around 35% of the 4833 LSOAs
across London (See Table 3). Here, we adopt an alternate matching approach that allows us to
match traffic to almost all the LSOAs. This is as follow: first, we identify all the CPs that are
within 1km from the centroid of the LSOAs. We then remove any CPs that are outside the charge
zone but that are matched to LSOAs within the charge zone. Third, we compute the annual daily
traffic flow for each LSOA by taking the weighted average of traffic flow based on inverse distance
weights. That is, traffic flow in CPs that are furthest or closest from the LSOA are given the
least or most weight to more accurately measure local traffic conditions. This matching procedure
increases our sample size from 227 to 413 LSOAs within 2.5km from the charge boundary.

Figure 4 illustrates how we match the CPs to LSOAs. All the CPs within the 1km buffer will
be matched to the LSOA (denoted in dots). Results, summarized in columns 3 and 4, are quite
similar to earlier findings although these elasticity estimates are smaller and more precise. This is
largely due to the larger reductions of traffic flow driven by the charge (see Panel D) as we now
incorporate areas further from the charge boundary due to the matching process. As mentioned
earlier, these areas are less susceptible to spillover effects from the CCZ. Reduced form estimates
on collision outcomes, on the other hand, are quite comparable with earlier estimates in terms
of magnitude and direction, explaining why elasticity estimates are more conservative under this
matching procedure.

Local Authority Linear Trends: In columns 5 and 6, we repeat the analysis in columns 1 and 2
but allow traffic and collision trends to vary linearly across 33 local authorities. This is estimated
with the inclusion of 33 local authority linear year trends, which relaxes the assumption that areas
inside and outside the CCZ must follow parallel trends in traffic flow and collisions in the absence
of the charge enforcement. Doing so produces slightly smaller elasticity estimates due to larger
first stage effects on traffic flow, but these results are largely in line with earlier findings. These
findings suggest that our estimates are unlikely to be driven by differential trends between charged
and uncharged areas.
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Figure 4: An example illustrating how Count Points (in triangle) within 1km buffer (in dash line)
are matched to LSOAs (centroid denoted in dot).

Driver and Vehicle Characteristics: In columns 7 and 8, we include a vector of controls that
measure the average characteristics of drivers and vehicles involved in traffic collisions. We inter-
pret these estimates with caution as these variables are likely to be proxy ”bad” controls - control
variables that might partially control for omitted variables but are likely to be impacted by the
enforcement of the charge. For instance, the charge could have affected the engine capacity of
vehicles in the charge zone as affluent drivers are more likely to be able to afford the charge. Nev-
ertheless, these estimates allow us to understand whether earlier results hold after controlling for
possible changes in vehicle or driver composition. Estimates are slightly larger after controlling
for these differences but they remain comparable with earlier results.

Uncharged Vehicle Flow: In columns 9 and 10, we replace traffic flow with charged vehicle
traffic flow and control for uncharged vehicle flow, which includes buses and motorcycles, in our
analysis. The objective is to provide estimates for charged vehicles only, which constitutes bulk
of the traffic flow). The concern is whether the charge increases uncharged vehicle flow as drivers
substitute from charged to uncharged modes to avoid the charge. This could directly affect collision
outcomes and invalidate out instrument. Although subsequent balancing tests in Table 5 indicate
this is not an issue, with no significant changes in the flow for 2-wheelers and buses documented
after the charge is implemented, we control for changes in uncharged traffic flow as a precaution.
We find almost identical results when focusing on charged vehicles only.
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Four wheel accidents: In columns 11 and 12, we limit our analysis to accidents that involve
at least 1 four-wheel vehicle. We are concerned whether earlier estimates could be spuriously
driven by accidents caused by vehicles unaffected by the congestion charge. Here we are assuming
that accidents that do not involve any charged vehicles (4 wheels or more) are unrelated to the
reduction in charged vehicle flow driven by the congestion charge. Therefore, this analysis is
likely to provide us with a lower bound elasticity estimate between traffic flow and accidents. As
expected, we observe that the estimated effects, although slightly smaller, are fairly comparable
with earlier results. A plausible explanation is that only a small proportion of accidents (around
5.5%) in our sample does not involve any four-wheel vehicles.

Placebo Time & Area: In columns 13 to 14, we summarize findings from our placebo test that
shifts the treatment year to 2002, one year before the CCZ is enforced. The sample size is re-
markably smaller because we remove any observations from 2003 onwards to avoid capturing any
effects from the CCZ. First stage regression estimates in Panel D show that we are unlikely to
document any spurious effects on traffic flow and collisions prior to the enforcement of the charge.
We revisit this point more formally in latter event study regressions. Finally, in columns 15 and
16, we further create placebo treatment areas by shifting the charge boundary 1km outwards. Put
differently, LSOAs outside of the CCZ and WEZ, but are within 1km from the charge boundary,
are now defined as treated areas. LSOAs within the CCZ and WEZ are omitted from the analysis
to avoid capturing any effects from the charge. For an illustration of the placebo treatment area,
refer to Figure 5. Similar to earlier findings, we do not document any significant changes in traffic
flow and collisions in these placebo treatment areas, suggesting that earlier results are unlikely to
be spuriously driven.

Event Study Regressions: Next, we examine whether there are any pre-trends in traffic flow and
collision outcomes prior to the enforcement of the CCZ by estimating the following Poisson event
study regression represented by equation 4. Pre-existing trends in traffic flow or collisions could
bias our first stage or reduced form estimates, affecting the exogeneity of the instrument and the
consistency of the elasticity estimates.

Y n
jt = exp(ϑnj +

11∑
g=<−3

ϕngCCZg
jt +X ′jtζ

n + πnt + ηnjt), (4)

where g represents the number of years from the year the CCZ is enforced (e.g g = 0 represents
the year the charge is enforced (in 2003), g = -3 represents 3 years before the charge is enforced).
CCZg

jt takes the value of 1 if LSOA j is within the CCZ g years from the year the CCZ is enforced.
These estimates are plotted in Figure 6. Plotted estimates (ϕng) are the effects of the CCZ on traffic
flow and different collision outcomes across the different years relative to the LSOAs one year
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Figure 5: Placebo CCZ (shaded) 1km outside the CCZ and the WEZ.

before the CCZ is enforced (denoted by dash line at year -1). Tails denote the 90% confidence
intervals. If there are no spurious effects before the charge is implemented, we expect ϕng to be
close to 0 when g < 0 (before the CCZ is implemented). Similar to equation 3, these regressions
are estimated using Pseudo Maximum Likelihood to account for the count nature of the dependent
variable and we constraint our analysis to LSOAs within 2.5km from the CCZ boundary.

As observed from Figure 6, we do not report any significant effects on traffic flow and various
collision outcomes prior to the enforcement of the CCZ. These results suggest that our reduced
form and first stage estimates are unlikely to be spuriously driven by pre-trends in traffic flow or
collision outcomes. After the charge is implemented, we observe a significant reduction in traffic
flow that is stable across post-enforcement years. Although the estimated effects on collision out-
comes are considerably noisier once we break down the effects into different years, we document a
general downward (upward) trend in accidents and slight injuries (serious injuries/fatalities) that is
quite stable across the years. Overall, these results are consistent with the results when we include
local authority district linear trends in Table 4, suggesting our estimates are unlikely to be driven
by differential trends in collisions and traffic between areas inside and outside the charge zone.

Balancing Tests: A major threat to our identification strategy is that the CCZ could have affected
collision outcomes through means other than traffic flow, violating the exclusion restriction as-
sumption. To mitigate these concerns, we conduct a battery of balancing tests to examine whether
the composition of drivers and vehicles involved in collisions, and the composition of uncharged
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Table 5: Balancing Tests for observed driver and vehicle characteristics involved in traffic accidents within 2.5km
from charge boundary

(1) (2) (3) (4) (5)
Share Female Age Band Vehicle Count ln(Engine Capacity) Vehicle Age

CCZ -0.0023 0.0765 0.0035 0.0803*** 0.0137
(0.0097) (0.0693) (0.0081) (0.0299) (0.2076)

Obs 3085 3073 3085 3050 3040
Mean Dep Variable 0.12 5.87 1.33 7.65 4.53

(6) (7) (8) (9) (10)
2-Wheel Traffic Bus Traffic 2-Wheel Accidents Bus Accidents Pedestrians

CCZ -0.0336 -0.0007 -0.0615 -0.0060 -0.0930**

(0.0444) (0.0361) (0.0427) (0.0732) (0.0451)
Obs 3158 3158 3158 2983 3158
Mean Dep Variable 1566.70 1204.30 15.54 5.27 9.38

Dependent variable is the characteristics of drivers involved in collisions or the composition as labelled in the headers.
In Column 1, the dependent variable is the ratio of the accidents with at least 1 female driver involved. In Column 2,
the dependent variable is the average age band of drivers involved. In Column 3, the dependent variable is the average
number of vehicles involved in the collisions. In Columns 4 and 5, the dependent variable is the average engine capacity
and average vehicle age of vehicles involved in the collision respectively. Regressions for Columns 1 to 5 are estimated
using OLS. In Columns 6 and 7, the dependent variable is the average annual daily traffic flow of two-wheel and buses
respectively. In Columns 8, 9 & 10, the dependent variable is the counts of two-wheelers, buses and pedestrians involved
in accidents. Regressions for Columns 6 to 10 are estimated using Pseudo Poisson Maximum Likelihood regressions due
to the count nature of the dependent variable. Each coefficient is from a different regression and measures whether the
implementation of the CCZ affects the composition of drivers and vehicles involved in collisions. CCZ is a binary variable
denoting LSOAs in the charge zone after the charge is implemented. All regressions are estimated with LSOA and year fixed
effects. Other control variables include job density, % of population from 18 to 25 years old, total population size, gross
annual income,hours worked collected at Local Authority Level at year t and mean wind speed, temperature, precipitation
and relative humidity collected at LSOA level at year t. Sample is constrained to 226 LSOAs within 2.5km from the CCZ
boundary. Robust standard errors (in parenthesis) are clustered at LSOA. * p<0.10, ** p<0.05, *** p<0.01.

traffic flow and uncharged collision outcomes change after the charge is enforced.30 These results
are summarized in Table 5. Columns 1 to 5 are estimated using OLS, while columns 6 to 9 are
estimated using poisson regressions capturing the count nature of the dependent variable. Similar
to before, we limit our analysis to areas within 2.5km from the CCZ boundary.

In columns 1 to 3, we examine whether the share of female drivers, the average age of drivers,
and the average number of vehicles involved in collisions change after the CCZ is enforced. In
columns 4 and 5, we investigate whether vehicles involved in accidents after the charge is imple-
mented have larger engine capacity and whether they are older. Across the board, we do not find
any significant changes in driver or vehicle characteristics involved in traffic collision inside the
charge zone, suggesting that these factors are unlikely to drive changes in collision outcomes in
the charge zone. Next, in Columns 6 and 7, we test whether the enforcement of the charge leads to
a substantial spike in the two-wheel and bus traffic flow in the zone. Traffic composition remains

30The specification adopted is similar to equation 2 but we replace traffic flow with various driver and
vehicle characteristics involved in collisions, and uncharged traffic flow and collision outcomes.
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fairly similar with no discernible changes reported for these vehicle types. These findings corrob-
orate with the idea that traffic entering the charge zone are likely to bypass areas around the charge
zone, explaining why we are not observing stark differences in traffic composition.

Finally, in columns 8, 9 and 10, we examine whether the charge affected the number of 2-wheel
accidents, bus accidents and pedestrians injuries in the zone. If the charge causes a substantial spike
in 2-wheelers and buses in the charge zone, we could observe more 2-wheel and bus accidents in
the zone after the charge is enforced. Consistent with earlier results, none of these estimates are
sizable enough or precisely estimated for us to conclude that the charge causes more 2-wheel and
bus accidents. Another concern is whether the charge induces drivers to switch to public transit
that could increase the number of pedestrians within the charge zone. While we do not observe the
number of pedestrians along walkways, we have information on the number of pedestrians involved
in accidents before and after the charge is implemented. If the charge increases pedestrian traffic,
we should expect more pedestrians to be involved in traffic collisions in the charge zone. Our
estimates suggest that this is unlikely the case as we document a 8.9% decrease in pedestrians
injured from traffic collisions. If anything, this effect is larger than our estimates in column 1 in
Table 4 on slight injuries, suggesting that accidents in the charge zone, on average, involve fewer
pedestrians after the charge is enforced.

6.4 Non-monotonic elasticity estimates

We have so far assumed that the relationship between traffic flow and various collision out-
comes is monotonic. However, adding an additional car to a congested road could have very
different marginal effects on collision outcomes compared to a less busy road (Shefer & Rietveld,
1997; Dickerson et al., 2000). For instance, putting another vehicle on a bottleneck road could
further slow down speed for the rest of the drivers, which could reduce the severity of traffic colli-
sions. Hence, we allow elasticity estimates to vary across areas with different levels of traffic flow.
Specifically, we divide our sample into quartiles based on the average traffic flow over sample pe-
riod, before interacting these quartiles with traffic flows. Q1 (Q4) is an indicator variable denoting
areas with the lowest (highest) quartile of traffic flow. Similar to earlier specifications, we limit our
analysis to areas within 2.5km from the CCZ boundary. Estimated elasticities for various collision
outcomes are plotted in Figure 7.31

Our estimates suggest that adding an additional vehicle in areas with different traffic conditions
could have very different impacts on road safety. In particular, a marginal driver along moderately
busy road (at Q2) has the largest impact on accidents and slight injuries. A 1% increase in traffic

31Corresponding estimates and standard errors can be found in Table A4 Data Appendix.
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corresponds to a 0.67% and 0.83% increase in accidents and slight injuries respectively. These
marginal effects become smaller as we move up the traffic quartiles. Along the most congested
roads (at Q4), an additional car is associated with a much smaller 0.35% and 0.53% increase in
accidents and slight injuries that is no longer statistically different from zero at any conventional
levels. These findings, again, suggest that the congestion externalities imposed by the additional
driver on other road users along busy roads could reduce the probability of traffic collisions.

Next, we examine how the marginal driver affects the severity of accidents. Our estimates
suggest that an additional driver in areas with light and moderate traffic (Q1, Q2 & Q3) do not
significantly reduce the number of serious injuries and deaths. The elasticities for more serious in-
juries/fatalities are more precisely estimated and much larger in areas with heavier traffic. Specif-
ically, we observe that an additional 1% increase in traffic flow attributes to a 0.87% reduction
in serious injuries and deaths at Q4. We draw two main conclusions from these findings: first,
similar to before, we do not find any evidence that the marginal driver imposes a negative accident
externality to other road users. This is improbable for less congested areas and even more so for
areas with heavy traffic. Second, we observe that the marginal driver only reduces the severity of
collisions if existing traffic conditions are sufficiently heavy such that the additional driver imposes
congestion externalities.

7 Discussion

We now compute the marginal external accident cost (MEC) associated with driving relying
on earlier estimates between traffic flow and accidents. MEC is the monetized accident cost im-
posed to other road users by an additional kilometre driven, formally represented by the following
equation:

MEC =

∑3
n=1C

n(βn − 1)An

D
, (5)

where n indexes the severity of accidents, which include property damage only accidents, slight
injuries and serious injuries. Cn is the estimated monetary cost of type n accident reported by DfT
and is summarized in column 5 of Table 6. Based on the estimates by the Department of Transport,
monetary savings from avoiding an accident, slight injury and serious injury is £2,142, £15,450
and £200,422 respectively (2015 values).32 The accident rate elasticity with respect to traffic flow
for type n accident, calculated as βn - 1, is summarized in column 3 of Table 6. We obtain these

32For more information, refer to https://www.gov.uk/government/uploads/system/
uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf

32

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf


estimates from Columns 1-2 of Table 4, which is our preferred specification, that provides more
conservative point estimates than our baseline estimates. Importantly, the accident rate elasticity is
negative across all collision outcomes.

An represents the the average number of type n accidents per traffic flow. This is computed by
dividing the annual collision outcomes by the annual total traffic flow (computed by multiplying
annual daily traffic flow by 365 days). D denotes the average number of kilometers per traffic flow
in London, which is about 1.6 km.33 Plugging these parameters onto equation 5, we compute the
MEC for type n accident in column 6.

The estimated total MEC per km driven is around -£0.16, suggesting that every additional km
driven along congested roads reduces the cost of accident for other road users. In other words,
an additional driver along roads in Central London actually improves road safety. Why is this so?
Here, we are exploiting variation in traffic along highly congested roads around Central London to
understand how the marginal driver can impact road safety. When traffic is sufficiently heavy, the
marginal driver could worsen traffic congestion, slowing down the rest of the road users. Lower
driving speed could reduce both the probability and severity of traffic collisions. Also, the presence
of an additional car could heighten the awareness of other motorists, causing a less than propor-
tional increase, or even lowering the risk of accidents. We further benchmark our estimated MEC
of accidents against the estimated optimal congestion charge reported by Prud’Homme & Bocarejo
(2005). The estimated accident benefit per km of £0.16 is about 20% of the optimal charge per
km of £0.80 computed purely based on time delays.34 Evidently, the accident benefit from the
marginal driver pales in comparison with the marginal social cost of congestion delays, indicating
that the London congestion charge is, still, likely to enhance social welfare.

Table 6: Marginal External Cost (MEC) of Accident from an additional km driven.

(1) (2) (3) (4) (5) (6)
Outcomes Estimated Elasticity Collision Rate Elasticity Mean Daily Outcome/Flow £/Outcome MEC/km

n βn βn − 1 An Cn MECn

Accident 0.6419 -0.3581 4.88×10−6 £2,142 £-0.0023
Slight Injuries 0.8089 -0.1902 4.74×10−6 £15,450 £-0.0087
Serious Injuries -0.6459 -1.6459 7.12×10−7 £200,422 £-0.1459

MEC £-0.1569
Estimated elasticity (in Column 2) between traffic flow and collision outcomes from Column 1-2 of Table 4. Collision rate elasticity with

respect to traffic flow (in Column 3) computed by subtracting estimated elasticity (in Column 2) by 1. Mean Daily Outcome/flow (in Column
4) is calculated by dividing annual collision outcomes with the total traffic flow and 365 days. MEC/km (in Column 6) is computed by
multiplying estimated collision rate elasticity with mean collision outcome per flow and monetary value per outcome, before dividing by
distance travelled per traffic flow (approximately 1.6km) based on estimates by DfT.

33To estimate the kilometers driven per flow, we divide the average annual total kilometers driven by
vehicles in London between 2000 and 2015 (approximately 30.5 billion km), provided by DfT, with the
total annual traffic flow in our data (18.9 billion).

34This is adjusted from the £0.56 (or C0.81) reported by Prud’Homme & Bocarejo (2005) in 2003 values
to 2015 values.
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In terms of policy implications, we have also shown that the congestion charge has success-
fully curtailed traffic into the charge zone. This reduction in traffic attributed to fewer traffic
accidents and minor injuries although collisions appear to be more severe. While a comprehensive
cost-benefit analysis of the London Congestion Charge is out of the purview of this paper, it is
interesting to measure whether the benefits from fewer accidents and minor injuries outweigh the
cost of having more severe collisions. To provide an accurate assessment on the impact of the
Congestion Charge across London, we rely on our baseline estimates from Table 2 that incorporate
LSOAs across London.35 We summarize our calculations in Table 7.

From Table 2, we observe that after the charge is implemented, the number of accidents and
slight injuries are 6.91% and 9.65% lower and the number of serious injuries/fatalities are 11.62%
higher. In absolute terms, we are looking at 187 fewer accidents, 257 fewer slight injuries and 46
more counts of serious injuries. We monetize these effects by multiplying the absolute effects with
the monetary value.36 Because the economic cost of serious injuries is very sizable, we observe
that the CCZ imposes a net annual cost of around £4.8 million to the society. Assuming a discount
rate of 3.0%, and that the CCZ remains operational for the next 30 years, the present value of
accident costs impose by the CCZ is around £94 million. We further compute the upper and
lower bound of the estimated effects of the CCZ on various collision outcomes based on the 95%
confidence interval. Because the standard errors of our estimates are quite large, the net annual
effects could ranged from a benefit of £3.9 million to a cost of £14.1 million. Nevertheless, the
potential additional accident cost associated with the Congestion Charge indicates that reducing
driving may not be the most effective policy in minimizing accident externalities.

8 Conclusion

This paper estimates the marginal accident externality of driving by exploiting the plausibly
exogenous variation in traffic flow induced by the London Congestion Charge. Using the charge
as an instrumental variable to negate endogeneity concerns, we estimate whether an additional
driver affects the risk of accidents and injuries for other road users. Concern that the charge could

35As mentioned before, spillover effects from the Congestion Charge could possibly bias the reduced form
impacts of the charge on traffic and accidents around the charge boundary. Traffic conditions for areas right
outside the charge zone could have improved because there are fewer drivers driving into Central London
after the charge is implemented. Hence, constraining our analysis to roads around Central London could
underestimate the reduced form effects. This, however, is not an issue for our study as what we care about
is whether the charge is impacting collision outcomes through changes in traffic flow.

36We do not include the cost of fatalities because estimates for fatalities are too imprecisely estimated to
be statistically significant. Hence, if anything our estimates are overestimates (i.e. the estimates are even
more negative than reported). See Table A3 for more information.
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Table 7: Annual monetary value of accident externalities associated with the London Congestion Charge

(1) (2) (3) (4) (5) (6)
Outcomes Estimated Effects Pre-treatment Mean Absolute Effects £/Outcome Monetized

(Mean) Effects
Accident -6.91% 2,713 -187 £2,142 £401,557
Slight Injuries -9.65% 2,666 -257 £15,450 £3,983,044
Serious Injuries 11.63% 394 46 £200,422 -£9,183,777

Net Effects -£4,799,176
Outcomes Estimated Effects Absolute Effects Monetized

(Upper Bound) Effects
Accident -11.33% -307 £658,205
Slight Injuries -14.61% -390 £6,025,088
Serious Injuries 3.47% 14 -£2,743,109

Net Effects £3,940,184
Outcomes Estimated Effects Absolute Effects Monetized

(Lower Bound) Effects
Accident -2.27% -62 £132,087
Slight Injuries -4.42% -117 £1,822,372
Serious Injuries 20.38% 80 -£16,128,388

Net Effects -£14,173,928
Monetized effects of the CCZ (Column 6) computed by multiplying estimated effects (Column 2) with absolute pre-treatment

mean in collision outcomes in the CCZ (Column 3) and the monetized value per collision outcome (Column 5). Upper and
Lower bound estimates computed base on the 95% confidence interval (by adding or subtracting estimated effects (mean)
with 1.96 multiplied by standard errors from Table 2).

have affected driver and vehicle composition in the charge zone, violating the exclusion restriction
assumption, we test the robustness of our estimates through different specifications (i.e., we limit
our analysis to areas proximate to the charge boundary, we focus on a subsample which exclude
bicycle and pedestrian accidents). We further conduct a battery of balancing tests to show that the
charge is unlikely to have affected traffic collisions through means other than the change in traffic
flow.

From these analyses, we report that the charge attributed to a 9.4% reduction in traffic flow,
and caused a less than proportional 6.0% and 7.6% decrease in accidents and injuries, and a 6.5%
increase in serious injuries/fatalities. In other words, our results show that an additional driver
actually decreases the risk of collisions for other road users. Specifically, the accident, slight
injuries, and serious injuries/fatalities rate elasticities with respect to traffic flow are -0.36, -0.19
and -1.65 respectively. These findings are in line with the idea that the marginal driver along
congested roads slows down the overall driving speed for others, reducing the probability and
severity of traffic collisions. Putting a monetary value to these collision estimates, we find the
implied marginal external accident benefit from an additional km driven around Central London is
£0.16.

These results imply that the optimal road toll in congested city centres could be less than the
road toll based on travel time losses only, a conclusion which sharply contrasts with conventional
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wisdom for highways. Our estimates are informative at a margin where traffic conditions are
quite heavy and therefore relevant to policy makers of major cities who are concerned about traffic
congestion and road safety around busy roads facing the ubiquitous problem of traffic congestion.
Because of the high cost associated with serious accidents, a simple benefit-cost analysis indicates
that the additional cost from increased collision severity from the CCZ likely outweighs the benefit
from the reduction in accidents and slight injuries. More importantly, policy makers must be aware
of the accident externalities that might arise after ameliorating traffic congestion along heavily used
roads.

Our study is limited to examining the impact of the accident externality of driving. A more in-
depth analysis on other driving externalities (e.g time delays, pollution externalities etc) is required
to quantify whether the London Congestion Charge is too low or too high from a welfare perspec-
tive (Leape, 2006). Nonetheless, our study reveals the possible repercussions on road safety that
policy makers must be aware off when implementing Pigouvian taxes to reduce congestion exter-
nalities. More broadly, our findings suggest that the conventional perception that driving imposes
negative accident externalities does not hold for congested roads around the city center, and reduc-
ing traffic flow along these roads is unlikely to be an effective strategy to improve road safety.
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9 Data Appendix

I. Description of Data

STATS 19 Accident Data

We constructed our measures for various collision outcomes at LSOA level from STATs 19
Database, which document each and every accident reported to the Police from 1979 on wards.
Overall, there are a total of 217,497 accidents from 2000 - 2014 in our regression analysis. Take
note that we are constraining our analysis to collisions from 2000 on wards because traffic flow
data is reported from 2000. Here, we briefly describe the nature of collisions in the database.

0.72% of the collisions (or 1573) have at least one fatality and 12.73% (or 27,691) of the
accidents have at least one party serious injured. 88.80% (193,126) of the accidents have at least
one suffering from slight injuries. 93.81% of these accidents involve at least one four-wheel vehicle
while only 31.79% of the accidents are single-vehicle accidents. Overall, every reported accident
has at one party suffering from injuries or death. It is evident that these accidents are more severe
in nature as they are reported to the police force.

To construct our dataset for analysis, we aggregate the total number of collisions, slight, se-
rious and fatalities that occur in every LSOA annually. Take note that the measures for slight,
serious injuries/fatalities are mutually exclusive. Put differently, a fatality from a collision will not
be recorded as serious or slight injury and vice versa. Given that traffic collisions, especially with
serious injuries or fatalities, rarely occur, we are concerned with the number of observations with
0 collision outcomes. This is not an issue of accidents and slight injuries. From 2000 to 2014, only
4% of the observations have 0 accident and injury outcomes. This proportion, however, increases
considerably to 44.56% and 93.62% for serious injuries and deaths. Hence, to account for the
count nature and the sizable proportion of zeros of our dependent variables, we adopt a Poisson
count regression model.

Traffic Data

We constructed our measures of traffic flow in an LSOA per year based on Average Annual
Daily Traffic Flow (AADT) collected at a count point (CP) reported by the Department of Transport
(DfT). There are a total of 2563 CPs across London, with most of these points concentrated in
Central London. Traffic flow is reported for different types of vehicles including cars, motorcycles,
light and heavy good vehicles, pedal cycles, buses and coaches etc. As mentioned earlier, traffic
flow is manually counted on a normal day that is representative of the average traffic flow across
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the entire year. We match traffic flow data to LSOAs based on the location of CPs. However, not
all the LSOAs have CPs. After removing those without traffic data, we end up with 1675 LSOAs
(out of 4833 LSOAs in total) with at least one CP. Understanding that this matching approach
could remove a considerable number of LSOAs, we adopt an alternate approach of matching CPs
to LSOAs based on distance. Specifically, we compute the average traffic flow for each LSOA
based on CPs within 500 to 1000m from the centroid of the LSOA that is weighted inversely based
on distance. Doing so allow us to match more than 95% of the LSOAs although our measures of
traffic flow are less accurate now.
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List of Variables employed in the analysis

Table A1: List of Variables

Variable Source Description
Dependent Variable
Traffic Flow DfT Average daily traffic flow (collected at count

point) in LSOA j in year t.
Accident STATS19 Number of Accidents at LSOA j in year t
Slight Injuries STATS19 Number of Slight Injuries at LSOA j in year

t
Serious Injuries STATS19 Number of Serious Injuries at LSOA j in year

t
Deaths STATS19 Number of Deaths at LSOA j in year t
Local Authority Characteristics
Gross Annual Salary Annual Labour Force

Survey
Average Gross annual salary at LA j in year
t

Hours worked Annual Labour Force
Survey

Average number of hours worked in LA j in
year t

Job Density Annual Labour Force
Survey

Number of Jobs per unit area of LA j
(hectare) in year t

Population Size Nomis Population Es-
timates

Total population size living in LA j in year t

% of 18 to 25 Nomis Population Es-
timates

Percentage of population aged 18 to 25 in LA
j in year t

Weather Controls
Temperature LAQN Annual average temperature in LSOA j in

year t
Precipitation LAQN Annual average precipitation in LSOA j in

year t
Humidity LAQN Annual average humidity in LSOA j in year

t
Wind Speed LAQN Annual average wind speed in LSOA j in

year t
Driver & Vehicle Characteristics
% female STATS19 % of female drivers involved in collisions at

LSOA j in year t
Average age band STATS19 Average age band drivers involved in colli-

sions at LSOA j in year t
Average number of ve-
hicles

STATS19 Average number of vehicles in collisions at
LSOA j in year t

Average engine size STATS19 Average engine size of vehicles involved in
collisions at LSOA j in year t

Average age of vehicle STATS19 Average age of vehicles involved in collisions
at LSOA j in year t
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Figure A1: An illustration of some LSOAs (shaded) that overlapped with the CCZ boundary
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II. Effects of the Western Extension Zone on Traffic Flow

Table A2: Effects of the CCZ & WEZ on Traffic Flow

(1) (2) (3) (4) (5) (6)
CCZ & WEZ -0.1502***

(0.0237)
CCZ -0.1505*** -0.1505*** -0.1048*** -0.1243***

(0.0237) (0.0237) (0.0275) (0.0280)
WEZ -0.0132 -0.0134 -0.0121 -0.0433 -0.0332

(0.0135) (0.0242) (0.0244) (0.0345) (0.0297)
Remove WEZ -0.0004 0.0132 -0.0467 -0.0010

(0.0430) (0.0482) (0.0634) (0.0589)
Obs 20863 20863 20863 19883 20863 3812
No.of LSOAs 1663 1663 1663 1595 1663 277

Dependent variable is the natural log of traffic flow. CCZ (WEZ) is a binary variable denoting LSOAs
in the CCZ(WEZ) after the charge is implemented. Remove WEZ is a binary variable denoting
LSOAs in the WEZ after the WEZ is removed. Other unreported control variables include job density,
% of population from 18 to 25 years old, total population size, gross annual income,hours worked
collected at Local Authority Level at year t and mean wind speed, temperature, precipitation and
relative humidity collected at LSOA level at year t. In column 1, we estimate the joint effects of the
CCZ and the WEZ on traffic flow. In column 2, we separately estimate the effects of the CCZ and
the WEZ on traffic flow. In column 3, we further estimate the impact of the removal of the WEZ on
traffic conditions. In column 4. we omit from the analysis the CCZ. In column 5, we control for local
area districts linear trends to allow traffic conditions to vary linearly across areas. In column 6, we
limit our analysis to areas within 2km from the CCZ and WEZ boundary. Robust standard errors (in
parenthesis) are clustered at LSOA. * p<0.10, ** p<0.05, *** p<0.01.
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II. Additional Elasticity Estimates on Serious Injuries & Fatalities & Inten-
sive Margin Estimates

Table A3: Elasticity estimates for Serious Injuries and Fatalities & In-
tensive Margin estimates

(1) (2) (3) (4)
Serious Inj Fatalities SeriousInj

Accident
Fatalities
Accident

Ln(Traffic) -0.6006*** 0.0140 -0.9440*** -1.7204
(0.2109) (0.7614) (0.2922) (1.7931)

Obs 20303 10580 19568 10405
Mean Dep Variable 4.16 0.20 0.14 0.01
No.of LSOAs 1574 759 1574 759

Dependent variable is the counts of various collision outcomes denoted in the
column headers. Ln(Traffic) is the natural logarithm of annual average daily
traffic flow. The sample size, mean dependent variable and number of LSOAs
are consistent across panel A and B. All regressions are estimated with LSOA
and year fixed effects. Other control variables include job density, % of popu-
lation from 18 to 25 years old, total population size, gross annual income,hours
worked collected at Local Authority Level at year t and mean wind speed, tem-
perature, precipitation and relative humidity collected at LSOA level at year t,
distance to CCZ-by-year and distance to CCZ square-by-year dummies. Mean
Dep Variable is the average collision outcomes or daily traffic flow in the CCZ
before the charge is implemented. Robust standard errors (in parenthesis) are
clustered at LSOA. * p<0.10, ** p<0.05, *** p<0.01.
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III. Non-monotonic elasticity estimates across traffic quartiles

Table A4 presents the estimates that corresponds to Figure 7, illustrating how elasticity esti-
mates for different collision outcomes vary across different traffic flow quartiles.

Table A4: Non-monotonic elasticity estimates from Control
Functions for LSOAs within 2.5km from the CCZ boundary

(1) (2) (3)
Accidents Slight Serious Inj

& Fatalities
Ln(Traffic)* Q1 0.2024 0.3333 -0.5943

(0.2899) (0.3148) (0.5377)
Ln(Traffic)* Q2 0.5614** 0.7091** -0.4639

(0.2457) (0.2761) (0.4172)
Ln(Traffic)* Q3 0.3613 0.4960* -0.6018

(0.2547) (0.2856) (0.4103)
Ln(Traffic)* Q4 0.2786 0.4914 -0.8131*

(0.2717) (0.3079) (0.4215)
Obs 3158 3158 3142
Mean Dep Variable 28.21 27.40 4.31
No.of LSOAs 226 226 223

Dependent variable is the counts of various collision outcomes as
denoted in the column headers. Ln(Traffic) is the natural loga-
rithm of annual average daily traffic flow. Specification adopted
is similar to Table 3. Refer to earlier tables for more information.
We allow the elasticity measure to vary according across LSOAs
with different levels of traffic density by interacting ln(Traffic)
with traffic density quartiles. We classify LSOAs into different
quartiles based on the average traffic flow across the sample pe-
riod. Q1 and Q4 corresponds to the lowest and highest quartile
of traffic flow respectively. In all regressions, we constrain our
analysis to LSOAs within 5km from the charge boundary. Robust
standard errors (in parenthesis) are clustered at LSOA. * p<0.10,
** p<0.05, *** p<0.01. Estimated coefficients are plotted in Fig-
ure 7 in main manuscript.
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IV. Instrumental Variable Elasticity Estimates

In this section, we report elasticity estimates from OLS regressions. This include reduced
form estimates and first stage regressions that capture the effects of the CCZ on various collision
outcomes and traffic flow. Subsequently, we combine these estimates to compute instrumental
variable (IV) estimates. In other words, we are now instrumenting local traffic flow (Tjt) using the
CCZ, exploiting the sharp variation in traffic conditions induced by the CCZ to measure how an
additional car can affect the probability and severity of traffic collisions. The system of equations
to be estimated includes:

Tjt = λj + γCCZjt +X ′jtρ+ ψt + νjt, (6)

Yjt = πj + ζCCZjt +X ′jtδ + υt + εjt, (7)

Yjt = αIVj + βIVT̂jt +X ′jtφ
IV + τ IVt + εjt, (8)

The specification adopted is similar to earlier regressions. CCZjt is an indicator variable that
takes the value of 1 if LSOA j is located in the Congestion Charge Zone (CCZ) after charge
is implemented in 2003. αIVj ;λj; πj represents LSOA fixed effects that partial out time-invariant
unobservables. τ IVt , υt and ψt represent year fixed effects that control for general trends in traffic
flow and collisions across areas over time. X ′jt represents a vector of neighbourhood characteristics
that could be correlated with traffic flow and affect collision outcomes. The main difference is
that the dependent variable is the natural logarithm of various collision outcomes. Because a
significant proportion of our observations is zero, especially for serious injuries/fatalities, we take
log(0.5+various collision outcomes) to make sure that these observations are not dropped out from
the analysis. 37 38

Equation 6 is the first stage regression that estimates the effectiveness of the CCZ in reducing
local traffic flow surrounding each property. The dependent variable, Tijkt, is the natural loga-
rithm of the average daily road traffic flow from vehicles with four or more wheels. The efficacy
of the charge is captured by γ that measures the percentage change in the traffic flow. Equation

37Approximately 4% of the observations have no accidents or slight injuries in a particular. This percent-
age goes up to 40% for serious injuries, and 95% for fatalities.

38We also do alternative transformations such as ln(0.5 + accident outcomes) and ln(accident outcomes)
as a form of robustness. These unreported estimates remain fairly consistent across the different transfor-
mations and are available upon request.
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7 measures the impact of the CCZ on collision outcomes and ζ captures this effect. If the im-
plementation of the CCZ reduces traffic flow within the charge zone, and roads become safer the
charge is enforced, we expect γ to be <0 and ζ to be >0. Equation 6 and 7 combine to form
the instrumental variable regression in equation 8 that identifies the causal effect of traffic flow
on various collision outcomes. The main results of this paper come from the estimation of βIV ,
which measures the direct elasticity of traffic flow and accidents. T̂jt denotes the traffic conditions
instrumented with CCZjt. Since βIV , is exactly identified, it is simply the ratio of the two reduced
form parameters (βIV = ζ

γ
). For the instrumental variable estimator to provide a consistent esti-

mator of the elasticity between traffic flow and accidents, CCZjt must not only affect local traffic
conditions (relevance), but they must influence collision outcomes through changes in traffic flow
only (exclusion restriction).

Table A5: Reduced form, IV and OLS estimates

(1) (2) (3) (4)
Accidents Slight Serious Inj Traffic

& Fatalities
Panel A: Reduced Form & First Stage Regressions
CCZ -0.0976*** -0.1178*** -0.0462 -0.1505***

(0.0279) (0.0306) (0.0402) (0.0237)
Obs 20863 20863 20863 20863
R2 0.80 0.76 0.49 0.96
Mean Dep Variable 28.21 27.40 4.25 19007.53
No.of LSOAs 1663 1663 1663 1663
Panel B: IV Regressions
Ln(Traffic) 0.5012*** 0.6051*** 0.2382

(0.1381) (0.1594) (0.2083)
1st Stage F-Statistics 54.87 54.87 54.87

Dependent variable is the natural logarithm of various collision outcomes in LSOA
j at year t for Columns 1-3 and the natural logarithm of annual average daily traf-
fic flow for vehicles with 4 wheels or traffic flow in Column 4. All regressions are
estimated with LSOA and year fixed effects. Other control variables include job
density, % of population from 18 to 25 years old, total population size, gross annual
income,hours worked collected at Local Authority Level at year t, and mean wind
speed, temperature, precipitation and relative humidity collected at LSOA level at
year t. Mean Dep Variable is the average collision outcomes or daily traffic flow
in the CCZ before the charge is implemented. 1st Stage F-stats reported is the
Kleibergen-Paap rk Wald F statistic from first stage regressions. Robust standard
errors (in parenthesis) are clustered at LSOA. * p<0.10, ** p<0.05, *** p<0.01.

Table A5 summarizes results from the estimation of equation 6 and 7 in Panel A and equation 8
in Panel B. Overall, we document results fairly consistent with our baseline estimates in Table 2 and
3 at least for Accidents and Slight Injuries. In particular, our reduced form estimates suggest that
traffic flow is around 14.0% lower and this attributed to a 9.3% and 11.1% reduction in accidents

47



and slight injuries respectively. The strength of the CCZ as an instrumental variable is further
reflected by the first stage F-statistic that is larger than 10. Putting these estimates together, a
1% increase in traffic correspond to a 0.50% and 0.61% increase in accidents and slight injuries,
indicating that an additional driver leads to a less than proportional increase in accident risk for
other road users. These estimates are comparable to that reported in Table 3.

A notable difference of our IV estimates is that we no longer observe any significant spikes
in the number of serious injuries/fatalities. A plausible explanation for the disparity is due to the
transformation of our dependent variables in these IV regressions. As serious injuries/fatalities
rarely occur, there are many zeros in our dependent variable and taking the natural logarithm of
1 plus these variables could materially affect our measure of serious injuries/fatalities. Hence, we
prefer estimates from our Poisson regressions.
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