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Abstract

The popularity of open ascending auctions is often attributed to the fact

that openly observable bidding allows to aggregate dispersed information.

Another reason behind the frequent utilization of open auction formats may

be that they activate revenue enhancing biases. In an experiment, we com-

pare three auctions that differ in how much information is revealed and

in the potential activation of behavioral biases: (i) the ascending Vickrey

auction, a closed format; and two open formats, (ii) the Japanese-English

auction and (iii) the Oral Outcry auction. Even though bidders react to

information conveyed in others’ bids, information aggregation fails in both

open formats. In contrast, the Oral Outcry raises higher revenue than the

other two formats, by stimulating bidders to submit unprofitable jump bids

and triggering a quasi-endowment effect.
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1 Introduction

Open ascending auctions are routinely preferred to sealed-bid formats by both

private platforms (e.g., Amazon, eBay, Catawiki) and policy makers, for example

in the allocation of spectrum rights (Milgrom, 1989; McMillan, 1994; Milgrom,

2004). One compelling theoretical reason for their popularity is that open ascend-

ing auctions allow bidders to endogenously aggregate dispersed information due to

the observability of the bids. Standard theory predicts information aggregation to

have two advantages: It allows for a more precise estimate of the value and it leads

to higher revenues in expectations. In single-unit auctions with affiliated values,

buyers who are better informed bid more aggressively (Milgrom and Weber, 1982).

This is implied by the linkage principle, according to which average revenues are

increased by providing bidders with more information about the value of the item

for sale. To this date, the linkage principle remains highly influential and is often

cited as the reason why open auctions are and should be preferred over sealed-bid

formats.1

Empirically, however, it remains an open question whether open ascending

auctions are indeed capable of aggregating information. One challenge is that

the single-unit setup with affiliated values hosts multiple equilibria (Bikhchandani

et al., 2002). This multiplicity may impede information aggregation (Milgrom,

2004, p. 197). Another challenge is that some open ascending auctions allow

for jump bidding, which may obfuscate information (Avery, 1998; Ettinger and

Michelucci, 2016). Also, in every-day auctions, particularly those involving non-

professional bidders, the reasoning required to infer information from the bidding

of others may be too demanding.

Aside from their potential for information aggregation, open ascending auctions

may also differ from closed formats in the extent to which they activate or mitigate

behavioral biases. Some of these biases provide alternative mechanisms for raising

revenues. For instance, it is common for open ascending auctions to provisionally

award the item during the auction to the bidder who submits the highest standing

1In 2018, the German Bundesnetzagentur motivated their design for the next 5G multi-unit
spectrum auction in the following way: “The auction proceeds as an open auction, which means
that the bidders receive, in each auction round, information about the bids of other bidders. This
allows bidders to estimate other bidders’ valuations of spectrum blocks during the auction. As
the intermediate auction result is observable for all bidders, they can adjust their bidding strategy
accordingly. In this way they can reduce the risks of overestimating the actual value of spectrum
blocks and overpaying for the spectrum blocks (winner’s curse-risk)” (Bundesnetzagentur, 2018).
Theoretically, the reduction in uncertainty about the value in open auctions may lead to a lower
probability that the winner pays more than the value and to higher revenue, as more precise
information allows for more aggressive bidding.
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bid. As a result, auction fever may be activated, which encourages overbidding

and leads to a quasi-endowment effect (Heyman et al., 2004; Ehrhart et al., 2015).

Another possibility is that open ascending auctions encourage näıve jump bid-

ding, for instance when bidders are impatient and want to terminate the auction

quickly. In contrast to when jump bidding is motivated by strategic reasons, näıve

jump bidding may easily enhance revenues.2 Open ascending auctions may also

encourage spiteful bidding because bidders can condition their overbidding on the

presence of other remaining active bidders (Andreoni et al., 2007; Bartling et al.,

2016). There is, however, also a possibility that open ascending auctions mitigate

behavioral biases. For example, the higher transparency of open formats may lead

to buyers becoming aware of the winner’s curse and tame the overbidding (Levin

et al., 1996). When the winner’s curse is mitigated, lower revenue may be the

result in an open ascending auction.

In this paper we explore whether open auctions do raise higher revenues than

sealed-bids formats. Moreover, we disentangle whether this is due to information

being successfully aggregated or other behavioral mechanisms.

eBay provides a natural setting to explore information aggregation and rev-

enues in open auctions. eBay uses an open ascending format which allows for

jump bidding and provisionally awards the good to the highest standing bidder.

Thus, both information aggregation and revenue-enhancing biases are possible in

this format. We collected eBay data for one of the most frequently auctioned

cellphones at the time of the study. The field-data analysis that we report in the

Appendix, Section A.1, offers suggestive evidence that information endogenously

generated during the auction (proxied by the price reached halfway through the

auction) and jump bidding (proxied by the average increment per bidder) corre-

late positively with final prices. On the basis of a median split, we find that above

median bidding in the first half of the auction corresponds to an increase of 67%

in the final price. Likewise, with a median split on the average increment per

bidder, we find above median increments between consecutive bids correspond to

an increase of 14% of the final price. The findings are consistent with information

aggregation and also with the presence of revenue-enhancing näıve jump bidding.

However, such data has severe limitations. First, the direction of causality is un-

2Probably the most preposterous auction ever was decided by a näıve jump bid. After
murdering the Roman emperor Pertinax (A.D. 193), the praetorian guard offered the Roman
empire for sale in an ascending auction. Julianus topped Sulpicianus’ highest bid of 20,000
sesterces per soldier by a winning bid of 25,000 sesterces. The winning bid corresponded to 5
years of wage of each of the 10,000 praetorians. After Julianus defaulted on his bid, he was
murdered after a reign of only 66 days (Klemperer and Temin, 2001).
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clear. Second, such data is lacking crucial insights about bidders’ information and

the value of the item for sale, which makes it impossible to separate behavioral

mechanisms from information aggregation. Third, we miss data from an appro-

priate control condition, i.e., a counterfactual auction which does not allow for

information aggregation.

To overcome these limitations, we employ a laboratory experiment where we

randomly assign subjects to three different auction formats. These differ in the

information revealed during the bidding process, and, possibly, also in the extent

to which different behavioral biases can be triggered. To ensure comparability, all

formats use a second-price rule.

The first auction format is the Japanese-English auction, an open ascending

auction with irrevocable exits. In this format, a clock tracks the ascending price

and bidders withdraw from the auction until a single bidder remains, who wins the

auction and pays the last exit price. The exit prices of other buyers are publicly

observed. These bids then allow to infer other bidders’ private signals, which are

informative about the common value.

The second auction format is the ascending Vickrey auction, a sealed-bid as-

cending auction. It is implemented identically to the Japanese-English auction

with an ascending clock and irrevocable exits. However, exits are not observable

by others, thereby eliminating the possibility of information aggregation.

The third format we run is the Oral Outcry auction, modeled to fit popular

auction designs. It falls between the other two in terms of its potential for infor-

mation aggregation. In this auction, bidders can control how much information is

revealed. They can engage in the informative, incremental bidding that charac-

terizes the Japanese-English auction. They can also engage in jump bidding, i.e.

out-bid the standing bid by a non-negligible amount. Jump bidding can be used

rationally, for instance to obfuscate information (Ettinger and Michelucci, 2016)

or to signal to other bidders that it is better to back off (Avery, 1998). Jump bid-

ding could also be used näıvely by impatient bidders. The Oral Outcry auction,

while still allowing for information aggregation, may also be the most conducive

to revenue-enhancing biases. This is the only format that allows bidders to submit

näıve jump bids, and it is also the only format that can activate auction fever by

provisionally awarding the good during the auction.

The comparison between the ascending Vickrey auction and the Japanese-

English auction provides a clean comparison of the role of information aggregation,

since these formats differ only in the public revelation of exits. Theoretically,

rational bidders use the information revealed in the auction to form a more precise
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estimate of the common value, which makes them less fearful of the winner’s curse

(Milgrom and Weber, 1982). As a result, the Japanese-English auction is expected

to raise higher revenue than the ascending Vickrey auction. Remarkably, this

prediction is reversed if bidders are näıve and tend to fall prey to the winner’s

curse. By gradually revealing the exit prices of bidders with low signals, the

Japanese-English auction could make the risk of suffering from the winner’s curse

more transparent, thus taming the overbidding and reducing revenues compared

to the ascending Vickrey auction. This intuition is captured by signal averaging

models, which we describe more precisely in Section 3.

When information is successfully aggregated, remaining bidders’ uncertainty

about the common value is reduced and prices approximate the underlying com-

mon value more closely (Wilson, 1977; Kremer, 2002). We evaluate information

aggregation by comparing the squared distance between the price and the com-

mon value across formats. We further decompose information aggregation into two

components: (i) the extent to which bids are objectively informative of the com-

mon value (information revelation); and (ii) the extent to which bidders actually

use this information effectively in their own bidding (information processing).

We find that in the Japanese-English auction, less information than expected

is generated due to highly heterogeneous behavior in early dropouts. Some bidders

with a low signal display spiteful behavior and stay in the auction longer than their

more cooperative peers do. Such heterogeneity is not observable by the remaining

bidders and degrades the quality of the revealed information. In addition, bidders

are processing the available information sub-optimally. Even though bidders are

responding appropriately to the fact that early bids are revealing little information

by largely disregarding them, the potential to aggregate the information actually

available is mostly not realized. Instead, the processing of information is quali-

tatively in agreement with signal averaging heuristics. This combination of noisy

early bids and sub-optimal information processing leads to a failure of information

aggregation. Although subjects have only access to their private information in

the ascending Vickrey auction, more information is aggregated: the squared dis-

tance between prices and common value is lower in the ascending Vickrey than in

the Japanese-English auction, in which additional information is available.

Surprisingly, bids in the Oral Outcry and Japanese-English auction reveal a

similar amount of information about the common value. That is, bidders do not

make extensive use of the potential to strategically hide their information via

jump bidding. However, in the Oral Outcry auction, the available information is

processed to an even smaller extent than in the Japanese-English auction. Here,
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final bids are substantially distorted by the quasi-endowment effect and rash jump

bidding. Subjects who are prone to endowment effects on a questionnaire measure

tend to stay too long in the auction and earn substantially lower payoffs. Addi-

tionally, this auction encourages many bidders to submit unfounded jump bids.

These forces result in systematic overbidding and a price which is the poorest

predictor of the common value across our auction formats.

The interplay of all aforementioned factors leads to similar revenues in the

Japanese-English auction and the ascending Vickrey auction. Highest revenues

are observed in the Oral Outcry auction. The rationale for why the Oral Outcry

auction is most often observed in the field may be quite different from the un-

derstanding in the theoretical and policy-oriented literature. Instead of leading to

information aggregation, it triggers behavioral biases such as the quasi-endowment

effect and reckless jump bidding.

In many ways, the laboratory provides the ideal environment to study how

information is generated and processed. An important question is whether ex-

perimental results generalize to the field. Our experiments use non-professional

bidders (students) that bid for objects with moderate values (of approximately

e 25). We think that this situation is representative for most online auctions in

the field. Beyond everyday auctions involving consumers, some of our results may

also extrapolate to some situations involving professional bidders. For instance,

Dyer et al. (1989) find that professional bidders in the construction industry fall

prey to the winner’s curse in the same way as students do. We do not claim that

our results generalize to spectrum auctions where bidders seek the advice of game

theorists.3

The remainder of the paper is organized in the following way. Section 2 reviews

the literature, Section 3 presents the game and some theoretical benchmarks,

Section 4 describes how information aggregation is evaluated. Section 5 presents

the experimental design and procedures. Section 6 discusses the experimental

results and Section 7 concludes.

3Nevertheless, it is interesting to note that also in those auctions bidders sometimes engage
in bidding that is merely motivated to drive up the price for a competitor. Such bidding may
be driven by a spiteful motivation, or by a predatory desire to weaken the competitor in a
future market (Levin and Skrzypacz, 2016). When bidding behavior may be driven by such
considerations, it becomes very hard to infer valuable information from competitors’ bids.
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2 Related literature

Previous laboratory studies have documented how people succumb to the winner’s

curse in common value auctions. For an overview, see Kagel and Levin (2014).

Eyster and Rabin (2005) and Crawford and Iriberri (2007) present behavioral

models to explain the winner’s curse. Recent studies have studied pathways behind

the winner’s curse, highlighting that problems with contingent reasoning (Charness

and Levin, 2009) and disentangling the importance of belief formation and non-

optimal best responses (Charness and Levin, 2009; Ivanov et al., 2010; Camerer

et al., 2016; Koch and Penczynski, 2018). We compare whether open auctions

mitigate or worsen the importance of behavioral biases such as the winner’s curse.

Levin et al. (2016) find that a Dutch auction lessens a winner’s curse compared

to sealed bid formats.

An important strand of literature investigates whether markets are capable

of aggregating dispersed information. A series of experiments have investigated

information aggregation in asset markets. Results have been mixed. Plott and

Sunder (1988) find that information aggregation only occurs when preferences

are homogeneous or when a complete set of contingent claims can be traded.

Forsythe and Lundholm (1990) find that information aggregation only succeeds

with trading experience and common knowledge of dividends. Hence, information

aggregation seems to fail when the inference task is complicated by the presence

of several dimensions of uncertainty, or when the information conveyed by prices

in equilibrium is less naturally interpretable.

How information is processed is also studied in the context of auctions, a

particularly important form of a market. Several papers study the effect of an

auctioneer exogenously revealing information in auctions. Kagel and Levin (1986)

and Kagel et al. (1995) show that there are ambiguous effects of revealing in-

formation in first-price and second-price sealed-bid auctions. In a setting with

both private and common value elements, Goeree and Offerman (2002) find that

high-quality reports of the auctioneer can positively affect efficiency and revenue,

but to a lower extent than predicted by theory.4 In contrast to this work, our

paper explores endogenous information aggregation. Aside from shedding light on

revenue effects, we uncover the process of how bidding generates information in

auctions, and how bidders process the available information.

Close to our work, Levin et al. (1996) compare the performance of the Japanese-

4Dufwenberg and Gneezy (2002) study another form of exogenous information disclosure.
They find that the disclosure of losing bids after first-price sealed-bid common value auctions
reduces revenue.
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English auction and the first-price auction in a common value setting. They find

that the revenue comparison of the Japanese-English auction and the first-price

auction depends on the experience of the bidders: with inexperienced bidders the

first-price auction raises more revenue. However, with experience this effect dis-

appears and is sometimes reversed. By changing the price-rule and the auction

format across treatments simultaneously, they cannot identify the effect that infor-

mation aggregation has on the outcomes. Another difference to this paper is that

Levin et al. (1996) adopt uniformly distributed values and signals, a knife-edge

case where in equilibrium rational bidders will only process the lowest drop-out

price and disregard all other exit decisions in the Japanese-English auction. More

importantly, in their analysis they do not include the Oral Outcry auction which

triggers the revenue enhancing biases that may explain their actual popularity.

A related literature compares different auction formats when bidders have in-

terdependent valuations. In such environments, the linkage principle does not

hold; with symmetric bidders, expected revenue and efficiency are predicted to be

the same across auction formats (Goeree and Offerman, 2003a). Some experimen-

tal papers introduce specific asymmetries that break the revenue and efficiency

equivalence results. For instance, Kirchkamp and Moldovanu (2004) compare ef-

ficiency between the Japanese-English and second-price sealed-bid auctions in a

particular setup with interdependent values, where a bidder’s value is the sum of

the own private signal and one specific signal of the other bidders. In that setup,

they find that the Japanese-English auction generates higher efficiency. Boone

et al. (2009) and Choi et al. (2019) compare open and sealed-bid auctions with

interdependent values in the presence of insiders, to whom the value of the item

for sale is revealed. In line with their theoretical predictions, revenue and effi-

ciency increases in the Japanese-English auctions.5 In contrast to this work, our

paper sheds light on how bidders process information in the more common case

where signals are affiliated. We investigate the case in which the linkage principle

applies and information revelation occurs with symmetric bidders. As Perry and

Reny (1999) note, “The linkage principle has come to be considered one of the

5“A different kind of interdependence is studied in the multi-unit auction experiments of
Betz et al. (2017). They consider the sale of multi-unit private values emission certificates of
this year (good A) and of next year (good B). Interdependence is created because units of
type A can be used as type B unit, but not vice-versa. Their treatment variables are the type
of auction and whether goods are auctioned sequentially or simultaneously. When items are
auctioned simultaneously, they find that open ascending auctions are more efficient than sealed-
bid auctions. Auctioning the items sequentially enhances the performance of sealed-bid auctions
but leaves the efficiency of ascending auctions unaffected. In each auction format, total revenues
are higher when items are sold sequentially.
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fundamental lessons provided by auction theory.” Another distinction between

our approach and this literature is that we study how information is aggregated

directly, instead of by relying on comparative statics effects which are predicted

by information aggregation. We do so by employing measures of information

aggregation frequently used to theoretically evaluate information aggregation in

auctions, see, for example, Wilson (1977), Pesendorfer and Swinkels (2000) and

Kremer (2002). Our results show that although revenue is increased in some of

our formats, this occurs while information aggregation decreases, opposite to the

theoretical prediction.

We also contribute to the literature on the Oral Outcry auction. Roth and

Ockenfels (2002) study the impact of different rules for ending internet auctions at

eBay and Amazon on bidders’ propensity for late bidding. Amazon’s rule to extend

bidding deadlines if new bids are submitted resembles our procedure. In the lab,

Ariely et al. (2005) find that Amazon’s rule to extend bidding deadlines generates

higher revenue than eBay’s in a private value setting. Cho et al. (2014) provide

field evidence and show that in the comparison of two open auction formats, an

open outcry English auction format raises more revenue, which they attribute to

endogenous information revelation. It can however not be excluded that the higher

revenue in the open outcry auction is actually due to behavioral factors. Close

to our experiment, Gonçalves and Hey (2011) compare a Japanese-English and

an Oral Outcry auction and find that they result in approximately equal revenue.

However, they focus on auctions with only two bidders, which means that the

potential of the Japanese-English auction to generate endogenous information is

excluded by design.

Finally, we relate to the literature on endogenous information processing in

stylized games. Anderson and Holt (1997) initiated a literature on informational

cascades. Eyster et al. (2018) find that subjects’ social learning depends on the

complexity of the underlying problem. Magnani and Oprea (2017) investigate why

subjects violate no-trade theorems and find that over-weighting of one’s private

information contributes to such violations. Hossain and Okui (2018) study how

subject’s correlation neglect (Enke and Zimmermann, 2019) explains information

processing. Other studies show that biased inference can arise in in-transparent

problems where subjects display a lack of contingent reasoning (Esponda and

Vespa, 2014; Ngangoue and Weizsacker, 2015; Mart́ınez-Marquina et al., forth-

coming). Our take-away from this literature is that subjects do pay attention to

the behavior of others, but that their sophistication depends on specifics of the

problem, such as the transparency of its presentation and its complexity. There
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is no single result that generalizes across all contexts. In our view, this implies

that social learning should be studied in the particular setup of interest. How

information is processed and aggregated in the canonical affiliated values setup of

Milgrom and Weber (1982) is therefore still an open question. While this setup

not only inspired a vast body of theoretical work, it also was and continues to be

very influential in advice on actual auction design (McMillan (1994, p. 151-152),

Bundesnetzagentur (2018)).

3 Auction formats and theoretical benchmarks

In the following, we describe the auctions implemented in the laboratory, present

Nash equilibria as well as behavioral heuristics and explain revenue predictions.

3.1 General setup: Bidders and payoffs

All our formats are common value auctions with five bidders and a second-price

rule. The common value of the object for sale is unknown to bidders, who only

receive a private signal about the value. More precisely, the good has value V ,

where V ∼ N (µ, σV ) = N (100, 25). Each bidder i ∈ {1, 2, . . . , 5} receives a signal

Si of the common value V . This signal is the sum of the underlying value and an

individual error εi:

Si = V + εi

This error is i.i.d. across bidders and normally distributed with mean 0 and

standard deviation σε: εi ∼ N (0, σε) = N (0, 35).

In all formats, the winner of the auction is the bidder who submits the highest

bid. This bidder receives a payoff equal to V minus the second highest bid. All

the other bidders receive a payoff of 0. For notational purposes, define Xi as the

signal received by bidder i, Y(k) the k-th highest of the signals received by any

other bidder j 6= i, so e.g. Y(1) is the highest signal received by any bidder other

than bidder i.

3.2 Auction formats

We now provide details for each of the three auction formats we study.
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The ascending Vickrey auction (AV)

We implement the ascending Vickrey auction (AV) with a clock procedure. After

bidders have been privately informed of their signals, the price rises simultaneously

from 0 for all participants. At any integer price 0, 1, 2, 3, . . . , bidders can decide to

leave the auction by pressing the “EXIT”-button. In the AV, no bidder observes

whether any other bidder has left. The auction stops as soon as four bidders have

exited the auction. The last remaining bidder wins the auction and pays the price

at which the fourth bidder leaves. In case multiple bidders leave last at the same

price, one of them is randomly selected to be the winner and pay the price at

which she left.

The Japanese-English auction (JEA)

The Japanese-English auctions (JEA) makes use of the same clock procedure.

Differently from the AV, all remaining bidders are notified in real time of other

bidders’ exit prices. Like in the AV, the winning bidder is the last remaining

bidder after four bidders exit. This bidder pays the price at which the fourth

bidder left the auction.

The Oral Outcry auction (OO)

In the Oral Outcry auction (OO) bidders can outbid each other repeatedly and by

arbitrary amounts until no more out-bidding takes place and the good is awarded

to the highest standing bidder. In our implementation, bidding proceeds in bidding

rounds. In each bidding round, all bidders have 15 seconds to submit a maximum

bid. As soon as one bid is submitted, the bidding round is interrupted. At this

point, the bidder who submitted the highest bid becomes the standing bidder, the

provisional winner in case the auction would stop afterwards. The current price

is set to the second highest bid at this moment. A new bidding round starts, the

clock is reset to 15 seconds and the standing bidder is excluded from submitting

a new bid.6 During the auction, bidders are notified of the highest maximum bid

of each of the other bidders, with the exception of the current standing bidder,

about whom it is only revealed that her highest bid is at least as high as the

current price. The auction ends as soon as the countdown elapses without further

bidding. At this point, the last standing bidder wins the auction. She pays the

last current price, which is the second highest bid at the end of the auction.

6This leads to an auction ending time being determined endogenously. Such a rule is a feature
of online auctions at amazon.com, yahoo.com and catawiki.com.
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3.3 Nash equilibrium predictions and behavioral forces

In this section, we use game theoretic results, behavioral theories and recent exper-

imental findings to contextualize our research questions. We start with presenting

the Nash equilibrium predictions, according to which the JEA should aggregate

information and consequently lead to higher revenues than the AV.

AV and JEA: Nash Equilibria and the Linkage Principle

Symmetric Nash equilibria in single-unit auctions with affiliated values have been

derived in Milgrom and Weber (1982). In the AV, a bidder’s strategy can be

described by a reservation price, which makes this format strategically equivalent

to the standard second-price sealed-bid auction (see Milgrom, 2004, p. 187-188).

A symmetric equilibrium of the AV is given by bids bi(Si):

b(Si) = E
[
V |Xi = Si, Y(1) = Si

]
That is, each bidder exits the auction as soon as the clock reaches the expected

value of the good for sale conditional on her signal and assuming that the highest

signal obtained by other bidders is also Si.
7

In the symmetric Nash equilibrium of JEA, bidders include endogenously re-

vealed information into their bidding strategies. The first bid is given by (see

Milgrom and Weber, 1982):

b0(Si) = E
[
V |Xi = Si, Y(1) = Si, . . . , Y(4) = Si

]
Just like in the AV, the first exit bid is obtained via a conditional expectation,

assuming that all other bidders hold an equally high signal. However, as soon as

the first bidder drops out at p1, the remaining bidders perfectly infer the signal

of the exiting bidder, from p1 = b0

(
Y(4)

)
. All bidders dropping out subsequently

base their k-th bid (for k > 1) on their private information and the signals inferred

from the k − 1 observed dropouts. The remaining bidders bid bk(Si):

bk(Si) = E
[
V |Xi = Si, Y(1) = Si, . . . , Y(5−k−1) = Si, p1 = b0

(
Y(4)

)
, . . .

. . . , pk = bk−1

(
Y(5−k)

) ]
7In our experimental setup with 5 bidders and normally distributed values and signals, Go-

eree and Offerman (2003b) show that the above conditional expectation is equal to: b(Si) =

E
[
V |Xi = Si, Y(1) = Si

]
= Si −

∫∞
−∞ εφV (Si−ε)φ2

ε(ε)Φ
3
ε(ε) dε∫∞

−∞ φV (Si−ε)φ2
ε(ε)Φ

3
ε(ε) dε

, where φV (·) denotes the pdf of the

common value distribution, φε(·) the pdf of the error distribution, with its cdf Φε(·).

11



This equilibrium allows to iteratively back out all information except the one con-

tained in the highest signal.8 According to the linkage principle, the information

revealed in the JEA leads to more aggressive bidding, the fourth bid in the JEA

is on average higher than the fourth bid in the AV (Milgrom and Weber, 1982).

Bikhchandani et al. (2002) have identified other symmetric Nash equilibria that

implement the same outcome. In such equilibria, the first three bidders drop out

at a fraction α ∈ (0, 1) of the bids at which they dropped out before, and the last

two bidders bid as before.9

AV and JEA: A behavioral perspective

Overbidding is often observed in experimental common value auctions, suggesting

that in practice bids may not align well with Nash equilibrium predictions. Even in

the AV, bidding in agreement with a symmetric equilibrium is quite sophisticated

and requires bidders to (i) use their prior about the distribution of the value; (ii)

account for the fact that the bidder with the highest signal is predicted to win the

auction. Thus, to avoid the winner’s curse, bids need to be shaded.

Simpler behavioral rules have been proposed in alternative to Nash equilibrium

bidding. For example, bidders in the AV who ignore both (i) and (ii), and only

rely on their private signal, may adopt the “bid signal”-heuristic (Goeree and

Offerman, 2003b): b(Si) = Si, which leads to expected overbidding.

The JEA, on the other hand, allows bidders to observe early exits of other

bidders with low signals. This could make (ii), i.e., the fact that winning bidders

receive higher signals than their peers, transparent to bidders in a natural way. The

“bid signal”-heuristic remains available in the JEA. However, by raising awareness

about the winner’s curse, the JEA can lead to less overbidding. The “signal

averaging rule” proposed by Levin et al. (1996) captures this intuition. According

to this rule, bidders bid an equally weighted average of their own signal and

the signals of their fellow bidders, revealed from the previous dropouts. After k

8We determine Nash equilibrium bids in our setup, using a result by DeGroot (2005,

p. 167). For inferred or assumed signal realizations of bidder i, S̄ = 1
4

∑4
j=1 Y(j) + Xi:

E[V |Xi, Y(1) . . . , Y(4)] =

µ

σ2
V

+ 5S̄
σ2
ε

1

σ2
V

+ 5
σ2
ε

=
5S̄σ2

V +µσ2
ε

5σ2
V +σ2

ε
. On request, we provide derivations showing that

equilibrium bids can be inverted such that they depend linearly on the signal and observed bids.
This also applies to all other models considered in this paper. We therefore restrict ourselves to
linear information use in all estimations.

9Bikhchandani and Riley (1991) study asymmetric Nash equilibria and show that they can
lead to different revenue rankings than those established by Milgrom and Weber (1982). In our
experiment, all bidders are treated symmetrically and there is nothing that facilitates coordina-
tion on an asymmetric equilibrium. In this sense, a symmetric equilibrium is more plausible.
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bidders dropped out, with the vector of revealed signals being Sj, this implies

the following bid: bk(Si,Sj) = 1
k+1

Si + 1
k+1

∑k
j=1 Sj.

10 In expectation, the “signal

averaging rule” corrects for the overbidding observed in the “bid signal”-heuristic.

If bidders follow these two behavioral rules in the JEA and the AV respectively,

then the former format is predicted to raise lower revenues.

Somewhat more sophisticated bidders could process information about the

prior distribution of the value, and thereby accommodate (i), incorporating infor-

mation on the prior. This would lead to a slightly modified versions of the two

rules above, the “Bayesian bid signal”-heuristic, and the “Bayesian signal aver-

aging rule”. By anchoring bidding to the prior, these rules lead to less extreme

under- and overbidding. However they continue to predict that the JEA raises

lower revenues than the AV.

In the “Bayesian bid signal”-heuristic bidders bid the expected value of the

good for sale, conditional on one’s signal: b(Si) = E[V |Si] = Si − E[εi|Si]. Goeree

and Offerman (2003b) show that b(Si) =
σ2
V Si+σ

2
εµ

σ2
V +σ2

ε
. According to the “Bayesian

signal averaging rule”, bidders combine Bayes rule with the symmetric signal aver-

aging rule.11 After k observed dropouts, bidder i calculates the average of available

signals S̄ = 1
k+1

Si + 1
k+1

∑k
j=1 Sj and bids b(S̄) =

σ2
V S̄+σ2

εµ

σ2
V +σ2

ε
.

Nash equilibrium predictions and predictions based on behavioral rules now

lead to conflicting effects of information revelation on revenues. While private

signals can be inferred in both types of benchmarks, revenue ranking predictions

with the behavioral rules are driven by the degree to which bidders’ are made

aware of the winners’ curse in the JEA relative to the AV.

Using our parameterization and draws, Table 1 summarizes the revenue pre-

dictions for the Nash Equilibrium and the behavioral models that we discussed.12

Table 1: Revenue predictions
AV JEA

Nash equilibrium 95.8 97.4
Bid signal 117.4 117.4
Signal averaging rule 117.4 91.1
Bayesian bid signal 105.9 105.9
Bayesian signal averaging 105.9 94.0

10Note that this rule can be plugged in iteratively, such that it depends only on the most recent
dropout, which is an average of all revealed signals. This yields bk(Si, bk−1) = 1

kSi + k−1
k bk−1.

11A peculiar feature of the setup of Levin et al. (1996) with uniformly distributed values and
signals is that a Bayesian will form the same belief as a näıve bidder who ignores the prior. This
is not the case in our setup with normally distributed values and errors.

12Note that the revenue prediction of a model only depend on the revenue-determining bidder
using the particular model. Theoretically, in the JEA, bidders are able to infer all other bidders’
signals irrespective of the model these other bidders are using, as long as all bidders hold correct
beliefs on which model others are using.
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Nash equilibrium revenues are only slightly higher in the JEA than in the AV.

This is not an artifact of our parameter choices. As we show in Appendix Section

A.1, similar minor revenue differences result for various combinations of variances

of the values and errors. In both formats, the winners capture some information

rents and make positive profits, as the price-determining bidder in equilibrium

slightly underestimates the value by design of the equilibrium bidding strategies.

The differences in predictions for the behavioral models are much larger. More-

over, the behavioral rules yield losses for the winners in the AV. In the JEA, bidders

make substantial profits if they use (Bayesian) signal averaging rules.13

The Oral Outcry: information aggregation and behavioral biases

The Oral Outcry auction format is very rich and there are no clear Nash equilibria

for this format. Still, we can make some observations about the potential of the

Oral Outcry for information aggregation and revenues. In this format, bidding

may proceed incrementally as in the Japanese-English auction. That is, bidders

may constantly be active until their reservation price is reached, which would allow

for similar inference as in the JEA.

This format can also encourage jump bidding. From a strategic point of view,

jump bidding can be used to signal a high estimated value of the item and deter

other bidders from continuing to bid. Avery (1998) shows how strategic jump

bidding can be supported in an equilibrium of a game that is much simpler than

ours. Similarly, jump bidding may obfuscate information, as shown in a stylized

auction game in Ettinger and Michelucci (2016). In either case, severe jump

bidding suppresses information aggregation and its revenue-enhancing effects.

On the other hand, recent experimental findings suggest that some features in

Oral Outcry may be particularly prone to revenue-enhancing behavioral biases,

such as auction fever (Heyman et al., 2004; Ehrhart et al., 2015). Similarly, jump

bidding might not be used in the sophisticated way studied theoretically, e.g. it

might rather be driven by bidders’ impatience.

13Note that our experimental setup leads to low expected revenue with signal averaging-rules.
This allows us to test the rules beyond what was possible in Levin et al. (1996). In their setup,
signal averaging-rules lead to predictions more similar to Nash equilibrium revenues.
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4 Information aggregation: Measure and bench-

marks

When information is successfully aggregated, bidding and prices move closer to the

underlying common value (Wilson, 1977; Kremer, 2002). We measure the degree

of information aggregation with the squared distance between the price and the

common value and compare it across formats (Hanson et al., 2006). A distance of

0 would imply perfect information aggregation in the sense that bidders inferred

the exact true value.

The possibility of perfect inference is curtailed by the noisiness of the signals.

We account for the maximal information potentially available, the one contained

in the five signals, by computing the Full Information benchmark. In it, all five

signals are revealed and bidders bid the conditional expected value of the item

given these signals. Additionally, we model the lowest degree of aggregation with

the No Information benchmark, where bidders bid the prior average common value,

thus ignoring also their own private signal.

We illustrate the Full and No Information benchmark as the lower and upper

bounds of a segment measuring information aggregation. On this segment, lower

values indicate a better approximation of the common value by the price, hence

improved information aggregation.

In the segment, we also show how much information aggregation is predicted

in Nash equilibrium and by some exemplary behavioral models. In the Nash

equilibrium of the JEA, we see that the Full Information benchmark is almost

attained.14 In the Nash equilibrium of the AV, the squared distance to the common

value is higher, as less information aggregation is possible. By comparing the

Nash equilibrium predictions of the two formats, we see the theoretical impact of

information aggregation: If dropouts are observable, bidders obtain a more precise

estimate of the value and the price follows the common value more accurately.

The prediction that the JEA leads to higher information aggregation compared

to the AV generalizes to the behavioral models of bidding behavior. The Bayesian

bid signal heuristic (BBS) in the AV auctions predicts a larger dispersion around

the common value compared to Bayesian signal averaging (BSA) in the JEA.15

Therefore, even when processing information in a sub-optimal manner, bidders are

predicted to improve their estimate of the value when they observe others’ bids.

14It is not fully attained for two reasons: (i) the bid determining the price is based on 4, rather
than 5, signals; (ii) bidders maximize expected profit, with information rents for the winner.

15This also holds for the comparison of signal averaging- and bid signal-heuristics, which are
omitted for brevity.
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Figure 1: Squared distance to common value - JEA and AV
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5 Experimental design and procedures

The computerized laboratory experiment was conducted in July and October 2018

at the CREED laboratory of the University of Amsterdam. In total, we ran 30

sessions with 10 subjects each. We preregistered this experiment (Offerman et al.,

2019). Most subjects were students of business, economics or other social sciences,

with 50.7% being male and an average age of 23. Each subject participated in

only one session.

The experiment was conducted in a laboratory with soundproof cubicles. As

a consequence, information revelation was entirely controlled as intended in the

experimental design. In Appendix D, we present the instructions together with

screenshots of the auction interface for all formats. Subjects read the computerized

instructions at their own pace, and they had to correctly complete a set of test

questions before they could proceed to the experiment. Before the experiment

started, subjects received a handout with a summary of the instructions. At the

end of the experiment, subjects filled out a brief questionnaire.

In the experiment, 30 auction rounds were played. Payment was based on five

rounds randomly selected at the end of the experiment. Subjects earned points

that were exchanged according to a rate of e 0.25 for each point. Subjects earned

on average e 24.28 (standard deviation: 6.02, minimum earnings were set to e 7)

in approximately two hours.16

We run three between-subject treatments, each corresponding to one auction

format. In each ten-subject session, subjects were randomly rematched into groups

of five every round, therefore a matching group of 10 subjects coincides with the

session size. Common values and corresponding signals were drawn before sessions

started. Draws are i.i.d. across rounds for common values, and error draws are

also i.i.d. across subjects. For the experiment, we use identical draws in the

16In the experiment, only one subject had a negative payment balance if calculating total
earnings across all rounds. In the pre-registration, we announced that we also analyze our data
without bankrupted subjects. However, excluding this one subject does not affect results.
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identical order across treatments. Thus, treatment differences are not driven by

differences in random draws. In the experiment, we truncate common value and

signal draws between 0 and 200 and also only allow for bids between 0 and 200.17

We communicated the distributions of values and signals with the help of

density plots and we allowed subjects to generate example draws for the common

value and corresponding signals. At the start of each round in each auction,

subjects were privately informed about their signals and the auction started as

soon as all bidders in a session indicated that they were ready.

The rules of the auction formats were described in Section 3. The auction

procedure was visualized with a thermometer. In the AV and the JEA, the price

increased from 0 by one point every 650 milliseconds. Approximately three times

per second, the program checked whether any bidder dropped out. In the JEA,

bidders were shown the prices at which the first, second and third dropout oc-

curred. After a dropout in this auction, there was a pause of four seconds where

the price did not rise to allow the remaining bidders to process the information.

In all three treatments, at the end of each round all subjects were shown the

price which the winner paid and the common value that was drawn. In each round,

each bidder was endowed with 20 points, and the winning bidder was additionally

paid the difference between the common value and the second highest bid. When

negative, the difference was deducted.

In the 13 sessions ran in October 2018, we included two additional incentivized

tasks at the end to investigate some conjectures developed after the first sessions.

First, we used a measure adapted from Goeree and Yariv (2015) to elicit a sub-

ject’s tendency to conform to others’ choices in an environment where these choices

contain no information. Subjects had an incentive to guess an unknown binary

state. Their choice was to either receive a noisy but informative signal of the state,

or to sample the uninformative decisions from three previous subjects. Crucially,

these previous subjects had no access to any information about the true state, and

subjects were made aware of this fact. Second, we obtained a measure of subjects’

social preferences by using the circle test to measure their value orientation (Son-

nemans et al., 2006). We included these measures to test some conjectures about

the exit decisions of subjects with low signals in the Japanese-English auction.

In addition, in the oral outcry auction we included two unincentivized question-

naire measures of subjects’ tendency to succumb to endowment effects to further

17We discarded a set of draws whenever a common value or signal exceeded our bounds. This
occurred for 0 out 600 common value draws, and 121 out of 6000 drawn signals. Due to the
small scale of this phenomenon, we ignore truncation in our analysis.
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investigate the role of the quasi-endowment effect in this auction.18

Many features of our experimental design are motivated by the theoretical

model with affiliated signals (Milgrom and Weber, 1982). The situation that we

study is stylized, and our setup may offer more opportunities for learning than

bidders would have outside of the laboratory when they bid on real commodities.

In auctions outside of the laboratory, it may be much less clear to the winner

that he suffered a loss, which may impede learning. In addition, our conjecture is

that bidders may suffer more from endowment effects when they are bidding on

a real commodity than when they are bidding on a fictitious good with induced

value. From this perspective, we expect that biases may be larger outside of the

laboratory.

6 Experimental results

In this section we present the experimental results. We first present an overview of

the revenues generated in the three auctions. Next, we discuss information use in

the Japanese-English auction (JEA). Then, we compare the level of information

aggregation in all three formats. Finally, we present evidence on jump bidding

and the quasi-endowment effect in the Oral Outcry auction (OO).

In our analysis, we use data from all 30 rounds. We present results on expe-

rienced bidders in the Appendix Section B.4. Results are mostly in line with the

main analysis, otherwise we address this within the main text.

6.1 Revenue

Figure 2 and Table 2 present mean revenues by treatment.19 Average revenues

are quite similar in the AV and the JEA, but are substantially larger in the OO.

Differences are most pronounced in the first 15 rounds, but differences continue

to be significant also for experienced bidders in the last 15 rounds. Table 2 also

reports test results of comparisons of revenue across treatments together with test

18Question 1 was: “Suppose you paid e 30 for 5 cello lessons. After the first lesson you realize
that you really don’t like it. How many of the remaining lessons do you attend? You cannot get
the money back.” Question 2 was: “Suppose that tickets are on sale for the National Lottery to
be played out in one week, with a prize of e 100.000 and you just bought one ticket for e 2.50.
A colleague offers you money to buy the ticket from you. What is the minimum price at which
you are willing to sell the ticket to him?”

19In one auction in the AV, the auction unintentionally ended after only three, not four,
bidders dropped out. We remove the data from this particular auction.
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results of the comparisons of revenues with the Nash benchmark.20

We find strongly significant revenue differences between the OO and both other

auction formats. Contrary to theoretical predictions, revenue does not differ sig-

nificantly between the AV and the JEA. In both the AV and the JEA, actual

revenues deviate systematically from the Nash benchmark.

Figure 2: Mean revenue, Nash equilibrium predictions and common values

One explanation for the revenue equivalence between the AV and the JEA is

that bidders simply ignore the information that is revealed in the JEA. Another

possibility is that the more transparent JEA activates different behavioral forces

that offset each other. In the next section we explore these possible explanations.21

20Treatment results are robust to using parametric tests and the non-significance of a treatment
difference is not arising from comparing matching group averages. When regressing revenues on
treatment dummies, clustering standard errors on a matching group-level (600 observations per
treatment), we find that compared to a baseline of the AV, the dummy on the JEA is not
significant with a p-value=.778, whereas the dummy on the OO is significant at a p-value=.005.

21In the preregistration plan, we announced that we would compare how well rational and
behavioral models organize actual bidding. It turns out that none of the models comes even
close to explaining the early dropouts in the auction. As a result, we have chosen to relegate
this analysis to the Appendix Section B.2.
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Table 2: Revenue statistics by treatment

Revenue

Mean (Standard deviation)

Round 1-30 1-15 16-30

AV 103.4 (17.9) 106.1 (19.5) 100.6 (15.7)
JEA 103.9 (21.2) 106.5 (20.9) 101.3 (21.3)
OO 112.2 (27.5) 118.0 (31.2) 106.5 (21.7)

Treatment effects: p-values

Round 1-30 1-15 16-30

AV vs.
JEA .597 .940 .734
OO .003 .011 .049

JEA vs. OO .009 .003 .059

Revenue difference to Nash eq’m: p-values

Round 1-30 1-15 16-30

AV vs. Nash eq’m .001 .002 .010

JEA vs. Nash eq’m .001 .000 .049

Notes: Mean and standard deviation of revenues by treatment, over time. Test
results (p-values) of revenue comparisons across treatments and to the Nash
equilibrium prediction. For each test, we use the averages per matching group
as independent observations for the Mann-Whitney U-tests (MWU). This gives
10 observations per treatment.

6.2 Information processing in JEA

In contrast to the rational and some of the behavioral models’ predictions, revenues

do not differ systematically between the AV and the JEA. One explanation is that

bidders in the JEA disregard the bidding of others and only use their private infor-

mation. However, the data suggests that subjects do react to fellow participants’

choices, as we now show that bids are correlated with earlier dropouts.

Table 3 presents the results of a fixed-effects regression analysis that models

how bids correlate with available information. Define as di,j,g,t the dropout price

of bidder i at the j-th order, in group g and auction round t. For j ∈ {1, . . . , 4}:

di,j,g,t =α + βsi,t + γdj−1,g,t + δt+ ηi + εi,t

where si,t is the private signal of bidder i, dj−1,g,t is a vector of j − 1 observed

dropouts, t is the auction round. ηi is a bidder-specific fixed effect and εi,t is a

bidder-round error.

Models (1) to (4) provide fixed effects estimates of drop-out prices regressed

on available information, similar to the analysis by Levin et al. (1996). There

is a recurring pattern in how subjects’ bids correlate with available information:
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Table 3: Bidders’ use of information in JEA
(1) (2) (3) (4) (5) (6) (7) (8) (9)

di,1,g,t di,2,g,t di,3,g,t di,4,g,t Vg,t B̂R

Observed Observed Observed Observed Nash SA BSA

si,t 0.294∗∗∗ 0.267∗∗∗ 0.172∗∗∗ 0.118∗∗∗ 0.287 0.250 0.168 0.250∗∗∗ 0.288∗∗∗

(0.057) (0.034) (0.027) (0.016) (.) (.) (.) (0.020) (0.001)

d1,g,t 0.372∗∗∗ 0.023 0.025 0.100 0 0 -0.009 0.032∗∗∗

(0.035) (0.018) (0.015) (.) (.) (.) (0.025) (0.003)

d2,g,t 0.552∗∗∗ -0.038 0.167 0 0 -0.003 0.060∗∗∗

(0.044) (0.037) (.) (.) (.) (0.052) (0.003)

d3,g,t 0.709∗∗∗ 0.333 0.750 0.832 0.291∗∗∗ 0.151∗∗∗

(0.072) (.) (.) (.) (0.070) (0.003)

t -0.316 -0.122 -0.083 -0.075∗∗ 0.295∗∗∗ 0.087∗∗∗

(0.281) (0.114) (0.074) (0.031) (0.073) (0.002)

Constant 35.185∗∗∗ 41.823∗∗∗ 32.049∗∗∗ 26.290∗∗∗ 11.265 0 0 41.882∗∗∗ 44.804∗∗∗

(8.628) (2.723) (2.933) (3.619) (.) (.) (.) (3.799) (0.361)

Observations 600 600 600 600 600 600
Adj. R2 0.119 0.491 0.756 0.817 0.362 0.996
Adj. R2 absorb. i 0.425 0.592 0.768 0.821
Rounds 1-30 1-30 1-30 1-30 1-30 1-30
Estimation FE FE FE FE OLS OLS

Notes: dj,g,t: dropout at order j in group g and round t; Vg,t: common value; si,t: signal of bidder i. (1) to (4) are fixed effects estimates
(within estimation) of information use. Dependent variables are dropouts at each order, e.g. (1) are all bidders dropping out first in an
auction. Regressors are the available information at each dropout. (5) to (7) show how information is used in three canonical models,
only for the fourth dropout. SA refers to the signal averaging-rule, BSA to the Bayesian signal averaging-rule. Note that these show
how bids respond to earlier bids, where these bids are also calculated to follow the theoretical models. (8) shows how the price-setting
bidder would have to use information to predict the common value after observing three dropouts. (9) shows how the bidder dropping
out fourth would weigh information in an empirical best response. We provide adjusted R2 of the original within-estimated model, as
well as from estimating standard OLS where we include subject-specific absorbing indicators. The latter also includes fit obtained from
subject fixed effects. Standard errors in parentheses, clustered at the matching group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Bidders’ dropouts depend significantly only on their own signal and the just pre-

ceding dropout.22 The most recent dropout receives much more relative weight

than bidders’ signals. Thus, bids appear to respond quite strongly to the auction

proceedings.23

Note that this analysis does not provide direct evidence that bidders actively

incorporate information. For example, bids may be correlated simply due to the

correlation of the two underlying signals. To address this concern, in Table 14

in the Appendix, we compare the use of information to the benchmark provided

in the AV, and provide further evidence that available information appears to be

actively included in bids in the JEA. We show that bids in the JEA are more

strongly correlated than in the AV, which suggests that bids do react actively to

the revealed information.

All theoretical models considered in this paper process information linearly

(derivations available on request).24 In models (5) to (7), we provide theoretical

benchmarks for the fourth dropouts, representing informational weights implied

by these models. These models show how bids would react to (theoretical) earlier

dropouts, and are purely theoretical, not estimated.25 By comparing estimated in-

formation use to the use in these models we can evaluate whether bidding strategies

are consistent with any of the models, which can be helpful to predict outcomes

in other auction environments.

In model (5), Nash equilibrium, bidders do not ignore information from the

first and second dropouts when they choose the fourth dropout conditional on

the third dropout, contrary to information use in our data. Instead, the observed

pattern is more in agreement with the signal averaging rules (models (6) due to

Levin et al. (1996) and (7)). Both signal averaging rules correctly predict that the

22Conditional on using information summarized in the previous dropouts, earlier bids do not
add additional explanatory power. There is indeed a correlation to earlier bids, which is fully
captured in the reaction to the current dropout. Repeating (3) and (4) without dj−1,g,t yields
significant coefficients on dj−2,g,t.

23This analysis does not shed light on the possibility that the strong weight on the most recent
dropout is due to correlation neglect (Enke and Zimmermann, 2019). With correlation neglect,
information in early drop-outs is double-counted in later dropouts. In the Appendix, Table
16, we present regressions similar to the above, while excluding bidders’ private information.
We then predict residuals in this estimations, which capture bidders’ private information (their
signals and noise). We then regress later bids on all residuals. We find little evidence for
strong correlation neglect, as especially residuals from late dropout orders most strongly explain
variation in bids. This suggests that subjects understand that the most recent dropout contains
information of the signals conveyed in the earlier dropouts.

24We verified that our findings are not driven by the linear impact of information, by repeating
(4) and (8) with the additional regressors (si,t)

2 and (d3,g,t)
2. Both are not significant in either

model.
25Applying OLS to simulated bids also recovers the coefficients presented in Table 3.
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last dropout is a sufficient statistic for all previously revealed information, as this

bid summarizes all previously revealed information. Qualitatively, the Bayesian

signal averaging rule (model (7)) performs particularly well, as it approximates

the relative weight on last dropout compared to the own signal more closely than

in (6). A further pattern in favor of Bayesian signal averaging is that bidders do

not ignore the prior. In the AV, which offers the cleanest view on whether subjects

use the prior, bids are anchored towards the mean common value. Bidders who

receive a signal above 100 bid on average 72.4% of their signal, while bidders with

a signal of at most 100 bid on average 117.4% of their signal.

Still, the bids predicted by the Bayesian signal averaging rule do differ sig-

nificantly from observed behavior. The intercepts across all dropout orders are

quite large and lead to the observed overbidding.26 As later bids are incorporating

revealed information, also constant overbidding early on carries over to later bids,

which then determine revenue.

One remaining question is whether observed early dropouts are informative for

subsequent bidders, and in how far bidders could use these bids to improve their

estimates of the common value. In Nash equilibrium, all available information

should be used when best responding, see model (5). However, early bids differ

systematically from Nash equilibrium bids, and are potentially less informative of

the common value than they are in Nash equilibrium. The informativeness of early

bids should determine how later bids should respond to early bids. We proceed

by using two types of analyses: studying (i) how informative bids are of the value

and (ii) how information is used in an empirical best reply.

In estimation (8) we provide an analysis of the informational content of ob-

served bids. We regress the common value on the information available to the

bidder dropping out fourth. This analysis studies how the information available

to the bidder determining the price is predictive of the common value, which at

the end of each round is revealed to the subjects. Thus, model (8) provides a

benchmark of what information is useful to bidders when attempting to predict

the value using a linear rule.27 In model (8), we observe that it is sufficient for

bidders to attach positive weights only to the third dropout and own signal to

predict the common value. This implies that early bids are not useful to predict

the common value, which in fact our subjects appear to incorporate by disregard-

ing this information. However, the relative weights attached to the third dropout

26In fact, we can reject the coefficient restrictions implied by (5) to (7) in F-tests based on the
estimated equation (4), with p-values=.000.

27Note that the positive coefficient on t is a mechanical effect of all bids decreasing in t (see
(1) to (4)), as Vg,t is in expectation constant over time.
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relative to the own signal differ strongly from the rule predicting the value, as

bidders appear to react too much to the third dropout given the informational

content of these bids.

In (9), we study how information would be weighted in an empirical best re-

sponse. In this, we assume that the two bidders that remain in the auction longest

bid the expected value of the item for sale, conditional on the other remaining bid-

der holding an equally high signal as the own signal, and incorporating information

revealed in the previous dropouts. To infer signals from early dropouts, we use lin-

ear regressions in which we regress signals on observed bids, round, session fixed

effects and signals predicted from earlier bids if available.28 We then calculate

the conditional expected value using the result by DeGroot (2005), as for Nash

equilibrium bids for the bidder dropping out fourth. This establishes how close

bidders could have estimated the value in our experiment using linear rules and

the information on the value and signal distributions we provided. This is a best

response under the assumptions that the two remaining bidders use the same pro-

cedure and that the inferred signals from previous dropouts are distributed as the

true signals are (that is, conditional on the value they are i.i.d., N (0, 35)). We

then regress the obtained empirical best response on the same set of observables

for the second-highest bidder.

Consistent with the findings of model (8), (9) shows that early bids optimally

receive little weight in an empirical best response. Due to early bidding being less

informative than in Nash equilibrium, the optimal weights are below the weights

on observed bids in model (5). However, even if the estimated coefficients are

small, they are significant and positive. Again similar to (8), (9) shows that

bidders do not rely sufficiently strongly on their own signal when bidding, and

disregard valuable information in bidding.29

We conclude that subjects’ bidding is consistent with them paying attention to

what happens in the JEA, and that how their bidding weighs information in the

own signal relative to the observed dropout is qualitatively in line with Bayesian

signal averaging. Still, our data does not accord with the prediction of the Bayesian

signal averaging model that lower revenue will result in the JEA than in the AV.

In the next section we address this puzzle.

28We reproduce these estimations in the Appendix, Table 13.
29Note that R2 is mechanically high in this regression, as the conditional expected value is

calculated based on these early dropouts. The R2 does not account for the noise when inferring
signals from bids.
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6.3 Explaining heterogeneity in bidding

Bidding behavior in the JEA is quite heterogeneous, and especially so at early

dropouts – in Table 3, we see that the R2 increases in dropout orders. Addition-

ally, especially at early dropout order subject-level fixed effects add significant

additional explanatory power. This suggests that individual-specific characteris-

tics are especially important at early stages of the auctions.

To shed light on whether there are systematic patterns in this heterogeneity

in bidding behavior, we elicited subjects’ social value orientation and their ten-

dency for imitation at the end of the experiment for the last 13 sessions. For the

imitation measurement, subject could choose to sample non-informative social in-

formation of prior participants instead of obtaining an informative signal. This

behavior is consistent with a desire to imitate others. Participants that chose to

reveal uninformative choices are classified as an imitator, which applies to 26.9%

of our participants.30 Social value orientation is measured as an angle, where 0◦

correspond to a dictator keeping all to herself, 45◦ giving an equal amount to re-

cipient and herself and 90◦ giving everything to the recipient. We find an average

SVO of 21.13◦, with a standard deviation of 20.00◦.

To investigate whether these measures correlate with heterogeneity in bidding

behavior we exploit that the estimations in Table 3 provide us with estimates of

bidder fixed effects. In this context, the bidder fixed effect captures bidder-specific

level shifts of bids, holding the use of information constant across bidders.

Per participant, we average the fixed effects of the first and second dropouts as

well as the fixed effects from the third and fourth dropout. We then combine data

from the AV and the JEA to study whether there are systematic auction-specific

effects. To do so, we regress the averaged fixed effects on subjects’ social value

orientation and imitation proneness, both interacted with a treatment dummy.

Table 4 presents OLS estimates.31

The bidder characteristics we elicit appear to explain some of the heterogeneity

in bidding we observe. First, subjects in the JEA delay their early dropouts,

compared to the AV. For these early dropouts, bidder fixed effects are decreasing

in subjects’ social value orientation only for the open auctions. That is, more pro-

social bidders bid higher on average in the AV, but more pro-social bidders bid on

30In a similar setting, Goeree and Yariv (2015) find that 34% of subjects chose such informa-
tion.

31In the Appendix, Table 17, we show that results are robust to using WLS. This addresses
concerns that some fixed effects might be estimated more noisily than others. These observations
receive less weight in variance-weighted WLS.
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Table 4: Bidder fixed effects and their characteristics
Average bidder fixed effect

d1 & d2 d3 & d4

JEA 8.101∗∗ (2.847) 3.595 (2.945)
SVO 0.125∗∗ (0.043) 0.005 (0.115)
JEA × SVO -0.326∗∗ (0.141) 0.021 (0.135)
Imitator 5.699∗∗∗ (1.415) 6.528∗ (2.985)
JEA × Imitator -0.486 (3.794) -4.953 (3.016)
Constant -1.876 (1.835) -4.674∗∗ (1.605)

Observations 90 90
Adjusted R2 0.012 0.036
Estimation OLS OLS

Notes: Average fixed effects from regressing bids on available infor-
mation for first and second vs. third and fourth dropout; pooling
data from the AV and the JEA. SVO is a subject’s social value
orientation, in degrees. Imitator is a dummy variable equal one
if a subject chose to retrieve social information when this con-
tains no valuable information on the true state. Standard errors in
parentheses, clustered at the matching group level, ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

average lower in the JEA.32 This effect is consistent with the intuition that spiteful

bidders may stay longer in the JEA in order to deceive their opponents about their

signal: if other subjects observe a very high dropout, they may mistakenly infer

that this dropout is associated with a particularly high signal.

That an effect in this direction occurs only in the JEA is not too surprising.

In the AV, bidders cannot observe whether other subjects have already exited

the auction, thus these exits cannot influence subsequent bidding. Additionally,

overbidding for the early dropouts in the JEA is (almost) costless because such

bidders can avoid winning when one of the other bidders drops out by immedi-

ately dropping out as well. Furthermore, there is no significant difference in how

imitators behave between auction formats in early bidding, in both treatments

they are willing to bid higher than non-imitators. The fact that there is no in-

teraction effect for imitators in the JEA hints at the possibility that this measure

may not only capture a tendency to imitate but also general overbidding caused

by confusion.33 Point estimates with experienced bidders are similar, see Table 11

in the Appendix. The fact that some of the estimates are no longer significantly

different from 0, notably the interaction effect of SVO in the JEA, may be due to

32Note that in this task, inequality averse participants are classified as pro-social. Therefore,
bidding higher initially in the AV can be consistent with bidders trying to minimize payoff
inequality, which might arise if an opponent wins at a low price.

33There are also situational factors that affect the extent of overbidding. For instance, Levin
et al. (1996) and Goeree and Offerman (2002) find that subjects’ overbidding enhances with the
variance of the noise term in the signals.

26



a lack of power.

The observed impact of these two behavioral forces on bidding levels can have

a substantial impact on revenue. To illustrate this effect, we predict revenue using

the information use found in Table 3, while incorporating predicted bidder fixed

effects obtained by the model in Table 4, by systematically varying SVO and imi-

tation measures. For simplicity, we predict fixed effects assuming a homogeneous

SVO- and imitation-measure across all bidders. Then, we iteratively predict bids

using the results found in Table 3, using the signal draws from our experiment.

In the JEA, revenue is predicted to vary in these underlying characteristics as

captured by the following equation:

RJEA = 105.29− 0.15× SVO + 5.43× Imitator

For interpretation, the interquartile range for SVO ranges from .48◦ to 42.50◦,

and ranges from a minimum of -18.47◦ to a maximum of 57.32◦. For Imitator,

both ranges correspond to moving from 0 to 1. For example, moving bidders from

homogeneously pro-social at the third quartile to homogeneously more selfish at

the first quartile leads to revenue gains of 6.3 points.

For the AV, the effect of spiteful bidders is negligible. This is the case as only

the fixed effects at the fourth dropout order have a revenue impact, as earlier

dropouts are unobservable and do not affect later bids. Imitators affect revenue

similarly across the two formats. In particular, revenue in the AV is predicted to

vary in these characteristics by:

RAV = 98.67 + 0.01× SVO + 6.53× Imitator

We conclude that the (approximate) revenue equivalence observed between the

JEA and the AV results from two opposing behavioral forces. On the one hand,

processing information in the spirit of Bayesian signal averaging allows subjects

to avoid the winner’s curse in the JEA. On the other hand, spiteful bidding in the

JEA can enhance revenue.34

34Another candidate to explain deviations from risk neutral Nash bidding is risk aversion.
Because all auctions use the second-price rule and there is uncertainty about the value, risk
aversion will have a downward pressure on Nash equilibrium bids (see also Levin et al. (1996)).
Given that observed bids tend to be higher than risk neutral Nash equilibrium bids, we think that
risk aversion is a less important force in our experiment. Similarly, the heterogeneous behavior of
early dropouts is not only incompatible with the symmetric equilibrium in Milgrom and Weber
(1982), but also with the asymmetric equilibria in open auctions identified by Bikhchandani and
Riley (1991). In addition, the asymmetric equilibria predict lower revenues in the JEA, while
we observe revenue in excess of the symmetric Nash equilibrium.
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6.4 Information aggregation

In this Section, we investigate the extent to which bidders aggregate information

in the different formats. The measure of information aggregation is the squared

distance between the price and the common value, as explained in Section 4.

We first present a comparison between the JEA and the AV, the two auctions

that differ only in the information on previous dropouts. Both rational and behav-

ioral benchmarks predict that additional information improves bidders’ precision

in estimating the value. This prediction, however, is not borne out in our data.

Figure 3 plots the distance between price and value that is actually observed in

the data. For a comparison, it also includes Nash equilibrium predictions.

As it turns out, the theoretically predicted ranking is reversed in our data.

The observed squared distance in the AV is 411.9, and increases to 479.1 when

more information is available in the JEA. This difference is statistically significant

(p-value=0.028, MWU, 10 observations per treatment). Actually, the JEA aggre-

gates almost no information. The observed squared distance of the JEA is not

statistically different from the No Information benchmark, where the price is set

equal to the prior mean of the common value, ignoring all information contained

in signals.35

Figure 3: Squared distance to common value
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There can be two reasons why information aggregation fails in open ascending

auctions: i) there is not sufficient informational content in observable bids (in-

formation revelation) (ii) bidders do not process the available information as a

rational bidder would (information processing). To isolate the two forces, we use

an empirical best response B̂R as described in Section 6.2, given observed bidding

behavior of early dropouts. Note that B̂R is a statistic that separates between

information processing and revelation. It represents the level at which two re-

35We verified that the same ordering in our results on information aggregation is observed
when using the squared distance to the Full information benchmark as a measure, instead of
the squared distance to the common value. The latter does not directly control for variance in
signals conditional on the common value. In our analysis, this is captured by the distance to the
common value measured in the Full information benchmark.
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maining bidders best respond to each other, when they incorporate information

available in the experiment. The gap between the observed level of information

aggregation (JEA obs.) and the maximal level of aggregation achievable given

the available information (B̂R) serves as our measure of the failure of information

processing. Failure in information revelation is measured by the distance between

B̂R and JEA NE, as in Nash equilibrium signals from earlier dropouts can be

inferred perfectly. From inspecting the segment, it is apparent that both forces

play a role: Information in the JEA is dissipated by noisy early dropouts and

further processed in a sub-optimal way.

The higher revenue that we observe in the OO is not caused by a higher degree

of information aggregation in that format. To the contrary, in the OO overbidding

is so severe that the price is a highly inaccurate predictor of the common value,

resulting in a very imprecise measure of information aggregation, with a squared

distance of 917.0. If bidders had simply ignored their private signal and the

bidding of others, and bid the prior mean value according to the no-information

benchmark, this distance would shrink to 483.0. Figure 4 presents the information

aggregation benchmarks of the OO in comparison to the other auction formats.

Figure 4: Squared distance to common value, including the OO
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This lack of information aggregation cannot be attributed to information in

bids being obfuscated. The same decomposition as performed for the JEA shows

that the second-highest bidder in the OO would be able to predict the common

value relatively well if they attempted to bid the conditional expected value as in

the JEA, by incorporating the own signal and the maximal bids of the three non-

winners. This is a conservative measure of how much information is potentially

available in the OO, because it ignores other, possibly informative, observables

such as the time elapsed between bids, the size of the jump bids, or the number

of returning bidders.

6.5 Bidding in Oral Outcry auctions

While information revelation does not lead to higher revenue, we have previously

seen that revenue is higher in the OO than in the other two formats. Also, infor-
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mation aggregation in this format fails.

The OO differs from the two clock-formats in how bids can be submitted. In

both the AV and the JEA, the price rises at an exogenously set pace and bidders

can only decide whether to leave or remain at every price. In the OO, bidders can

submit their own bids. In the following, we discuss two ways in which this change

matters: it may trigger a quasi-endowment effect in bidders, as well as allow for

non-incremental jump bidding.

During an Oral Outcry auction, a standing bidder is identified, who is the

highest bidder at that moment. The previous literature has established that this

can induce a so-called auction fever (Heyman et al., 2004; Ehrhart et al., 2015).

A standing bidder may get used to the feeling of winning the good and become

prepared to bid higher than she originally intended. If that happens, auction fever

triggers a quasi-endowment effect.

Auction fever is in agreement with the fact that we observe relatively many

extreme auction revenues in the OO compared to the other two formats, beyond

the average revenue already being significantly higher in the OO. For example,

only 1.3% of all common values are in the right hand tail of the common value

distribution, at values above 150. In both the AV and the JEA, less than 1%

of auctions end up at revenues above 150. In the OO in turn, 7.3% of auctions

conclude at prices above 150, suggesting that especially this format triggers strong

mispricing.

To evaluate the impact of auction fever, we use bidder’s exogenously measured

inclination to succumb to the endowment effect, and perform a median split based

on this measure.36 There are two main effects: (i) bidders do not systematically

differ in how often they win auctions (MWU-test, p-value=.773), thus bidding

behavior appears similar at first; (ii) whenever they win an auction, bidders with

stronger endowment effects generate higher losses than their peers, as their total

profits are significantly different (MWU-test, p-value=.083)37, thus when becoming

active and winning an auction, bidders with strong endowment effects lose more

money. This evidence provides clear support for the conjecture that the OO

activates auction fever among people who suffer from the endowment effect.

36We normalize both measures to mean 0, variance 1, then take the average response as a
measure of the endowment effect. We compare matching group averages of those bidders with
above and below median endowment effects, yielding 8 observations (4 matching groups, one
observation above and below the median each).

37This analysis is robust to (i) performing a median split based on the first principal component
obtained from the two measures of the endowment effect as well as (ii) regressing the number of
auctions won and winners’ profits on their endowment effect, the latter analysis is reproduced
in the Appendix, Table 18.
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A second important feature of the OO is that bidders can submit non-incremental

jump bids. Theoretical analyses of jump bidding predict that winners in auctions

make higher profits when jump bidding is possible (Avery, 1998; Ettinger and

Michelucci, 2016). Naturally, behavioral factors like impatience may also moti-

vate jump bidding. In this case, jump bidding may decrease winners’ profits. Note

that within our auctions and due to the second-price rule in setting the current

price, jump bids are only revealed if at least one other bidders continues to bid.

While submitting additional bids, other bidders learn that the jump bidder has

entered an aggressive jump bid, as the jump bidder continues to be the standing

bidder. The level of the jump bid is revealed at the moment that some other

bidder enters a bid higher than the jump bid. This feature captures how jump

bidding in popular auction formats occurs. As such, we expect weaker effects of

jump bidding than in first-price formats, where the level of a jump bid is revealed

immediately. In our analysis, we will show that even this subtle effect of jump

bidding matters for outcomes.

As a measure of jump bidding we use the increment of a new bid above the

current price, the second highest bid submitted in previous bidding rounds, at

the moment the new bid was submitted. By the rules of the auction, jump bids

vary between 1 point, which is the minimum increment, and 200 points, if the

maximum possible bid was submitted straight at the start of the auction. Often,

the same bidder submits multiple bids. We denote the sum of all jump bids for

one bidder across one auction as the total jump bid of this bidder. In estimations,

we also frequently use the jump bids submitted at the start of an auction, when

the price stands at 0, and denote these as the starting jump bids. As these bids

are submitted when no information is revealed yet, they do not suffer from the

same risk of endogeneity concerns as other jump bids that are submitted later in

the auction.

We observe extensive jump bidding: 21.6% of bids exceed the current price by

at least 20 points, and 11.2% by at least 50 points. Jump bidding is most prevalent

at the start of an auction, where 81.7% of entered bids are at least 20 points, and

60.4% are at least 50 points high. Jump bidding also gains in popularity over

time: in the first 15 rounds, the average jump bid at the start of an auction is

53.8, this increases to an average of 61.6 in the last 15 rounds.38

38In the first six sessions, the bidding rounds at which a bid was submitted was not saved
correctly due to a programming mistake. We reconstructed this data by the time stamp at
which bids were submitted. In 10.7% of the bids in these sessions, this classification is poten-
tially ambiguous, we assumed that bids were submitted in a later bidding round in these cases,
which leads to potentially fewer bids being considered for our type of analysis. The results we
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In Table 5, we show regression results on the use and effect of jump bids. The

main regressor of interest is the total jump bid, the sum of all bid increments by

each bidder in an auction. However, these bids are likely endogenous. Therefore,

in this regression, we use the jump bids submitted at the start of an auction to

instrument for the total jump bid (using 2SLS). That is, in a first stage, we predict

the total jump bid of each bidder using the starting jump bid and the other used

variables, such as the signal si,t. In the second stage, we regress our dependent

variables of interest on this predicted total jump bid and some other variables.

This provides a clean identification of the effect of jump bids. However, we are

still constrained by the set of bidders who do submit a bid at the start of each

auction, as we cannot obtain instruments if this is not the case.39

Table 5: Effect of jump bids in the OO

(1) (2) (3) (4)
Mean Winners’

Jump bid Pr(win) earnings profits

Jump bid (IV) 0.207∗∗∗ -0.034∗∗ -0.006
(0.046) (0.014) (0.047)

si,t 0.322∗∗∗ 0.175∗∗∗ -0.020∗ -0.043
(0.021) (0.038) (0.011) (0.053)

t 0.453∗∗∗ 0.170∗∗∗ 0.913∗∗∗

(0.132) (0.047) (0.177)

Vg,t 0.134∗∗∗ 0.557∗∗∗

(0.016) (0.063)

Constant 18.251∗∗∗ -11.298∗∗∗ -14.117∗∗∗ -76.641∗∗∗

(4.808) (3.061) (3.217) (11.844)

Observations 1433 1433 1433 312
Estimation OLS 2SLS 2SLS 2SLS

Notes: Jump bid is the increment of a bid beyond the current price at the
moment the bid was submitted. In (1), we regress the jump bid at a price of
0 on bidders’ signals. In (2) to (4), we use 2SLS, where we instrument the
total jump bid per bidder with the jump bid at a price of 0. (2) is the ex-
post probability of winning, which is a dummy equal to one if a bidder wins
the auction, 0 otherwise. Mean earnings are a participants’ average earning
across all auctions, winners’ profits are the earnings for the auctions which a
participant won. si,t is the submitting bidder’s signal in round t. Vg,t represents
the common value. Standard errors in parentheses, clustered at the matching
group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Column (1) presents results of regressing these jump bids on bidders’ infor-

mation. As predicted by theoretical models, bidders with higher signals submit

present are robust to instead assuming that these bids were submitted simultaneously, or ran-
domizing this classification. Also, only using data from the last four sessions, where this error
was corrected, yields similar results.

39We can obtain instruments for 1433 observations, out of 2687 total observations.
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higher jump bids. The size of the jump bid is significantly increasing over time.40

Table 5 also presents an analysis of the effects of jump bids. Across all IV

estimations, the first stage is highly significant, so we do have relevant instruments,

exceeding the rule-of-thumb of an F-statistic of 10 (Staiger and Stock, 1997): early

jump bids are predictive of the overall jump bidding behavior.41

In (2), we show that within the set of the bidders who submit a bid at the

start of the auction, the probability to win an auction increases in the jump bid,

controlling for the signal of this bidder. The dependent variable is a dummy equal

to one when a bidder wins the auction, 0 otherwise. Therefore, within the set

of bidders who decide to become active immediately at the start, the bidder who

enters the largest jump bid is most likely to win this auction. This is consistent

with the signaling motive in the theoretical literature.

Models (3) and (4) then study how profits are affected by the size of the jump

bid. (3) again conditions on the set of bidders who immediately enter a bid.

Profits are significantly decreasing in the size of the jump. This is the opposite of

the effect predicted by theory.

However, winners on average lose money in the OO and, by submitting a jump

bid, participants select into this group of winners making a loss. To study this

further, (4) restricts the analysis to bidders who end up winning the auction and

simultaneously submit a bid at the start of the auction. Within this group of

bidders, the size of the jump bid does not decrease profits further.

Results for experienced bidders are similar, see Table 12 in the Appendix. In

later rounds, jump bidding has a more negative effect on earnings, and the effect

of jump bids on Winner’s profits (model (4)) is also significant, suggesting that

jump bidding continues to be a disadvantageous strategy with more experience,

while jump bidding is in fact used more extensively later on.

7 Conclusion

In this paper, we study some salient factors that can contribute to the popularity

of open ascending auctions. In particular, we assess the roles that endogenous

information aggregation and behavioral biases play in explaining their prevalence.

In a common value setting, we compare two clock auctions, the ascending Vickrey

40In the last 4 sessions, we elicited how much participants agreed with several motives for
jump bidding in the questionnaire, see Appendix Section C.1 for details. If we include those in
(1) as controls, the only statement that correlates significantly with the size of the jump bid is “I
tried to deter other bidders from bidding by entering a bid much higher than the current price.”

41F -statistics are 1050.95 for (2), 723.10 for (3) and 3033.74 for (4), with all p-values=.0000.
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auction (AV) and the Japanese-English auction (JEA), which differ in irrevocable

exits of bidders being observable only in the latter. We also study the Oral Outcry

auction (OO), an auction format modeled to approximate popular designs, in

which bidders choose how much information they want to reveal through bids.

In agreement with their popularity, we find that the OO is most successful in

raising revenue. The JEA raises similar revenue as the AV, in contradiction to

both the rational benchmark which predicts higher revenue for the JEA and some

behavioral models that predict higher revenue for the AV. We find that information

aggregation fails in the JEA. Bidding in the JEA reflects a worse estimate of the

common value than in the AV.

It is not the case that bidders do not pay attention to early exits in the JEA. To

the contrary, bids correlate strongly with the most recent dropout they observe.42

This pattern deviates from what would be observed either with Nash bidders,

what is justified based solely on the informational content of early dropouts or

with an empirical best response. The relative weight of how bidders incorporate

information is best captured by a Bayesian signal averaging heuristic. However,

all models incorporating public information underestimate bid levels and bidders

in the JEA do not use public information sufficiently to tamper the winner’s curse,

as predicted by signal averaging models.

At the same time, bidding behavior conveys less information than the theoret-

ical benchmark. The information reflected in early dropouts of the JEA is partly

obfuscated by substantial heterogeneity in the bidding of early leavers. We find

two forces that explain some of this heterogeneity. In the JEA, spiteful bidder

stay too long in the auction early on. Such spiteful bidding by early leavers neu-

tralizes the revenue diminishing force of the Bayesian signal averaging heuristic.

Our support for a spiteful motive resonates with some empirical findings in other

auction environments (Andreoni et al. (2007), Bartling and Netzer (2016)).

In the OO, bidders choose how much information to reveal through their bids.

Overall, bids in the OO convey as much information as those in the JEA. However,

in the OO-format the available information is least well processed, and the price

paid by the winner approximates the common value worst among all three formats.

Instead, the OO activates some behavioral biases that enhance revenue. Bid-

ders who suffer from endowment effects lose more money in these auctions. When

they become the provisional winner, auction fever strikes and they become willing

42Note that Hoelzl and Rustichini (2005) find that people are underconfident in complicated
tasks. Their result agrees with our finding that bidders pay relatively much weight to what
others do in the strategically complicated common value setup.
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to submit higher bids than otherwise expected. In addition, the OO encourages

bidders to submit jump bids. In contrast to the theoretical literature, jump bids

do not enhance winners’ expected profits. Jump bidders are more likely to win

the auction, but they tend to lose money doing so.

Oral Outcry auctions may be popular not because they allow bidders to ag-

gregate information. Instead, a more important rationale for using Oral Outcry

auctions may be that they activate revenue enhancing behavioral biases.
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A Appendix

In this Appendix, we start with an analysis of information effects on eBay. Then,

we discuss revenue predictions for different parameterizations, and we present

behavioral models.

A.1 Information usage on eBay

eBay gives bidders access to a detailed bidding history during an auction. To

investigate the effects of information use on eBay, we collected data from eBay-

auctions between August 8 and September 27, 2019. We chose one of the most

frequently auctioned cellphones in that moment, the Apple iPhone X, 64GB, with

a total of 1194 phones. These phones vary considerably in the condition they are

sold, with buyers potentially making inference on the phone’s value for example

based on pictures, descriptions, or the sellers’ reviews. Crucially, the interested

bidders can study others’ bids, which may allow them to learn about a specific

phone’s value.

To explore this endogenous learning, we perform median splits of the data on

a number of dimensions which might convey information during the auction, such

as the interim price, the number of bids per bidder and the average increments

between consecutive bids. We then study if median splits along these variables

explain variation in the final price. Before performing the median splits, we regress

the final price on a number of observable characteristics, such as the (exogenously

set) length of the auction, the reserve price, the number of bids and the number

of bidders, as well as the review count of the seller. By extracting the residuals

obtained from these regressions, we factor out all variation that can be explained

by these observable exogenous characteristics.43

In Figure 5, we plot the average residual for cellphones above and below the

median for each of the three different splits of the data. First, we split the auctions

based on the price of the cellphone when half of the total length of the auction

elapsed. Second, we perform a split based on the average increment per bidder

(given by the price at the end less the reserve price, divided by the number of bids

submitted). This captures the degree of jump bidding observed. Third, we split

on the number of bids per bidder.

We observe that the average residuals of the iPhones are different depending

on which half of the data they are categorized in. The effects are also quite sizable,

43The described pattern is also found when directly comparing prices across the same median
splits.
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Figure 5: Residuals obtained from regressions of final price

as the average price of the phones is $425.8, standard deviation of $175.8. This

implies that there is systematic variation in the prices of these phones which cannot

be explained by the observable exogenous characteristics. Instead, this residual

variation can be explained by the categories we perform the median split by, and

these variables may capture information generated endogenously in the auction.

This indicates that information revelation might matter.

Crucially, this type of observational data cannot be used to establish unam-

biguously that information revelation is taking place and what effect revealing

information has. First of all, the direction of causality is not clear (e.g., are ex-

pensive phones attracting many bids, or do many bids increase the price?). More

importantly, we cannot evaluate what information is processed without observing

bidders’ information sets and the underlying value of the good to be sold. Also,

we are unable to determine the impact of information without providing a control

condition where no information is being revealed. However, this is possible in our

laboratory experiment.

A.2 Revenue predictions for different parameterizations

In the choice of parameterizing the mean and variances of the values and signals

for this experiment, we simulated revenues of the AV and the JEA to generate

predictions of the symmetric Nash equilibrium. In Table 6, we report results

of these simulations. For each parameterization, we draw 50,000 sets of signals
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according to the procedures of the draws for the experiment, then calculate average

revenues based on all simulated bids. In Table 6, RAV are revenues in the AV,

RJEA are revenues in the JEA. We simulate different parameterizations, for the

full set of parameters (µ, σV , σε), which is the mean µ and standard deviation

σV of the value distribution as well as the standard deviation σε of the error

distribution. Within each parameterization, we give mean revenues in the first

row, and the standard deviation of the revenue in the second row. From the

Table, it is clear that revenue differences of the Nash equilibrium are quite small

across specifications. Theoretical revenue differences for uniformly distributed

values and errors are similarly low, the case studied by the previous literature.

Table 6: Revenue Nash predictions with varying parameters

(µ, σV , σε) RAV RJEA

(50, 10, 12)
Mean 48.3555 48.7510
Standard deviation (8.3056) (8.6844)

(100, 10, 12)
Mean 98.3877 98.7540
Standard deviation (8.4207) (8.8667)

(100, 10, 30)
Mean 98.3874 98.5852
Standard deviation (5.3808) (6.0436)

(100, 20, 20)
Mean 96.9314 97.6790
Standard deviation (17.6035) (18.2750)

(100, 20, 30)
Mean 96.5708 97.4156
Standard deviation (15.1637) (6.0436)

(100, 20, 40)
Mean 96.1720 97.2063
Standard deviation (12.7600) (12.4809)

(100, 30, 20)
Mean 96.6016 97.5939
Standard deviation (26.8225) (27.2350)

(100, 30, 30)
Mean 95.4797 96.9314
Standard deviation (23.5650) (24.1363)

(100, 40, 40)
Mean 92.9095 95.5161
Standard deviation (26.4453) (26.4859)

(200, 40, 40)
Mean 194.1535 195.6345
Standard deviation (35.1111) (36.3651)

Additionally, we calculated revenue differences for varying numbers of bid-

ders. In Table 7, for the paramaterization used in this experiment, (µ, σV , σε) =

(100, 25, 35), we state Nash equilibrium revenue differences for different numbers

of bidders. Evidently, theoretical revenue differences between treatments are not

driven by the size of our auctions.
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Table 7: Revenue predictions varying number of bidders, (µ, σV , σε) = (100, 25, 35)

Number of bidders RAV RJEA

3
Mean 93.4861 94.2020
SD (18.0011) (18.2828)

5
Mean 95.6073 96.9290
SD (18.2036) (18.9653)

7
Mean 96.1953 97.7570
SD (18.1058) (19.0956)

9
Mean 96.6706 98.4264
SD (17.7684) (18.8915)

11
Mean 96.6956 98.5875
SD (17.6533) (18.7593)

A.3 Näıve models

In this section we discuss some behavioral models that have been discussed in the

literature, to explain observed behavior in the AV and the JEA. In the AV, there

are two principal behavioral models which might capture bidding behavior. First

is the “bid signal”-heuristic, according to which bidders might just enter a bid

equal to their own signal:

b(Si) = Si

In expectation, this will result in overbidding of the winning bidder, as the bidder

neither includes information on the distribution of signals and values nor considers

the informativeness of winning.

Second, somewhat more sophisticated bidders will incorporate information

about the prior distribution of the value. In the “Bayesian bid signal”-heuristic,

bidders still suffer from the Winner’s curse, but bid the expected value of the good

for sale, conditional on one’s signal, as in Goeree and Offerman (2003b):44

b(Si) = E[V |Si] = Si − E[εi|Si]

To explain behavior in the JEA, Levin et al. (1996) propose a “signal averaging

rule”, according to which bidders bid an equally weighted average of their own

signal and the signals of their fellow bidders, revealed from the previous dropouts.

This rule incorporates revealed information in a natural way.

44Within the setup of our experiment, we can use that εi|Si ∼ N
(
σ2
ε (Si−µ)

σ2
ε+σ2

V
,
σ2
εσ

2
V

σ2
ε+σ2

V

)
. As

derived in Goeree and Offerman (2003b): b(Si) =
σ2
V Si+σ

2
εµ

σ2
V +σ2

ε
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Close to the bid-signal heuristic is the “symmetric signal averaging rule”, in-

troduced by Levin et al. (1996). Here, all bidders assume that all other bidders

follow this rule as well. After k bidders dropped out, with the vector of revealed

signals being Sj, this implies the following bid:

bk(Si,Sj) =
1

k + 1
Si +

1

k + 1

k∑
j=1

Sj

This formulation can be rewritten to only depend on the last dropout price, for

the vector of previous dropout prices pk, pj being the j-th observed dropout:

bk(Si,pk) = Si +
k

k + 1
pk

A variant of this rule is the “asymmetric signal averaging rule”, according to which

bidders assume that other dropouts are based on the heuristic of bidding equal

to signal. This would enable bidders to more easily include others’ information.

Additionally, it appears to be an intuitive rule given the information salient in the

auction process. If bidders follow the asymmetric signal averaging rule, with pj

being the j-th dropout, bids are given by:

bk(Si,pk) =
1

k + 1
Si +

1

k + 1

k∑
j=1

pj

Similar to the “Bayesian bid signal” heuristic, signal averaging rules can also

incorporate information about the prior. According to the “Bayesian signal aver-

aging rule”, bidders apply Bayes rule in combination with the symmetric signal

averaging rule. In this case, after k observed dropouts, bidder i calculates the

average of available signals S̄ = 1
k+1

Si + 1
k+1

∑k
j=1 Sj:

b(S̄) =
σ2
V S̄ + σ2

εµ

σ2
V + σ2

ε

While it is unlikely that a bidder that is sophisticated enough to apply Bayes

rule correctly would rely on a signal averaging rule, Bayesian signal averaging is

most of all useful in anchoring bidding to the prior, compared to standard signal

averaging. Even if Bayes rule in itself is too sophisticated, it is also unlikely that

bidders rely purely on averaging available signals and fully ignoring all information

on the prior distribution of values.
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B Online Appendix to “Why are open ascending

auctions popular?”

The remaining Appendix is intended for online publication. We present cursed

equilibrium for the JEA and show the results for a horse race between different

models in the AV and the JEA. We also present some robustness checks of the

analyses in the main paper.

B.1 Cursed equilibrium in the JEA

As shown by Eyster and Rabin (2005), the expected payoffs from winning in the

χ-virtual common value auction is given by:

π(V, p) = (1− χ)V + χE[V |Xi = Si]− p

for price p, compared to winners’ payoff in Nash equilibrium of π(V, p) = V −p. We

continue to analyze a game where χ is homogeneous across participants, as well as

during the auction. This implies bidder’s cursedness is not affected by observing

other’s bids. From Milgrom and Weber (1982), we know that a symmetric Bayes

Nash equilibrium in the JEA is given by

bk(Si) = E[V |Xi = Si, Y(1) = Si, . . . , Y(5−k−1) = Si, p1 = b0

(
Y(4)

)
, . . .

. . . , pk = bk−1

(
Y(5−k)

)
]

This conditional expected value in a χ-virtual game is equal to

E
[
(1− χ)V + χE[V |Xi = Si]

∣∣∣Xi = Si, Y(1) = Si, . . . , Y(5−k−1) = Si, p1 = b0

(
Y(4)

)
, . . .

. . . , pk = bk−1

(
Y(5−k)

) ]
= (1− χ)E[V |Xi = Si, Y(1) = Si, . . . , Y(5−k−1) = Si, p1 = b0

(
Y(4)

)
, . . . , pk = bk−1

(
Y(5−k)

)
]

+ χE[V |Xi = Si]

As Milgrom and Weber (1982) have shown that bk(Si) is a Nash equilibrium in

the original game, the expression above is a symmetric cursed equilibrium in a

χ-virtual game, for χ ∈ [0, 1].

To employ cursed equilibrium, we need to estimate the additional parameter

χ. This also provides a measure of the cursedness of our subjects.
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We estimate for the AV:

b(Si) =

(
Si −

∫∞
−∞ εφV (Si − ε)φ2

ε(ε)Φ
3
ε(ε) dε∫∞

−∞ φV (Si − ε)φ2
ε(ε)Φ

3
ε(ε) dε

)
︸ ︷︷ ︸

=x1

+

+ χ

(
σ2
εSi + σ2

εµ

σ2
V + σ2

ε

+

∫∞
−∞ εφV (Si − ε)φ2

ε(ε)Φ
3
ε(ε) dε∫∞

−∞ φV (Si − ε)φ2
ε(ε)Φ

3
ε(ε) dε

)
︸ ︷︷ ︸

=x2

We simulate all terms using bidders’ signals and then regress bids using OLS:

b(Si) = β1x1 + β2x2

In a constrained regression, we impose no constant and β1 = 1. Then, β2 = χ.

For the JEA, we proceed similarly. We first simulate Nash equilibrium bids, based

on the inference of observed dropouts.45 We also use OLS to estimate χ in the

following equation:

bk(Si) =
5S̄σ2

V + µσ2
ε

5σ2
V + σ2

ε︸ ︷︷ ︸
=x1

+χ

(
σ2
V Si + σ2

εµ

σ2
V + σ2

ε

− 5S̄σ2
V + µσ2

ε

5σ2
V + σ2

ε

)
︸ ︷︷ ︸

=x2

We regress dropout prices on x1, x2:

bk(Si) = β1x1 + β2x2

Again using constrained regression with no constant and β1 = 1, we obtain β2 = χ.

In Table 8, we summarize the regression results. We estimate χ once for all pooled

data and once for the fourth dropouts in (2) and (4), respectively.

The coefficient on x2 is χ̂, which turns out to be low in our sample. Recall

that χ = 0 corresponds to Nash equilibrium bidding, thus our bidding behavior

appears to be close to this benchmark judged by the cursedness of the participant

pool.

45Note that we do not use the theoretical, unobserved signals other bidders hold for simu-
lations. These predictions differ from the Nash equilibrium predictions by not incorporating
realized dropout prices, but these do require inferences bidders are not able to make given the
observed dropouts in the laboratory.
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Table 8: Estimating χ

(1) (2) (3) (4)
AV AV, d4 JEA JEA, d4

x1 1.000 1.000 1.000 1.000
(.) (.) (.) (.)

x2 = χ̂ 0.058 0.985∗∗∗ -0.137∗∗ 0.186∗∗∗

(0.058) (0.072) (0.059) (0.041)

Observations 2417 598 2453 599
Estimation OLS OLS OLS OLS
Notes: Standard errors in parentheses and clustered at the match-
ing group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

B.2 Horse race between models

To understand how bidding behavior can be characterized, we analyze how well

individual bids can be predicted by the available models. For each bid in each

round and based on the available information, such as the signals and observed

dropouts, we simulate all models described previously. Then, we calculate the

distance between each of the bids and all theoretical predictions, using the squared

difference. Denote δi,b,k the distance of bid b by bidder i, compared to model k.

di,j,g,t is the observed dropout price of bidder i in group g in round t46, dropping

out at order j. dki,j,g,t is the theoretically predicted dropout price by model k for

this bid. The distance δi,b,k is given by:

δi,b,k =
(
di,j,g,t − dki,j,g,t

)2

After calculating each of the distances for all bids and models, we can determine

which model fits individual bids best. Then, we calculate the average distance of

all models across all bids. In other words, as a measure of fit, we state the mean

squared error in predicting bids for each model.

To allow for a comparison of the size of the error, we also provide a benchmark

linear rule.47 For this, we run regressions which use the identical available infor-

mation as the models, which is the bidder’s signal and dropouts in case they are

observable. We then state the mean squared error of this prediction. By design,

this minimizes this error within the class of linear models, which nests all models

which are competing in this analysis.

In our analysis, we distinguish bids by dropout order. The first dropout order

are all bidders who drop out first in an auction, and so forth. Note that the fourth

46Here, we only consider bidders who actively choose to drop out.
47Note that all models are in fact linear models. Derivations are available on request.
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dropout order is the most interesting, as this is based on the bids which determine

the auction revenue.

Horse race for the AV

We start by comparing bidding behavior in the AV to the benchmarks. At this

stage, we consider four models. We compare the Nash equilibrium benchmark

and three näıve models: i) bidders exactly bid their signal, ii) Bayesian bid signal,

where bidders suffer from the winner’s curse, but do take the base rate into ac-

count, as in Goeree and Offerman (2003b), and iii) bidders in cursed equilibrium

as proposed by Eyster and Rabin (2005), with an estimated χ̂ = .0578. Next to

it, we provide the mean squared error of the linear benchmark at each dropout

order, where only the private information signal is observable by bidders.

Figure 6: Mean squared error of model predictions in the AV

The first key insight is the fact that bidding behavior at early dropout orders

is substantially less well predicted, as the mean squared error of the benchmark is

much larger for early dropout orders than for late dropout orders. This decrease in

the error in dropout orders also holds for most other models considered. Second,

especially for the later dropouts, Bayesian bid signal shows the lowest error, and

comes very close to the benchmark prediction error.
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Horse race for the JEA

We now continue this analysis for the JEA, using the identical classification pro-

cedure. We incorporate all models tested above.48 Additionally, information rev-

elation allows us to evaluate näıve models where bidders incorporate others’ bids.

For this, we test three signal averaging rules. In these rules, bidders are bidding

the average of all signals available, both the private information signal as well as

signals inferred from opponents’ bidding behavior. The symmetric signal averag-

ing rule, originally introduced by Levin et al. (1996), uses that bidders assume

that also their opponents apply such a signal averaging rule. The Bayesian sig-

nal averaging rule is additionally applying information on the prior, similar to

the difference between bid signal and Bayesian bid signal-rules for second-price

auctions. The asymmetric signal averaging rule assumes that other bidders bid

their signal, thus allows for straightforward computations. For the JEA, the best

linear approximation incorporates all bids at earlier dropout orders, as these are

observable when deciding on a bid.

Figure 7: Mean squared error of model predictions in the JEA

The main pattern observed in the AV carries over to the JEA: later bids can

and in fact are predicted more precisely. Compared to the AV, the prediction

error is much lower in the JEA at late dropout orders, suggesting that bidding

behavior is more predictable at this point (e.g., the best linear approximation for

the fourth dropout shows a mean squared error of 189.5 in the AV and 96.1 in the

48For this auction format, we estimate χ̂ = −0.137.
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JEA). At early dropout orders, there is however more noise in the JEA than in

the AV. This might complicate matters for remaining bidders trying to estimate

the value based on this revealed information in the JEA.

Interestingly, Nash equilibrium fits bidding behavior quite well, when compar-

ing the mean squared error to the benchmark error of the regression.49 Within

the signal averaging rules, the Bayesian signal averaging rule performs best. Note

that all signal averaging rules imply low intercepts in the linear bidding model,

and we have presented evidence for substantial intercepts in the main text. This

contributes to the high errors found for all signal-averaging rules.

B.2.1 Bid classification tables

Below are tables showing distances to predictions based on observed bidding, by

dropout order.

49Note that the simulated Nash equilibrium bids, as well as all other models incorporating
observed dropouts, are based on inverting observed bids to retrieve the underlying signal. To
do so, these rules make assumptions about how other bidders form their bids. This often leads
to inferences about other bidders’ signals which are incorrect, as other bidders did not, in fact,
bid exactly as predicted by these models.
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Table 9: Classifying bids into models
AV JEA

First dropout

Nash 2321.8 1675.4
Bid signal 3718.3 3339.3
Bayesian bid signal 3763.3 3114.3
χ cursed 2372.2 1590.5
Sym. signal average 3316.7
Asym. signal average 3316.7
Bay. signal average 3106.6

Best linear approx. 1004.0 1489.3

Second dropout

Nash 602.3 474.7
Bid signal 1261.3 1202.6
Bayesian bid signal 978.8 850.3
χ cursed 597.6 488.2
Sym. signal average 722.3
Asym. signal average 722.9
Bay. signal average 505.6

Best linear approx. 465.9 473.5

AV JEA

Third dropout

Nash 356.3 225.8
Bid signal 807.5 952.6
Bayesian bid signal 298.1 398.6
χ cursed 333.3 248.1
Sym. signal average 307.8
Asym. signal average 575.2
Bay. signal average 200.3

Best linear approx. 212.2 163.9

Fourth dropout

Nash 431.5 159.3
Bid signal 717.7 869.7
Bayesian bid signal 190.3 313.5
χ cursed 404.0 176.4
Sym. signal average 331.6
Asym. signal average 567.4
Bay. signal average 335.6

Best linear approx. 189.5 96.1

Note: Average distance of observed bids to all considered models, by auction format and dropout order.
Distances are squared distance from observed bid to bid predicted by each model. The best fitting
model’s distance is in bold, models within 10% of the best model’s fit are italicized.

B.3 Learning effects

Information revelation in auctions potentially affects how bidders learn over time.

In open auctions, this learning might also take place during the auction itself, and

before information is revealed in sealed bid auctions, at the end of an auction.

In Figure 8, we plot the evolution of the winning bidders’ profits over rounds,

by auction format.

Figure 8: Evolution of profits over rounds by auction format

There is learning in the sense that profits increase over rounds. However, there

are no meaningful differences in the evolution of profits between the JEA and the
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AV, learning in the OO is strongest in the sense of increases in profits over time.

As we discuss in the main text, our results on revenue continue to hold in our

auction data separately both in the first and last 15 rounds.

B.4 Estimations with experienced bidders

In the following, we present results of repeating estimations we report in the main

text when only using the second half of our data, rounds 16 to 30.

In Table 3 in the main text, we study how available information correlates with

bids. Table 10 repeats this anaylsis for rounds 16-30.

Table 10: Bidders’ use of information in JEA
(1) (2) (3) (4) (5) (6) (7) (8) (9)

di,1,g,t di,2,g,t di,3,g,t di,4,g,t Vg,t B̂R

Observed Observed Observed Observed Nash SA BSA

si,t 0.329∗∗∗ 0.274∗∗∗ 0.179∗∗∗ 0.149∗∗∗ 0.287 0.250 0.168 0.232∗∗∗ 0.290∗∗∗

(0.078) (0.057) (0.047) (0.035) (0.000) (0.000) (0.000) (0.040) (0.001)

d1,g,t 0.341∗∗∗ 0.038 0.029∗ 0.100 0 0 -0.010 0.017∗∗∗

(0.063) (0.026) (0.015) (.) (.) (.) (0.035) (0.005)

d2,g,t 0.537∗∗∗ -0.010 0.167 0 0 -0.011 0.047∗∗∗

(0.089) (0.019) (.) (.) (.) (0.057) (0.008)

d3,g,t 0.641∗∗∗ 0.333 0.750 0.832 0.302∗∗∗ 0.143∗∗∗

(0.088) (.) (.) (.) (0.085) (0.009)

Round -0.592 0.201 0.288 -0.063 0.379∗ -0.041∗∗∗

(0.522) (0.423) (0.163) (0.140) (0.187) (0.007)

Constant 35.745∗ 34.694∗∗∗ 23.235∗∗∗ 26.580∗∗∗ 11.265 0 0 41.700∗∗∗ 50.207∗∗∗

(17.143) (10.104) (5.317) (4.495) (.) (.) (.) (6.651) (0.597)

Observations 300 300 300 300 300 300
Adj. R2 0.167 0.394 0.751 0.833 0.370 0.988
Rounds 16-30 16-30 16-30 16-30 16-30 16-30
Estimation FE FE FE FE OLS OLS

Notes: dj,g,t: dropout at order j in group g and round t; Vg,t: common value; si,t: signal of bidder i. (1) to (4) are fixed effects estimates
(within estimation) of information use. Dependent variables are dropouts at each order, e.g. (1) are all bidders dropping out first in an
auction. Regressors are the available information at each dropout. (5) to (7) show how information is used in three canonical models,
only for the fourth dropout. SA refers to the signal averaging-rule, BSA to the Bayesian signal averaging-rule. Note that these show
how bids respond to earlier bids, where these bids are also calculated to follow the theoretical models. (8) shows how the price-setting
bidder would have to use information to predict the common value after observing three dropouts. (9) shows how the bidder dropping
out fourth would weigh information in an empirical best response. We provide adjusted R2 of the original within-estimated model, as
well as from estimating standard OLS where we include subject-specific absorbing indicators. The latter also includes fit obtained from
subject fixed effects. Standard errors in parentheses, clustered at the matching group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Across dropout orders, bidders appear to rely relatively less on public dropouts,

and relatively more on their own private signal in late rounds. (8) shows that ob-

served bids are more informative in late rounds than in the full data set. However,

bidders still rely too strongly on the observed dropouts than what the empirical
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best response in (9) suggests.

In Table 4, we study whether separately elicited characteristics of subjects

correlate with the fixed effect we estimate from bidders’ information use. Table

11 repeats this with experienced bidders.

Point estimates are comparable to the analysis with the full data set in the main

text. There are some estimates with larger standard errors, e.g. we cannot reject

anymore that there is no interaction effect for SVO in the JEA. Note however that

by restricting the dataset to the last 15 rounds, we will estimate the fixed effects

much less precisely, as we on average only have 3 observations per individual to

estimate those. In addition, for one bidder for d1 & d2, as well as for five bidders for

d3 & d4, we cannot obtain a fixed effect any longer, as we don’t have observations

at these dropout orders for these bidders.

Table 11: Bidder fixed effects and their characteristics
Average bidder fixed effect

d1 & d2 d3 & d4

JEA 7.100∗ (3.528) 1.534 (2.181)
SVO 0.110∗∗ (0.041) 0.100∗∗ (0.032)
JEA × SVO -0.331 (0.200) 0.017 (0.042)
Imitator 4.469 (3.509) 3.014 (1.936)
JEA × Imitator -5.555 (8.085) 0.165 (2.693)
Constant 0.894 (1.767) -4.797∗∗∗ (1.239)

Observations 89 85
Estimation OLS OLS

Notes: Average fixed effects from regressing bids on available infor-
mation for first and second vs. third and fourth dropout; pooling data
from the AV and the JEA. SVO is a subject’s social value orientation,
in degrees. Imitator is a dummy variable equal one if a subject chose
to retrieve social information when this contains no valuable informa-
tion on the true state. Standard errors in parentheses, clustered at the
matching group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In Figure 4 in the main text we plot squared distances from the value to the

prices in the auction and to some benchmarks, respectively. In Figure 9, we show

this based on auction rounds 16 to 30. We observe some learning, as distances

decrease compared to the analysis in the main text. This is strongest for the OO,

where distances move closer to the no information benchmark, and bids in the

empirical best response reveal more information than they do in the JEA.
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Figure 9: Squared distance to common value, rounds 16 to 30
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In Table 5 in the main text, we investigate the effect of jump bids. In Table

12, we repeat this analysis for rounds 16 to 30. Effects of jump bidding appear

to be somewhat more pronounced in the second half of the data. In particular,

we now estimate a significant negative effect of jump bids on winners’ profits,

suggesting that jump bidding is an even less profitable strategy after bidders gained

experience.

Table 12: Effect of jump bids in the OO, rounds 16-30

(1) (2) (3) (4)
Mean Winners’

Jump bid Pr(win) earnings profits

Jump bid (IV) 0.226∗∗∗ -0.058∗∗∗ -0.131∗∗∗

(0.055) (0.018) (0.039)

si,t 0.331∗∗∗ 0.199∗∗∗ -0.004 -0.111∗∗∗

(0.034) (0.045) (0.011) (0.029)

t 0.122 0.083∗ 0.526∗∗

(0.310) (0.045) (0.264)

Vg,t 0.144∗∗∗ 0.716∗∗∗

(0.023) (0.105)

Constant 26.054∗∗ -15.425∗∗∗ -12.948∗∗∗ -64.111∗∗∗

(10.474) (3.963) (2.334) (10.498)

Observations 703 703 703 153
Estimation OLS 2SLS 2SLS 2SLS
Notes: Jump bid is the increment of a bid beyond the current price at the
moment the bid was submitted. In 2SLS, we instrument the total jump bid per
bidder with the jump bid at a price of 0. si,t is the submitting bidder’s signal
in round t. Vg,t represents the common value. Standard errors in parentheses,
clustered at the matching group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

B.5 Information usage in the AV and the JEA

In Section 6.2, we describe an empirical best response B̂R in the JEA. It relies on

estimated signals. Table 13 shows results of regressing signals on bids, which we

in turn use to predict signals based on observable bids, where sj,g,t refers to the
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signal of the bidder dropping out in j-th order in group g, round t, and ŝj,g,t refers

to the predicted signal of the bidder dropping out in j-th order.

Table 13: Predicting signals with observed bids

(1) (2) (3)
s1,g,t s2,g,t s3,g,t

dj,g,t 0.205∗∗ 0.567∗∗∗ 1.009∗∗∗

(0.064) (0.089) (0.087)

ŝ1,g,t 0.048 0.081
(0.191) (0.226)

ŝ2,g,t -0.147
(0.140)

t 0.270 0.177 0.166
(0.202) (0.175) (0.140)

Constant 68.089∗∗∗ 33.977∗∗ 5.797
(4.111) (11.964) (13.079)

Observations 600 600 600
Adjusted R2 0.031 0.213 0.342
Rounds 1-30 1-30 1-30
Estimation OLS OLS OLS
Session FE Yes Yes Yes
Notes: Standard errors in parentheses and clustered at the match-
ing group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In Table 14, we show estimation results of regressing dropouts on information

using fixed effects estimation, pooling data from the AV and the JEA. Note that as

signals are correlated in this experiment, some correlation in bids are also expected

in the AV, even though dropouts are not observable. In Table 14, this explains

why when regressing di,j,g,t on dj−1,g,t yields significant positive coefficients.

To establish that information is being incorporated, we can interact the avail-

able information with treatment dummies. In Table 14, we confirm that observed

dropouts are more strongly correlated with bids in the JEA than in the AV, as

the interaction effects for the just preceding dropout are positive and significant.

This suggests that revealing information actively influences bidding behavior.

11



Table 14: Comparing information use in the AV and the JEA

di,1,g,t di,2,g,t di,3,g,t di,4,g,t

si,t 0.247∗∗∗ 0.297∗∗∗ 0.242∗∗∗ 0.227∗∗∗

(0.0457) (0.0216) (0.0224) (0.0298)

d1,g,t 0.285∗∗∗ -0.00113 -0.0141
(0.0309) (0.0172) (0.0209)

d2,g,t 0.357∗∗∗ -0.0114
(0.0319) (0.0317)

d3,g,t 0.465∗∗∗

(0.0440)

Round -0.498∗∗∗ -0.0381 -0.126∗∗ -0.174∗∗∗

(0.155) (0.0872) (0.0596) (0.0341)

JEA × si,t 0.0464 -0.0296 -0.0704∗ -0.109∗∗∗

(0.0718) (0.0398) (0.0342) (0.0336)

JEA × d1,g,t 0.0871∗ 0.0244 0.0392
(0.0463) (0.0243) (0.0253)

JEA × d2,g,t 0.195∗∗∗ -0.0271
(0.0533) (0.0479)

JEA × d3,g,t 0.244∗∗∗

(0.0827)

JEA × Round 0.181 -0.0844 0.0433 0.0991∗∗

(0.315) (0.141) (0.0937) (0.0455)

Constant 32.09∗∗∗ 38.94∗∗∗ 37.14∗∗∗ 33.30∗∗∗

(4.573) (1.653) (1.969) (2.440)

Observations 1199 1199 1199 1199
Adjusted R2 0.135 0.502 0.732 0.777
Estimation FE FE FE FE

Notes: Standard errors in parentheses and clustered at the match-
ing group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

B.6 Informational impact of dropouts

In this section, we investigate the informational impact of earlier bids on subse-

quent bids. To do so, we first regress bids, by dropout order, on public information,

and then predict residuals. As this estimation by design excludes all private in-

formation, for example a bidder’s signal or bidders’ idiosyncratic characteristics,

this variation will be captured in the residual. Below, we reproduce the estimation

used to predict residuals, we do use matching group fixed effects in this estimation.
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Table 15: Residual estimations
di,1,g,t di,2,g,t di,3,g,t

d1,g,t 0.477∗∗∗ 0.0221∗∗

(0.0385) (0.00955)

d2,g,t 0.665∗∗∗

(0.0435)

Round -0.555 -0.148 -0.0479
(0.318) (0.108) (0.0949)

Constant 77.19∗∗∗ 60.20∗∗∗ 36.93∗∗∗

(4.930) (2.747) (4.435)

Observations 600 600 600
Adjusted R2 0.113 0.419 0.698
Fixed effects matching group matching group matching group
Estimation OLS OLS OLS
Notes: Standard errors in parentheses and clustered at the match-
ing group level, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We then regress dropouts at later dropout orders on these residuals, results

are reported in Table 16. Doing so, we can estimate the impact of information

revealed in earlier bids on later bids, where we isolate the information contribution

of each observed bid. For comparison, we repeat this exercise for Nash equilibrium

and the Bayesian signal-averaging rule.50

In (1) to (3), we observe that the effect of a bidder’s private information,

captured by si,t is less than the public information, revealed through the dropouts.

As in the analysis in the main text, we see that the just preceding dropout carries

most weight in explaining bidding behavior. This does not lend support to bidders

suffering from a strong correlation neglect, as we would expect higher coefficients

on the impact of earlier residuals in that case (e.g., on e1,g,t). Similarly, bidders’

private information, si,t, is weighted less than in the benchmarks.

50In predicting corresponding residuals, we do not use matching group fixed effects nor do
we control for round. For this estimation, note that the residuals are obtained from regressing
simulated bids on simulated bids.
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B.7 Explaining heterogeneity in bidding

In Section 6.3, we study correlations of bidders’ fixed effect with their separately

elicited characteristics. A potential concern of this analysis is that these fixed

effects are themselves estimated, and some might be more noisily estimated than

others. To account for this, we study whether the results presented in the main

text are robust to using Weighted Least Squares instead of OLS, where the weights

are given by the inverse of the average variance of the estimate of each bidders’

(averaged) fixed effect. This procedure ensures that particularly noisy fixed effects

receive less weight in the regression. We present results in Table 17.

Table 17: Bidder fixed effects and their characteristics
Average bidder fixed effect

d1 & d2 d3 & d4

JEA 7.188∗∗∗ (1.305) 3.733∗∗∗ (0.998)
SVO 0.118∗∗∗ (0.024) 0.007 (0.023)
JEA × SVO -0.349∗∗∗ (0.044) 0.013 (0.033)
Imitator 5.364∗∗∗ (1.030) 7.140∗∗∗ (0.967)
JEA × Imitator -0.524 (1.983) -5.906∗∗∗ (1.593)
Constant 0.492 (0.716) -4.631∗∗∗ (0.697)

Observations 90 90
Estimation WLS WLS

Notes: Average fixed effects from regressing bids on available information for
first and second vs. third and fourth dropout; pooling data from the AV and
the JEA. SVO is a subject’s social value orientation, in degrees. Imitator is a
dummy variable equal one if a subject chose to retrieve social information when
this contains no valuable information on the true state. We use weighted least
squares, with the weight given by the inverse average variance of the estimate
of the bidder fixed effect, averaged at d1 and d2, and at d3 and d4. Standard
errors in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We observe that the main insights presented in the main text carry over, e.g.

spite appears to be particularly important for early bidding in the JEA.

B.8 Bidding in oral outcry auctions

In the main text, we use median splits on bidders’ endowment effects to study

whether auction fever affects bidders with strong endowment effects more strongly.

For robustness, in Table 18 we present regression results of how the probability

to win an auction and the profit of the winning bidder depend on the bidder’s

exogenously measured inclination to succumb to the endowment effect. In (1), we

see that bidders suffering from a stronger endowment effect are not more often

winning auctions. In (2), we see that the winners’ total profits across all auctions
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decrease substantially and significantly in their endowment effect.

Table 18: Quasi-endowment effect in the OO

(1) (2)
Nr. of auctions won Winners’ profits

Endowment effect 0.352 (0.527) -31.998∗∗ (15.777)
Constant 6.026∗∗∗ (0.549) -76.154∗∗∗ (9.761)

Observations 39 39
Estimation OLS OLS

Notes: Robust standard errors in parentheses. As there are only 4 match-
ing groups where the endowment effect was elicited, we do not cluster stan-
dard errors in this regression (Cameron and Miller, 2015). ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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C Online Appendix: Additional descriptive statis-

tics

In this section, we provide some additional analyses of the data.

C.1 Questionnaire results

In the questionnaire, we offered several reasons why bidders behaved as they did,

asking participants how much they agree to a statement on a 7-point Likert scale.

Below is the mean and standard deviation of how much people agree with a

given statement. The scale is from 1 to 7, where 7 is fully agreeing, 4 is undecided.

Treatment Statement Mean SD

AV In auctions where I did not expect to win, I stayed in the
auction longer to increase the price paid by the winner.

2.72 1.96

JEA In auctions where I did not expect to win, I stayed in the
auction longer to increase the price paid by the winner.

3.64 2.03

AV In auction where I did not expect to win, I quit the auc-
tion sooner to decrease the price paid by the winner

2.98 2.00

JEA In auction where I did not expect to win, I quit the auc-
tion sooner to decrease the price paid by the winner

3.08 1.83

JEA When I observed other bidders leaving, I formed a more
precise guess of the value of the item.

4.82 1.76

JEA When I observed other bidders leaving, I also immediately
left the auction, as I relied on the other bidders’ guess of
the value.

3.79 1.85

OO All else being equal, I was more likely to enter a new bid
if I have been the standing bidder for longer.

3.21 1.76

OO All else being equal, I was willing to pay more for the
item if I have been the standing bidder for longer.

3.26 1.82

OO I tried to deter other bidders from bidding by entering a
bid much higher than the current price.

4 2.12

OO I tried to prevent other bidders from entering their desired
bid by entering a bid much higher than the current price.

4.36 1.94

OO I entered bids much higher than the current price because
I thought this would allow me to pay a lower price for the
item.

3.21 2.04

OO I entered bids much higher than the current price because
I was feeling impatient and wanted the auction to finish
sooner.

3.15 1.95

OO I entered bids much higher than the current price because
I was becoming annoyed by being overbid by other par-
ticipants.

3.26 2.11

OO I entered bids much higher than the current price because
it felt costly to decide on and enter new bids.

2.92 1.75

17



C.2 Circle test

We also elicited subjects’ social value orientation. It is given as an angle. 0◦

is purely selfish (6 self, 0 other), whereas 45◦ is splitting equally between self

and other (minimising inequality and maximising efficiency). Figure 10 gives a

histogram of observed choices.

Figure 10: Angle in circle test

C.3 Histograms of auction revenues

In Figure 11, we plot histograms of the revenues in all three auction formats as

well as a histogram of the common values drawn.
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Figure 11: Histograms of the drawn common values and revenues.
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D Online Appendix: Instructions and screen-

shots of the experimental interface

In the following, we reproduce the instructions for participants as well as examples

of the auction screens.

D.1 Experimental instructions

Page 1 Welcome!

Welcome to this experiment. Please read the following instructions carefully.

You will also receive a handout with a summary. There is a pen and paper

on your table, you can use these during the experiment. We ask that you do

not communicate with other people during the experiment. Please refrain from

verbally reacting to events that occur during the experiment. The use of mobile

phones is not allowed. If you have any questions, or need assistance of any kind,

at any time, please notify the experimenter with the CALL button on the wall to

your left, the experimenter will then assist you privately.

Your earnings will depend on your decisions and may depend on other partic-

ipants’ decisions. Your earnings will be paid to you privately in cash at the end

of today’s session. All your earnings will be denoted in points. At the end of the

experiment, each point that you earned will be exchanged for 25 eurocents.

Page 2 Decision and Payoffs

This experiment consists of 30 periods. In each period, you will be allocated

randomly to a new group of five participants. Therefore, in each period you will

be in a group with (most likely) different participants. You will never learn with

whom you are in a group. At the end of the experiment, five periods will be

randomly selected for payment. Your earnings will be the sum of the earnings in

these five periods.

Description of the situation and possible earnings

In each period, an auction will take place. In each auction, a product of

unknown value will be sold. In each period, you will be given a capital of 20 points.

Any profits or losses you make in this period will be added to or subtracted from

this capital.

Procedures

In each auction, each of the five participants (including you) can obtain the

product. First, every participant indicates that he or she is ready, and, as soon
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as all participants indicate so, there will be a countdown of three seconds, after

which the auction starts.

{JEA/AV: In the auction itself, the price will rise in increments of one point,

starting at a price of 0. This will be indicated with a thermometer, where the

level of the thermometer indicates the current price.

At any point while the price rises, you can decide to leave the auction. You do

so by clicking on the “EXIT” button, indicating that you are not willing to buy

the item and leave the auction for this period. For all remaining participants, the

auction continues.

The auction stops after four of the five participants have pushed the “EXIT”

button. The winner of the auction is the last participant remaining in the auction.

The price the winner has to pay to buy the product is determined by the level of the

thermometer when the fourth bidder has pushed the “EXIT” button. The price

level at this point is called SELLING PRICE. The winner obtains the product and

pays the SELLING PRICE. The earnings for the winner in the period are given by

the value of the product minus the SELLING PRICE. These earnings are added

to the capital of 20 points in this period. More details about how the value of the

product is determined will follow. All participants who exited the auction will not

obtain the product and will earn an amount equal to the capital of 20 points in

this period.

{AV ONLY: During the auction, you will not observe how many participants

remain in the auction. The price continues to rise as long as there are at least two

participants in the auction including yourself.}{JEA ONLY: During the auction,

you will be notified as soon as any other participant exits the auction. You will be

shown at which price this other bidder left the auction, and there will be a pause

of 4 seconds, in which the price will not be increasing. Afterwards, as long as there

are at least two participants remaining in the auction, the price rises again.}
In the unlikely case in which multiple participants quit at the same moment

and there is no bidder remaining in the auction afterwards, the program will

randomly choose the person buying the item from all participants who were the

last to exit and did so at the same time. The SELLING PRICE is then the level

of the thermometer where these participants simultaneously pressed the button.

At the end of each period, the SELLING PRICE paid by the buyer will be

shown to all participants within a group. The buyer will not literally receive a

product. In addition to the capital for the period, he or she will receive an amount

equal to the value of the product minus the selling price of the product (in points).

The previously unknown value of the good will then be revealed to all bidders, as
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well as their earnings in points in this period. Afterwards, you will be matched

with a new group of bidders and a new auction starts, with the same procedure.

Example: Suppose that the first 4 bidders who exit the auction do so at prices

40, 50, 70, 80. Further assume that the product’s value is 90 points. Then the

last remaining bidder in the auction will receive the product and pay 80 points.

His or her earnings from the auction will be 90-80=10, and the total earnings for

the period will be 10 + 20, where 20 is the capital of the period. All other bidders

will each earn the capital of 20 in that period.}
{OO: In the auction itself, participants will have the opportunity to enter

maximum bids. A maximum bid tells the computer how much you maximally

want to pay for the good. The computer will try to obtain the good as cheap

as possible on your behalf, and at a price that is no higher than your maximum

bid. If your maximum bid is the highest at some moment, then you are the

current standing bidder. The standing bidder at the end of the auction obtains

the product. This auction proceeds in bidding rounds in the following manner:

As soon as the auction starts, a 15 seconds countdown is initiated. Within

these 15 seconds, each bidder can submit a maximum bid that is zero or higher.

Whenever a maximum bid is submitted, the auction will be momentarily paused.

The bidder who submitted the highest maximum bid so far will be recognized as

the standing bidder. At the same time, the second highest maximum bid submitted

up to this point will be the CURRENT PRICE for the good. The CURRENT

PRICE will be displayed to all participants and a new bidding round immediately

starts. Again, a countdown of 15 seconds is initiated, and bidders can submit new

maximum bids. Any new maximum bid has to be higher than the CURRENT

PRICE. The current standing bidder is notified that he is the standing bidder.

He/she will only be able to submit a new maximum bid when he/she is no longer

the standing bidder.

This procedure will then be repeated. As soon as new maximum bids above the

CURRENT PRICE are submitted, there will be a brief pause, and afterwards a

new CURRENT PRICE and standing bidder will be declared. During the bidding

procedure, you will be able to see the last submitted maximum bid of each bidder

(if a bidder submitted at least one maximum bid). Only the maximum bid of

the current standing bidder is not revealed. Note that the bidder numbers do not

enable you to identify bidders, as groups change over periods and these numbers

are randomly reallocated.

Bidding will continue until no bidder in your group is willing to submit a

maximum bid higher than the CURRENT PRICE, and the countdown elapses.
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At the end of each period, so when a countdown elapses before any new bid is

submitted, the earnings of the bidders are calculated as follows: The winner of the

auction is the bidder who submitted the highest maximum bid, and he or she will

pay a price equal to the CURRENT PRICE when bidding stopped. The buyer

will not literally receive a product. He or she will receive an amount equal to the

value of the product minus the CURRENT PRICE of the product (in points).

This amount is added to the capital of 20 points in this period. All other bidders

earn an amount equal to the capital of 20 points. The previously unknown value

of the good will then be revealed to all bidders, as well as their earnings in points

in this period. Afterwards, you will be matched with a new group of bidders and a

new auction starts, with the same procedure. Notice that the winner of an auction

can make a gain or a loss. A loss occurs if the price paid is higher than the value.

Even though the final standing bidder pays a price equal to the second highest

maximum bid, such bid may be high and result in a high price.}
In total, there will be 30 periods, and five randomly determined periods will

be chosen to be paid out. Your earnings for the experiment will be equal to the

sum of your earnings in these 5 periods.

Page 3 Value of the product and signals

The value of the product is a random number which changes in each period.

You cannot learn anything about subsequent value draws from previously observed

values. Within the period the value is identical for all participants in the group.

At the time of bidding, this value is unknown to all participants. Instead, each

participant receives a signal which provides an imprecise indication of what the

value may be. In the following, we will describe how the values and signals are

determined in each period.

In each period, the value of the product will be randomly determined. The

value can be any round number between 0 and 200. The figure below clarifies how

frequently different values occur. You can see that values close to 100 occur most

often (the frequency is highest when the value on the horizontals axis equals 100).

Values below 100 occur as frequently as values above 100. Also, values below 50

occur as often as values above 150. You do not need to be familiar with such a

distribution to participate in this experiment, and you will see some typical value

draws on the next page.
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The signals

Each participant will receive a (different) signal of the value. This signal gives

a first indication of the value of the product in that period, although this is only

imprecise information. In particular, the signal is the sum of the value and an

error. The figure below shows how frequently different errors occur. You can see

that errors close to 0 occur most often, and that errors below 0 occur as frequently

as errors above 0.
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The error (most likely) differs for every participant. Therefore, each participant

in your group will (most likely) obtain a different signal of the value, even though

the value of the product is the same for everyone. Signals higher than the value

occur as frequently as signals lower than the value. Signals closer to the value are

more likely than signals further away from the value. In this experiment, you will

encounter only values and signals between 0 and 200.

Notice that each signal in a group is informative about the value of the product.

If other bidders let their bidding depend on their signal, then their bidding will

be informative about the value of the product.

Note that the signals will be newly determined in each period, therefore only

the signals of this period are helpful for you to determine the value of the product

for sale.

Payment

As mentioned before, out of the 30 periods, 5 will be randomly selected. You

will receive the sum of the points that you earned in each of the 5 selected periods.

In each period, every bidder receives a capital of 20 points. Then, any gains or

losses a participant made in this period’s auction are added to or subtracted from

the capital. Notice that the buyer in a period can make a gain but also a loss. If

the buyer pays a price higher than the value of the product, he or she makes a loss.

Just like a profit is automatically added to the capital, a loss will automatically

be subtracted.

Page 4 We will now illustrate in one particular example how the auction process

works. We emphasize that this is only an example, and that these numbers are
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not relevant for the real auctions in which you will participate afterwards.

Example

First, a value of the product is randomly determined, but not revealed to the

participants. In our example, this value will be 121. Then, based on the value

of 121, the signal for each participant will be drawn. The following signals are

drawn: one bidder receives a signal of 60, one bidder a signal of 87, one bidder a

signal of 126, one bidder a signal of 144 and the last bidder a signal of 175. Now

the auction starts. {JEA/AV: The thermometer starts at 0, and rises continuously

as soon as every participant indicated that he or she is ready and the countdown

is initiated.

As the thermometer rises, bidders may decide to press the “EXIT” button and

leave the auction. Imagine that the first participant exits at a price of 52, the

second participant at a price of 77 and the third participant quits at a price of

109. Now, there still remain two bidders in the auction. {IN JEA: Each time a

participant quits, all remaining participants will be notified about this, and will

receive information about the price at which this participant chose to exit.} The

thermometer will keep rising up to the point where the fourth bidder presses the

“EXIT” button, for example at a price of 115. Then, the last remaining bidder

buys the product at the selling price of 115. In this example, the product’s value

was 121 points. Therefore, the winner will earn 121-115=6 points in addition to

his or her capital in this period, hence 6 + 20 = 26 points in total, if the period is

selected for payment.} {OO: The countdown starts at 15 seconds, and is initiated

as soon as every participant indicated that he or she is ready. Then, imagine that

the first participant to enter a bid submits a maximum bid of 52. This bidder

becomes the new standing bidder. As so far only one maximum bid has been

submitted, the CURRENT PRICE will be 0, and this is shown to all bidders as

soon as the next bidding round commences. The countdown is reset and starts

immediately. Then, imagine a new maximum bid of 77 is submitted. As this is

the current highest maximum bid, this bidder becomes the new standing bidder.

The second highest maximum bid at this point is 52, and therefore 52 is the new

CURRENT PRICE. Bidding continues in this fashion until the countdown elapses.

For example, imagine that in the next rounds maximum bids of 109, 115 and 120

are, and in the next bidding round the countdown elapses. Then, the bidder who

submitted the highest maximum bid (i.e. the bidder who bid 120) will win the

auction. This bidder will pay the last CURRENT PRICE, which equals the second

highest maximum bid (115 in this example). In this example, the product’s value

was 121 points. Therefore, the winner will earn 121-115=6 points in addition of
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his or her capital in this period, if the period will be selected for payment.}

Page 6 Practice draws

Now, you have the opportunity to see how typically values and corresponding

signals are drawn. You can click on a button to draw new values and signals.

Then, you will be shown a value and set of signals drawn according to the same

procedure as those in the experiment. In the experiment, you will not be able to

observe the value draw, but instead you receive one of the imprecise signals of the

value. Five signals corresponding to this value are shown to you next to the value

draw. When you click on the button again, a new value and corresponding set of

signals will be drawn, you can repeat this as often as you like. Note that these

example values and signals are not informative about the draws you will actually

face in the experiment.

Figure 12: Screenshot of the practice draws from the instructions.

When you have tried a number of times, please continue to the practice ques-

tions on the next page.

D.2 Additional elicitations

For the last 14 sessions, we added two additional measures, elicited after the

auctions concluded. Below are instructions for both tasks.

D.2.1 Imitation, adapted from Goeree and Yariv (2015)

Part 2

In this part of the experiment, you make an individual decision. The amount

you earn depends only on your choices and your choices do not affect the earnings

of other participants.

Guessing the urn

In this task, you have to guess which one of two possible urns has been selected.

It is equally likely that you face a red or a blue urn. These urns contain red and

blue balls as follows:
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• Red urn: 7 red balls and 3 blue balls

• Blue urn: 7 blue balls and 3 red balls

Information

For your decision, you have to choose to receive one of two types of information:

• Draw: The color of one randomly selected ball drawn from your urn will be

shown to you.

• History: The choices of three participants from previous sessions of this

experiment will be revealed to you. These three participants faced the same

urn as you do, but did not receive any of the two types of information you

can choose between (neither Draw nor History).

Task

After you receive this information, you have to guess which of the two urns

has been selected.

Payoff

You will earn 4 points if you guess correctly which urn has been chosen.

When you continue, it will be randomly determined whether you face the red

or the blue urn. In the next screen, you first choose the type of information you

would like to receive, then you have to enter your guess which urn you are facing.

D.2.2 Circle test, adapted from Linde and Sonnemans (2012)

Part 3

For this part of the experiment, you have been matched with one other ran-

domly selected participant, called OTHER. Your subsequent decision will be

anonymous, no participant will know with whom they have been matched. In

the end, either your or OTHER’s decision will be implemented.

Choice

In this part you have to choose between combinations of earnings for yourself

and the OTHER. All possible combinations are represented on a circle. You can
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click on any point on the circle. Which point you choose determines how much

money you and the OTHER earn. You can enter this choice on the next page.

Earnings

The axes in the circle represent how much money you and the OTHER earn

when you choose a certain point on the circle. The horizontal axis shows how

much you earn: the more to the right, the more you will earn. The vertical

axis shows how much the OTHER will earn: the more to the top, the more the

OTHER earns. The distribution can also imply negative earnings for you and/or

the OTHER. Points on the circle left of the middle imply negative earnings for

you, points below the middle imply negative earnings for the OTHER. When you

click on a point on the circle the corresponding combination of earnings, in cents,

will be displayed in the table to the right of the circle. You can try different

points by clicking on the circle using your mouse. Your choice will only become

final when you click on the “send” button.

Payoff

The OTHER is presented with the same choice situation. At the end of the

experiment, either your decision or the decision of the OTHER will be paid. This

will be determined by a random draw, your decision is as likely to be chosen as

the decision of the OTHER. This draw is not affected by the choices you or others

make.

D.3 Screenshots of the interface

In the following, some screenshots of the screens of auction participants for all

three treatments:
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Figure 13: Screenshot from a ascending Vickrey auction.

Figure 14: Screenshot from a Japanese English auction.

Figure 15: Screenshot from an oral outcry auction.
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