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Abstract

In this paper, we develop a general method for heterogeneous variable selection in

Bayesian nonlinear panel data models. Heterogeneous variable selection refers to the

possibility that subsets of units are unaffected by certain variables. It may be present

in applications as diverse as health treatments, consumer choice-making, macroeco-

nomics, and operations research. Our method additionally allows for other forms of

cross-sectional heterogeneity. We consider a two-group approach for the model’s unit-

specific parameters: each unit-specific parameter is either equal to zero (heterogeneous

variable selection) or comes from a Dirichlet process (DP) mixture of multivariate

normals (other cross-sectional heterogeneity). We develop our approach for general

nonlinear panel data models, encompassing multinomial logit and probit models, pois-

son and negative binomial count models, exponential models, among many others. For

inference, we develop an efficient Bayesian MCMC sampler. In a Monte Carlo study,

we find that our approach is able to capture heterogeneous variable selection whereas

a “standard” DP mixture is not. In an empirical application, we find that accounting

for heterogeneous variable selection and non-normality of the continuous heterogeneity

leads to an improved in-sample and out-of-sample performance and interesting insights.

These findings illustrate the usefulness of our approach.

*In this paper we make use of data of the LISS (Longitudinal Internet Studies for the Social sciences) panel administered
by CentERdata (Tilburg University, The Netherlands).
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1. Introduction

Many panel datasets contain information on a large number of cross-sectional units with rel-

atively little information per unit. Such datasets contain too little information to accurately

estimate a separate model per unit: estimation inefficiency and overfitting would become

problematic. Performing variable selection at the unit-level is therefore not straightforward.

Instead, models are used that share information across units. To this end, unit-specific pa-

rameters in the model are often shrunk using an underlying population distribution shared

across units. Many such distributions have been proposed: continuous distributions such as

the multivariate normal or log-normal, finite mixtures of discrete or continuous distributions,

and ‘infinite’ mixtures using a Dirichlet process.

In practice, these distributions cannot sufficiently accommodate heterogeneous variable

selection on top of other cross-sectional heterogeneity. Heterogeneous variable selection refers

to the possibility that subsets of units may be unaffected by certain variables. This is relevant

for many applications. For example, in choice situations, groups of individuals may have no

preference for or may ignore a certain product attribute when making their decisions. In

macroeconomics, unemployment rates in different countries may be differentially affected

or unaffected by certain macroeconomic variables. In operations research, the interarrival

times of buses or the amount of garbage in bins could differentially depend or not depend

on variables as temperature, holidays, or traffic conditions.

We use the term variable selection to denote that some units assign no weight to certain

variables. Hence, variable selection is part of the data generating process. This is different

from the context where variable selection refers to a researcher determining which variables

should be selected in a model, also known as model selection. Instead of using variable

selection, other appropriate terms are variable importance or variable relevance to indicate

that for some units, certain variables may be unimportant or irrelevant.

While the literature on modeling heterogeneous responses is extensive, very few ap-

2



proaches have been proposed that accommodate heterogeneous variable selection. That

is, the underlying population distribution to which the unit-specific parameters are shrunk,

generally does not allow for groups of units to assign no weight to certain variables. Theoret-

ically, heterogeneous variable selection can be captured when the underlying distribution is

discrete, such as with a latent class approach. A discrete distribution allows the unit-specific

parameters to be equal to one of multiple multivariate discrete outcomes, of which some

outcomes may have certain parameters equal to zero. Practically, such a model is infeasible

as the discrete distribution would need 2K possible outcomes to capture all combinations of

variable selection, where K is the number of explanatory variables. If, additionally, richer

forms of heterogeneity should be allowed for, a multitude of these 2K outcomes is needed.1 In

models with continuous heterogeneity it is even more problematic to accommodate heteroge-

neous variable selection, as the continuous heterogeneity distribution cannot have substantial

mass at zero unless the variance of the distribution is very close to zero.

A number of papers have proposed approaches to accommodate heterogeneous variable

selection. They have done so for multivariate linear models (Kim et al., 2009, Tang et al.,

2020), multivariate binary probit models (Kim et al., 2018), and multinomial logit models

(Gilbride et al., 2006, Scarpa et al., 2009, Hensher and Greene, 2010 Hole, 2011, Campbell

et al., 2011, Hess et al., 2013, Hole et al., 2013, Collins et al., 2013, Hensher et al., 2013). Few

of these papers use a Bayesian approach (Gilbride et al., 2006, Kim et al., 2009, Kim et al.,

2018). The papers that use a frequentist approach have strong limitations: when allowing

for flexible forms of cross-sectional heterogeneity next to heterogeneous variable selection,

the developed models are susceptible to overfitting as the number of parameters quickly

grows large relative to the number of observations. Furthermore, the computation time for

estimation grows rapidly when the number of variables gets larger, due to the likelihood

function containing 2K terms and, in case of a continuous heterogeneity distribution, the

needed use of simulated maximum likelihood due to intractable integrals. Already when there

are more than four variables, these approaches can run into problems.2 To avoid overfitting,

1Alternatively, one could allow for the responses to the different variables to be independent, to avoid
needing at least 2K outcomes. However, this assumption of independence can be too strict.

2In Hensher et al. (2013) the problem of estimation time is explicitly stated in footnote 5: it took over
100 hours to estimate the parameters based on a dataset with 588 units, 16 observations per unit and 4
variables that were allowed to be ignored.
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Tang et al. (2020) use a penalization framework. They propose a linear model where each

unit-specific parameter comes from a univariate discrete distribution with multiple possible

outcomes of which one outcome is set to zero. The parameters of the discrete distributions

are estimated by optimizing a penalized objective function. The idea of their approach can

also be used for nonlinear models, but, in practice, the use of multiple univariate discrete

distributions is too limited to capture the possible rich forms of heterogeneous responses, for

example correlations across the responses to different variables.

The few papers that use a Bayesian approach also have their limitations. They are limited

in terms of the underlying parametric model: only techniques for heterogeneous variable

selection in the context of a multivariate linear, a multinomial logit, and a binary probit

model have been proposed. Furthermore, the form of cross-sectional heterogeneity including

heterogeneous variable selection is limited in these papers. Kim et al. (2018) let the unit-

specific parameters come from a categorical distribution that simultaneously incorporates

variable selection and other heterogeneity. Kim et al. (2009) follow a similar approach

but instead consider a categorical distribution with an ‘infinite’ number of outcomes using

a Dirichlet process prior. As with standard heterogeneous response models with discrete

heterogeneity, the main drawback of the approaches of Kim et al. (2018) and Kim et al.

(2009) is that the number of outcomes of the categorical distribution that is necessary to

capture all combinations of variable selection is exponential in the number of explanatory

variables. In practice, it is hard to find that many components.

A more parsimonious approach is developed in Gilbride et al. (2006), who let each unit-

specific parameter be either equal to zero or come from an underlying multivariate normal

distribution. However, this single multivariate normal distribution can be insufficient to de-

scribe the complex forms of unit-specific responses. Furthermore, the Markov chain Monte

Carlo (MCMC) sampler that Gilbride et al. (2006) propose for posterior results can be com-

putationally heavy when there are many variables, as in each MCMC iteration a likelihood

function with 2K terms has to be computed. Moreover, the MCMC sampler uses the prior

distribution as candidate for drawing the unit-specific parameters. In case the data is quite

informative, this candidate will have low acceptance rates and the sampler will have poor

mixing.
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In this paper, we generalize and improve the approach of Gilbride et al. (2006), thereby

contributing to the literature in three important ways: by (i) generalizing to nonlinear

models, (ii) substantially increasing the flexibility in the cross-sectional heterogeneity, and

(iii) developing an efficient Bayesian MCMC sampler that also works well for up to 50 or 100

explanatory variables. The increased flexibility is obtained by augmenting the heterogeneous

variable selection with an infinite mixture of multivariate normals using a Dirichlet process

(DP) prior

To be more precise, we develop a general method for heterogeneous variable selection in

Bayesian nonlinear panel data models. For the model’s unit-specific parameters we take a

two-group approach: each unit-specific parameter is either zero or comes from a DP mix-

ture of multivariate normals. In case of a single unit-specific parameter, such a two-group

approach is referred to as a spike-and-slab prior (Mitchell & Beauchamp, 1988) or as stochas-

tic search variable selection (SSVS) (George and McCulloch, 1993, George and McCulloch,

1997). We develop our approach for general nonlinear panel data models, encompassing

multinomial logit and probit models, poisson and negative binomial count models, expo-

nential models, among many others. The model is particularly useful in large N , small T

settings, but can also be incorporated in large T settings because of the flexibility of the DP

mixture.

We illustrate our approach with a Monte Carlo study and an empirical application. For

illustration, we consider a multinomial logit model (MNL) as this model is the focus of most

of the literature on heterogeneous variable selection. In the Monte Carlo study, we find

that with our approach we can capture both complex forms of continuous cross-sectional

heterogeneity — such as skewness and multimodality — as well as heterogeneous variable

selection. When using only a ‘standard’ DP mixture for the unit-specific parameters, we

find that heterogeneous variable selection cannot be accommodated. Instead of a spike

at zero, this approach generally allocates substantial probability mass to parameter values

in a relatively large interval around zero, depending on the shape of the true continuous

heterogeneity distribution.

In the empirical application, we consider responses to a discrete choice experiment on

food choices. We find substantial evidence of variable non-attendance and non-normality of
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the continuous heterogeneity. In particular, the continuous heterogeneity distribution seems

skewed. Hence, there seem to be quite some individuals that have strong preferences for

certain attributes, and quite some individuals that ignore certain attributes. These findings

indicate the usefulness of our approach in practice.

The setup of this paper is as follows. In Section 2, we discuss the related literature.

In Section 3, we develop our approach for general nonlinear panel data models. We also

provide the Bayesian MCMC sampler. In Sections 4 and 5, we discuss the results of our

model for a small Monte Carlo study and an empirical application, respectively. In Section

6, we conclude.

2. Related literature

An overview of papers that develop approaches to accommodate heterogeneous variable se-

lection in panel data models is given in Table 1. These papers mainly differ in (i) the type

of model they develop (logit, probit, linear, et cetera), (ii) how they incorporate heteroge-

neous variable selection, (iii) how they deal with cross-sectional heterogeneity other than

heterogeneous variable selection, and (iv) if and how they incorporate correlated variable

selection.

Table 1: Overview of papers that develop approaches to accommodate heterogeneous variable selection.

Paper Model Het. variable selection Additional cross-sectional heterogeneity Correlated selection∗

Frequentist

Scarpa et al. (2009) MNL Latent class Constant Partly correlated

Hensher & Green (2010) MNL Latent class Categorical Partly correlated

Hole (2011) MNL Latent class Constant Partly correlated

Campbell et al. (2011) MNL Latent class Categorical Partly correlated

Hess et al. (2013) MNL Latent class Multivariate normal Uncorrelated

Hole et al. (2013) MNL Latent class Multivariate normal Partly correlated

Collins et al. (2013) MNL Latent class Multivariate normal Partly correlated

Hensher et al. (2013) MNL Latent class Multivariate normal per latent class Fully correlated

Tang et al. (2020) Linear Penalty Categorical per variable Uncorrelated

Bayesian

Gilbride et al. (2006) MNL SSVS Multivariate normal Uncorrelated

Kim et al. (2009) Linear Spike-and-slab∗∗ Categorical (infinite # of outcomes) Uncorrelated

Kim et al. (2018) Probit Spike-and-slab∗∗ Categorical Uncorrelated

This paper General SSVS Infinite mixture of multivariate normals Uncorrelated

* The partly correlated methods are based on either considering only a subset of variables to be ignored together or letting the membership
probabilities being a function of unit-specific variables.
** In Kim et al. (2009) and Kim et al. (2018), the underlying distribution for the unit-specific parameters incorporates heterogeneous
variable selection within the categorical distribution that governs other cross-sectional heterogeneity.

Heterogeneous variable selection is mostly incorporated using a two-group approach

(SSVS, spike-and-slab, latent class). The frequentist approaches rely on latent class tech-
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niques (or a categorical distribution) for the unit-specific parameters. That is, these ap-

proaches specify 2K classes where in each class a different combination of variables is selected,

i.e. a different combination of parameters are set to zero. Each unit belongs to one of the

2K classes. For the unit-specific parameters that are not zero, the approaches either restrict

them to be equal over units (constant), allow them to differ depending on the class the unit

is in (categorical), or let them be independent of the class a unit is in and let them come

from an underlying multivariate normal distribution. Exceptions are Campbell et al. (2011)

who use a single multivariate normal and additionally allow for a different scale parameter

per class, and Hensher et al. (2013) who allow for a different multivariate normal per class.

The Bayesian approaches rely on a spike-and-slab prior or stochastic search variable selec-

tion (SSVS). That is, when a variable is ignored/unselected, the corresponding unit-specific

parameter is either zero (spike-and-slab prior) or comes from a distribution closely centered

around zero (SSVS). Within the Bayesian approaches, Kim et al. (2009) and Kim et al.

(2018) incorporate heterogeneous variable selection within the categorical distribution that

describes other cross-sectional heterogeneity. In contrast, Gilbride et al. (2006) let these two

types of heterogeneous responses be independent: a unit-specific parameter is either zero or

comes from a separate multivariate normal distribution. Our approach is most similar to

Gilbride et al. (2006). We extend upon their approach by generalizing to nonlinear models

and using a Dirichlet process mixture of multivariate normals for the other heterogeneity

to realistically capture differences across units. Moreover, we improve upon their MCMC

sampler to allow the approach to be used for up to 50 or 100 explanatory variables.

Alternatively to the two-group approach, Tang et al. (2020) use a penalization framework

to shrink the unit-specific parameters towards zero or towards a specific value out of a set

of outcomes to be estimated. Similar penalization frameworks for heterogeneous variable

selection are employed in image and video classification problems, see e.g. Wu et al. (2012)

and Zhao et al. (2015), where the used term is often heterogeneous feature selection or

sparsification. In contrast to the approach developed in Tang et al. (2020), these latter

approaches shrink the corresponding unit-specific parameter to zero in case a variable is

selected, and not to some underlying population distribution shared across units.

Another main difference between the available approaches for heterogeneous variable
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selection is if and how they deal with correlated variable selection. Correlated variable selec-

tion refers to the phenomenon that some variables may be more likely to be selected/ignored

together. This correlation can be divided into explained correlation (using observed unit-

specific variables) and unexplained correlation. Most of the papers on heterogeneous variable

selection do not allow for correlated variable selection. The ones that do can be divided into

three groups: (i) letting each class/component have its own membership probability causing

the number of membership probability parameters to be exponential in the number of ex-

planatory variables (Hensher et al., 2013), (ii) allowing for variable selection and correlation

only across predefined subsets of variables (Scarpa et al., 2009, Hensher and Greene, 2010,

Campbell et al., 2011 and Collins et al., 2013), or (iii) letting the class membership proba-

bilities be a function of unit-specific variables (Hole, 2011, Hole et al., 2013). In this paper,

we do not explicitly allow for correlated variable selection. However, our approach can be

extended to allow for both explained and unexplained correlated variable selection.

Approaches have also been developed that use a DP mixture for cross-sectional hetero-

geneity, and aggregate variable selection to analyze which variables should not be in the

model for all units (see e.g. Cai and Dunson, 2005 and Yang, 2012). Furthermore, related

approaches have been developed for models that do not include unit-specific parameters: the

combination of a DP mixture and variable selection are used for a set of pooled parameters.

These approaches are often used in settings with many explanatory variables to shrink co-

efficients towards zero (variable selection) or each other (DP mixture), both in supervised

problems (see e.g. Dunson et al., 2008, MacLehose et al., 2007, and Korobilis, 2013) and

unsupervised clustering problems (see e.g. Kim et al., 2006, Wang and Blei, 2009, Yu et al.,

2010, Fan and Bouguila, 2013).

3. Methodology

In this section, we develop our approach to simultaneously allow for heterogeneous variable

selection and other flexible forms of cross-sectional heterogeneity in nonlinear panel data

models. We provide the model specification and the details of the MCMC sampler to obtain

posterior samples.
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We consider a dataset with N cross-sectional units and Ti observations for unit i =

1, ..., N . The interest is in modeling a scalar dependent random variable Yit in terms of

observed explanatory variables in xit and zit for unit i at time t. The responses to the

variables in the (Kx × 1) vector xit are assumed unit-specific and captured in the (Kx × 1)

parameter vector βi. For identification, xit may contain time-varying variables only, other

than an intercept.3 The responses to the variables in the (Kz × 1) vector zit are assumed

equal across units and captured in the (Kz×1) parameter vector γ. The variables in xit and

zit cannot overlap.

We consider a nonlinear model for Yit as given by

Yit|βi, γ ∼ f(g(xit, βi, zit, γ)), (1)

where f is a known continuous or discrete probability distribution, g is a known (possibly

multivariate) deterministic link function that maps xit, βi, zit and γ to the parameters of the

probability distribution, and we assume the observations Yit to be conditionally independent

over units and time periods.

For example, for multinomial data such as discrete choices, f could represent a multino-

mial distribution with size 1 and probability vector pit = g(xit, βi, zit, γ) based on e.g. the

softmax link function to obtain a multinomial logit model. For count data, f could represent

a Poisson or negative binomial distribution with parameters g(xit, βi, zit, γ). Continuous dis-

tributions may also be used, such as the normal or the exponential distribution. We take

the distribution f() and the link function g() as given.

The parameters in βi capture the responses of unit i to the variables in xit. To allow for

flexible forms of cross-sectional heterogeneity, we take

βik = τikλik, (2)

for k = 1, ..., Kx. Heterogeneous variable selection is captured in the latent indicator τik

3We recommend to mean center any continuous variable in xit. Furthermore, for multinomial models,
instead of a single intercept, xit may contain an intercept per possible outcome for Yit, minus one, or other
time-invariant alternative-specific variables.
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which indicates whether variable k is selected by unit i and, if selected, lets βik be equal to

λik which follows an infinite mixture of multivariate normals distribution using a Dirichlet

process prior. We take τik ∈ {κ, 1}, where κ is zero or close to zero and is set by the

researcher. In case κ = 0, we obtain a spike-and-slab prior, in case κ 6= 0 but close to zero

our approach becomes an example of stochastic search variable selection. For estimation

efficiency, it is not necessary to set κ 6= 0. Hence, for interpretation it may be most suitable

to set κ = 0.

We assume the variable selection indicator (τik) to be independent of λik. The probability

that unit i selects variable k is denoted by

Pr[τik = 1|θk] = θk, (3)

with 0 ≤ θk ≤ 1, for k = 1, ..., Kx.
4

For flexible continuous heterogeneity, we let λi = (λi1, ..., λiKx)
′ come from an infinite

mixture of multivariate normals using the DP prior (Ferguson et al., 1974, Antoniak, 1974,

Rossi, 2014). The mixture for λi is given by

λi|{πq}q, {µq}q, {Σq}q ∼
∞∑
q=1

πqMVN(µq,Σq), (4)

where πq indicates the component membership probability of component q, µq denotes com-

ponent’s q mean, and Σq denotes component’s q covariance matrix. The DP prior puts a

prior on the mixture parameters πq, µq and Σq. The DP prior has two hyperparameters: a

tightness parameter α and a base distribution G0 that invoke the following priors on πq, µq

and Σq

πq = ηq

q−1∏
r=1

(1− ηr), ηq ∼ Beta(1, α), (5)

µq,Σq ∼ G0 ≡ p(µq,Σq), (6)

4One can allow for explained correlated variable selection using unit-specific probabilities θik that are a
deterministic function of unit-specific variables.

10



for q = 1, 2, ..., where the base distribution G0 of the DP is the prior distribution p(µq,Σq).

This representation of the DP mixture is known as the stick-breaking representation (Rossi,

2014).

The component membership probabilities πq are completely governed by the tightness

parameter α. The specification implies that πq declines as the component indicator q in-

creases. The larger α, the more mass the Beta distribution has at zero. Hence, the larger α,

the smaller we expect the ηq’s for the first components to be, and the more components we

expect to have reasonably large membership probabilities. Given that there are N units, at

most N unique components can be identified from the data.

For the base distribution, we take the conjugate prior p(µq,Σq) = p(µq|Σq)p(Σq) as given

by

p(µq|Σq) = MVN(µ0, d
−1Σq), (7)

p(Σq) = IW (ν, νυI). (8)

This conjugate prior allows for efficient estimation. The hyperparameter υ affects the vari-

ances of the components: a large υ puts substantial prior mass on components with ‘large’

variance, whereas a small υ puts substantial prior mass on components with ‘small’ variance

(Rossi, 2014).

Finally, for γ and θk we take the following priors

p(γ) = MVN(γ0,Σγ), (9)

p(θk) = Beta(a, b), for k = 1, ..., Kx. (10)

The hyperparameters α, µ0, d, υ, ν, γ0, Σγ, a and b should either be set by the researcher or

should have a prior itself. The proposed approach for heterogeneous responses is particularly

useful in large N , small T settings, but can also be incorporated in large T settings because

of the flexibility of the DP mixture.

As a final remark, we note that one may wish to restrict the variable selection to hold

for multiple variables simultaneously. For example, in case one includes different levels of

11



the same categorical variable through multiple dummy variables, one may want the variable

selection to hold for all levels of that categorical variable. More formally, some of the elements

in τi = (τi1, ..., τiKx)
′ should be allowed to be restricted to be equal to one another. Such

restrictions can be incorporated by introducing the unknown (K∗x×1) vector τ ∗i with elements

that can all differ from each other, and a known (Kx×K∗x) selection matrix D∗ to correctly

map τ ∗i to τi via τi = D∗τ ∗i , where K∗x ≤ Kx. The selection matrix D∗ should be set by the

researcher, its elements are either zero or one, and it can have only a single one per row.

In case D∗ = IKx we obtain the original formulation. Details of the prior specification and

inference can be easily adapted.

3.1. Inference

For inference, we develop an efficient Bayesian MCMC sampler. The details of the MCMC

sampler are outlined in Appendix A. Specialized code was written in R and C++ to obtain

the posterior samples.5 In this section, we present the main ideas.

To draw the DP mixture parameters, we use algorithm 2 in Neal (2000). That is, we

augment the parameter space with the latent membership indicator ci that indicates which

mixture component unit i belongs to. This procedure is similar to that for a finite mix-

ture, except that for the DP mixture, components may appear or disappear in subsequent

MCMC iterations. Due to the conjugacy of the base distribution p(µq,Σq), we can use a

computationally efficient Gibbs step to draw ci. Moreover, in this Gibbs step we draw ci

unconditional on the component membership probabilities π. Hence, there is no need to

draw π.

5The code for the MCMC sampler was tested using the identity (Geweke, 2004 and Cook et al., 2006)

p(ω) =

∫
p(ω|ỹ)p(ỹ|ω̃)p(ω̃)dỹdω̃

where ω are the model parameters, ω̃ is a draw from the prior density p(ω), ỹ is a draw from the DGP with
likelihood function p(y|ω̃) given ω̃, and p(ω|ỹ) is the posterior density of ω given ỹ. During testing, we used
many replications to approximate the integral on the right-hand side and checked whether the approximated
marginal densities of ω matched the prior marginal densities. That is, for each replication, we drew ω̃
from its prior and used this draw to generate data ỹ from the DGP. Next, we used the MCMC sampler to
obtain posterior draws for ω given the generated data ỹ. Finally, for each parameter in ω, we considered the
posterior draws over all replications, and checked whether the posterior marginal densities coincided with
the prior marginal densities.
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Per MCMC iteration, we draw (i) the DP mixture parameters {λi}Ni=1, {ci}Ni=1, {µq}q
and {Σq}q, (ii) the variable selection parameters {τi}Ni=1 and θ, and (iii) γ. Conditional on

{ci}Ni=1, drawing {λi}Ni=1, {µq}q and {Σq}q becomes straightforward: λi can be drawn using

a random walk Metropolis-Hastings (M-H) step (Metropolis et al., 1953, Hastings, 1970), µq

can be drawn from a multivariate normal using only the λi from the units for which ci = q,

and similarly Σq can be drawn from an inverse Wishart distribution. Furthermore, we draw

γ using a random walk M-H step, τik using a Bernoulli distribution, and θk from a Beta

distribution.

For some models, including the linear model, the M-H steps to draw λi and γ can be

directly replaced by Gibbs steps. For models in which this is not the case, we do not

recommend to perform any further data augmentation to enable a Gibbs step for λi and γ.

For example, we would not recommend to augment the latent utilities in the multinomial

logit model (using e.g. the augmentation schemes in Polson et al., 2013 or Frühwirth-

Schnatter and Frühwirth, 2010). Such types of data augmentation can lead to poor mixing

in the MCMC sampler. The main reason for poor mixing is that, for the example of the

multinomial logit model, the latent utilities are drawn conditional on the variable selection

indicators τi. In case in a MCMC iteration, one obtains a draw τik = 0, the draw for the

latent utility will assign no weight to the kth variable. In the next MCMC iteration, this

may cause a high probability to again draw τik = 0 conditional on the latent utility. That

is, the correlation between posterior draws of τi and the latent utilities can be quite high.

To improve mixing of the sampler, we jointly draw λik and τik for each variable k, and

we randomize the order over k across the MCMC iterations. Alternatively, one may jointly

draw λi and τi over all variables. In that case, the computation of the likelihood function

requires the evaluation of 2Kx terms of likelihood contributions of unit i due to all possible

combinations of variables selected. These evaluations can generally not be simplified. Hence,

this should only be done when Kx is small, say smaller than five. By drawing separately per

variable, the likelihood function contains only 2 terms to compute (one for τik = 1 and one

for τik = κ) and this has to be repeated Kx times.

Our model and Bayesian MCMC sampler can be used for any nonlinear model of the

form in Equation (1). The sampler does rely on the computation of the likelihood function
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conditional on λi and γ, for performing the M-H steps for λik and γ and for drawing τik. For

many models, this likelihood function can be analytically computed, e.g. for the multinomial

logit model, poisson model, and negative binomial model. For other models, the likelihood

function has to be approximated, e.g. for the multinomial probit model (MNP) when the

number of possible outcomes for Yit exceeds two. For these later cases, our MCMC sam-

pler can become slow due to the computations necessary for approximating the likelihood

function, and more efficient approaches could entail further data augmentation, for example

the latent utilities for the MNP. Again, care must be taken, because conditioning on the

augmented parameters can lead to high correlation in the chains due to the conditioning on

the variable selection indicators τi.

4. Monte Carlo study

In this section, we perform a small Monte Carlo study to examine the performance of our

proposed approach for accommodating heterogeneous variable selection. For this purpose,

we consider a multinomial logit model (McFadden, 1973, Manski, 1977). At each observation

t, a unit i selects one of J alternatives. Each alternative j is described by Kx variables in

the vector xitj. The multinomial logit model is given by

Yit ∼ Multinomial(1, pit), (11)

pitj ≡ Pr[Yit = j|βi] =
exp(x′itjβi)∑J
l=1 exp(x′itlβi)

, j = 1, ..., J, (12)

where pit = (pit1, ..., pitJ)′.

We consider four data generating processes (DGPs) and perform 100 Monte Carlo replica-

tions per DGP. In each DGP, we consider 1, 000 units, 20 observations per unit, 3 alternatives

per observation, and 3 variables: x1itj from a standard normal distribution and x2itj, x3itj

from a Bernoulli distribution with probability of outcome 1 equal to 0.5. For all DGPs, we

let βik = τikλik, where τik ∈ {0, 1} is the variable selection indicator, for k = 1, 2, 3.

For DGPs 1 to 3, we let λi come from a mixture of multivariate normals with five

components. The components’ means, covariance matrices and weights are equal across
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the three DGPs, whereas the amount of variable selection differs across the DGPs. In the

mixture, the marginal density of λi1 mostly has mass on the negative domain, is skewed and a

has an extra mode in the tail, that of λi2 is skewed with mass mostly on the positive domain,

and that of λi3 is multimodal with a mode at zero and substantial mass on both the positive

and negative domain, see Figures 1 (a)-(c).6 Hence, the first variable could represent price,

the second variable a quality indicator, and the third variable a brand indicator. For the

heterogeneous variable selection part, we take the following probabilities that a variable is

relevant for a unit, i.e., that the unit assigns weight to the variable. In DGP 1, the variables

are relevant for the majority of units: θ = (0.90, 0.85, 0.95). In other words, 90% of units

assign weight to the first variable, 85% to the second variable, and 95% to the third variable.

In DGP 2, the variables are relevant for all units: θ = (1, 1, 1). In DGP 3, there are quite

some units for which the variables are irrelevant: θ = (0.80, 0.70, 0.75).

Figure 1: True marginal densities of λi1, λi2 and λi3 for DGPs 1 to 3 (top) and DGP 4 (bottom).

DGPs 1-3
(5 components)

(a) λi1 (b) λi2 (c) λi3

DGP 4
(1 component)

(d) λi1 (e) λi2 (f) λi3

For DGP 4, we use one mixture component for λi, see Figures 1 (d)-(f).7 We use the

same amount of variable selection as in DGP 1, that is, θ = (0.90, 0.85, 0.95).

6For DGPs 1-3 with five mixture components we use the following setting. We set the membership prob-
abilities to π = (0.25, 0.1, 0.15, 0.1, 0.4), the components’ means to µ1 = (−1.2,−0.45,−2,−0.2,−0.7), µ2 =
(1.6, 0.6, 2, 0.25, 0.9) and µ3 = (0.1, 1,−0.9,−0.9, 1), and the components’ covariance matrices with standard
deviations, σ1 = (0.2, 0.1, 0.5, 0.2, 0.2), σ2 = (0.4, 0.15, 0.75, 0.3, 0.25), and σ3 = (0.3, 0.2, 0.2, 0.2, 0.2), and
correlations (equal across components) ρ12 = 0.2, ρ13 = 0.1 and ρ23 = 0.2.

7For DGP 4 with one mixture component we set the mean to µ = (−0.5, 1.0, 0.3) and the covariance ma-
trix to Σ with standard deviations σ = (0.35, 0.40, 0.50) for the three variables, respectively, and correlations
ρ12 = 0.2, ρ13 = 0.1 and ρ23 = 0.4.
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We estimate a MNL using three different approaches for the heterogeneous responses: (1)

our proposed DP mixture with heterogeneous variable selection (HVS-DPM), (2) a “stan-

dard” DP mixture without heterogeneous variable selection (DPM), and (3) a single mul-

tivariate normal distribution with heterogeneous variable selection (HVS-M). We set the

priors’ hyperparameters to α = 1, µ0 = 0, d = 0.5, ν = Kx + 5, υ = 0.2, and a = b = 1.

Hence, the prior distribution for θk is uniform over the unit interval. Appendix B gives the

histograms of the prior number of components based on α and N , the marginal prior on µ

and the marginal prior on the standard deviations on the diagonal of Σ. Furthermore, we

set κ = 0 in estimation.

For the posterior results per replication, we use 15,000 simulations after 5,000 burn-

in draws and keep every 4th draw. We visualize the results per DGP using the posterior

marginal densities of βi1, βi2, and βi3. For this purpose, we first construct the posterior

marginal densities for each of the 100 replications. That is, for each replication, we take

the equally weighted mixture of the 15,000/4 posterior draws of marginal densities, where

each draw of the density directly results from the draws of the parameters of the mixture

of multivariate normals (π, µ, Σ) and of the heterogeneous variable selection (θ). For each

DGP, we plot the equally weighted mixture of these 100 marginal densities.

4.1. Results

The posterior results for DGP 1, with substantial variable relevance and non-normal con-

tinuous heterogeneity, are shown in Figure 2.8 In this figure, we plot the marginal posterior

densities of βi1, βi2, and βi3, by plotting the underlying continuous heterogeneity distribu-

tion (the mixture of multivariate normals) as a continuous density. Moreover, we represent

the heterogeneous variable selection, i.e. the relative number of units that assign no weight

to the variable, by a vertical line through zero. The probability mass at zero is equal to

one minus the mean across replications of the posterior mean of θ, displayed in the top left

corner.

Our proposed model is well able to capture the skewness and multimodality in the contin-

8To obtain 1.000 draws from the posterior for a Monte Carlo replication generated from DGP 1, it takes
about 50 seconds for the HVS-DPM, 10 seconds for the DPM and 45 seconds for the HVS-M. Simulations
were done using 1 core on an Intel Core i7 processor with 2.6GHz frequency.
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Figure 2: (Posterior) marginal densities of βi1, βi2 and βi3 for DGP 1.

(a) βi1 (b) βi2 (c) βi3

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.True HVS-DPM DPM HVS-M

uous heterogeneity. The fit is not perfect, mainly because we find components that are less

peaked than they are in reality, that is, we find components with larger variances. Due to

this smoothing, primarily caused by the prior on the covariance matrices, the mass close to

zero of the continuous heterogeneity distribution is slightly overestimated and therefore the

probability that a variable is selected is overestimated. In sum, for the skewed distribution

for variables one and two, our model is able to capture the modes and the heavy tails. For

variable three, the mode at zero of the continuous heterogeneity distribution is missed, and

the modes at the positive and negative side are less extreme than in reality.

Compared to the alternative approaches, our approach seems to best capture the under-

lying distribution of heterogeneous responses. The standard DP mixture without variable

selection cannot capture the spike at zero. Instead, more mass is allocated between -0.5

and 0.5. The single multivariate normal approach with variable selection cannot capture the

non-normality in the continuous heterogeneity, and compensates by shifting the mode away

from zero for the skewed distributions, and finding much less heavy tails.

To further compare the performance of the three approaches for modeling heterogeneous

responses, we consider the predictive log-likelihood. We generate five more observations for

each unit. For each Monte Carlo replication and each approach, we compute the predictive

log-likelihood based on these five out-of-sample observations per unit.9 For easy comparison,

9The predictive log-likelihood is computed using the posterior samples:

N∑
i=1

log

[
1

S

S∑
s=1

25∏
t=21

Pr[Yit = yit|β(s)
i ]

]
, (13)
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we subtract the log-likelihood value obtained with one of the alternative approaches (DPM

or HVS-M) from the value obtained with our approach (HVS-DPM). A positive number

indicates our approach leads to a better predictive performance, a negative number indicates

the alternative approach leads to a better predictive performance.

Table 2: Difference between the predictive log-likelihood of the MNL using the HVS-DPM for hetero-
geneous responses against two alternative approaches for heterogeneous responses (DPM and HVS-M)
per DGP. Based on 100 replications. Averages and percentages of replications for which difference is
greater than zero.

HVS-DPM against DPM HVS-DPM against HVS-M

DGP Mean % > 0 Mean % > 0

DGP 1 2.3 84% 24.9 100%

DGP 2 -0.5 41% 37.0 100%

DGP 3 5.5 98% 11.4 98%

DGP 4 1.0 75% -0.2 36%

The results on the predictive performance are in Table 2. We report the means over

the Monte Carlo replications and the fraction of Monte Carlo replications for which our

approach has a better predictive performance according to the predictive log-likelihood. For

DGP 1, we find that the predictions obtained with our approach are substantially better than

those obtained with the alternative approaches. This holds in particular in comparison with

the single multivariate normal approach (HVS-M): none of the replications of the HVS-M

approach has a higher log-likelihood value.

For further evaluation, we consider the hit rates: how well are the MNLs based on the

three approaches able to accurately assign, at the unit-level, posterior mass to βik. The

results are in Table 8. In this table, we show the percentage of units for which the posterior

draw of βik lies in the interval [−ε, ε] for different values of ε, averaged over draws, variables

and replications. We do this for four groups: (1) all units, (2) units for which the true βik

lies within the interval, (3) units for which the true βik does not lie within the interval,

and (4) units for which the true βik = 0. For DGP 1, we find that our approach slightly

underestimates the mass between [-0.3,0.3], but not as much as the standard DP mixture

approach. In contrast, the single multivariate normal approach leads to an overestimation

where S is the number of draws of the MCMC sampler after burn-in and β
(s)
i is the sth posterior draw of βi

which can be computed directly using the sth posterior draws for δi and τi.
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of the mass close to zero, and underestimation of the mass in the tails. Because of this, the

HVS-M approach is better able to assign posterior mass to units that assign weights close

to zero but does worse for units with weights further away from zero.

Table 3: Percentage of units for which the posterior draw of βik falls within −ε ≤ βik ≤ ε for multiple
values of ε (averaged over Monte Carlo replications, draws and variables) for DGP 1. The results for
DGPs 2 to 4 are in Appendix C.

(1) All (2) True −ε ≤ βik ≤ ε (3) True βik < −ε or βik > ε (4) True βik = 0

ε True HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M

0.00 10 7 0 10 24 0 36 6 0 8 24 0 36

0.10 13 11 5 15 29 13 38 8 4 11 31 12 42

0.20 17 14 10 19 36 25 44 10 7 14 39 25 48

0.30 20 19 16 23 43 36 49 13 11 17 46 36 54

0.40 23 24 22 28 49 45 55 16 15 20 54 47 60

0.50 28 29 29 33 55 53 59 19 19 24 61 57 66

0.75 43 46 47 48 67 68 68 30 32 32 77 76 78

1.00 64 64 65 62 78 79 76 40 41 38 88 88 87

1.50 88 86 86 85 92 92 90 42 44 52 97 97 97

2.00 95 94 94 96 96 96 97 59 60 81 99 99 99

2.50 98 98 98 99 98 98 100 78 77 95 100 100 100

Results for four different groups:
(1) all units,
(2) units for which true βik falls within interval,
(3) units for which true βik does not fall within interval,
(4) units for which true βik = 0 (τik = 0).

For DGP 2 where the variables are relevant for all units, we find that, as expected, the

results of our approach closely match those of the standard DP mixture approach, see Figures

3 (a)-(c). With our approach, we do find evidence of a small amount of units which do not

assign weight to certain variables (1%-3%). The predictive log-likelihoods indicate that our

approach leads to a similar predictive performance as the standard DP mixture, with the

standard DPM being slightly better, see Table 2.

The results for DGP 3, where for quite some units the variables are irrelevant, are in

Figures 3 (d)-(f). Again, we find that our approach seems to be most accurate in capturing

the true density. Furthermore, the improvement in predictive performance of our approach

as compared to the standard DP mixture approach is greater than for DGP 1. Hence, the

more units that assign no weight to certain variables, the more important it becomes to

account for heterogeneous variable selection.

When the continuous heterogeneity follows a normal distribution as in DGP 4, our ap-

proach and the HVS-M approach with a single multivariate normal for the continuous het-

erogeneity find a similar shape for the underlying distribution of heterogeneous responses,

see Figures 3 (g)-(i). For the third variable, the amount of variable selection is underesti-
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Figure 3: (Posterior) marginal densities of βi1, βi2 and βi3 for DGPs 2-4.

(a) DGP 2 - βi1 (b) DGP 2 - βi2 (c) DGP 2 - βi3

(d) DGP 3 - βi1 (e) DGP 3 - βi2 (f) DGP 3 - βi3

(g) DGP 4 - βi1 (h) DGP 4 - βi2 (i) DGP 4 - βi3

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.True
HVS-DPM
DPM
HVS-M

20



mated by both approaches: an estimated 82% of units assign weight to the third variable,

whereas in reality it is 95%. This affects the shape of continuous heterogeneity found, which

underestimates the mass between -0.5 and 0.5. As expected, the predictive log-likelihoods in

Table 2 indicate that our approach leads to a similar predictive performance as the HVS-M

approach.

As a final note. In this Monte Carlo study, we use Kx = 3 variables. Already with this

small number of variables, we see that our approach with heterogeneous variable selection

performs better than the standard DP mixture approach. In case there are more variables,

we expect this difference in performance to be even greater, as the standard DP mixture

would need at least 2Kx components to capture all combinations of variable selection.

5. Case study: multinomial logit model

In this section, we illustrate our approach with an empirical application. We again consider

the multinomial logit model in Equations (11) and (12). We consider responses obtained from

a discrete choice experiment on food choices (Koç & van Kippersluis, 2017).10 During the

choice experiment, respondents had to complete 18 choice tasks. In each task, a respondent

was asked which out of two meals s/he would eat most regularly. The meals were described

by attributes as price and taste, and by attributes describing how healthy the meal is.

The respondents were divided into three groups. Each respondent group obtained differ-

ent types of choice tasks in terms of the attributes describing how healthy the meal is and

the amount of health information provided in the text. For group 1 (1,206 respondents), the

meals were described by four attributes: price, cooking time, taste, and health consequences.

All health information was provided in the final attribute health consequences. For groups

2 (1,154 respondents) and 3 (1,185 respondents), the meals were described by six attributes:

price, cooking time, taste, number of calories, grams of saturated fat, and grams of sodium.

Group 2 obtained health information in the text regarding what amount of calories, satu-

rated fat, and sodium constitutes a healthy meal, whereas group 3 did not obtain health

information. The ordering of the tasks within each respondent group was randomized over

10We thank the LISS panel and the experiment designers for providing this dataset.
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the respondents.

Table 4: Attributes and attribute levels in the choice tasks for the discrete choice experiment on healthy
food choices. The final column indicates which respondents groups (1,2 or 3) saw which attributes in
the choice experiment.

Attribute Attribute levels Respondent groups

Price 2 Euro 6 Euro 10 Euro 1, 2, 3

Cooking time 10 min 30 min 50 min 1, 2, 3

Taste OK Good Very good 1, 2, 3

Health consequences Unhealthy Health neutral Healthy 1

Number of kilocalories 800 1,100 1,400 2, 3

Grams of saturated fat 10 20 30 2, 3

Milligrams of sodium 900 1,200 1,500 2, 3

Each of the attributes took on one of three values. The attribute levels had a clear

ordering, see Table 4. For example, the price of the meal could either be 2 Euros, 6 Euros, or

10 Euros. In the model, we include a separate dummy variable per attribute level, with the

exception of a baseline level per attribute (the middle level). Furthermore, we restrict the

variable selection to hold for all levels of the same attribute. That is, we consider whether

an individual finds an attribute relevant (such as price), and not just one of the attribute

levels (such as price 2 Euros). Heterogeneous variable selection in such an application is also

known as attribute non-attendance (Scarpa et al., 2009).

As in the Monte Carlo study, we use three approaches for modeling heterogeneous re-

sponses in the MNL: (1) our proposed DP mixture with heterogeneous variable selection

(HVS-DPM), (2) a “standard” DP mixture without heterogeneous variable selection (DPM),

and (3) a single multivariate normal distribution with heterogeneous variable selection (HVS-

M). For posterior results, we use 60,000 simulations after 40,000 burn-in draws and we keep

every 10th draw. We use the same priors as in the Monte Carlo study and set κ = 0.

The MCMC sampler converges rather quickly and mixes well in general. For extreme

quantiles of the heterogeneity distribution, the mixing is less good. This is not surprising as

only very few observations are informative for such quantiles. Trace plots are given in the

Supplementary Materials, available upon request.
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5.1. Results

The posterior marginal densities of βi for the first respondent group are displayed in Figure

4.11 For this group, the meals were described by four attributes. Using our approach with a

DP mixture and heterogeneous variable selection, we find evidence of the existence of groups

of respondents that ‘ignore’ attributes, for all four attributes. Ignorance of attributes, or

attribute non-attendance, can mean that either a respondent did not consider the attribute

or is indifferent between the attribute levels. The health attribute is least ignored (4%),

followed by price (13%), taste (16%), and cooking time (33%). The marginal distributions

seem skewed, most mass is usually at either the positive or the negative side, and there

is a heavy tail away from zero. For the health attribute levels, the tail is especially thick,

indicating that there are groups of respondents that highly value this attribute.

The HVS-M approach with a single multivariate normal clearly cannot capture the skew-

ness in the marginal distributions. Instead, to somewhat capture the heavy tail and that

most mass is on one side of the distribution, the mode of the distribution is shifted fur-

ther away from zero, leading to selection probabilities that are substantially lower than we

find with our approach. Finally, the standard DP mixture without variable selection finds

roughly the same forms of the density as our approach with variable selection, but as it

cannot capture the peak at zero, it distributes more mass between -1.0 and 1.0. This can

be seen most clearly in Table 5, which shows the percentage of draws for βik in the interval

[−ε, ε]. In this table, we also see that the DP mixture approaches assign more mass in the

tails than the HVS-M approach.

The results for the second (health info) and third (no health info) respondent groups are

in Figures 5 and 6, respectively. For these groups, the meals were described by six attributes.

For both respondent groups we again find evidence of variable ignorance and non-normality

of the heterogeneity when using our approach.

To better show the difference in variable selection across the respondent groups, Table 6

concisely displays the posterior means and 95% highest posterior density intervals (HPDIs) of

θk — the probability that attribute k is selected — per respondent group and attribute for the

11The posterior marginal densities are constructed from the posterior draws in the same way as in the
Monte Carlo study.
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Figure 4: Posterior marginal density of βik for respondent group 1.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Unhealthy (h) Healthy

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, and health neutral.
HVS-DPM
DPM
HVS-M
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Table 5: Percentage of individuals for which the posterior draw of βik falls within −ε ≤ βik ≤ ε (averaged
over draws and variables) per respondent group.

Group 1 Group 2 Group 3

ε HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M

0.00 17 0 31 26 0 54 33 0 58

0.10 20 6 34 31 9 55 37 9 59

0.20 24 12 36 36 17 57 42 18 61

0.30 28 18 39 41 25 59 46 27 63

0.40 32 24 42 46 33 61 50 35 64

0.50 36 30 45 50 41 63 55 43 66

0.75 46 43 52 60 57 68 64 59 71

1.00 55 54 58 70 69 73 72 71 75

1.50 70 70 70 83 84 83 84 85 83

2.00 79 79 79 90 91 90 90 91 89

2.50 84 85 85 94 95 95 93 93 94

3.00 88 89 90 96 96 97 95 95 97

4.00 93 93 94 98 98 99 97 97 99

5.00 96 96 97 99 99 100 99 99 100

DP mixture approach with heterogeneous variable selection. For the meals described by six

attributes (groups 2 and 3), including the health information seems to have the respondents

made more aware of calories and saturated fat, but the opposite seems to hold for sodium.

Furthermore, compared to the first group, the individuals in the second and third group

seem to more often ignore the standard attributes price, cooking time, and taste. The 95%

HPDIs are quite wide, indicating that there is quite some uncertainty in these values.

Table 6: Posterior means and 95% HPDIs of attribute selection probabilities θ per respondent group
and attribute (results of HVS-DPM).

Group 1 Group 2 Group 3

Attribute Mean 95% HPDI Mean 95% HPDI Mean 95% HPDI

Price 0.87 (0.79,0.96) 0.75 (0.65,0.84) 0.63 (0.52,0.76)

Cooking time 0.67 (0.57,0.77) 0.49 (0.39,0.58) 0.39 (0.31,0.48)

Taste 0.84 (0.72,0.97) 0.80 (0.67,0.97) 0.75 (0.65,0.85)

Health 0.96 (0.93,0.99) - -

Number of kilocalories - 0.89 (0.80,0.98) 0.81 (0.72,0.89)

Grams of saturated fat - 0.88 (0.78,1.00) 0.86 (0.73,0.97)

Milligrams of sodium - 0.64 (0.51,0.79) 0.74 (0.56,0.91)
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Figure 5: Posterior marginal density of βik for respondent group 2.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Calories 800 (h) Calories 1400 (i) Sat fat 10 gram

(j) Sat fat 30 gram (k) Sodium 900mg (l) Sodium 1500mg

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, calories 1100, saturated fat 20 gram,
and sodium 1200 mg.

HVS-DPM
DPM
HVS-M
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Figure 6: Posterior marginal density of βik for respondent group 3.

(a) Price 2 euro (b) Price 10 euro (c) Time 10 min

(d) Time 50 min (e) Taste OK (f) Taste very good

(g) Calories 800 (h) Calories 1400 (i) Sat fat 10 gram

(j) Sat fat 30 gram (k) Sodium 900mg (l) Sodium 1500mg

Baseline levels are price 6 euro, cooking time 30 minutes, taste good, calories 1100, saturated fat 20 gram,
and sodium 1200 mg.

HVS-DPM
DPM
HVS-M
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5.2. Out-of-sample performance

To further evaluate the performance of our approach for modeling heterogeneous responses,

we look at the forecasting performance for the empirical dataset on food choice. We use

predictive Bayes factors to compare the performance using our approach as compared to using

the standard DP mixture (DPM) and the single multivariate normal with heterogeneous

variable selection (HVS-M). For this purpose, we rerun the sampler to obtain posterior

samples based on a subset of the observations: for each individual we randomly remove two

observations. Based on these observations left out, we compute log predictive Bayes factors

of our approach versus one of the two competing approaches.12 A log predictive Bayes factor

greater than log(3) indicates that there is sufficient evidence to favor our approach (Kass &

Raftery, 1995). A log Bayes factor smaller than log(1/3) indicates that there is sufficient

evidence to favor the alternative approach.

For posterior results, we again use 60,000 simulations after 40,000 burn-in draws and

keep every 10th draw. We repeat this exercise ten times per respondent group, using different

randomly chosen forecasting samples to increase the robustness of the results to the selection

of the forecasting sample. For each respondent group, we report the averages across these

ten replications, and the percentages of replications for which the log Bayes factor is positive.

The results for the log predictive Bayes factors are given in Table 7. The averages are

all positive, indicating that our approach leads to a better forecasting performance than

the alternative approaches. Our approach clearly stands out as compared to the HVS-M

approach with a single multivariate normal that was proposed by Gilbride et al. (2006). The

log Bayes factors are much larger than zero for the majority of forecasting samples, and the

averages exceed log(3) (≈ 1.10) for all three respondent groups. Hence, for this dataset on

12The log predictive Bayes factor of our approach against one of the alternative approaches is computed
by subtracting the predictive log-likelihood of the alternative approach from the predictive log-likelihood
from our approach. The predictive log-likelihood is approximated using the posterior samples:

N∑
i=1

log

 1

S

S∑
s=1

∏
t∈T ∗

i

Pr[Yit = yit|β(s)
i ]

 , (14)

where S is the number of draws of the MCMC sampler after burn-in, T ∗i is the set of observations for unit

i that was left out of the training sample and β
(s)
i is the sth posterior draw of βi which can be computed

directly using the sth posterior draws of δi and τi.

28



Table 7: Log predictive Bayes factors for our approach (HVS-DPM) against two alternative approaches
(DPM and HVS-M). Averaged across ten different forecasting samples. Also reports the percentage of
samples for which the log Bayes factor is positive.

HVS-DPM against DPM HVS-DPM against HVS-M

DGP Mean % > 0 Mean % > 0

Group 1 1.13 70% 12.26 90%

Group 2 0.85 60% 8.16 70%

Group 3 6.39 80% 10.80 100%

food choices, there is sufficient evidence of non-normality in the distribution of preferences.

These findings indicate that allowing for flexible cross-sectional heterogeneity via a mixture

of multivariate normals is important for understanding and predicting choice behavior.

Our approach also compares favorably to the DPM approach without heterogeneous

variable selection, although the results are less overwhelming for respondent groups 1 and

2. A possible reason for the relative small difference in predictive performance could be

that quite some individuals have strong preferences (> 2) for one attribute or another, as

indicated by the heavy tails. In the multinomial logit model, such attributes will dominate

the choice predictions, making it less important to accurately estimate the preferences close

to zero. The final respondent group, for which the predictive performance of our approach

clearly stands out, was the group which had to make decisions on the largest number of

attributes (six) without obtaining objective information on the health attributes. For this

group, allowing for heterogeneous variable selection substantially improves the predictive

performance.

6. Conclusion

In this paper, we develop a general method for heterogeneous variable selection in Bayesian

nonlinear panel data models. We allow for flexible cross-sectional heterogeneity by letting the

model’s unit-specific parameters follow a Dirichlet process mixture of multivariate normals.

Our main contribution is that we augment the DP mixture with heterogeneous variable

selection. This allows modeling the possibility that subsets of units are unaffected by certain
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variables, as may be present in applications as diverse as health treatments, choice situations,

macroeconomics, and operations research. We develop our approach for nonlinear panel data

models including multinomial logit and probit models, count models, exponential models,

among many others. Finally, we develop an efficient Bayesian MCMC sampler to allow for

inference for datasets with up to 50 or 100 explanatory variables.

We illustrate the model with a Monte Carlo study and an empirical application. For

illustration, we consider a multinomial logit model as this model is the focus of most literature

on heterogeneous variable selection. In the Monte Carlo study we find that our approach

is able to capture both complex forms of continuous cross-sectional heterogeneity — such

as skewness and multimodality — as well as heterogeneous variable selection. A ‘standard’

DP mixture cannot capture heterogeneous variable selection. Instead of a spike at zero,

this approach generally allocates probability mass to a relatively large region around zero,

depending on the shape of the continuous heterogeneity. In the empirical application, we

consider responses to a discrete choice experiment on food choices. We find substantial

evidence of attribute non-attendance and non-normality of the continuous heterogeneity. In

particular, the continuous heterogeneity seems skewed. These findings indicate the usefulness

of our approach in practice.

A limitation of the proposed approach is the use of a conjugate prior for the components’

means and covariance matrices. Although this prior is advantageous for estimation, it may

be unrealistic as the prior on the component’s mean directly depends on the component’s

covariance matrix. This implies that the marginal prior on the mean is tighter when the

corresponding variance is small. If the conjugacy of the prior would be relaxed, it is required

to draw the component membership indicators with a Metropolis-Hastings step instead of

a Gibbs step. This could dramatically increase computation time due to worse mixing

properties of the resulting MCMC sampler.

We note three interesting venues for future research. First, one can allow for correlated

variable selection. This could be incorporated, for example, by allowing for a different mem-

bership probability per combination of variables selected and putting a (Dirichlet) prior

on these membership probabilities. Second, the model can be generalized to allow for time-

varying parameters, including time-varying variable selection. In choice situations, this could
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model changing preferences of individuals, or learning and fatigue effects. Finally, the non-

linear (univariate) panel data model can be extended to multivariate outcomes. This would

require inference on the correlations across outcomes.
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A. MCMC sampler

In this section, we develop the MCMC sampler for our nonlinear panel data model with

heterogeneous variable selection in Equations (1)-(10). In summary, the model is given by

Yit|βi, γ ∼ f(g(xit, βi, zit, γ)),

βik|τik, λik = τikλik,

with variable selection priors

τik ∈ {κ, 1},

Pr[τik = 1|θk] = θk,

θk ∼ Beta(a, b),

DP mixture priors

λi|{πq}q, {µq}q, {Σq}q ∼
∞∑
q=1

πqMVN(µq,Σq)

πq = ηq

q−1∏
r=1

(1− ηr), ηq ∼ Beta(1, α),

µq|Σq ∼MVN(µ0, d
−1Σq),

Σq ∼ IW (ν, νυI),

and finally

γ ∼MVN(γ0,Σγ).

The hyperparameters α, µ0, d, ν, υ, γ0, Σγ, a and b, are assumed fixed. The sampler can be

easily extended to allow for priors on these hyperparameters.
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The MCMC sampler is given by

(1) ci|c−i, λi, {µq}q, {Σq}q for i = 1, ..., N, (Gibbs, multinomial),

(2) µq,Σq|{λi}Ni=1, {ci}Ni=1 for every unique q in {c1, ..., cN}:

(2a) Σq|{λi}Ni=1, {ci}Ni=1 (Gibbs, inverse Wishart),

(2b) µq|{λi}Ni=1, {ci}Ni=1,Σq (Gibbs, multivariate normal),

(3) λik, τik|yi, λi,−k, τi,−k, ci, µci ,Σci , θk, γ for i = 1, ..., N , and k = 1, ..., Kx (in random order):

(3a) λik|yi, λi,−k, τi,−k, ci, µci ,Σci , θk, γ (M-H, random walk),

(3b) τik|yi, λi, τi,−k, θk, γ (Gibbs, Bernoulli),

(4) θk|{τik}Ni=1 for k = 1, ..., Kx, (Gibbs, Beta),

(5) γ|{yi}Ni=1, {ci}Ni=1, {λi}Ni=1, {τi}Ni=1 (M-H, random walk),

In this sampler, we jointly draw µq and Σq, and we jointly draw λik and τik.

Two remarks on this sampler. First, in case some of the variables should be simultane-

ously selected, and thus K∗x < Kx (see Section 3, right before Section 3.1), step 3 should be

slightly altered to loop over all k = 1, ..., K∗x and, per k, to jointly draw {λil, τil} over all l for

which D∗l,k = 1. Second, in case Kx is really small, say Kx < 5, the MCMC sampler could

be more efficient when λi and τi are jointly drawn over all variables instead of per variable

k. In this case, step 3 can be replaced by step 3∗ below

(3∗) λi, τi |yi, ci, µci ,Σci , θ, γ for i = 1, ..., N :

(3a∗) λi|yi, ci, µci ,Σci , θ, γ (M-H, random walk),

(3b∗) τi|yi, λi, θ, γ (Gibbs, Multinomial).

The starting values are generated as follows. First, we set the number of components to

10, and generate the component membership indicators ci from a multinomial distribution

with 10 outcomes, each with equal probability. Second, the components means µq are set to

a vector of zeroes, and the component covariance matrices Σq to an identity matrix. Third,

to draw λi and γ, we first compute the maximum likelihood estimates of the parameters of
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the corresponding model with homogeneous responses and no variable selection. Then, for

each individual, we take the λi that optimizes a weighted log-likelihood function.13 Fourth,

we set θk = 0.95 for k = 1, ..., Kx. Finally, we draw τik by first drawing a rik from a Bernoulli

distribution with parameter θk and then setting τik to 1 when rik = 1 and to κ otherwise.

A.1. Draw ci

We use algorithm 2 from Neal (2000) to sample ci from the full conditional posterior. Let

nc denote the number of units in component c, and nc,−i denote the number of units in

component c if we would not count unit i. Let Qi be the current set of distinct components if

we would not count unit i. That is, Qi consists of the distinct components in {c1, ..., cN}\{ci}.

Let Qi be the size of the set Qi. We draw ci from a multinomial distribution with Qi + 1

outcomes. The first Qi possible outcomes are the objects in Qi, the final component is a

new component. The corresponding probabilities are given by

Pr[ci = q|c−i, λi, {µq}q, {Σq}q] =


nq,−if(λi|µq ,Σq)∑

r∈Qi
nr,−if(λi|µr,Σr)+α

∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ

, if q ∈ Qi,

α
∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ∑

r∈Qi
nr,−if(λi|µr,Σr)+α

∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ

, if q /∈ Qi,

where f(λi|µq,Σq) is the density of a multivariate normal distribution with mean µq and

covariance matrix Σq evaluated at λi, f(µ,Σ) is the prior density of a µ and Σ based on the

prior distribution in Equation (7)-(8) and the marginal density of λi is given by

f(λi) =

∫
f(λi|µ,Σ)f(µ,Σ)dµdΣ =

(
d

π(d+ 1)

)Kx/2 ΓKx((ν + 1)/2)

ΓKx
(ν/2)

|νυI|ν/2

|Ŝi|(ν+1)/2
,

13The weighted log-likelihood function that is optimized over λi is similar to the one used in Rossi (2015)
for the MNL and is given by

0.9 ∗ log f(yi|λi, γ) + 0.1 ∗ Ti∑
i Ti

(−0.5 ∗ z′z), (15)

where f(yi|λi, γ) is the likelihood function of observing yi conditional on βi = λi and γ, and z = L(λi − λ̂)

where λ̂ is the pooled maximum likelihood estimate of λ, and L is the Cholesky decomposition of the negative
Hessian of the pooled log-likelihood function at the maximum likelihood estimates.
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where ΓK is the multivariate Gamma function, | · | denotes the determinant and Ŝi is the

scale matrix of the distribution of Σ conditional on λi as given by

Ŝi = νυI + (λi − µ̂i)(λi − µ̂i)′ + d(µ0 − µ̂i)(µ0 − µ̂i)′, (16)

where µ̂i is the mean of the distribution of µ conditional on λi as given by

µ̂i =
dµ0 + λi
d+ 1

. (17)

For these derivations, we use the conjugacy of the normal-inverse Wishart prior on µ and Σ.

When in the multinomial distribution we draw a new component ci /∈ Qi, we also need

to draw a new component mean µci and covariance matrix Σci . These are drawn from their

posterior. For this purpose, we first draw Σci conditional on λi, and then µci conditional on

Σci and λi. That is, we draw Σci from an inverse Wishart distribution with ν + 1 degrees

of freedom and scale matrix Ŝi. Next, we draw µci from a multivariate normal distribution

with mean µ̂i and covariance matrix (d+ 1)−1Σci .

A.2. Draw Σq and µq

We can jointly draw Σq and µq conditional on {λi}Ni=1 and {ci}Ni=1 by first drawing Σq

conditional on {λi}Ni=1 and {ci}Ni=1 and then drawing µq conditional on Σq, {λi}Ni=1 and

{ci}Ni=1, for q = 1, ...Q.

We draw Σq from an inverse Wishart distribution with degrees of freedom ν + Nq and

scale matrix

Ŝq = νυI +
N∑
i=1

I[ci = q](λi − µ̂q)(λi − µ̂q)′ + d(µ0 − µ̂q)(µ0 − µ̂q)′ (18)

where Nq is the number of units in component q, and

µ̂q =
dµ0 +

∑N
i=1 I[ci = q]λi
d+Nq

. (19)

Next, we draw µq from a multivariate normal distribution with mean µ̂q and covariance
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matrix (d+Nq)
−1Σq.

A.3. Draw λik

We use a random walk Metropolis-Hastings step to draw λik conditional on yi, λi,−k, τi,−k,

ci, µci , Σci , θk, and γ. Conditional on λi,−k and τi,−k, we know βi,−k. Moreover, given λi,−k,

µci and Σci , the prior for λik is a univariate normal distribution with mean µ̃λik and variance

σ̃2
λik

given by

µ̃λik ≡ E[λik|λi,−k, µci ,Σci ] = µci,k + Σci,k,−kΣ
−1
ci,−k,−k(λi,−k − µci,−k), (20)

σ̃2
λik
≡ Var (λik|λi,−k,Σci) = Σci,kk − Σci,k,−kΣ

−1
ci,−k,−kΣci,−kk, (21)

where Σc,k,−k refers to the kth row of Σ and all columns except for the kth.

The candidate for λik is drawn from the normal distribution

λ∗ik ∼ N(λik, ρ
2
λ,ikσ̃

2
λik

), (22)

where ρλ,ik is a parameter to be tuned such the acceptance rate is about 0.44 (Roberts et al.,

1997, Roberts, Rosenthal, et al., 2001). Tuning is performed during the burn-in MCMC

iterations. The candidate is accepted with probability

min

[
1,
f(yi|λ∗ik, βi,−k, θk, γ)f(λ∗ik|µci ,Σci , λi,−k)

f(yi|λik, βi,−k, θk, γ)f(λik|µci ,Σci , λi,−k)

]
, (23)

where the likelihood contribution conditional on λik and βi,−k is given by

f(yi|λik, βi,−k, θk, γ) =
∑

τ̃ik∈{κ,1}

f(yi, τ̃ik|λik, βi,−k, θk, γ), (24)

=
∑

τ̃ik∈{κ,1}

Pr[τik = τ̃ik|θk]f(yi|λik, τ̃ik, βi,−k, γ), (25)

=
∑

τ̃ik∈{κ,1}

θ
I[τ̃ik=1]
k (1− θk)I[τ̃ik=κ]f(yi|β̃i, γ), (26)

=
∑

τ̃ik∈{κ,1}

θ
I[τ̃ik=1]
k (1− θk)I[τ̃ik=κ]

(
Ti∏
t=1

f(yit|β̃i, γ)

)
, (27)
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where β̃i has kth element τ̃ikλik and f(yit|β̃i, γ) is the likelihood contribution of observation t

of unit i conditional on β̃i and γ given in Equation (1). For the prior density of λik we have

that

f(λik|µci ,Σci , λi,−k) ∝ exp

{
−1

2

(λik − µ̃λik)2

σ̃2
λik

}
. (28)

In case λi should be drawn jointly over all variables k, the candidate should be a multi-

variate normal distribution and the tuning parameter ρλ should be tuned such to obtain an

acceptance rate of about 0.234 (Roberts et al., 1997, Roberts, Rosenthal, et al., 2001).

A.4. Draw τik

We draw τik conditional on yi, λi, τi,−k, θk and γ using a Bernoulli distribution. The condi-

tional probability that τik is equal to 1 is given by

Pr[τik = 1|yi, λi, τi,−k, θk, γ] =
Pr[τik = 1|θk]f(yi|λik, τik = 1, βi,−k, γ)∑

τ̃ik∈{κ,1} Pr[τik = τ̃ik|θk]f(yi|λik, τ̃ik, βi,−k, γ)
(29)

=
θk

(∏Ti
t=1 f(yit|βik = λik, βi,−k, γ)

)
(1− θk)

(∏Ti
t=1 f(yit|βik = κλik, βi,−k, γ)

)
+ θk

(∏Ti
t=1 f(yit|βik = λik, βi,−k, γ)

) (30)

where the likelihood contribution of observation t of unit i conditional on βi and γ is given

in Equation (1). Hence, we can draw a rik from a Bernoulli distribution with the probability

in Equation (30). Then, we obtain a draw of τik by setting τik equal to 1 when rik = 1 and

equal to κ when rik = 0.

A.5. Draw θk

We can directly draw θk conditional on {τik}Ni=1 from the Beta distribution

θk|{τik}Ni=1 ∼ Beta

(
a+

∑
i

I[τik = 1], b+
∑
i

I[τik = κ]

)
, (31)

for k = 1, ..., Kx.
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A.6. Draw γ

We use a random walk Metropolis-Hastings step to draw γ conditional on {yi}Ni=1, {ci}Ni=1,

{λi}Ni=1, and {τi}Ni=1. First notice that given {λi}Ni=1, and {τi}Ni=1, we know {βi}Ni=1. At the

sth draw, the candidate for γ, γ∗, is drawn from

γ∗ ∼MVN(γ(s−1), ρ2
γΣci), (32)

where γ(s−1) is the current draw for γ, and ρλ,i is a parameter to be tuned such the acceptance

rate is about 0.234 (Roberts et al., 1997, Roberts, Rosenthal, et al., 2001). The acceptance

probability is given by

min

[
1,

f(yi|γ∗, βi)f(γ∗)

f(yi|γ(s−1), βi)f(γ(s−1))

]
, (33)

where

f(yi|γ, βi) =

Ti∏
t=1

f(yit|βi, γ), (34)

and f(γ) is the prior density of γ. In case γ∗ is not accepted, we set γ(s) = γ(s−1).

41



B. Histograms of priors

Figure 7: Priors µq and Σq

(a) Prior standard deviation
√
Diag(Σq) in Monte Carlo study

and empirical applications. This is the marginal density of the
square root of a variance from the diagonal of a covariance
matrix based on an IW (ν, νυI) distribution with K = 3, ν =
K + 5, and υ = 0.2.

(b) Prior mean for µq, marginalized over Σq, in Monte Carlo
study and empirical applications. This is the marginal density
based on a MVN(0, 0.5−1Σq) prior for µ, K = 3, and the
prior Σq ∼ IW (ν, νυI) with ν = K + 5, and υ = 0.2.

Figure 8: Implied prior on number of components (N = 1, 000 and α = 1)
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C. Hit rates Monte Carlo study

Table 8: Percentage of units for which the posterior draw of βik falls within −ε ≤ βik ≤ ε for multiple
values of ε (averaged over Monte Carlo replications, draws and variables).

(1) All (2) True −ε ≤ βik ≤ ε (3) True βik < −ε or βik > ε (4) True βik = 0

ε True HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M HVS-DPM DPM HVS-M

DGP 1

0.00 10 7 0 10 24 0 36 6 0 8 24 0 36

0.10 13 11 5 15 29 13 38 8 4 11 31 12 42

0.20 17 14 10 19 36 25 44 10 7 14 39 25 48

0.30 20 19 16 23 43 36 49 13 11 17 46 36 54

0.40 23 24 22 28 49 45 55 16 15 20 54 47 60

0.50 28 29 29 33 55 53 59 19 19 24 61 57 66

0.75 43 46 47 48 67 68 68 30 32 32 77 76 78

1.00 64 64 65 62 78 79 76 40 41 38 88 88 87

1.50 88 86 86 85 92 92 90 42 44 52 97 97 97

2.00 95 94 94 96 96 96 97 59 60 81 99 99 99

2.50 98 98 98 99 98 98 100 78 77 95 100 100 100

DGP 2

0.00 0 2 0 2 - - - 2 0 2 - - -

0.10 3 5 3 6 16 13 17 4 3 6 - - -

0.20 7 8 6 11 26 24 28 6 5 9 - - -

0.30 10 11 10 15 35 33 37 8 7 13 - - -

0.40 14 15 15 20 42 41 44 11 10 16 - - -

0.50 19 21 20 26 47 46 50 14 14 20 - - -

0.75 37 39 39 41 61 61 61 26 26 29 - - -

1.00 59 59 59 57 74 75 72 36 36 35 - - -

1.50 86 83 84 83 90 91 88 39 39 51 - - -

2.00 94 93 93 96 96 96 97 58 59 81 - - -

2.50 98 98 98 99 98 98 99 79 79 95 - - -

DGP 3

0.00 25 16 0 19 33 0 40 11 0 13 33 0 40

0.10 28 21 8 24 39 15 45 13 5 15 40 15 46

0.20 30 25 16 28 46 29 51 16 10 18 47 29 53

0.30 33 30 24 33 52 42 57 18 15 21 54 42 59

0.40 36 35 32 38 59 53 62 22 21 24 61 53 65

0.50 40 41 40 43 64 61 67 25 26 27 67 63 70

0.75 53 56 58 56 75 76 75 36 38 35 81 81 82

1.00 70 71 72 69 83 84 81 43 45 40 90 91 90

1.50 90 88 89 88 93 93 92 45 47 53 98 98 98

2.00 95 95 95 97 97 97 98 62 63 81 100 100 100

2.50 98 98 98 100 99 99 100 79 79 94 100 100 100

DGP 4

0.00 10 14 0 14 25 0 26 12 0 12 25 0 26

0.10 17 20 9 20 34 16 35 17 8 17 34 15 35

0.20 24 26 19 26 45 32 45 20 15 20 43 29 44

0.30 31 33 28 33 54 46 54 24 20 24 51 43 52

0.40 39 40 38 40 61 57 61 27 26 27 60 54 60

0.50 47 48 47 48 68 66 68 30 31 30 67 64 67

0.75 66 66 68 66 80 81 80 40 43 40 82 82 82

1.00 81 81 82 81 88 89 88 51 54 51 91 92 91

1.50 97 96 96 96 97 97 97 77 76 77 99 99 99

2.00 100 100 99 100 100 99 100 94 93 94 100 100 100

2.50 100 100 100 100 100 100 100 99 99 100 100 100 100

Results for four different groups:
(1) all units,
(2) units for which true βik falls within interval,
(3) units for which true βik does not fall within interval,
(4) units for which true βik = 0 (τik = 0).
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