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Abstract

We investigate how consumers respond to uncertainty about CO2 emission size. In an

incentivized online experiment, participants can acquire a valuable good that emits an

unknown amount of CO2. We find that beliefs about emission size are strongly predic-

tive of purchases, even exceeding the effect of substantial changes in the price of the

good. Moreover, information that makes beliefs more precise causes a 26% reduction

in overall emissions, even though average beliefs are unchanged. The reduction occurs

as the marginal willingness to pay for emission reduction declines with emission size,

so people who are too optimistic about emissions are more responsive to information.

We also test for the formation of self-serving beliefs. Contrary to theories of motivated

reasoning, increasing the surplus from buying the product does not change patterns of

attention or belief formation about emissions. Overall, the results suggest that informa-

tion about CO2 impact can be an important policy lever, and that willingness-to-pay

for emission reductions should take into account the size of emissions.
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1 Introduction

How to combat climate change and move away from carbon-intensive production is a

key challenge for our societies. Carbon pricing is arguably the most important tool to

reduce carbon emissions (Nordhaus, 2019; Stiglitz et al., 2017), but the financial sacrifices

it requires from voters makes it hard to implement politically. For instance, in France, an

increase in carbon taxes on fossil fuels sprouted a protest movement known as the yellow

vests; in Canada, some states are fighting a legal battle against a federally imposed carbon

tax. An alternative, and cheaper approach is to increase voters’ voluntary commitment

through public information campaigns or (mandatory) product labeling. These measures

may be effective if citizens care about protecting the environment but have wrong or

imprecise beliefs about the actual emission impact of their actions. However, little is

known about how beliefs and information about emissions affects purchasing decisions.

In this paper, we test a number of novel hypotheses related to the importance of

consumer beliefs and the role of information about CO2 emission size. To this end, we

conduct an incentivized experiment with 1000 participants on Prolific, an online platform.

We offer participants a trade-off between increasing their earnings and emitting CO2, a

decision that is framed as the acquisition of a valuable but polluting virtual product.

Across treatments, we vary the information available on the magnitude of these emissions.

In one condition, we communicate the exact size of CO2 emissions – 140 kg of CO2, which

is equivalent to burning 60 liters of gasoline and costs £1.07 to offset via Carbonfund.org.

In other conditions, participants could form beliefs by engaging in an attentional task,

mimicking efforts like reading product labels or engaging in online search. To compare and

provide a benchmark for the importance of beliefs and information with those of monetary

incentives, we conduct cross-randomized treatments in which we vary the prices of the

polluting product.

We find that beliefs about the CO2 emissions associated with the virtual product mat-

ter, as they are highly predictive of purchases. For instance, subjects who report the highest

emission beliefs (at most twice the true amount) only buy the product 25 percent of the

time, while those with the lowest beliefs buy it 67 percent of the time. By comparison,

the difference in purchases from a seven-fold price increase (from £0.25 to £1.75) is 23

percentage points. The intrinsic motivation to avoid emissions is stronger among women
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than among men.

Moreover, we find that providing unambiguous information about the size of emissions

leads to a 26% reduction in overall emissions. This effect does not result from a shift in

average beliefs, because participants in the uncertainty conditions also have correct beliefs

on average. Instead, the effect of information results from a non-linear relation between

beliefs and buying behavior: correcting underestimates of beliefs has a larger effect on

demand than correcting overestimates. In an additional experiment, we show that the

origin of this non-linearity is a decreasing marginal willingness to pay (WTP) for emission

reductions. Thus, information works because people derive more disutility from emitting

140 kg of CO2 for sure, than from doing so in expectation.

These results indicate that consumer’s beliefs about emission size matter, at least when

emissions are made salient, as in our experiment. This suggests that reporting product

emissions and correcting misperceptions can be an effective strategy to reduce carbon

emissions when consumers underestimate emission size, or when there is substantial het-

erogeneity in beliefs. The finding that WTP for CO2 reduction is declining in emission size

also means that WTP estimates in the literature, which focus on a single amount, are only

partially informative.

We also look at the interaction of prices and beliefs. In particular, we test theories

of “motivated beliefs” predicting that changes in consumer surplus may affect consumers’

perceptions about the size of the emissions. If “dirty” products are cheap, consumers might

self-servingly reduce attention to emission size or be more inclined to “see” convenient

information that justifies buying the product. This may create an additional channel

through which prices impact demand, and increases price elasticity compared to a world

of full information (Hestermann et al., 2018). We test this idea by comparing the belief

formation process of participants who know the surplus they can obtain from acquiring

the polluting product with participants who do not know. We do not find evidence for the

formation of self-serving beliefs in our setting, nor do we see an influence of the consumer

surplus either on beliefs or on the effort on the attentional task. We also find no evidence

that prices and information interact through other channels.

As we detail more extensively in the next section, these results contribute to the litera-

ture in three main ways. First, the evidence that reducing uncertainty about externalities
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decreases emissions adds to a literature on prosocial decisions under uncertainty. We doc-

ument a novel mechanism for this effect, stemming from the concavity of individual WTP

to avoid CO2 emissions. Second, our findings add to a literature on ethical consumption

and moral behavior in markets, as we demonstrate a substantial intrinsic motivation for

avoiding emissions and show how WTP to do so depends on the size of CO2 emissions.

Finally, we contribute to a literature on the use of “moral wiggle room” and motivated rea-

soning in economic decisions: Our null result in an applied online setting raises questions

about the scope of motivated cognition in ethical consumption.

2 Related literature

Our work contributes to several lines of literature. The first investigates the role of un-

certainty in ethical decisions and social dilemmas, and has yielded contradictory results.

Butera and List (2017) finds that uncertainty about the returns of contributing to a public

good boosts contributions. By contrast, Exley (2015) finds that uncertainty reduces do-

nations to the Red Cross. In line with this, Kappes et al. (2018) shows that uncertainty

about the probability of harming others increases selfish behavior. However, they also find

that uncertainty about the magnitude of the damage produced on a passive party induces

more prosocial choices. This last result contrasts with ours, in that we find that individuals

are more likely to act selfishly if there is uncertainty about the size of the emissions that

they might produce.

In the field, several studies have looked at the role of feedback or information on sus-

tainable choices. Feedback takes various forms, ranging from the behavior of peers to

the environmental or personal benefits of sustainable behavior. For instance, Rodemeier

and Löschel (2020) look at the impact of information on the personal benefits of energy

conservation, and find that it increases energy use, as the information corrects initial over-

estimates in the sample. To our knowledge, few (field) experiments have considered CO2

emissions. As an exception, Fang et al. (2020) show that home energy reports containing

information about CO2 emissions of shower use affect beliefs about impact, but do not

change behavior unless combined with immediate, real-time feedback. While our paper

studies more abstract decisions, we view it as complementary to such field interventions:

our approach allows to carefully disentangle the role of beliefs and preferences in consid-
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ering the role of information, and show how decreasing marginal WTP affects information

interventions.

The second literature considers consumers’ WTP for ethical products when the emission

size is known. In a prominent publication, Bartling et al. (2014) report results from an

experimental market where some products have negative externalities on other subjects.

They find that both buyers and sellers are willing to pay not to produce emissions. A

separate line of research closer to our application investigates the WTP to reduce CO2

emissions, using mostly unincentivized surveys. A review by Nemet and Johnson (2010)

finds a stated WTP between $22 and $437 per household annually. This range is wide and

likely influenced by the hypothetical nature of the questions. Two more recent studies,

however, do incentivize participants to reveal their true WTP. Löschel et al. (2013) find a

median WTP to buy emissions offsets for one ton of CO2 of 0e and an average of 12e.

Diederich and Goeschl (2014), instead, finds a median WTP of 0.30e and a mean of 6.30e.

Both these studies elicit the WTP to offset a fixed CO2 amount.

We contribute to this literature by showing, in an incentivized experiment, that con-

sumers’ WTP to avoid CO2 emissions is increasing but concave in the size of the emissions.

This finding mirrors WTP in other prosocial decisions: Schumacher et al. (2017) show that

willingness to take prosocial acts is highly concave in the number of beneficiaries. Thus,

taking into account emission size is important when evaluating WTP in research on climate

change as well as sustainability more generally.

The third relevant literature focuses on the formation of motivated beliefs, i.e., beliefs

that people hold because they directly derive utility from them, and not because they

are accurate or based on evidence. In particular, people may form distorted beliefs to

keep a positive view of themselves even if they behave selfishly or immorally, see surveys

in Bénabou and Tirole (2016) and Gino et al. (2016). Moreover, individuals sometimes

purposely avoid information that might compel them to sacrifice part of their pay-off to

act generously (Dana et al., 2007; Ehrich and Irwin, 2005; Grossman and Van der Weele,

2017), and some are even willing to pay to do so (Serra-Garcia and Szech, 2019). Exley

(2015) shows that people use the uncertainty about the outcome of a charitable donation

as an excuse not to give. Thunström et al. (2014) demonstrate strategic ignorance about

CO2 emissions in the context of a hypothetical long-distance flight.

5



Of particular relevance for our setting are studies on the interactions between informa-

tion avoidance, belief formation, and economic incentives. Recent theoretical contributions

include Schwardmann (2019), who shows that health risk prevention and motivated beliefs

are strategic complements. In a moral context, Hestermann et al. (2018) theorize that in-

dividuals are more likely to engage in denial of an externality if they earn a higher pay-off

by producing it, thus increasing the elasticity of demand. On the empirical side, Festinger

and Carlsmith (1959) show that participants exhibit stronger motivated beliefs about the

pleasantness of a task if they have incentives to lie about it, although the effect declines

for higher incentives. Recent empirical papers investigate the relationship between the

price of a prosocial action and the incidence of strategic ignorance (Feiler, 2014; van der

Weele, 2013; Momsen and Ohndorf, 2019b,a). Perhaps closest to this paper, Momsen and

Ohndorf (2019b) find that participants are less likely to reveal information about CO2

emissions when they can gain less from an action that could produce those emissions.

Finally, Ambuehl (2016) uses a strategy similar to ours to investigate the impact of incen-

tives on information acquisition and belief formation in the context of aversive consumption

decisions, and concludes that incentives rationally skew information acquisition.

We go beyond these studies by looking systematically at the effect of price changes

on beliefs about externalities, rather than information avoidance. In particular, we are

the first to investigate the hypothesis that the formation of motivated beliefs amplifies the

effect of price incentives. Our null result raises questions on the applicability of laboratory

results on motivated cognition to climate change contexts that future research should ad-

dress (see also Lind et al., 2019).1

1The focus on motivated beliefs sets us apart from a small literature in development economics that

studies the interaction of monetary incentives and information in shaping consumer demand for health

products. Ashraf et al. (2013) finds that information reduces the elasticity of demand for water purification

products. Instead, Dupas (2009) and Meredith et al. (2013) find that the elasticity of demand for, respec-

tively, bed nets and preventive health care for children is not affected by information provision. Our design

eliminates several mechanisms that can influence the effect of information on the elasticity of demand in

these studies, such as liquidity constraint, present bias, and the signaling value of price.
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3 Design

In the experiment, we offer participants to buy a single unit of a virtual product.2 If

participants decide to purchase the product, they increase their pay-off by the product value

of £2, minus the price at which we, the experimenters, offer it. Purchasing the product

results in the emission of CO2 into the atmosphere. We implement these CO2 emissions

via the preparation of a donation to Carbonfund.org, an NGO that finances projects to

reduce CO2 emissions and to capture CO2 from the atmosphere. If participants buy the

product, we will cancel the donation, thus increasing the carbon in the atmosphere.

We framed the experiment as a market interaction, using words like “virtual product”

and “price” to make it closer to the real-life purchasing situation. After explaining the use

of donations to Carbonfund.org, we refer to the consequences of buying the product as an

“increase in CO2 emissions”. This wording is both truthful and makes the environmental

consequences more salient and closer to everyday-life applications. Because CO2 emissions

expressed in weight units - like grams or tons - are very abstract to participants, we inform

subjects that buying the good results in emitting as much CO2 as burning 60 liters of

gasoline. This emission size had offset costs of £1.07, commensurate to the other payments

in the experiments.3

As we describe next, we implemented three price treatments and three information

treatments as well as their interactions, resulting in nine treatments in total. Each partici-

pant took part in one treatment only. The link to the full instructions and comprehension

questions is in Appendix D. We preregistered the experimental design and the hypotheses

on AsPredicted.org; the document containing the preregistration is in Appendix E.

2This product is virtual in the sense that it exists only inside the experiment, it is not a physical product

nor a service. However, the product is valuable to the participant because if he or she “buys” it, her pay-off

from the experiment increases.
3On the basis of a report from the US Environmental Protection Agency (EPA (2005)), we calculate

that burning 60 liters of gasoline produces 140kg of CO2 emissions. Carbonfund.org offsets 1 metric ton of

CO2 per every $10 (or £7.9) it receives in donations, so offsetting the products’ emissions cost £1.07.

7



3.1 Information treatments

We are interested in the formation and impact of beliefs about the CO2 emissions associated

with the product, as well as the role of information. To study this, three treatments varied

the nature of uncertainty about the size of the emissions.

In the Info treatment, participants receive complete information, i.e., that emissions

were equivalent to burning 60 liters of gasoline. This treatment allows us to study consumer

demand under full information about the magnitude of emissions. In the other two treat-

ments, called the Motivated and Unmotivated treatments, there was uncertainty about the

size of the emissions. Participants could reduce uncertainty by engaging in an attentional

task, designed to mimic real-life consumption situations such as reading product labels or

doing an online search for information. The task consisted of a matrix of numbers; the

number that appeared most frequently indicated the size of the emissions, measured in

terms of the CO2 emissions generated by burning a liter of gasoline. We adapted this task

from Ambuehl (2016), who shows that the information gathering strategy in this task is

influenced by incentives for subsequent decisions.4 Subjects had up to one minute to en-

gage in the task, after which we elicited participants’ beliefs by asking them which number

appeared most often in the table. A correct answer was rewarded with a bonus of £0.10,

which incentivizes subjects to report the mode of their belief distribution (Schlag et al.,

2015).

The two uncertainty treatments differ in the order in which we presented the attentional

task and the information about the emission size. In the Unmotivated treatment, subjects

were presented with the task before they knew any other details of the experimental design.

In this way, participants have no self-serving motive to distort their attention or their beliefs

in the direction of their economic interest. By contrast, in the Motivated treatment,

participants engaged in the task after reading the full experimental instructions. Thus,

participants knew that the correct answer to the task indicated the magnitude of the CO2

emissions, as well as the surplus they could obtain from the product. This treatment allows

4The task can be found in the online instructions. In total, there are 143 numbers in the table. The

numbers belong to the set N = {0, 20, 40, 60, 80, 100, 120}, with 60, the most common number, appearing

35 times. 0 and 120 are the numbers that appear the most often after 60, both of them appearing 26 times.

All the other numbers appear 14 times.
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us to test if the surplus from buying the product has a causal effect on participants’ belief

formation in the attentional task, and, in turn, on the purchase of the product.

3.2 Price treatments

We also investigate how purchases depend on prices, for two main reasons. First, the

effect of prices provides a natural quantitative benchmark for the effects of beliefs and

information, as price incentives are a primary tool of policymakers and often discussed in

the context of reducing carbon emissions.

Second, we can test how varying the consumer surplus affects the formation of beliefs

and information gathering. Next to a standard substitution effect, prices may change the

motivation to form the self-serving beliefs that the emissions are low. Theories of motivated

cognition and cognitive dissonance provide predictions on the direction of the interaction

between prices and beliefs. Hestermann et al. (2018) argue that as price decreases the

temptation to buy goes up, and with it the demand for moral justification, which is achieved

by developing self-serving beliefs. This self-deception resulting from lower prices increases

buying beyond the direct substitution effect, and therefore raises the price elasticity of the

good. We show in Appendix A how this effect can be identified empirically in the context

of our study. Alternatively, Festinger and Carlsmith (1959) provides evidence that a very

high surplus may in itself provide enough justification to buy, as being swayed by high

incentives is not a strong signal of deviance. According to this logic, one would expect the

highest demand for justification to occur for high or intermediate prices.

We implemented three price treatments which varied the price of the product between

a low price (£0.25), a medium price (£1), and a high price (£1.75). We inform participants

that the price has been randomly assigned to them and is uninformative about the size of

emissions. We make sure participants understand this fact asking them a comprehension

question on the topic.

3.3 Sample and data collection

We recruited 1154 participants using Prolific.ac, an online platform, between 9th and 11th

May 2019. Of those, 1000 participants completed the experiment. Between the partici-

pants that concluded the experiment, 50% are females, 42% are students, and the average
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age is 29 years old. We accepted only EU nationals as participants. The most represented

countries in our sample are the UK (33.6%), Poland (14.5%), and Portugal (13.1%). Sub-

jects earned a fixed reward of £1.6 plus a bonus payment depending on their decisions.

On average, they earned £2.04, and they took less than 13 minutes to complete the tasks.

We received information on participants’ gender, age, and nationality directly from Pro-

lific.ac.5 Following participants’ decisions, we donated $911.40 to Carbonfund.org to offset

CO2 emissions, resulting in a reduction of over 9 metric tons of CO2 in the atmosphere.

3.4 Implementation details

To ensure that the experimental subjects understood all the essential elements of the in-

structions, we used slides that displayed the instructions step by step. On almost every

slide, an explanatory image accompanied the written text to make the instructions easier

to digest. Besides, we divided the instructions into 3 or 4 sets, depending on the treatment.

After each set, we asked participants to answer several comprehension questions. We did

not allow subjects to continue with the experiment until they answered all the questions

of each set correctly. In total, participants had to answer between 12 and 15 comprehen-

sion questions depending on the treatment. At the end of the experiment, we collected

demographic information using a survey.

We took several steps to convince participants that the CO2 emissions associated with

the purchase of the product would actually be implemented. We stressed the role of the no-

deception policy in obtaining ethical approval for the experiment. Moreover, we promised

participants to send them the invoice of the donation to Carbonfund.org.6

Finally, we stressed the anonymity of participants’ decisions. Experimenters have access

5Researchers have recently voiced concern that bots, instead of humans, might complete experiments

on Amazon MTurk, another online platform routinely used to run online experiments. To the best of

our knowledge, no concern about bots has been raised regarding Prolific.ac to date. However, we took

two measures to further minimize the risk that undetected bots completed our experiment. First, we

implemented two honey-pots, those are questions that a human participant would not be able to see, but that

a bot that reads the source code of the experimental program should identify as questions to be answered.

Second, we kept track of the number of attempts participants needed to answer the comprehension questions

correctly. We did not find any evidence that bots completed our study. The interested reader can find more

details in Appendix B.
6The invoice of the donation is in Appendix F and it was sent to participants on 14th May 2019.
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only to the Prolific identification number, a unique number that identifies participants on

the platform. The experimenters do not receive, nor are allowed to ask any information that

could identify participants outside the platform. To ensure that participants are aware of

this policy, we reminded participants that they are anonymous and asked a comprehension

question on the topic.

3.5 Follow-up experiment

We conducted a follow-up experiment to delve into the motives behind the behavior in

the main experiment. As we explain in more detail below, this experiment was designed

to understand how the WTP to avoid emissions depends on the emission size. In the

follow-up experiment, we recruited an additional 134 participants on Prolific on the 18th

October and 19th November 2019, and elicited WTP to avoid CO2 emissions. WTP was

elicited with a BDM mechanism (Becker et al., 1964). For each participant, we elicit the

WTP to avoid CO2 emissions equivalent to burning the equivalent to 5, 30, 60, 120, 180

liters of gasoline, using a multiple price list.7 The emission size was presented in a random

order to the participants and the multiple price list ranged from £0.00 to £7.00 in £0.50

increments.

4 Results

We start with an overview of some general patterns of buying behavior across all treatments.

Below, we statistically analyze the main treatment effects in more detail.

As Figure 1a shows, higher prices decrease buying in all treatments, as one would ex-

pect. Furthermore, participants display a substantial motivation to avoid CO2 emissions.

Pooling across all treatments, a minority of 34.9% of the participants bought the experi-

mental product. It is striking that buying behavior never exceeds 52% and it is as low as

15% in some treatments, even though consumer surplus is substantial (£1.75) relative to

a) the show-up fee (£1.6), b) the minimum wage enforced by Prolific (less than £1.10 for

an experiment like ours), and c) the cost of compensating the CO2 emissions (£1.07).

7The two sessions were identical except for one design feature: in the second session, we forced a single

switching point in the multiple price list, in the first we didn’t.
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Figure 1: Overview of buying behavior by beliefs and prices.

(a) Average number of units bought in each treat-

ment by price level. x-axis: price; y-axis: percent-

age of participant buying the product; confidence

bars ± 1 standard deviation.

(b) Average number of units bought for the most

common beliefs levels. x-axis: beliefs; y-axis: per-

centage of participant buying the product; confi-

dence bars ± 1 standard deviation.

Figure 1b breaks down buying behavior by beliefs in the two uncertainty treatments.

We focus on the three most prominent belief levels, i.e., the beliefs that emissions are

most likely to be either 0, 60, or 120. Due to the nature of our attentional task, 95% of

participants indicated one of these three beliefs.

Several patterns jump out. First, buying decreases when subjects believe the emissions

are larger. This is a sizeable effect: Table 1 shows that between the lowest and highest be-

liefs, buying drops by 43 percentage points. By comparison, the buying difference between

the extreme price levels prices is 23 percentage points. In our setting, beliefs about the

size of the emissions thus appear to be an important motivation of participants. Second,

the effect of beliefs is non-linear: buying decreases by more than 50% when beliefs about

the emissions increase from 0 to 60 liters worth of gasoline, but when they increase further

to 120 liters, the decrease in buying is only 33%. This observation will play an important

role in our analysis below.
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Table 1: Number of participants that buy the product per each price and beliefs level

Price

£0.25 £1 £1.75 Total

0

# Buying

Observations

% Buying

37

44

84.1%

34

46

74.0%

18

43

41.9%

89

133

66.9%

Beliefs 60

# Buying

Observations

% Buying

88

212

41.5%

68

228

30.0%

49

225

21.8%

205

665

30.8%

120

# Buying

Observations

% Buying

20

58

34.5%

15

57

26.3%

9

58

15.5%

44

173

25.4%

Total

# Buying

Observations

% Buying

145

314

46.1%

117

331

35.3%

76

326

23.3%

338

971

34.8%

Number of participants that buy the product per each price and beliefs level. Note that the drop in buying

due to the change in price is smaller than the drop in buying due the change in beliefs.

4.1 The effect of information

We now turn to analyze the effect of providing information about emissions in more detail.

To this end, we compare behavior in the Info and the Unmotivated treatment. We focus

on the Unmotivated treatment as beliefs cannot be conditioned on prices. All qualitative

results go through when we instead compare the Info with the Motivated treatment (See

Appendix C.1).

Figure 1a shows that, for any given price level, buying is lower in the Info treatment

than in both other treatments. Pooling the data across price levels, a Fisher’s exact test

corroborates this finding: we reject the null hypothesis of equal buying behavior between

the Info and Unmotivated treatment (two-sided p = 0.013). To confirm that this result is
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Table 2: Comparison between Info and Unmotivated treatment

(1) (2)

Units Units

Info Treatment -0.095∗ -0.032

[-0.17,-0.018] [-0.13,0.064]

Beliefs=60 -0.36∗∗∗

[-0.51,-0.22]

Beliefs=120 -0.44∗∗∗

[-0.59,-0.28]

Dummies for beliefs

Controls

Observations 568 568

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All the models are linear

probability models with robust standard errors. Data from the Unmotivated and the Info treatment only.

Baseline: Unmotivated treatment. Dependant variable: purchasing decision (equal to 1 if the participant

purchased the product). Controls list: sex, age, student status, education (6 categories), nationality (27

categories). Dummies for Beliefs: 6 dummies corresponding to beliefs of 20, 40, 60, 80, 100, 120. Dummy

corresponding to beliefs of 0 excluded because of collinearity.
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not driven by differences in subject characteristics, Table 2 reports the results of an OLS

regression where we control for sex, age, student status, education, and nationality. The

results in column (1) indicate that being in the Info treatment (relative to the baseline of

the Unmotivated treatment) decreases the likelihood that a participant buys the good by

9.5 percentage points (26 percent). Note that the difference in buying behavior is unlikely

to be explained by participants in the Unmotivated treatment having wrong beliefs on

average. In fact the average belief in the Unmotivated treatment is 62.7, not significantly

different from 60 (p = 0.25).

To study the role of beliefs in the effect of information, we include dummies for the

different belief levels in Column (2) of Table 2.8 The dummy coefficients demonstrate the

non-linear effects of beliefs on buying noted above. Moving from believing that emissions

are most likely to be 0 to believing that they are most likely equal to 60, reduces the

probability of buying the product by 36 percentage points (p < 0.001). Moving from belief

60 to 120 decreases the probability of buying by only 8 additional percentage points. This

latter difference is not statistically significant (p = 0.26). Column (2) also shows that after

including the dummies for beliefs, the treatment effect goes down by about two thirds, and

becomes insignificantly different from 0.

We conclude that the effect of information is driven by the asymmetric effect of beliefs:

correcting low beliefs about the emission size leads to a high decrease in buying, while

correcting high beliefs leads only to a modest increase. Thus, providing information works

because people who are too optimistic about the emission size are more responsive to

information.9
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Figure 2: Average WTP to avoid different levels of CO2 emissions. X-axis: CO2 emissions expressed

in liters of gasoline-burning equivalent. Y-axis: average WTP in pennies. The set of possible answers is

{0, 50, ..., 700} for each of the 5 levels of emissions.

4.1.1 Concave WTP to avoid CO2 emissions

While these results are intriguing, they leave open several interpretations. For instance,

the asymmetric effect of beliefs can be explained by a decline in the marginal WTP for

additional units of emissions. Alternatively, there may be omitted variables that are corre-

8Here, we assume that all participants in the Info treatment have a belief of 60, as this is the information

that they have been explicitly provided with. We also include dummies for the few participants who held

other beliefs, but omit the estimates from the table, as they are imprecisely estimated.
9Our estimates are likely to provide an underestimate of the effect of beliefs. Even subjects who report

a belief of 60 in the Unmotivated treatment are unlikely to be entirely sure about their guess. Their

belief distribution may thus have additional weight on 0 and 120 as emission levels. If these weights have

asymmetric effects, as our data suggest, sharpening these beliefs by providing more information may, in

fact, cause further reductions in buying. In our specification, this effect is picked up by the treatment

dummy.
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lated with both different belief levels and buying behavior, although this seems unlikely.10

To distinguish between these explanations, we collected additional data on Prolific for 134

individuals on individual willingness to pay (WTP) to avoid CO2 emissions of different

magnitude. We excluded 9 participants from the analysis because they acted like they had

inconsistent preferences switching more than once along at least one multiple price list.

Hence the analysis that follows is based on 125 participants. The design of this follow-up

experiment is detailed in Section 3.5.

Figure 2 shows the average WTP data. WTP is increasing and concave in the size of

the emissions. Moving from emissions equivalent to burning 5 liters of gasoline to emissions

equivalent to 30 liters, a six-fold growth, increases the WTP by 65 pence, while moving

from 5 to 180 liters, a jump seven times as large as the previous one, causes the WTP to

grow by only 141 pence.

More formally, we estimate a Tobit model to take into account that the WTP is censored

at £7.00. In the model, we include the emissions size and the square root of the emission size

as independent variables to test whether the WTP increases less than linearly. Columns

(1) and (2) of Table 3 reports the estimates of model. The square root term is highly

significant both excluding and including the demographic controls, showing that indeed

WTP increase concavely. Columns (3) and (4) exclude subjects who have zero WTP for

all emission sizes, and are likely to be insensitive to information about CO2 emissions.

Excluding these participants does not affect the significance of the square root term and

hence shows that the concavity of the WTP is not driven by these individuals. Thus, we

find strong evidence that the aggregate WTP is increasing and concave in the size of the

emissions.

Not only the aggregate WTP function is concave, but a majority of individual functions

are concave as well. To show this, we construct a test of concavity for each individual,

based on the fact that any convex combination of a concave WTP function points will lay

below the function. The details of this analysis are given in Appendix C.2. Depending

on how strict we construct our test to be, we find that between 49% and 67% percent of

10Apart from the fact that we control for several subject characteristics, participants in the Unmotivated

treatment see the attentional task before knowing anything about the existence of the CO2 emissions. We

can not think of plausible individual characteristics that correlate with beliefs and influence participants’

buying behavior.
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Table 3: Testing concavity on aggregate

(1) (2) (3) (4)

WTP WTP WTP WTP

Emission size -1.07∗∗ -1.27∗∗ -1.28∗∗ -1.54∗∗

[-1.82,-0.32] [-2.05,-0.50] [-2.20,-0.36] [-2.50,-0.59]

(Emission size)
1
2 33.5∗∗∗ 37.4∗∗∗ 40.7∗∗∗ 46.2∗∗∗

[19.0,47.9] [22.4,52.3] [23.4,57.9] [28.2,64.2]

Controls

Observations 625 600 525 500

p-values in brackets.∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Tobit models. Dependant variable WTP

censored at 700 penny. Independent variables emissions size and square root of emissions size. Column

(3) and (4) only include subjects with positive WTP for at least one emission size. Controls: age, gender,

education (5categories), political identification (5 categories), frequency of car usage (5 categories). For 5

participants the demographic controls were not recorded
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participants have concave WTP, while less than 2% have a convex WTP. The concavity

of the WTP at the individual level can explain why uncertainty increases buying in our

experiment. People derive more disutility from an action that pollutes X emissions for sure

than from an action that produces X in expectation.

4.2 Do subjects form motivated beliefs?

To investigate the formation of motivated beliefs, as discussed in the Section 3, we compare

the Unmotivated treatment and Motivated treatment. The formation of self-serving

beliefs, or “self-deception”, is ruled out by design in the former treatment, as participants

engaged with the attentional task before knowing the design of the experiment. By contrast,

in the Motivated treatment, subjects knew the details of the decision and their economic

interests.

Before turning to the results, note that participants have room for self-deception. First,

the task is not trivial: only 51% of participants answer the belief question correctly in the

Unmotivated treatment, even though they spent, on average, 50 seconds on the task

screen. Thus, there was an ambiguity that would allow subjects to see what they want

to see. Furthermore, our analysis so far shows that beliefs are an important determinant

of buying behavior, implying that self-deception about emission size would indeed provide

subjects with a powerful reason to buy the good.

Figure 4 shows the distribution of beliefs in the Unmotivated and Motivated treatment.

It provides no evidence of the formation of motivated beliefs. A Mann-Whitney test fails

to reject the null hypothesis of equal distribution of beliefs in the Motivated and the

Unmotivated treatment (p = 0.66). Table 4 provides a regression analysis of beliefs in both

treatments on the Motivated treatment dummy, including individual characteristics as

controls. The coefficient in column (1) is positive, indicating that, if anything, participants

in the Motivated treatment believe that emissions are larger. Hence the direction of the

effect is the opposite of what the theories of motivated beliefs would predict. However, the

coefficient is insignificantly different from 0.

We also test for differences in purchasing behavior between the two treatments with

a Fisher’s exact test. The test fails to reject that subjects are equally likely to buy the

product in the Motivated and in the Unmotivated treatment (p = 0.483, two-sided test).
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Figure 3: Belief distribution in the Motivated and in the Unmotivated treatment.

Figure 4: x-axis: beliefs; y-axis: frequency of beliefs. Separated histograms for the Moti-

vated and the Unmotivated treatment

In column (2) of Table 4, we regress buying decisions on a treatment dummy and controls

for individual characteristics. We find no evidence for a difference between treatments.

4.3 The effect of prices on buying and beliefs

We expected prices to have a standard substitution effect on buying as well as a more subtle

indirect effect via beliefs. With regard to the former, Figure 1a demonstrates that subjects

decrease their buying when the price of the good rises. This finding is confirmed statistically

in the regression Table 5. Pooling across all treatments, we regress the purchasing decisions

on the price of the good, we find a coefficient of -0.15 (p < 0.001). If we repeat this test for

each of the different information treatments, we find similar results. Thus, we confirm that

the emission of CO2 follows standard economic laws, both under certainty and uncertainty.

We now turn to the indirect effect of prices on purchases via beliefs. As we hypothesized

in Section 3, we expected an increase in the surplus (a decrease in prices) to increase the

motivation to form self-serving beliefs in the attentional task. We tested this hypothesis

by adding an interaction between Motivated and price in column (3) of Table 4. In line
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Table 4: Comparison between the Motivated and the Unmotivated treatment

(1) (2) (3) (4)

Beliefs Units Beliefs Units

Motivated treatment 1.92 0.040 -4.41 0.051

[-4.36,8.20] [-0.033,0.11] [-16.6,7.82] [-0.093,0.20]

Price -4.24 -0.13∗∗

[-12.3,3.86] [-0.22,-0.040]

Price* Motivated treatment 6.17 -0.022

[-4.07,16.4] [-0.14,0.094]

Observations 695 695 695 695

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Models include observations

from the Motivated and the Unmotivated treatment. The Unmotivated treatment is the baseline. The first

model and third models are linear regressions, the second and the fourth are a linear probability models.

All models are estimated with robust standard errors. Dependant variable: beliefs in columns (1) and (3);

Purchasing decisions (1 if the participant purchased the product) in columns (2) and (4). Controls list: sex,

age, student status, education (6 categories), nationality (27 categories).

with the lack of evidence for motivated beliefs, as documented in the previous subsection,

we find no evidence that beliefs in the Motivated treatment depend on the price of the

product. For completeness, column (4) tests for the interaction of price and Motivated

treatment on buying behavior, where again we find no significant coefficients.

Overall, we find no evidence that the participants engage in motivated reasoning, or

that there is causal effect of the size of the surplus. Although the estimates go in the

hypothesized direction, the p-values are high, so our experiment yields a relatively clear

null result.

Finally, we look at the interaction between prices and information. To do so we compare

the Motivated and the Information treatment. While we found no evidence for motivated

beliefs, our original hypothesis behind an interaction effect, there may be other reasons
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Table 5: Downward sloping demand curves

All observations Motivated tr. Info tr. Unmotivated tr.

Units Units Units Units

Price -0.15∗∗∗ -0.13∗∗ -0.19∗∗∗ -0.12∗

[-0.20,-0.10] [-0.21,-0.049] [-0.27,-0.096] [-0.22,-0.029

Controls

Observations 970 402 275 293

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Linear probability models with

robust standard errors. Dependent variable: purchasing decision (equal to 1 if the participant purchased

the product). Controls list: sex, age, student status, education (6 categories), nationality (27 categories).

Missing observations due to participants skipping one or more questions in the final questionnaire.

why the two policies interact. For instance, Rodemeier and Löschel (2020) find that infor-

mation causes people to pay less attention to price effects. We test for this interaction in

column (4) Table 6. We do not find statistically significant evidence for an interaction effect.

4.4 Women are less likely to buy the product

Finally, we look at gender effects. These analyses were not preregistered, nor do we have

clear directional hypotheses. The findings could nevertheless be of interest to policymakers

seeking to target information. Table 7 shows regressions of buying behavior on a gender

dummy controlling for beliefs about the size of the emission size, price of the product, and

the provision of information. In column (1), we estimate that females are 23 percentage

points less likely to buy the product than males (p < 0.001). Overall, females are a striking

37% less likely to buy the product than males.

In the remaining columns of Table 7, we attempt to pinpoint the source of the difference

in response to information, beliefs, or attention. Column (2) decomposes the behavioral

response to information and prices across males and females by introducing interaction

terms. The coefficients for the interaction terms are not statistically significant, although
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Table 6: Comparison between Info and Motivated treatment

(1) (2)

Units Units

Price -0.14∗∗∗ -0.14∗∗∗

[-0.20,-0.082] [-0.20,-0.085]

Info treatment -0.10 -0.082

[-0.23,0.025] [-0.21,0.049]

Price* Info Treatment -0.013 -0.038

[-0.11,0.087] [-0.14,0.066]

Controls

Observations 1000 970

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All the models are linear

probability models with robust standard errors. Data from the Motivated and the Info treatment only.

Baseline: Motivated treatment. Dependant variable: purchasing decision (equal to 1 if the participant

purchased the product). Controls list: sex, age, student status, education (6 categories), nationality (27

categories).
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Table 7: Women are less likely to buy but they do not have different beliefs.

(1) (2) (3) (4)

Units Units Beliefs timeSec

Female -0.23∗∗∗ -0.21∗∗∗ 0.16 -4.92

[-0.35,-0.11] [-0.34,-0.092] [-8.46,8.78] [-11.0,1.14]

Info treatment -0.072∗ -0.044

[-0.14,-0.0012] [-0.14,0.055]

Female* Info treatment -0.058

[-0.18,0.064]

Price -0.19∗∗∗ -0.19∗∗∗ 2.58 -0.16

[-0.26,-0.12] [-0.26,-0.12] [-3.84,8.99] [-4.67,4.35]

PriceGender 0.074 0.073

[-0.020,0.17] [-0.021,0.17]

Dummies for beliefs

Controls

Observations 970 970 401 694

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The first and the second

models are linear probability models, the third and the fourth are linear regression models. All the models

are estimated with robust standard errors. The first and the second models include observations from

all treatments; the third from the Motivated treatment only; the fourth from the Motivated and the

Unmotivated treatment; Dependant variables: purchasing decision (equal to 1 if the participant purchased

the product) for column (1) and (2); Beliefs for column (3); Time for column (4). Control list: age, student

status, education (6 categories), nationality (27 categories). The variable Female takes value 0 for men and

1 for women.
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the effect is imprecisely estimated. Column (3) investigates whether women have different

beliefs on average, by regressing beliefs on a female dummy. Column (4) does the same

for the time spent on the attentional task. We find no clear results from these last two

analyses. We conclude that the most plausible explanation for the gender effect is that

women have a stronger preference against generating CO2 emissions.

5 Conclusions

We investigated the role of beliefs and information under uncertainty about CO2 emission

impact, using a series of experimental money-emission trade-offs in an online experiment.

In general, we find strong intrinsic motivation to avoid emissions, especially among women.

Beliefs about CO2 emissions are strongly predictive of buying behavior, even more so than

the price of the product. Even though beliefs are correct on average, information reduces

emissions through a hitherto unexplored channel: because WTP is decreasing in the size of

emissions, it is more effective on people who are too optimistic about the carbon impact of

their behavior. We find no evidence that the surplus associated with the product influences

attentional processes or the formation of self-serving beliefs about emissions.

Our results indicate that information can be an important policy tool in the fight against

climate change, both in correcting beliefs and making them more precise. We also demon-

strate that existing measures of WTP miss an important dimension, namely the size of the

emissions. While the climate literature typically focuses on measuring WTP for a given

unit of emissions, more effort should be directed to the changes in WTP for broader set

of metrics. Our null finding on motivated cognition suggests that policymakers can imple-

ment carbon pricing and information policies without considering the interaction effects on

beliefs. However, in light of some contradictory findings in related laboratory experiments

(Momsen and Ohndorf, 2019a,b), and the possibility of other channels of complementarity

(Rodemeier and Löschel, 2020), further research in this direction is warranted.

We believe our results offer ample opportunities for follow-up research. While our

controlled setting allows us to disentangle the different mechanisms behind the role of in-

formation and beliefs, the experiments take place in a stylized online environment using

a virtual good. To be a stronger guide to policy-making, the results are in need of cor-

roboration in the field, using actual goods, a broader set of informational interventions,

25



and more diverse samples. For instance, the effect of information for any given product

will depend on the public’s original beliefs about that product. Rodemeier and Löschel

(2020) show that information may reduce sustainable behavior if most consumers initially

overestimate the impact of efficiency measures. Finally, it is important to study the effect

of information policies not just on behavior, but also effect on political support for climate

change action.
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politique, 2014, 124 (2), 195–214.
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Appendices

A Taxes and information are substitutes, a theoretical deriva-

tion

In this section, we show that two testable behavioral assumptions are sufficient to prove

that taxes and information are substitutes. Those assumptions are:

1. The marginal utility of consumption is decreasing in the believed magnitude of the

negative emissions produced by consuming a product.

2. Consumers believe that the size of the emissions is higher when their surplus shrinks.

Formally assume:

U = u(c, y, β)

where y is the numeraire commodity, c is the good producing the emissions, and β is the

believed size of the emissions. β is a statistic of the beliefs distribution over the possible

value of the emissions. To stay close to the experimental design, we can think of β as

the mode of the beliefs distribution. A higher β indicates that the consumer believes the



emissions to be bigger. We assume U to be increasing and concave in both consumption

goods and let p be the price of c.

We further assume that Ucβ < 0, such that cβ(p, β) < 0. This entails that the marginal

utility of consumption is decreasing in the believed size of the emissions. This is the first

of the two assumptions we need: the consumer cares about the emissions he thinks he is

producing.

Finally, we let β = β(p) and β′(p) ≥ 0. β′(p) > 0, indicates that consumers self-deceive:

they adjust their beliefs depending on their monetary incentives. This formalizes the second

assumption. Consumers’ beliefs are increasing when consumer surplus decreases. We can,

then, model an information policy that prevents self-deception, as an intervention that

imposes β′(p) = 0.

We will now show that these two assumptions suffice to derive that taxes and information

are substitutes. To see this, assume that a tax causes p to rises from p1 to p2, with p2 > p1,

and that the information policy is not in place. In this case, β′(p) > 0, and β increases

from β1 to β2 with β2 > β1. The change in consumption is then given by: 11

c(p2, β1) − c(p1, β2) = c(p2, β1) − c(p1, β1)︸ ︷︷ ︸
direct effect

+ c(p2, β2) − c(p2, β1)︸ ︷︷ ︸
indirect effect

The expression on the RHS decomposes the total effect of the price change in a direct effect

and an indirect effect due to the change in beliefs. The direct effect is negative because c

has become relatively more expensive than y. The indirect effect is negative as well because

cβ(p, β) < 0. As a consequence, the change in beliefs reinforces the behavioral response

to the change in incentives. This implies that the marginal effect of introducing a tax is

higher when self-deception is possible. A policy that imposes β′(p) = 0, would eliminate

the indirect effect described above.

Obviously, the opposite is also true: the effect of information policy is higher when no tax

is in place. In fact, the motivated bias in beliefs is higher when the consumer surplus is

larger.

11To simplify the exposition of the proof, we assume that the utility function is quasi-linear. This

assumption is innocuous: the wealth effect does not depend on beliefs in the model.
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B Why we are sure that no bot completed the study

Two aspects of our design minimize the risk that a bot could complete our experiment.

First, our instructions are not machine-readable. Hence, a computer script would need to

answer all the comprehension questions randomly. This would result in an exceptionally

high number of answer attempts. We keep track of the number of attempts, and none of

the participants that reached the end of the experiment needed more than 65 attempts

to answer to the all the comprehension questions correctly.12 Moreover, we included two

honey-pots in the program. Those are questions that a human participant would not be

able to see, but that a bot that reads the source code of the experimental program should

identify as questions to be answered. We considered answering to any of the two honey-pot

as sufficient evidence that the participant is a bot. We do not find any participant that

answers any of these two questions. Putting together the evidence from the number of

attempts and the honey pots, we conclude that no bot completed our experiment.

C Additional Analysis

C.1 Robustness test on the effect of information

As a robustness check for the effect of information on buying behavior, we compare behavior

in the Info treatment with that in the Motivated treatment.

Figure 1a shows that for any given price level, buying is lower in the INFO treatment

than in both other treatments. Pool the data across price levels, a Fisher’s exact test

corroborates this finding: we reject the null hypothesis of equal buying behavior between

the INFO and Motivated treatment (two-sided p = 0.001). To obtain further insights,

Table 8 shows the results of OLS regression of buying on the Motivated treatment, where

the Info treatment is the baseline. The results in column (1) indicate that being in the

Motivated treatment increases buying by 12 percentage points.

We next explore the role of beliefs in the effect of uncertainty. Figure 1b shows how

buying behavior depends on beliefs in the treatments with uncertainty. We focus on the

1299% of our subjects needed less than 24 attempts to answer all the questions correctly. The minimal

number of attempted needed is 3 or 4 depending on the treatment.
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Table 8: Participants buy more units in the Motivated treatment

(1) (2)

Units Units

Info treatment -0.14∗∗∗ -0.10∗

[-0.21,-0.068] [-0.19,-0.019]

Beliefs=60 -0.33∗∗∗

[-0.45,-0.20]

Beliefs=120 -0.40∗∗∗

[-0.54,-0.27]

Dummies for beliefs

Controls

Observations 677 677

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All the models are linear

probability models with robust standard errors. Data from the Motivated and the Info treatment only.

Baseline: Motivated treatment. Dependant variable: Units. Controls list: sex, age, student status, education

(6 categories), nationality (27 categories).

three most prominent belief levels, i.e., the beliefs that the emissions are either 0, 60, or

120. Due to the nature of our visual task, 95% of participants indicated one of these three

beliefs. As is readily apparent, buying decreases when subjects believe the emissions are

larger. It is also clear that this effect is non-linear: buying decreases by about 50% when

beliefs about the emissions increase from 0 to 60 liters worth of gasoline, but when they

increase further to 120 liters, the decrease in buying is only 24%.

The average belief in the Unmotivated treatment is 62.7, insignificantly different from 60

(p = 0.25). This means that the average beliefs are very similar to those in the Information

treatment, where subjects were informed that the true emissions were equivalent to 60

liters. Thus, we can exclude that differences in buying behavior between the Information
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treatment and the Motivated treatment is due to correcting a systematic and unmotivated

bias in beliefs. In column (4), we include a dummy for the most prominent belief levels.

These dummies demonstrate the non-linear effects of beliefs on buying. Moreover, the

treatment effect now goes down by about 33% and becomes less precisely estimated. Thus,

we confirm the finding that at least part of the effect is driven by the asymmetric effect of

beliefs: correcting low beliefs about the emissions leads to a high decrease in buying, while

correcting high beliefs leads only to a modest increase. Thus, providing information works

because people who are too optimistic about the emissions are much more responsive to

it. Note that our estimates are likely to provide an underestimate of the effect of beliefs.

Even subjects who report a belief of 60 in the motivated treatment are unlikely to be

entirely sure about their guess. Their belief distribution may thus put additional weight

on 0 and 120 as emissions levels. If these weights have asymmetric effects, as our data

suggest, sharpening these beliefs by providing more information may in fact, cause further

reductions in buying. In our specification, this effect is picked up by the treatment dummy.

C.2 Test for the non-linearity of the WTP at the individual level

In this Appendix, we illustrate the test we run determine whether a participant has

a concave WTP. The idea of the test is based on the Jensen’s inequality: if a func-

tion is concave, any convex combination of its points will lay below the function, vice

versa, if the function is convex, any convex combination of its points will lay above

the function. Operationally, we built the convex combination of two points - (0; 0) and

(max(WTP ); emissions(max(WTP )). We chose (0; 0) under the very reasonable as-

sumption that every participant has a WTP of £0.00 to avoid CO2 emissions equivalent

to 0 liters of gasoline. max(WTP ), instead, is the highest, but not censored WTP that

the individual reports. emissions(max(WTP ) is the corresponding emissions level. We

consider an individual WTP concave (convex) if the convex combination is above (below)

all the emissions levels smaller than emissions(max(WTP )). Note that this empirical

strategy allows us to test the concavity of the WTP only for values smaller than £7.00,

the maximum value in the multiple price lists. For this reason, we can only run the test

on 71% of our sample. The remaining 29% has a WTP of £7.00 or higher already for an

externality level of 30 liters of gasoline.
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Table 9 display the results of the tests. Column (1) shows that 49% of the subjects

that we can test exhibit a concave WTP, while only 1% have a convex WTP. Check the

robustness of this finding. The tests for these columns are constructed in the same way

as the test of column (1) except for the set of subjects that are considered eligible for

the test. Column (2) shows that 63% of the subjects have a concave WTP if we exclude

participants that have a WTP of £0.00 regardless of the size of the emissions. Those are

participants that are unluckily be responsive to information. Column (3) instead shows

that the percentage of concave WTP increases to 63% if we only include participants that

have a not censored WTP for every emissions level. Those are the participants for which we

have the most information about their WTP. Finally, Column (4) highligths that the results

are not driven by participants that show a WTP that is not weakly monotone. Those are

participants that, one could argue, got confused or where not paying much attention. All

in all, our test provides very strong evidence that a majority of people a WTP to avoid

CO2 emissions that is concave in the size of the emissions.

C.3 Treatment effect of the time spent looking at the attentional task.

On average, participants spend 51.3 seconds looking at the attentional task. In the Moti-

vated treatment, participants spend 2.7 seconds more than in the Unmotivated treatment.

This difference is small and not significant (p = 0.33). Table 10 summarizes this result.

D Instructions

The instructions of this experiment can be found following this link
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Table 9: Test for concave WTP at the individual level.

Test

(1)

Test

(2)

Test

(3)

Test

(4)

Total Participant 125 125 125 125

Eligible 89 (71%) 69 (55%) 44 (35%) 36 (29%)

Concave 44 44 28 24

% Concave over eligible 49% 63% 63% 67%

Convex 1 1 0 0

% Convex over eligible 1% 1% 0% 0%

Censored for every externality ≥ 30 X X X X

Selfish X X X

Censored for at least one externality level X X

Not Monotone X

Per each participant, the tests above checks weather the linear combination of 0 and the highest level of

not censored WTP lays above or below the WTP for smaller externality levels. A participant is considered

to have a ”Concave” WTP if the linear combination is below the corresponding WTP for at least 75%

of the externality levels for which it is possible to run the test. Parallelly, a participant is considered to

have a ”Convex” WTP if the linear combination is below the corresponding WTP for at least 75% of the

externality levels for which it is possible to run the test. The test differ for their exclusion restrictions. A

indicates that the corresponding group is included in the test, an X indicates that the corresponding

group is excluded by the test. Groups definition: 1) “Censored for every externality ≤ 30”: participants

that have a WTP larger or equal to £7.00 for every externality level above 30 liters of gasoline. 2) “Selfish”:

participants whose WTP is £0.00 for every level of the externality 3) “Censored for at least one externality

level”: participant that have a WTP above 700 larger or equal to £7.00 for at least one externality level.

4) “Not Monotone”: participants whose WTP is not weakly increasing.
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Table 10: No treatment effect on the time spent on the puzzle.

(1) (2)

time time

Motivated Treatment 2.79 1.59

[-2.86,8.44] [-4.29,7.47]

Controls

Observations 713 694

95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. All the models are linear

regression models with robust standard errors. Dependant variable: time spent on the puzzle in seconds.

Controls list: sex, age, student status, education (6 categories), nationality (27 categories).

37



E Preregistration

In this Appendix, we report the text of the preregistration of the experiment we uploaded

on AsPredicted.org
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CONFIDENTIAL - FOR PEER-REVIEW ONLY

Taxes, beliefs, and the demand for goods with negative externalities (#23181)
Created: 05/08/2019 05:11 AM (PT)

Shared:   07/10/2019 06:08 AM (PT)

This pre-registration is not yet public. This anonymized copy (without author names) was created by the author(s) to use during peer-review. A
non-anonymized version (containing author names) will become publicly available only if an author makes it public. Until that happens the contents
of this pre-registration are confidential.

1) Have any data been collected for this study already?

No, no data have been collected for this study yet.

2) What's the main question being asked or hypothesis being tested in this study?

Policy-makers have two main instruments to change consumer demand for goods that produce a negative externality. They can change the price

using taxes and subsidies, or they can provide information about the externality.  We have three main research questions

1) What is the effect of prices and information on consumption?

2) Do higher prices and information reduce self-serving beliefs about the externality?

3) Does information reduce the effect of price policies by eliminating self-serving beliefs?

3) Describe the key dependent variable(s) specifying how they will be measured.

Participants can buy a good that results in an uncertain externality (CO2  emissions). Thus, the two key dependent variables are: 

1) Consumption: this is a binary variable (1: if the participant buys the good; 0: otherwise), 

2) Beliefs: this is an integer between 0 and 120. It represents participants’ beliefs about the magnitude of the externality they may produce

(measured as the equivalent of liters of gasoline).

4) How many and which conditions will participants be assigned to?

Three treatments differ in the way participants are informed about the size of the externality:  

Info Treatment: participants know exactly the size of the externality.

Motivated Treatment: The answer to a puzzle gives participants the magnitude of the externality. Participants solve the puzzle after knowing the

relation with the externality.

Unmotivated Treatment: The answer to a puzzle indicates to participants the magnitude of the externality. Participants solve the puzzle before

knowing the relation with the externality

In three cross-cutting conditions, we vary the price of the good in the set {0.25, 1, 1.75}, measured in British pounds.

Overall, this leads to 9 conditions, all subjects participate only in one condition.

5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

Hypothesis 1: Participants in the Info treatment buy fewer units of the good than participants in the Motivated treatment.

We test this hypothesis by means of a Fisher's exact test, pooling all price levels. We will perform regressions to control for subject characteristics.

Hypothesis 2: Participants in the Unmotivated treatment have higher beliefs and buy fewer units of the good than participants in the Motivated

treatment.

We compare this with a non-parametric rank sum test (beliefs) and Fisther exact test (consumption), pooling all price levels. We will perform

regressions to control for subject characteristics.

Hypothesis 3: In the Motivated treatment, demand is decreasing in prices.

We test this in a linear regression, using a one-sided t-test. 

Hypothesis 4: In the Motivated treatment, beliefs are increasing in prices. 

We test hypothesis using a linear regression and a one-sided t-test. 

Hypothesis 5: Conditional on hypothesis 4 being confirmed, price-sensitivity of demand in the Info treatment is lower than that in the Motivated

treatment.

We test this in a linear probability model, using a one sided t-test. Note that if the relationship between beliefs and prices is different than in

Verify authenticity:http://aspredicted.org/blind.php?x=i24x2p 

Version of AsPredicted Questions: 2.00



hypothesis 4, we may do additional analysis (see under point 8).

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

We exclude observations only if we have evidence that the respondent is not a human (we will run the experiment online).

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

We will collect 1000 observations. Every participant has 40% probability of being in the Motivated Treatment, 30% probability of being in the

Unmotivated Treatment, and 30% probability of being in the Info Treatment. Participants are assigned to one of the 3 price conditions within these

treatments with equal probabilities.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses

planned?)

1) We test if, in the Motived Uncertainty Treatment, the time spent on the puzzle depends on the price of the good. 

2) We estimate the effect of beliefs on purchasing behavior. We do so using an Instrumental Variable approach and using data from Motivated

Uncertainty Treatment and from the Unmotivated Uncertainty Treatment. We repeat the analysis with price dummies to test if beliefs affect

consumption at all price levels.

3) We test whether questionnaire items like age, gender and self-reported concern about climate change correlate with our main variables of

interest.

4) If the relation between beliefs and prices is different than that hypothesized under Hypothesis 4, we will do additional analysis to see how prices

determine beliefs and how beliefs affect price sensitivity.

Verify authenticity:http://aspredicted.org/blind.php?x=i24x2p 

Version of AsPredicted Questions: 2.00



F Invoice Carbonfund.org

In this Appendix we report the invoice of the donation to Carbonfund.org. The invoice

was shared with participants on 14th May.
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Billing Address

Davide Pace
Roetersstraat 11
1018WB Amsterdam
Netherlands

Shipping
Address

Davide Pace
Roetersstraat 11
1018WB Amsterdam
Netherlands

Shipping Method

No shipping

Name for e-certificate(s):

Invoice 10622 for order 38268
Order Date: May 14, 2019

SKU Product Quantity Price

Subtotal: $911.40

Payment Method: Credit Card

Total: $911.40

general-
donation

General Donation
Davide Pace on behalf of

the University of Amsterdam

1 $911.40

Customer Details

Email: d.d.pace@uva.nl

This donation is the result of participants decisions in the experiments “Decision Making 6-13”
of the University of Amsterdam

Carbonfund.org - Invoice 10622 https://carbonfund.org/checkout/order-received/38268/?wc_pip_action...

1 of 1 5/14/2019, 11:29 AM
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