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Abstract

The dynamic factor Markov-switching (DFMS) model introduced by Diebold and

Rudebusch (1996) has proven to be a powerful framework to measure the business cycle.

We extend the DFMS model by allowing for time-varying transition probabilities, with

the aim of accelerating the real-time dating of business cycle peaks. Time-variation

of the transition probabilities is brought about endogenously using the score-driven

approach and exogenously using the term spread. In a real-time application using the

four components of The Conference Board’s Coincident Economic Index for the period

1959-2020, we find that signaling power for recessions is significantly improved and we

are able to date the 2001 and 2008 recession peaks four and two months after the peak

date, which is four and ten months before the NBER.
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sition probabilities, turning points, term spread.
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1 Introduction

The business cycle is an important driver of many macroeconomic variables, such as output,

employment and the like. Dating the turning points between the phases of this cycle is of

utmost importance to policy-makers, firms and investors. Especially the peaks (marking the

transitions from expansions to contractions) of the cycle are of crucial interest for downside

risk management (Adrian et al., 2019; Caldara et al., 2020). The dynamic factor Markov-

switching (DFMS) model proposed by Diebold and Rudebusch (1996) has proven to be

a powerful framework to measure the cycle. This model extracts a latent business cycle

factor from multiple coincident variables and allows the dynamics of the factor to be regime-

dependent using a hidden Markov process. Chauvet and Piger (2008) find that the DFMS

model is able to call the troughs (marking the transitions from contractions to expansions)

of the cycle faster in real-time than the National Bureau of Economic Research (NBER).

However, they find no such improvements in timeliness for the peaks.

In this paper, we address the latter issue and extend the DFMS model with the aim of

accelerating peak dating. With this purpose in mind, we allow for a time-varying transition

probability (TVTP) to switch from an expansion to a contraction phase. This probability is a

key ingredient for peak dating and assuming it to be time-invariant may be overly restrictive.

For example, one expects the probability of entering a new recession to vary depending on

economic fundamentals, see e.g. Diebold et al. (1994). To bring about time-variation, we

propose an autoregressive structure driven by the log-likelihood score and additionally by

leading indicators (LIs). The resulting Generalized Autoregressive Score with eXogenous

variables (GASX) model thus combines the ideas of endogenous and exogenous drivers of the

transition probabilities from Durland and McCurdy (1994) and Filardo (1994), respectively.

We apply the GASX approach to date US business cycle peaks, based upon the four

components of The Conference Board’s (TCB) Coincident Economic Index (CEI) for the

period 1959-2020. We consider both an ex-post full-sample analysis using revised data and

an ex-ante real-time analysis using data vintages available from December 1976 until March

2020. For the exogenous input we consider an indicator for a negative term spread, which

is generally considered to be one of the most prominent LIs, see e.g. Estrella and Mishkin

(1998). We find in both ex-post and ex-ante analyses that the GASX model significantly
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improves upon the DFMS model with static transition probabilities in terms of signaling

recessions. Additionally, by converting real-time smoothed state probabilities to turning

points, the GASX specification is able to match or precede the peak announcements made

by the NBER without any false signals. Most notably, our proposed model is able to date

the peaks of the 2001 and 2008 recessions four and two months after the peak date. This is

four and ten months before their NBER announcements and a gain of three and five months

over the base DFMS model. In line with the reputation as a powerful LI, we find most

improvements to stem from the use of the term spread. Notably, GAS dynamics are found

to further amplify correct peak signals. The combination of both drivers in the GASX model

is therefore particularly attractive.

Our paper contributes to the vast literature on US business cycle measurement and dating

turning points (e.g. Boldin, 1994; Berge and Jordà, 2011; Hamilton, 2011; Stock and Watson,

2014; Doz et al., 2020). In particular, we build upon the DFMS framework of Diebold and

Rudebusch (1996), which combines the dynamic factor structure of Stock and Watson (1989,

1993, 2005, 2010) with the Markov-switching (MS) approach of Hamilton (1989). This setup

captures both the co-movement in multiple coincident series and the regime-dependence

that characterize the business cycle (Burns and Mitchell, 1946). The factor structure allows

for a larger information input relative to univariate MS models, which are already able to

effectively date turning points (Layton, 1996; Layton and Katsuura, 2001; Chauvet and

Piger, 2003). Furthermore, Chauvet and Piger (2008) find that the DFMS model fares well

against the non-parametric dating method of Harding and Pagan (2003), which aggregates

the approach of Bry and Boschan (1971) for multiple series. Both methods are shown to

provide faster real-time dating of the troughs compared to the NBER. Similar results have

been found for other countries (Watanabe et al., 2003; Aastveit et al., 2016; Carstensen

et al., 2020).

Our paper is most closely related to the literature on macroeconomic MS models with

TVTPs. One way to drive these TVTPs is to use exogenous information in the form of LIs.

In particular, Filardo (1994) finds that TVTPs driven by LIs can aid in the identification

of turning points for output growth. In the context of the DFMS model, Huang and Startz

(2020) allow the transition probabilities to depend on the stock market volatility, while Chau-

vet and Senyuz (2016) add a set of yield curve variables. Both find that turmoil in financial
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markets often precedes economic recessions. Our proposed GASX model incorporates this

insight by allowing the TVTPs to depend on the term spread, which has historically been

among the best LIs (e.g. Estrella and Mishkin, 1998; Rudebusch and Williams, 2009; Ng and

Wright, 2013; Liu and Mönch, 2016).

Alternatively, one may drive the TVTPs using only endogenous information. This can

be done using duration dependence (Durland and McCurdy, 1994; Kim and Nelson, 1998),

directly specifying the TVTPs as functions of dependent variables (Diebold et al., 1994;

Caldara et al., 2020), or using a score-driven approach (Bazzi et al., 2017). The latter

updates the TVTPs in the direction of the log-likelihood score as suggested by Creal et al.

(2013) and Harvey (2013). This Generalized Autoregressive Score-driven (GAS) approach

has favorable properties (Blasques et al., 2015), allows for standard likelihood estimation

and is known to produce accurate filters in a variety of settings, see e.g. Koopman et al.

(2016). Our GASX approach presents a multivariate version of the GAS setup of Bazzi et al.

(2017) and combines it with exogenous LI information in a single framework.

The outline of the paper is as follows. Section 2 presents how the DFMS framework

may be enhanced by adding time-varying dynamics to the transition probabilities. Section

3 examines the results of the empirical application both ex post, with currently available

revised data, and in real-time. Section 4 concludes.

2 Methodology

2.1 Model specification

For clarity of exposition, we present the DFMS model for N coincident economic variables

with two Markov states, a single factor and first-order autoregressive (AR(1)) dynamics.

Extensions to more regimes, multiple common factors and higher lag orders are relatively

straightforward but tedious. Let yi,t denote the observation of variable i = 1, 2, ..., N at time

t = 1, 2, ..., T . We assume that the yi,t are driven by a common latent factor ψt with constant

factor loadings λi and idiosyncratic components vi,t, such that the observation equation of

the state space representation is given by

yt = Zζt, (1)
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where yt collects the yi,t in a (N × 1) vector, Z is a (N ×N + 1) matrix of coefficients and

ζt is the (N + 1× 1) state vector, that is,

yt =

y1,t
...
yN,t

 , Z =


λ1 1 0 . . . 0
λ2 0 1 . . . 0
... ... ... . . . ...
λN 0 0 . . . 1

 and ζt =


ψt
v1,t
...
vN,t

 . (2)

We assume that the latent factor ψt follows a stationary AR(1) process with autoregressive

parameter φ and intercept αSt , which depends on the state St ∈ {0, 1} of a hidden inhomoge-

neous Markov process with dynamic transition probabilities pijt := Pr(St = j|St−1 = i) with

i, j ∈ {0, 1}. For identification purposes we impose αSt=0 > αSt=1, such that regime 0 (1)

reflects an expansion (contraction) period. The variance of the factor innovations is denoted

by σ2
η. We assume stationary zero mean AR(1) dynamics for the idiosyncratic components

vi,t with autoregressive parameters θi and error variances σ2
i . The transition equation of the

state vector ζt is then given by

ζt = dSt + Vζt−1 + Q
1
2ωt, (3)

where the system matrices dSt , V and Q are defined as

dSt =


αSt

0
...
0

 , V =


φ 0 . . . 0
0 θ1 . . . 0
... ... . . . ...
0 0 . . . θN

 and Q =


σ2
η 0 . . . 0

0 σ2
1 . . . 0

... ... . . . ...
0 0 . . . σ2

N

 , (4)

and ωt denotes an (N+1×1) i.i.d. innovation vector which we assume to follow a multivariate

standard normal distribution.

2.2 Score-driven time-varying transition probabilities

The transition probabilities of the latent Markov process St play a key role in the timely

identification of business cycle turning points. With the aim of accelerating peak dating in

mind we consider dynamic transition probabilities starting from an expansion period (p00
t

and p01
t = 1 − p00

t ), but keep the probabilities starting from a contraction fixed (p11
t = p11

and p10
t = p10 = 1− p11). For expositional purposes we formulate our model in terms of p01

t ,
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which reflects the probability to switch from an expansion to a contraction phase, such that

we may informally label it as the (conditional) peak probability.

We build upon the general framework of Creal et al. (2013) and make use of the en-

dogenous information available in the log-likelihood score to drive p01
t . In addition, we also

allow for exogenous information as suggested by Diebold et al. (1994) and Filardo (1994).

To ensure that the transition probability remains in the unit interval we adopt the logistic

link function. Specifically, we model the conditional peak probability p01
t as

p01
t = exp(ft)

1 + exp(ft)
, (5)

ft+1 = w + ast + bft + cxt, (6)

st = g(Ht∇f
t ), ∇f

t = ∂

∂ft
log p(yt|It−1), (7)

where ft reflects the log odds ratio of the transition probability p01
t (i.e. ft = log(p01

t /(1−p01
t )),

xt is an exogenous variable known at time t, and w, a > 0, b ∈ (−1, 1) and c are static

parameters. Furthermore, st denotes the endogenous innovation term, which is composed of

three components. First and foremost,∇f
t denotes the score with respect to ft and is obtained

by taking the derivative of the (approximate) predictive log density at time t, denoted by

log p(yt|It−1). Here It−1 denotes the information set containing all information available at

time t − 1. Second, Ht is a positive scaling factor known at time t. Third, g(·) denotes

a strictly monotonic transformation with g(0) = 0. We note that the true p01
t need not

follow the evolution as outlined in (5)-(7). It is therefore perhaps more appropriate to view

our setup as an intuitive filter that tracks the true time-varying parameter using a steepest

ascent-type search. Our setup can be seen as a generalization of Bazzi et al. (2017), who

show that score-driven TVTPs yield an effective filter for various data generating processes

in a univariate setting.

Popular choices for Ht in the GAS literature are no scaling (Ht = 1) or powers of the

Fischer matrix in order to account for the curvature of the likelihood. We consider a scaling

that allows for more variation of p01
t . Specifically, the score ∇f

t contains the term p01
t (1−p01

t )

because of the logistic link due to the chain-rule. This term is often close to 0, very much

dampening and delaying movement in p01
t . We therefore suggest to use Ht = 1/(p01

t (1−p01
t ))
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to remove this effect. Note that it is straightforward to show that this part would also

disappear in the case of scaling with the square root Fischer information. The Fischer

information, however, presents a large computational burden here. For Ht = 1/(p01
t (1−p01

t ))

and using the likelihood approximation of Kim (1994) our scaled score Ht∇f
t is given by

Ht∇f
t = Pr(St−1 = 0|It−1)φ

01
t (yt|It−1)− φ00

t (yt|It−1)
p(yt|It−1) , (8)

where φijt (yt|It−1) denotes the multivariate normal density evaluated in yt conditional on

all information available at time t − 1 and the states being i and j at time t − 1 and

t, respectively (see Appendix A for details). The scaled score Ht∇f
t thus considers the

difference in likelihood between currently being in a contraction or an expansion phase when

the previous period is assumed to be an expansion, weighted by the likelihood. This relative

difference is then multiplied with the state probability Pr(St−1 = 0|It−1), such that we

update p01
t more (less) during an expansion (contraction), precisely when the data tells us

much (little) about the expansion dynamics.

The addition of the transformation g(·) in (7) can be seen as a score-equivalent special

case of the more general quasi score-driven (QSD) framework of Blasques et al. (2022). The

QSD framework outlines a class of models that nests the GAS approach and also allows for

different target functions in lieu of the local log-likelihood to construct st. By integrating

st with respect to ft the corresponding target function is obtained. The score-equivalence

property refers to the fact that by construction g(·) maintains the update direction (i.e.

sgn(st) = sgn(∇f
t )). As a result, we preserve the local optimality properties as laid out in

Blasques et al. (2015).

We argue that a transformation g(·) that decreases large (absolute) scores, essentially

shrinking large updates, may be especially useful for forecasting. In our case in particular,

we find empirically that the score in the DFMS model can produce a substantial number of

outliers. This happens when the likelihood in the denominator in (8) becomes small. As a

result the learning rate parameter a in (6) is underestimated, limiting the ability to drive

the transition probability in a meaningful way. In a standard regression framework with a

strictly positive regressor a straightforward remedy for this issue would be to consider the

logarithm instead. However, as the score can be both positive and negative we propose the
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following intuitive transformation:

g(x) = sgn(x)log(1 + |x|), (9)

which is a monotonic antisymmetric function around the origin, coinciding with the zero

expectation of the score, that is close to the identity map for ‘very small’ |x| and close to

the logarithm for ‘large’ |x|. This transformation therefore maintains the direction of the

update, while shrinking the updates for large absolute scores. This in turn prevents over-

updating of our transition probability when a very large score, possibly due to an outlier,

occurs. Integrating the transformed score reveals we are now essentially applying a gradient

update based on a flattened version of the log-likelihood, similar in spirit to the robust-GAS

models proposed by Blasques et al. (2022), who consider for example Huber-type target

functions. We argue that our choice of g(·) is perhaps the most obvious for our purposes,

being a natural extension of the logarithm capable of handling both negative numbers and

0. For robustness, we include results in Appendix C.2 using the inverse hyperbolic sine

(g(x) = log(x +
√
x2 + 1)), a popular transformation in regression analysis used to curb

extreme values. There we find near identical results as using the transformation in (9). In

addition, we provide results when omitting the transformation (g(x) = x) or the scaling

(Ht = 1) in Appendix C.3.

2.3 Estimation

As the DFMS model contains both latent regimes and a latent factor, estimation makes

use of both the Hamilton filter and the Kalman filter. Furthermore, parameter estimation

requires either the use of an approximation of the likelihood or Bayesian methods, see Kim

and Nelson (1999). This is because the calculation of the exact likelihood quickly becomes

computationally infeasible due to the problem of path-dependence, meaning that the value

of the factor at time t depends on all previous Markov states. We follow the approach of

Chauvet (1998), which makes use of the filter proposed by Kim (1994), and approximate the

likelihood. Specifically, this method proposes a collapsing step to avoid the need to track

an ever-increasing number of past states, such that only a modest history of states needs

to be considered. To maintain sufficient accuracy this history length is required to be at
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least one longer than the highest lag order in the model, see Kim (1994) for further details.

To obtain the parameter estimates we maximize the associated approximate log-likelihood

obtained using the prediction-error decomposition. Because of the observation-driven nature

of the dynamics of p01
t the likelihood procedure is unaltered relative to the model with

static transition probabilities. The complete prediction-update recursion and further details

regarding estimation are provided in Appendix A.

3 Empirical application

3.1 Data

We consider the four components of TCB’s CEI for the US economy: employees on nonfarm

payrolls (EMP), industrial production (IP), manufacturing and trade sales (MAN) and per-

sonal income less transfer payments (INC). We analyze the monthly logarithmic growth rates

of these four indicators from January 1959 until February 2020. Vintages for the real-time

exercise are obtained from TCB and supplemented with data from Jeremy Piger1. In light

of its specific and unusual features, the COVID-19 period from March 2020 until December

2020 is investigated separately in Appendix E.

Furthermore, we use the interest rate term spread (TS) as an exogenous driver of the

time-varying peak probability. Specifically, we use the TS as included in TCB’s Leading

Economic Index (LEI), that is, the 10-year US Treasury rate minus the US Federal Funds

rate. We collect the TS from the FRED database. Because of large differences in level over

time, we transform the TS to a dummy variable. Specifically, we set our dummy equal to 1

if the TS is negative and 0 otherwise. This balances the contrast between elevated interest

rates during the 1980s and the suppressed term premiums after 2008 due to quantitative

easing. Empirically, we find that recessions are almost always preceded by periods of an

inverted yield curve2, i.e. a negative TS. The TS dummy therefore present a simple and

intuitive predictor for future peaks.

Results of several robustness checks, whereby the TS is incorporated in a different manner
1 Obtained from https://pages.uoregon.edu/jpiger/research/published-papers/raw-real-time-data.zip, see

Appendix B for details.
2 A graphical illustration is provided in Appendix B.4
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can be found in Appendix C.4. These figures additionally contain findings in case the LEI

is used as the exogenous variable, which also appears to be an effective choice. We prefer

the TS over the LEI because the former tends to signal peaks earlier and does not contain

revisions. Considering more or a weighted combination of LIs to drive the peak probability

is left for future research.

3.2 Model specification details

We use the two-regime single-factor DFMS model with AR(1) specifications for the common

factor and the idiosyncratic components as described in Section 2. Although more involved

multi-state models can provide a better in-sample fit (e.g. Sichel, 1994), a two-regime setup

appears more appropriate for our goal of peak dating. The magnitudes of the eigenvalues

of the correlation matrix of the four coincident indicators in turn motivate the choice of

a single common factor. AR(1) dynamics are selected mainly to not overcomplicate the

already reasonably involved estimation. Our setup is therefore similar to the one of Chauvet

(1998) for monthly data. Further extensions, including structural breaks to accommodate

the Great Moderation (McConnell and Perez-Quiros, 2000) and time-varying mean growth

rates (Eo and Kim, 2016; Doz et al., 2020; Eo and Morley, 2022) are left for future research.

The addition of a time-varying peak probability p01
t substantially enhances the already

high flexibility of the DFMS model. In a Bayesian context, Filardo and Gordon (1998) impose

strong priors on the TVTPs in their MS model for output to prevent the underestimation

of recession durations. This underestimation may lead to ‘recession rallies’, by which we

mean that during a recession period specific months with only moderately negative (or even

positive) growth rates may be classified in the expansion regime. We propose to similarly

impose structure by calibrating the static transition probabilities starting from a recession

regime (p11 and p10 = 1 − p11). For this, we use a simple count-based estimator using

completed NBER recessions. That is, we obtain p11 by dividing the total number of recession

months minus the number of recessions by the total number of recession months. This

approach is readily applicable in real-time3 and effectively avoids the issue of ‘recession rallies’

discussed above. For completeness, results without targeting are provided in Appendix C.3.
3For the real-time analysis, we update p11 the month after an NBER trough announcement, see Appendix

B.5 for its evolution. The ex-post analysis uses all recessions in the sample.
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For both the ex-post and the real-time analysis, we consider four (nested) DFMS model

specifications. The first is the base model as given in (1) and (3) with a constant peak

probability p01. The remaining three consider a time-varying peak probability p01
t using only

endogenous information (GAS), only exogenous drivers (Exo), or both (GASX). Specifically,

we use (5)-(9) with c = 0 for GAS and with a = 0 for Exo, where xt is the TS dummy. To

identify the common factor, we fix the factor loading of employment λEMP = 1.

3.3 Full-sample results

We estimate the DFMS model and our extensions for the period January 1959 until February

2020 using the data vintage as released in March 2020. Hence, this includes all revisions in

the coincident variables known at the final date. In Table 1, for brevity, only key parameter

estimates for the four considered model specifications are shown. The remaining parame-

ter estimates can be found in Appendix C.1. Furthermore, Table 1 provides an overview

of the signaling performance of the filtered state probabilities Pr(St = 1|It) for the NBER

recessions. This includes the Area-Under-the-Receiver-Operating-Curve (AUROC), a com-

mon measure for evaluating binary classification ability (Berge and Jordà, 2011). Perfect

and uninformative classifiers have AUROC values of 1 and 0.5, respectively. In addition,

we consider the average contraction state probability during NBER recessions, non-recession

periods and the first month of the recessions, denoted by πr, πe and πp, respectively.

In Table 1, we observe from the log likelihood and the Akaike information criterion (AIC)

that the extended specifications improve upon the base model to different degrees. This in-

cludes notable improvements from using the TS as exogenous input and somewhat more

modest improvements due to the endogenous GAS dynamics. GASX is the preferred model

according to the AIC. In terms of parameter estimates, we find that the parameter of the

negative TS indicator c is positive and significant for both the Exo and GASX specifications.

The positive sign is in accordance with economic intuition, which suggests a higher proba-

bility of a change to a recession state in the face of an inverted yield curve. In addition, the

estimates of the autoregressive parameter b suggest that p01
t is highly persistent.

While the improvements in log likelihood due to the GAS dynamics seem modest, LR

tests indicate they are significant, irrespective of the inclusion of the exogenous variable.

Specifically, the LR tests for the GAS versus the base specification and the GASX versus the
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Table 1: Key parameter estimates and NBER recession signaling performance of the DFMS
model and extensions.

Base GAS Exo GASX
w -0.559 -0.463 -0.553

(0.218) (0.167) (0.183)
a 1.207 0.979

(0.399) (0.461)
b 0.839 0.936 0.910

(0.050) (0.023) (0.025)
c 0.533 0.685

(0.171) (0.221)
p01 0.017

(0.006)
LogL -1913.3 -1907.3 -1900.2 -1897.9
k 16 18 18 19
AIC 3858.5 3850.7 3836.5 3833.9

AUROC 0.941 0.950 0.979∗∗∗ 0.978∗∗∗
πr 0.647 0.685 0.779 0.802
πe 0.066 0.063 0.063 0.065
πr/πe 9.731 10.832 12.337 12.419
πp 0.267 0.290 0.528 0.594

Note: This table presents the key parameter estimates for the base model and GAS, Exo and GASX

specifications for EMP, IP, MAN and INC over the period January 1959-February 2020. Standard errors

are displayed in parentheses and k denotes the number of parameters. Signaling power of the filtered

states for the NBER recessions is evaluated using the AUROC, πr(e) represent the average filtered

contraction state probability during NBER recession (expansion) periods and πp the average probability

in the first recession month. Finally, a significant difference of the AUROC in comparison with the base

model is indicated with a *, ** and *** for a p-value below 0.10, 0.05 and 0.01.

Exo specification reject the null hypothesis at the 5 percent level (LR = 11.87, p-value =

0.003 and LR = 4.6179, p-value = 0.032 respectively). We do note that in the absence of a

formal proof of the asymptotic distribution of the LR test, some care must be taken with the

interpretation of these p-values. However, considering the AIC or the individual significance

of the relevant parameters corroborates these findings. That is, we find the GAS parameter

a to be significant in both GAS and GASX specifications with lower AICs compared to the

base and Exo models.

To formally compare the AUROC between the different models, we follow Aastveit et

al. (2019) and use a (two-sided) Wald-type test as suggested by DeLong et al. (1988). In
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Table 1, we observe that all three extensions improve upon the signaling ability relative to

the base model. The largest and also significant improvements stem from the addition of

the TS information. For example, this leads to an increase of the overall AUROC from

0.941 to 0.979 for the Exo specification. While the overall AUROC does not improve when

adding GAS dynamics, they do benefit peak dating by further increasing πp. In particular,

πp increases from 0.528 to 0.594 in favor of the GASX model relative to the Exo specification.

Similarly, the GASX model achieves the highest value of the ratio between πr and πe, which

can be seen seen as an informal measure of signal clarity.

Figure 1 displays the filtered state probabilities Pr(St = 1|It) of the base model and

the GASX specification. To disentangle the performance gains of the GASX model, we

additionally present the differences of the filtered probabilities of all three extended models

(i.e. GAS, Exo and GASX) with the base model. Positive differences therefore indicate

higher recession probabilities in the more extensive model specifications. Finally, Figure 1

also contains the estimated paths of the peak probability p01
t . Naturally, a model specification

is considered superior if it has a heightened p01
t just before or at the start of a recession.

We observe from Figure 1 that both the base and the GASX model are highly successful

in the identification of the business cycle regimes. The filtered state probabilities generally

remain close to 0 during expansion periods and rapidly increase to levels close to 1 during

recessions. Between the two, we observe a clear advantage of the GASX model in terms

of recession signaling ability. In particular, the extended models dramatically increase the

contraction probabilities at the start of recessions relative to the base model. In addition,

the extended models reduce false signals, such as those in 1964, 1968 and 1983. Comparing

the three extended specifications, we observe the largest benefits from the inclusion of the

TS and a secondary but nevertheless meaningful role for GAS dynamics. In line with the

results of Table 1, the combined GASX model seems to offer the best signaling performance.

From the evolution of the dynamic peak probability p01
t , we can more clearly see the

differences between the extended models. Specifically, the variation in p01
t for the GAS model

appears sensible, but is mostly coincident. Therefore peaks are not signaled in advance, but

rather the switches are made more extreme. This is not too surprising considering the fact

that the GAS specification still only make use of coincident information. For the two other

specifications, which include the TS, we observe large movements already before the start of
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Figure 1: Filtered state probabilities and peak probabilities for the DFMS model and exten-
sions.

Note: The top left (right) plot depicts the filtered state probabilities Pr(St = 1|It) for the base (GASX)

model. The bottom left plot contains the filtered state probabilities of the extensions minus those of the

base model, denoted by ∆Pr(St = 1|It). The bottom right plot contains the estimated path of the peak

probability p01
t . Finally, the shaded areas reflect the recession periods as determined by the NBER.

recessions. This timeliness obviously reflects the nature of the TS as a leading indicator. For

example, if we currently have that p01
t = 0.01, then for the Exo specification three periods of

an inverted yield curve will nearly triple the peak probability to p01
t+3 = 0.0274. Adding GAS

dynamics on top further strengthens the movement of p01
t and also adds a small increase

before the 1960 recession. For this recession no yield curve signal is contained in the data.

We conclude that a time-varying peak probability p01
t , driven by a combination of exogenous

and endogenous sources, can help improve the (ex-post) dating of recessions.

13



3.4 Real-time analysis

We perform a real-time analysis in order to make a fair assessment of the applicability of the

GASX model in practice. Specifically, we recursively estimate the model parameters for each

month from December 1976 until March 2020 using the most recent data vintage available

at the time. We consider an expanding window approach where the observations start in

January 1959. Following Camacho et al. (2018) and in line with TCB’s release schedule for

their LEI, we estimate the model parameters in the third week of each month. Specifically,

this entails that in month t, we have EMP and IP available up to and including month t−1.

For MAN and INC their data publication scheme implies that we have observations only

up to and including month t − 3 and t − 2, respectively. Parameter estimation in month t

is thus based on all observations up to and including month t − 1, whereby the final two

observations for MAN and the final observation for INC are considered missing. Here we

differ from Chauvet and Piger (2008), who restrict the sample at each point in time to the

series for which the least amount of information is available.

Table 2 presents an overview of the recession signaling performance of the real-time

filtered and predicted state probabilities. To assess the economic value of our predictions,

we also include the Anxious Index Nowcast (AIN) of Scavette (2014). The AIN is based

on the Survey of Professional Forecasters (SPF) and corresponds with the probability of a

current contraction in real GDP. To obtain monthly values of the AIN, we set all months

within a quarter equal to the value of the AIN in that quarter.

We observe in Table 2 that all extensions that allow for a time-varying peak probabil-

ity trump the base model in all considered metrics. This includes higher contraction state

probabilities during NBER recession periods (πr) and lower such probabilities during NBER

expansion phases (πe). In addition, the AUROC of both the filtered and predicted contrac-

tion state probabilities is significantly improved for all but the plain GAS model for the

filtered states. Furthermore, the AUROC of the GASX model is on par with that of the

AIN (p-value = 0.770 for a test of equality). Interestingly, the gain of the AIN over the base

model is smaller in a statistical sense, being only significant at the 10 percent level. This

is because the variance of the AUROC of the AIN is relatively large. This is in line with

the other metrics of Table 2, where the values of πrt−1|t−1 indicate that the AIN produces a

14



Table 2: Real-time signaling performance of the DFMS model and extensions.

Filtered Base GAS Exo GASX AIN
AUROC 0.940 0.944 0.967∗∗ 0.970∗∗ 0.973∗
πrt−1|t−1 0.751 0.783 0.828 0.845 0.609
πet−1|t−1 0.123 0.119 0.106 0.110 0.121
πrt−1|t−1/π

e
t−1|t−1 6.083 6.601 7.846 7.697 5.034

πp 0.185 0.215 0.387 0.422 0.409

Predicted Base GAS Exo GASX
AUROC 0.894 0.908∗∗ 0.948∗∗∗ 0.955∗∗∗
πrt|t−1 0.620 0.669 0.710 0.740
πet|t−1 0.140 0.133 0.111 0.116
πrt|t−1/π

e
t|t−1 4.440 5.014 6.423 6.389

πp 0.116 0.136 0.241 0.308

Note: Signaling power of the probabilities for the NBER recessions is evaluated using the AUROC.

Furthermore, we have that πr(e)
i|j represent the average contraction state probability at time i during

NBER recession (expansion) periods with observations up to and including time j, which corresponds to

the real-time estimation at time j + 1. In addition, πp denotes the average state probability during the

first month of the recessions within the evaluation sample. The evaluation sample ranges from November

1976 until February 2020. Finally, a significant difference of the AUROC in comparison with the base

model is indicated with a *, ** and *** for a p-value below 0.10, 0.05 and 0.01.

weaker signal during recessions relative to the GASX model.

Comparing the three extended DFMS models, we find again that the addition of the

exogenous information yields the largest improvements. Interestingly, the GASX model

improves significantly upon the Exo model in terms of AUROC for the predicted state

probabilities (p-value = 0.032). Endogenous dynamics are thus significant irregardless of the

inclusion of the spread. For the filtered state probabilities this difference does not yet reach

statistical significance (p-value = 0.150). Even though the absolute differences between the

Exo and GASX models are not that large, the estimated standard errors of these differences

are very small. This in turn leads to large test statistics. In the interest of dating peaks, we

find that the average contraction state probability for the first ‘official’ (NBER) recession

month (πp) is the highest for the GASX model at 0.422 (0.308) for the filtered (predicted)

state probabilities. This is more than double the value of the base model at 0.185 (0.116).

Figure 2 depicts the real-time evolution of the filtered state probabilities for the base

model and the GASX specification. This can be understood to reflect the diagonal of the

full history of state probabilities found in Appendix D.1. For comparison purposes, we also
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display the AIN. Additionally, Figure 2 displays the evolution of the peak probability p01
t .

Figure 2: Real-time results for the base DFMS model and the GASX extension.

Note: The top left (right) figure displays the filtered state probabilities for the base (GASX) model.

The bottom left plot displays the difference in filter state probabilities with the base model, while the

bottom right figure contains the evolution of the peak probability p01
t . Finally, the shaded areas reflect

the recession periods as determined by the NBER.

We observe in Figure 2 that also in real-time the GASX specification matches the NBER

recession periods much better than the base model. Compared to the AIN, we find the

GASX model to provide the best signal most of the time, while the AIN appears to better

signal troughs. Particularly, the trough of the 2001 recession is identified late by the DFMS

models as also found by Chauvet and Piger (2008). This may be due to what is known

as a jobless recovery, see Groshen and Potter (2003). While the average signaling power of

the AIN measured by the AUROC is similar to the GASX model, we therefore still prefer

the latter for peak dating. Compared to the base model, the GASX specification is better

able to identify business cycle peaks for four out of the five recessions during the period

1976-2019. Only for the 1990 recession the GASX model initially appears to slightly dismiss
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the signal relative to the base model. Interestingly, Stock and Watson (1993) found similar

results using their leading indicator at the time when incorporating the TS, see Hamilton

(2011) for a discussion. Most strikingly, the 2001 and 2008 recessions are identified much

earlier by the GASX model, compared to both the base model and the AIN.

Having observed the largest benefits for the GASX specification in the two most recent

recessions, we further investigate the evolution of the state probabilities around these periods.

Figure 3 depicts the evolution of the real-time smoothed contraction state probabilities for

the recessions that followed the peaks in March 2001 and December 2007.

Figure 3: History of real-time smoothed state probabilities for the base DFMS model and
the GASX extension around the 2001 and 2008 recession.

Note: This figure depicts the real-time smoothed state probabilities around the 2001 (top) and 2008

(bottom) recessions for the base (left) and GASX specification (right). The x-axis contains the estimation

date and the y-axis the sample date for which a probability is constructed. Finally, the black dotted

lines reflect the turning points as determined by the NBER.

In Figure 3 we observe that the GASX specification produces much higher contraction

state probabilities than the base model during the first months of the 2001 and 2008 reces-
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sions. As a result, the GASX specification is able to accurately provide a strong contraction

signal as soon as these recessions start. In contrast, the base model requires several months

of additional information to do so. As more time passes the models appear to largely agree

on past states. Appendix D.2 contains a plot similar to Figure 3 for the filtered state prob-

abilities. Here improvements are even more pronounced. All in all these findings indicate

that the GASX specification may be able to date the 2001 and 2008 peaks several months

ahead of the base model depending on the conversion rule, which we consider next.

To identify peak dates we use a straightforward two-step conversion rule, similar to the

one used by Chauvet and Piger (2008). Specifically, we propose the following identification

scheme for each estimation date (i.e. for each vintage ‘column’). First, to call a recession

we require Pr(St = 1|IT ) < τ and Pr(St+k = 1|IT ) ≥ τ , for k = 1, 2, 3 for some threshold

0.5 < τ < 1, where T is the last month of the vintage. Second, the peak associated with

this recession period is identified by the point in time where immediately preceding this

period the probability crosses 0.5. That is, we find the smallest non-negative integer q such

that Pr(St−q = 1|IT ) < 0.5 and Pr(St−q+1 = 1|IT ) ≥ 0.5. The peak date is subsequently

identified to be month t− q and as such refers to the final expansion month. Before another

peak can be called we require that the state probability remains below τ for three consecutive

periods. The first such a period after a peak may then be established to be its corresponding

trough, although more generally it may be given its own threshold. Here for simplicity,

we label the first month t, after a peak has been dated and for which Pr(St = 1|IT ) ≥ τ

and Pr(St+k = 1|IT ) < τ , for k = 1, 2, 3 as a trough. The trough therefore marks the

final recession month. By construction, we now have that peaks and troughs alternate. By

considering the recent state probabilities of the initial estimation date, December 1976, we

determine that our evaluation window begins in an expansion. We therefore begin looking

for a peak. In Table 3 the initial peak dates obtained from the method outlined above for

τ = 0.65 and τ = 0.8 are presented and reflect identification in real-time.

In Table 3, we observe that the DFMS models are able to match or precede the peak

announcement dates of the NBER, often by a substantial margin. Specifically, the GASX

specification is able to date the 2001 and 2008 peaks 4 and 11 (10) months earlier than the

NBER for the threshold τ = 0.65 (0.80). This is a gain of three and four (five) months

over the base model, respectively. The large gain of the GASX model in timeliness relative
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Table 3: Comparison peak dates from the DFMS specifications with the NBER recessions.

τ = 0.65
Peak date Announcement date
Base GASX NBER Base GASX NBER
0 (1) 1 (0) Jan 1980 0 0 Jun 1980
0 (0) 0 (0) Jul 1981 -1 -2 Jan 1982
-1 (-2) -1 (-2) Jul 1990 -4 -4 Apr 1991
-1 (-2) -1 (-1) Mar 2001 -1 -4 Nov 2001
-2 (0) -4 (-1) Dec 2007 -7 -11 Dec 2008

τ = 0.8
Peak date Announcement date
Base GASX NBER Base GASX NBER
0 (1) 1 (0) Jan 1980 0 1 Jun 1980
0 (0) 1 (0) Jul 1981 -1 0 Jan 1982
-1 (-2) -1 (-2) Jul 1990 -4 -4 Apr 1991
-1 (-2) -1 (-1) Mar 2001 -1 -4 Nov 2001
-5 (0) -6 (-1) Dec 2007 -5 -10 Dec 2008

Note: This table contains the monthly differences in obtained initial peak dates of the base model and

GASX extension with the NBER database. The numbers in parentheses reflect the dating at the final

estimation date March 2020. Peaks are constructed from the smoothed contraction state probabilities

using a threshold of τ = 0.65 (top) and τ = 0.8 (bottom). The NBER turning points and their respective

announcement dates are obtained from https://www.nber.org/cycles.html.

to the NBER therefore appear about half due to the GASX structure and half due to the

DFMS model itself. For the first three recessions we find comparable performance of the

base model and the extension, but note that both are generally able to match or precede the

NBER announcements. Of course, the NBER has a different aim with their dating procedure,

valuing accuracy above speed. In terms of the peak dates, we find that the DFMS model

produces similar dates as the NBER for the first four recessions. The peak date of the

2008 recession, however, is initially identified by the GASX model 4 (6) months before the

corresponding NBER peak date for the threshold τ = 0.65 (0.80). This is consistent with

Figure 3, where we observe that the smoothed contraction state probabilities are elevated

above 0.5 several months before the NBER peak date.

Because the dating procedure is done at each point in time (i.e. for each ‘column’), it

might be that later estimation dates produce different turning points than initially estab-

lished. The values in parentheses in Table 3 reflect the peak dates as determined at the

final estimation date March 2020. Here we observe that the DFMS specifications make some

adjustments as more data becomes available, unlike the NBER which has not made any
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revisions since the inception of their dating method. For example, the 2008 recession peak

is dated closer to the date established by the NBER at the final estimation date for both

specifications. This suggests a trade-off between timeliness and accuracy when comparing

our approach with that of the NBER.

With regards to the troughs corresponding to the peaks of Table 3, we confirm the results

of Chauvet and Piger (2008). That is, the DFMS model is generally able to call troughs

much earlier than the NBER, with the exception of the 2001 recession associated with a

jobless recovery. Doz et al. (2020) find that opting for a different measure of employment

(specifically, civilian unemployment) may remedy this specific dating delay. Differences

between the base DFMS model and the GASX specification are small. This finding is not

surprising as the transition probability p11 plays a much larger role here than p01
t and is

set to the same value for both specifications. For this reason and for brevity, the troughs

corresponding to the peaks of Table 3 can be found in Appendix D.3.

We conclude that qualitatively our findings in real-time closely match those of our ex-

post analysis. This entails that the GASX model provides clear benefits over the base

DFMS model in terms of recession signaling ability. In particular, the GASX model is able

to identify peaks faster in real-time than the NBER.

4 Concluding remarks

We analyze the possibilities to accelerate the dating of business cycle peaks by extending the

DFMS model of Diebold and Rudebusch (1996) to allow for TVTPs. Specifically, we propose

to use a score-driven approach to guide the transition probabilities, building upon the tech-

niques found in Bazzi et al. (2017). Additionally, we allow for relevant exogenous economic

drivers, as suggested by Filardo (1994). Using the components of TCB’s CEI from 1959

until 2020 and the term spread as an exogenous input, we allow the transition probability to

switch from an expansion to a contraction phase to be time-varying. We find that the pro-

posed method can significantly accelerate the real-time peak dating for US recessions. Most

benefit is obtained from the use of the term spread, with a more limited but economically

meaningful role for score-driven dynamics. We therefore recommend a combined approach,

such as the GASX model, to predict whether there is a recession approaching.
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A Prediction-update recursion

In this Appendix, we provide details of the prediction and update steps in the Hamilton

filter and the Kalman filter, which are used to estimate the DFMS model as discussed in

Section 2. The Hamilton prediction step is given as

Pr(St = j, St−1 = i|It−1) = pijt Pr(St−1 = i|It−1) (A.1)

and the Kalman prediction steps can be written as

ζijt|t−1 = dSt=j + Vζit−1|t−1, (A.2)

Pij
t|t−1 = VPi

t−1|t−1V′ + Q. (A.3)

Using the observation at time t, we can update the Markov state probability and the

mean and covariance matrix of the state vector. The Hamilton update step is given by

Pr(St = j, St−1 = i|It) = pijt Pr(St−1 = i|It−1)φijt (yt|It−1)∑
l,k∈{0,1} p

lk
t Pr(St−1 = l|It−1)φlkt (yt|It−1) , (A.4)

where φijt (yt|It−1) denotes the multivariate normal density evaluated in yt with mean µijt
and covariance Σij

t , in turn defined as

µijt = Zζijt|t−1, (A.5)

Σij
t = ZPij

t|t−1Z
′. (A.6)

Here ζijt|t−1 denotes the expectation of the state vector ζt conditional on all information

available at time t − 1 and the states being i and j at time t − 1 and t respectively, and

Pij
t|t−1 is similarly defined to be its covariance matrix.

The Kalman update steps are given by

ζijt|t = ζijt|t−1 + Pij
t|t−1Z

′(ZPij
t|t−1Z

′)−1(yt − Zζijt|t−1), (A.7)

Pij
t|t = (I−Pij

t|t−1Z
′(ZPij

t|t−1Z
′)−1Z)Pij

t|t−1. (A.8)
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Due to the Markovian nature of the regime process in the DFMS model, the predictions and

updates depend on the complete history of the state evolution. This feature substantially

complicates the estimation procedure. To prevent an increasing length of path dependence,

we collapse the states after each update step as proposed by Kim (1994). In this context,

‘collapsing’ means that we eliminate the dependence of our updated quantities on the regime

of the previous period. For the state probability this is relatively straightforward and given

as

Pr(St = j|It) =
∑

i∈{0,1}
Pr(St = j, St−1 = i|It). (A.9)

The collapse step for the factor and its covariance are slightly more involved and given as

ζjt|t =
∑
i∈{0,1} Pr(St = j, St−1 = i|It)ζijt|t

Pr(St = j|It)
, (A.10)

Pj
t|t =

∑
i∈{0,1} Pr(St = j, St−1 = i|It)(Pij

t|t + (ζjt|t − ζ
ij
t|t)(ζ

j
t|t − ζ

ij
t|t)′)

Pr(St = j|It)
. (A.11)

We now have all the components to begin the next iteration, i.e. start the prediction steps

for t+ 1 and so on.

To obtain the parameter estimates we maximize the associated approximated log-likelihood,

which is here given as

LogL ≈
T∑
t=1

Log[
∑

i,j∈{0,1}
pijt Pr(St−1 = i|It−1)φijt (yt|It−1)]. (A.12)

In terms of initialization, the contraction state probability at time t = 0 is set to 0, with vir-

tually identical results obtained if this is treated as a parameter that is estimated alongside

the other parameters. For the specifications that include a time-varying transition proba-

bility, the initial values are set to those obtained from the base model with all transition

probabilities being constant. Optimization is done using standard quasi-Newton methods

and standard errors are obtained from the inverse hessian. For the initialization of the factor,

a diffuse prior with zero mean is considered at time t = 0.

The precise statistical properties of the filter, such as stationarity and invertibility, and

the consistency of the MLE estimator depend on the true DGP. We may formalize this by

2



investigating the stochastic recurrence equations of the stacked vector of all time-varying

components of the filter and then define a parameter space that yields a well-behaved filter

by imposing a boundedness and contraction condition. Practically, here, this boils down

to a restriction on the (absolute) magnitudes of a and b. For a more elaborate discussion,

see Blasques et al. (2022) and Bazzi et al. (2017). If stability is a concern, one may opt to

restrict the range of the time-varying transition probability as pointed out by Bazzi et al.

(2017). This can be done directly by altering the specification of the link function in (5).

Finally, we remark that we encountered some (near-)identification issues with the estima-

tion of the purely score-driven GAS model in the real-time exercise for some early vintages.

To remedy this, we search in a region for which the dynamics of p01
t are sufficiently persistent

(b > 0.6) and do not allow for erratic patterns with low persistence and excessive update

steps. No boundary solutions are found.
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B Data

B.1 Employees on nonfarm payrolls and industrial production

The vintages for US total nonfarm payroll employment and the US industrial production

index between December 1976 up to and including December 1988 are retrieved from the

real-time dataset for macroeconomists from the Philadelphia Fed, see Croushore and Stark

(2003). Data is reported after the monthly publication of the previous month’s employment

and industrial production, such that in month t we have vintages up to and including month

t−1 for these variables. For January 1989 through March 2020 the vintages are obtained from

TCB. Here data up to January 2001 are reported at start of the month before publication of

the previous month’s employment and industrial production, while the remainder of the data

reports values later in the month after the publication of last month’s values. The data from

TCB before January 2001 is also already available around the third week of the previous

month, because no new information becomes available between the end of each month and

the beginning of its subsequent month for these variables. To account for this difference in

monthly reporting time, we therefore shift the vintages for this period one month, such that

it is available one month earlier. For December 2001 two vintages are available, one in the

first and one in the third week, such that this shift does not result in missing data for this

month.

B.2 Manufacturing and trade sales

Similar to Chauvet and Piger (2008), data for the vintages from December 1976 up to and

including December 1988 are obtained from Business Conditions Digest. For the remaining

period of January 1989 through March 2020, data is retrieved from TCB. For both datasets

the reporting moment in each month t is after the publication of the observation for month

t− 3.

B.3 Personal income less transfer payments

Similar to Chauvet and Piger (2008), data for the vintages from November 1976 up to and

including December 1988 are obtained from Business Conditions Digest. For the remaining
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period of January 1989 through March 2020, data is retrieved from TCB. For the first part

of the data the reporting moment in month t is just after the publication of the observation

of month t − 1, while for the second part the reporting moment precedes this publication.

Therefore, to synchronise the datasets, and to ensure we only include data up to the third

week of each month, we lag the observations of the first dataset with one month. Now

we have that for each month t we have vintages up to and including month t − 2, with

data available for the real-time analysis from December 1976 on. Furthermore, missing

data are encountered for January 1997, where data starts in December 1992. The resulting

missing log growth rates are filled with a constructed series, which is obtained using the

same steps Chauvet and Piger (2008) employ to construct their personal income data after

1995. Specifically, nominal transfer payments are subtracted from nominal personal income

and finally divided by the ratio of nominal to real disposable income. These components

are collected from the ALFRED database, maintained by the Federal Reserve Bank of St.

Louis. For nominal transfer payments, data from Economic Indicators, Business Statistics

and the Survey of Current Business are considered.

Due to the presence of some large outliers in this variable, see Figure B.1, particularly in

December 2012, an adjustment is made during estimation of the DFMS model specifications.

Specifically, we first winsorize the (logarithmic) monthly growth rates of this variable on

both sides at a 1 percent level and estimate the model parameters. Second, we return to

the original data and search for a maximum in a sensible neighbourhood of the estimates

found with the winsorized data. This approach therefore excludes outlier solutions and

prevents structural breaks in the parameter estimates in real-time when an outlier enters the

estimation window. For the models that allow for a time-varying peak probability p01
t , we

search for an optimum in a sensible neighbourhood of the base model, with respect to the

common parameters.
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Figure B.1: Final vintage US employees on nonfarm payrolls (EMP), the index of industrial
production (IP), manufacturing and trade sales (MAN) and personal income less transfer
payments (INC), January 1959 - February 2020.

Note: The shaded areas reflect the recession periods as determined by the NBER.
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B.4 Term spread

Figure B.2: US term spread, January 1959 - February 2020.

Note: The plot depicts the TS constructed by subtracting the Federal Funds rate from the 10-year

Treasury rate. The dark shaded areas in the negative domain reflect the periods of a negative TS.

Finally, the light shaded areas in the positive domain reflect the recession periods as determined by the

NBER.

B.5 Real-time p11 target

Figure B.3: Evolution of the target p11 estimated using completed NBER recessions used for
the real-time analysis.

Note: This figure depicts the evolution of the estimate of p11 when estimated using an expanding window

from completed NBER recessions. The estimate is updated the month after a trough announcement and

boils down to dividing the total number of recession months minus the number of recessions by the total

number of recession months. Finally, the shaded areas reflect the recession periods as determined by the

NBER.
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C Full-sample

C.1 Leftover parameter estimates

Table C.1: Remaining parameter estimates for the DFMS model and extensions.

Base GAS Exo GASX
α0 0.094 0.091 0.093 0.093

(0.012) (0.012) (0.012) (0.012)
α1 -0.097 -0.095 -0.094 -0.089

(0.023) (0.020) (0.023) (0.022)
φ 0.546 0.556 0.552 0.552

(0.050) (0.049) (0.051) (0.048)
λIP 2.298 2.310 2.302 2.305

(0.114) (0.115) (0.115) (0.115)
λMAN 1.907 1.914 1.909 1.910

(0.109) (0.109) (0.109) (0.109)
λINC 1.326 1.331 1.328 1.328

(0.075) (0.075) (0.075) (0.075)
σ2εEMP 0.006 0.006 0.006 0.006

(0.001) (0.001) (0.001) (0.001)
σ2εIP 0.370 0.369 0.369 0.369

(0.021) (0.021) (0.021) (0.021)
σ2εMAN 0.705 0.704 0.705 0.704

(0.038) (0.038) (0.038) (0.038)
σ2εINC 0.268 0.268 0.268 0.268

(0.014) (0.014) (0.014) (0.014)
θEMP -0.486 -0.478 -0.480 -0.479

(0.069) (0.068) (0.070) (0.069)
θIP 0.156 0.154 0.155 0.157

(0.040) (0.040) (0.040) (0.040)
θMAN -0.234 -0.235 -0.235 -0.235

(0.037) (0.037) (0.037) (0.037)
θINC -0.110 -0.112 -0.111 -0.111

(0.038) (0.038) (0.038) (0.038)
σ2
η 0.015 0.014 0.014 0.015

(0.002) (0.002) (0.002) (0.002)
LogL -1913.3 -1907.3 -1900.2 -1897.9
k 16 18 18 19
AIC 3858.5 3850.7 3836.5 3833.9

Note: This table presents the leftover parameter estimates

for the DFMS model and the extensions using monthly

growth rates for EMP, IP, MAN and INC over the period

January 1959-February 2020. Standard errors are displayed

in parentheses and k denotes the number of estimated pa-

rameters.
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C.2 Robustness transformation

In this Appendix, we investigate the effects of a different transformation g(·) of the score

used in (5)-(9). Specifically, Figure C.1 displays ex-post results using the inverse hyperbolic

sine (IHS) transformation g(x) = log(x +
√
x2 + 1). We observe highly similar results to

those in the ex-post analysis of Section 3.3.

Figure C.1: Ex-post results for the score-driven specifications using the inverse hyperbolic
sine transformation.

Note: The left plots depict the differences in filtered contraction state probabilities with the base model

(extension minus base) denoted by ∆Pr(St = 1|It). The right plots provide the estimated path of

the conditional peak probability p01
t . All models are estimated using the inverse hyperbolic sine (IHS)

transformation g(x) = log(x +
√
x2 + 1). Finally, the shaded areas reflect the recession periods as

determined by the NBER.
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C.3 Robustness of scaling, transformation and targeting

This Appendix investigates the robustness of three model specification choices of the GASX

model outlined in (5)-(9). First, this concerns the scaling of the score. In particular, for

the analysis as presented in the paper we set Ht = 1/(p01
t (1 − p01

t )) in order to offset the

effects of the link function on the score. Another common choice that may be considered

is to omit scaling altogether and use Ht = 1. Second, we apply the transformation g(x) =

sgn(x)log(1 + |x|) to reduce the impact of large scores. Third, we choose to target the

recession-to-recession transition probability p11, instead of estimating it alongside the other

parameters. This regularization vastly increases stability in the presence of large time-

variation in p01
t .

In order to provide a complete picture of the effects of each these choices and possi-

ble interactions, we estimate and provide the results of every possible model specification

without these interventions. Specifically, Figure C.2 and Figure C.3 contain results for

the score-driven models using Ht = 1 and using no targeting or targeting for p11, respec-

tively. Similarly, Figure C.4 and Figure C.5 contain results for the score-driven models using

Ht = 1/(p01
t (1− p01

t )) and again using either no targeting or targeting for p11. Within each

of the figures we consider both with/without transformation (i.e. g(x) = sgn(x)log(1 + |x|)

or g(x) = x) and with/without exogenous input in the form of the TS dummy. We estimate

the models on the full-sample, such that the main ex-post results of Section 3.3 therefore

overlap with Figure C.5.

In Figures C.2-C.5, we observe that the addition of the scaling and the transformation

generally increase the time-variation in p01
t , while targeting p11 prevents ‘recession rallies’.

Hence, these specification choices achieve the aim for which they are intended. Comparing

the models that include the TS against those we do not, we again confirm that the exogenous

input provides substantial benefits.
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Figure C.2: Ex-post results for different DFMS specifications without scaling and without
targeting.

Note: This figure contains the evolution of the transformed scaled score st, the peak probability p01
t and

the updated state probability Pr(St = 1|It) for the GAS models with (-T) and without transformation
of the score (-NT). Finally, the shaded areas reflect the recession periods as determined by the NBER.
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Figure C.3: Ex-post results for different DFMS specifications without scaling and with
targeting.

Note: This figure contains the evolution of the transformed scaled score st, the peak probability p01
t and

the updated state probability Pr(St = 1|It) for the GAS models with (-T) and without transformation
of the score (-NT). Finally, the shaded areas reflect the recession periods as determined by the NBER.
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Figure C.4: Ex-post results for different DFMS specifications with scaling and without
targeting.

Note: This figure contains the evolution of the transformed scaled score st, the peak probability p01
t and

the updated state probability Pr(St = 1|It) for the GAS models with (-T) and without transformation
of the score (-NT). Finally, the shaded areas reflect the recession periods as determined by the NBER.
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Figure C.5: Ex-post results for different DFMS specifications with scaling and with targeting.

Note: This figure contains the evolution of the transformed scaled score st, the peak probability p01
t and

the updated state probability Pr(St = 1|It) for the GAS models with (-T) and without transformation
of the score (-NT). Finally, the shaded areas reflect the recession periods as determined by the NBER.
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C.4 Robustness exogenous variable choice

In the analysis of the paper we use a dummy for a negative term spread (TS) as an exogenous

driver of the time-varying peak probability p01
t . Figure C.6 and Figure C.7 contain results of

the ex-post analysis where the TS is used differently. They also contains results when using

TCB’s Leading Economic Index (LEI). In particular, we observe that using the TS without

transformation produces large movement only around the period of elevated interest rates

in the 1980s. A transformation, such as the dummy for a negative sign, therefore appears

necessary to balance this exogenous input. Using the LEI also appears an effective choice

but appears to signal slightly later than the TS.
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Figure C.6: Robustness exogenous variable choice, filtered state probabilities.

Note: Filtered contraction state probabilities (Pr(St = 1|It)) for the base model are depicted in the top

left panel. The remaining figures depict the differences with the base model, denoted by ∆Pr(St = 1|It).

Exo-(·) denotes the autoregressive specification that only makes use of (·) to drive p01
t , whereby STS

denotes the standardized TS obtained by dividing the spread by the sum of the long and short-term

rates. For the LEI, the monthly logaritmic growth rates are used. Dummy-TS<0 denotes a specification

without autoregressive dynamics that simply considers two different levels of p01 depending on the sign

of the TS. Finally, the shaded areas reflect the recession periods as determined by the NBER.
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Figure C.7: Robustness exogenous variable choice, transition probability p0
t

1.

Note: This figure displays the evolution of the transition probability p01
t over time for the alternative

DFMS model specifications. The dotted line represents the constant p01 estimated by the base model.

Exo-(·) denotes the autoregressive specification that only makes use of (·) to drive p01
t , whereby STS

denotes the standardized TS obtained by dividing the spread by the sum of the long and short-term

rates. For the LEI, the monthly logaritmic growth rates are used. Dummy-TS<0 denotes a specification

without autoregressive dynamics that simply considers two different levels of p01 depending on the sign

of the TS. Finally, the shaded areas reflect the recession periods as determined by the NBER.
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D Real-time

D.1 Complete history of state probabilities

Figure D.1: Complete history of real-time filtered and smoothed state probabilities for the
base DFMS model and the GASX extension.

Note: This figure depicts the filtered (top) and smoothed (bottom) state probabilities for the Base (left)

and GASX (right) specification. The x-axis contains the estimation date and the y-axis the sample date

for which a probability is constructed.
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D.2 History of filtered state probabilities around 2001 and 2008

Figure D.2: History of real-time filtered state probabilities for the base DFMS model and
the GASX extension around the 2001 and 2008 recession.

Note: This figures depicts the real-time filtered state probabilities around the 2001 (top) and 2008

(bottom) recessions for the base (left) and GASX specification (right). The x-axis contains the estimation

date and the y-axis the sample date for which a probability is constructed. Finally, the black dotted

lines reflect the turning points as determined by the NBER.
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D.3 Troughs

Table D.1: Comparison trough dates from the DFMS specifications with the NBER reces-
sions.

τ = 0.65
Trough date Announcement date
Base GASX NBER Base GASX NBER
-1 (-1) -1 (0) Jul 1980 -9 -9 Jul 1981
-1 (-1) -1 (-1) Nov 1982 -5 -5 Jul 1983
1 (1) 1 (1) Mar 1991 -14 -14 Dec 1992
21 (5) 21 (9) Nov 2001 5 5 Jul 2003
5 (4) 5 (4) Jun 2009 -5 -5 Sep 2010

τ = 0.8
Trough date Announcement date
Base GASX NBER Base GASX NBER
-1 (-1) -1 (-1) Jul 1980 -9 -9 Jul 1981
-1 (-1) -1 (-1) Nov 1982 -5 -5 Jul 1983
1 (0) 1 (0) Mar 1991 -16 -16 Dec 1992
1 (2) 4 (3) Nov 2001 -15 -12 Jul 2003
4 (3) 4 (3) Jun 2009 -7 -5 Sep 2010

Note: This table contains the monthly differences in obtained initial trough dates of the base model and

GASX extension with the NBER database. The numbers in parentheses reflect the dating at the final

estimation date March 2020. Troughs are constructed from the smoothed contraction state probabilities

using a threshold of τ = 0.65 (top) and τ = 0.8 (bottom). The NBER turning points and their respective

announcement dates are obtained from https://www.nber.org/cycles.html.
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E COVID-19

We investigate the ability of our models to describe the COVID-19 recession that starts in

March 2020, immediately after the end of the sample period considered so far. Figure E.1

depicts the real-time evolution of the smoothed recession state probabilities for the base and

GASX models for the period March 2020 until December 2020. Because of the enormous

magnitude of the movement in the coincident variables in this period, particularly in April

2020, we opt to use data up to and including February 2020 to estimate the model parameters.

Including this period would dominate the estimation and yield a degenerate model almost

solely designed to fit April 2020.

Figure E.1: Real-time smoothed recession probabilities for the base DFMS model and the
GASX extension for the COVID-19 recession period, March 2020 until December 2020.

Note: The left and right plot depict the real-time evolution of the smoothed recession state probabilities

for the base and GASX model respectively. Parameters are estimated using data up to and including

February 2020. Finally, the black vertical dashed line is the peak date as established by the NBER.

In Figure E.1, we observe that both models are completely caught off guard, with an

abrupt large increase in recession probabilities when data for March 2020 becomes available.

Note that the heightened recession probabilities before March 2020 for later estimation mo-

ments is simply the result of smoothing; neither model is able to anticipate the COVID-19

period. This is not too surprising given the unusual cause and nature of this recession. The

large rebound of the coincident variables in June 2020 in combination with the persistence of

the factor yield a small artificial recession signal in July 2020. The GASX model in addition

provides a secondary mild signal in December 2020 due to a negative employment growth.

We conclude that the magnitude and timing of the COVID-19 shocks demand special

treatment as suggested among others by Ng (2021). Leaving these aberrant observations
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out of the parameter estimation procedure and running our model as is, such as in Figure

E.1, presents an easy practical solution to do so. A more technical solution would be to

use a robustified Kalman filter such as the one based on a t-distribution by Meinhold and

Singpurwalla (1989). In view of also the Markov-switching and score-driven components of

our setup, this is however non-trivial and left for future research.
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