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Abstract

This paper studies the impact of collaboration on research output. First, we build
a micro-founded model for scientific knowledge production, where collaboration be-
tween researchers is represented by a bipartite network. The equilibrium of the game
incorporates both the complementarity effect between collaborating researchers and
the substitutability effect between concurrent projects of the same researcher. Next,
we develop a Bayesian MCMC procedure to estimate the structural parameters, taking
into account the endogenous matching of researchers and projects. Finally, we illus-
trate the empirical relevance of the model by analyzing the coauthorship network of
economists registered in the RePEc Author Service.

Keywords: bipartite networks, coauthorship networks, research collaboration, spillovers,

economics of science.

JEL: C31, C72, D85, L14

1 Introduction

Collaboration between researchers in economics has become significantly more important in
recent decades. In 1996 multi-authored papers accounted for 50% of all articles published
in economics. This number increased to over 75% in 2014 (Kuld and O’Hagan, 2018).!
Through a complex network of collaborations, researchers generate spillovers not only to
their coauthors but also to other researchers indirectly connected to them. The aim of this
paper is to develop a structural model that helps us to understand how collaboration affects
research output.

First, we build a micro-founded model for scientific knowledge production. The collabo-
ration between researchers is characterized by a bipartite network with two types of nodes:
researchers and research projects. The effort that a researcher spends in a project is rep-

resented by an edge in the bipartite network, and collaborating researchers are connected

! Additional evidence can be found in Ductor (2014).



through the project they work on together. We characterize the equilibrium of the game
where researchers choose efforts in multiple and possibly overlapping projects to maximize
utility. The equilibrium takes into account both the complementarity (or spillover) effect
between collaborating researchers and the substitutability (or congestion) effect between
concurrent projects of the same researcher.

Next, we propose an estimation procedure to recover the structural parameters of the
model. There are three main challenges in estimating this model. First, the effort level
of a researcher in the production function is unobservable. To overcome this problem, we
substitute the equilibrium effort level derived from the theoretical model into the production
function. The resulting equilibrium production function is highly nonlinear with a likeli-
hood function involving high-dimensional integrals. This leads to the second challenge of
the estimation, i.e., it is computationally cumbersome to apply a frequentist maximum like-
lihood method, even when resorting to a simulation approach. To bypass this difficulty, we
adopt a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate the equilibrium
production function. Lastly, the matching between researchers and projects is likely to be
endogenous. Estimating the production function without taking into account this potential
endogeneity may incur a selection bias. We introduce a participation function to model the
endogenous selection of researchers into projects. Then we jointly estimate the production
function and the participation function allowing for both researcher and project unobserved
heterogeneity.?

Finally, we bring our model to the data by analyzing the coauthorship network of
economists registered in the Research Papers in Economics (RePEc) Author Service. We
find that the spillover effect and the congestion effect are statistically significant with the
expected signs. The estimates are biased when the endogenous matching between researchers
and projects is ignored. The direction of the bias is compatible with the intuition and consis-

tent with the Monte Carlo simulation results. We also conduct a series of robustness checks

2As pointed out in Bonhomme (2020), a key feature of bipartite networks is two-sided heterogeneity.
1% ) y % g Y.



to explore the sensitivity of our results to alternative specifications and samples.

There exists a growing literature, both empirical and theoretical, on the formation and
impact of scientific collaboration networks. On the empirical side, the structural features
of scientific collaboration networks have been analyzed in Newman (2001a,b,c, 2004a,b) and
Goyal et al. (2006). Fafchamps et al. (2010) study predictors for the establishment of scientific
collaborations. Ductor (2014), Ductor et al. (2014), and Anderson and Richards-Shubik
(2019) study how collaboration affects the research output of individual authors. In this
paper, we take a structural approach by introducing a micro-founded model to characterize
how collaboration facilitates scientific knowledge production.

Our paper is further related to the recent theoretical contributions by Baumann (2014)
and Salonen (2016), where agents choose time to invest into bilateral relationships. Our
model extends the setup considered in these papers by allowing for investments into multiple
projects that could involve more than two agents. Moreover, in a related paper Bimpikis
et al. (2019) analyze firms competing in quantities a la Cournot across different markets
with a similar linear-quadratic payoff specification and allow firms to choose endogenously
the quantities sold to each market. While the products sold by competing firms to the same
market are substitutes in Bimpikis et al. (2019), the efforts spent by collaborating agents in
the same project are strategic complements in our model.

The rest of the paper is organized as follows. Section 2 introduces the theoretical model
and characterizes the equilibrium. Section 3 presents the econometric methodology. The
empirical implications of the model are discussed in Section 4, where Section 4.1 describes
the data used in the empirical study, Section 4.2 gives the main estimation results, and
Section 4.3 provides robustness analysis. Section 5 briefly concludes. The proofs, technical

details, and additional robustness checks can be found in the online appendix.



2 Theoretical Model

2.1 Bipartite Network, Production Function, and Utility

Consider a bipartite network given by G = (N, P,&), where N = {1,...,n} denotes the
set of agents, P = {1,...,p} denotes the set of projects, and £ denotes the set of edges
connecting agents and projects. In our model, an edge e;; € £ is the (non-negative) effort
that agent ¢ spends in project s. Let N, denote the set of agents working on project s and
P; denote the set of projects agent i participates in. Let | - | denote the cardinality of a set.

The production function for project s € P is given by

ys(G) = Z Qi€is + % Z Z Jij€is€js 1 €s, (1)

1ENS i€Ns jJEN\ {4}

where y4(G) (or simply ys) is the output of project s, a; represents individual heterogeneity
in productivity, g;; € [0,1] measures the degree of complementarity between collaborating
agents, and € is a random shock. The spillover effect is captured by the coefficient \.

We assume that the wtility of agent ¢ is given by

U(0) =Y b5 [ S +63 S . 2)

sEP; sEP; s€P; teP;\{s}
N’ . ~
payoff cost

The utility function has a payoff/cost structure. The payoff is the weighted total output
of the projects agent i participates in, with the weights given by d, € (0,1].> The cost is
quadratic in efforts, with the coefficient ¢ measuring the degree of substitutability of an
agent’s efforts in different projects.* This cost is convex if and only if the |P;| x |P;| matrix

®;, with diagonal elements equal to one and off-diagonal elements equal to ¢, is positive

3For example, if 65 = 1/|Nj|, then the individual payoff is discounted by the number of agents participating
in project s (cf. Kandel and Lazear, 1992; Jackson and Wolinsky, 1996; Hollis, 2001).

4For example, Ductor (2014) finds evidence for a congestion externality proxied by the average number
of coauthors’ papers that has a negative effect on individual academic productivity.



definite. The quadratic cost specification includes the convex separable cost specification as
a special case with ¢ = 0. A theoretical model with a similar cost specification but allowing
for only two activities is studied in Belhaj and Deroian (2014) and an empirical analysis is
provided in Liu (2014) and Cohen-Cole et al. (2018). In addition, a convex separable cost

specification can be found in the model studied in Adams (2006).

2.2 Game and Equilibrium

The underlying game has two stages. In the first stage, agents decide which projects to
participate in. The outcome of the first stage are characterized by indicator variables d;s,
such that d;; = 1 if agent ¢ participates in project s and d;; = 0 otherwise. Given the
outcome of the first stage, agents simultaneously choose research efforts e;; > 0 to maximize
utility in the second stage.

The following proposition provides an equilibrium characterization of the agents’ effort
portfolio e = (e}, ,e,)", with e, = (€15, ,€ns)" for s = 1,--- ,p, in the projects they

participate in. Let

W = D(diagh_,{d;} @ G)D, and M =D(J,®1,)D, (3)

where ® denotes the Kronecker product, D is an np-dimensional diagonal matrix given by
D = diagh_,{diagl.{dis}}, G is an n x n zero-diagonal matrix with the (i,j)th (i # j)
element being g;;, and J, is an p X p zero-diagonal matrix with off-diagonal elements equal

to one. Let pyax(-) denote the spectral radius of a square matrix.

Proposition 1. Suppose the production function for each project s € P is given by Equation
(1) and the utility function for each agent i € N is given by Equation (2). Let L := L(\, ¢) =

MV — oM. Given the outcome of the first stage of the game, if

pmax(L) < 1, (4)



then the equilibrium effort portfolio is given by

e* = (I, — L)'D(6 ® a), (5)

where 6 = (61,---,9,) and o = (aq,- -+, )"

The matrix L represents a weight matrix of the line graph £(G) for the bipartite network
G,” where each link between nodes sharing a project has weight \d;g;;, and each link between
nodes sharing an author has weight —¢. An example can be found in Figure 1 with g;; =1
for all i # j and d; = 1 for all s. We illustrate the equilibrium characterization of Proposition

1 in the following example corresponding to the bipartite network in Figure 1.

Example 1. Consider a bipartite network with 3 agents and 2 projects, where agents 1 and
2 are collaborating in the first project and agents 1 and 3 are collaborating in the second
project. An illustration can be found in Figure 1. For expositional purposes, let g;; = 1 for

all i # j and 6, = 1 for all s. Following Equation (3),

01 0000 000100

1 00 000 00 0O0O0DO

000 O0O0O O 0 00O0O0F O
W = and M =

000 O0O0°1 1 00 000

0 00O0O0OTO O 0 00O0O0O O

000100 000 O0O0F O

5Given a network G, its line graph £(G) is a graph such that each node of £(G) represents an edge of G,
and two nodes of £(G) are connected if and only if their corresponding edges share a common endpoint in
G (cf. e.g., West, 2001).



Figure 1: Top left panel: the bipartite collaboration network G of authors and projects
analyzed in Example 1, where circles represent authors and squares represent projects. Top
right panel: the projection of the bipartite network G on the set of coauthors. The effort
levels of the individual agents for each project they are involved in are indicated next to the
nodes. Bottom panel: the line graph £(G) associated with the collaboration network G, in
which each node represents the effort an author invests into different projects. Solid lines
indicate nodes sharing a project while dashed lines indicate nodes with the same author.



and hence

The nonzero entries of the matrices W and M correspond to, respectively, the solid lines and
the dashed lines in the line graph depicted in the bottom panel of Figure 1. Thus, the (1,2)th
and (2, 1)th elements of the matriz L represent the link between ey and esy with weight X in
the line graph, the (4,6)th and (6,4)th elements represent the link between ey and esy with

weight A\, and the (1,4)th and (4,1)th elements represent the link between e and ejy with

weight —o¢.

In this example, the sufficient condition (4) for the existence of a unique equilibrium holds

L=\W —¢M =

_OAO—d)OO-
A 00 0 00
0 00 0 00
—$¢ 00 0 0 A
0 00 0 00
0 00 XA 00

if |¢| < 1 — N2 From Equation (5) the equilibrium effort portfolio is

€1y
€3
€3
€1y
€39

*
€32

1

(1 _ )\2)2 _ ¢2

(1= A2 = @)y + A(1 — A)as — Adas

AL = A2 = @)ag + (1 — A2 — )y — A2¢as
0

(1= A2 = @)y — Adan + A(1 — \2)as

0

AL = A2 = @)ay — Ao + (1 — A2 — ¢?)as




Observe that

dety 0el 1

. S e
oes, 0esy A

o1 By 1-nig )
des, _ Oy 1N g
OJas Jaz (1= MA2)2 — ¢?
deiy _ Odefy A1 =N =0
Doy dag (1 —A2)2 —¢?

which suggest that more-productive agents raise not only their own effort levels but also the

effort levels of their collaborators. On the other hand,

deiy _ Oels _ Ao <0
Oas Oava (1 —A2)2 —¢2
e _ dexy _ o <0
Oasg Oag (1 —A2)2 — ¢?

which suggest that more-productive agents induce lower effort levels spent by agents on other
projects. An illustration can be seen in the top panels of Figure 2.
The marginal change of the equilibrium effort ej; of agent 1 in project 1 with respect to

the spillover coefficient X is given by

dejr  2M(1— N —0)?ay + [(1 — M — ¢?) (1 — N?) + 2X%¢%]az — o[(1 + 3N%)(1 — N?) — ¢*]as
O\ (1= A%)2 — ¢2)2 :
Observe that the coefficient of as is negative. Thus, when «s is large enough, Oef;/O\
could be negative. The reason is that, with increasing A\, the complementarity effects between
collaborating agents become stronger, and this effect is more pronounced for the collaboration
of agent 1 with the more-productive agent 3, than with the less-productive agent 2. Moreover,
when the substitution effect parameter ¢ is large, agent 1 may spend even less effort in the
project with agent 2, indicating congestion effects across projects. An illustration can be seen

in the bottom panels of Figure 2.
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Figure 2: Top left panel: equilibrium effort levels for agents 1 and 2 in project 1 for ¢ = 0.75,
A =0.25, ap = a3 = 1 (where e}, = e}, and e}, = €},) and varying values of ay. Top right
panel: equilibrium effort levels for agents 1, 2 and 3 in projects 1 and 2 for oy = a3 = 1,
¢ = 0.75, A = 0.25 and varying values of a,. Bottom panels: equilibrium effort levels for
agent 1 with a; = 0.2, as = 0.1, a3 = 0.9, ¢ = 0.05 (bottom left panel) and ¢ = 0.25
(bottom right panel) for varying values of A\. The dashed lines in the bottom panels indicate
the effort level for A = 0.
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3 Estimation

Let d;s = 1(i € Nj), where 1(-) denotes an indicator function. Equation (1) can be rewritten

as

Z azdzsezs + 3 Z Z gz]dzsd i5€is€js + €s; (6)

eN ZEN JeEN\{i}

where ¢, is i.i.d.(0, 02). In the empirical model, we assume agent ’s productivity is given by

a; = exp(x;3 + Cpui) (7)

where z; is a vector of observable individual attributes and y; is an i.i.d.(0, 1) random com-
ponent capturing unobservable individual heterogeneity.

There are three main challenges in estimating this model. First, the effort level e; is
usually unobservable to the econometrician. To overcome this problem, we replace e;s in
Equation (6) with the equilibrium effort level e}, given by Equation (5) and estimate the

parameter vector 9, = (A, ¢, #',(,0?)" in the equilibrium production function

Z a;diser, + — Z Z 9ijdisdjse; € + €s. (8)

ieN zEN JENM\{i}

Second, the likelihood function of Equation (8) involves high-dimensional integrals and
is computationally cumbersome to evaluate. As the equilibrium effort level e}, depends on
individual productivities a, - - - , a,, which in turn depend on individual random components
f1, -+ i, according to Equations (5) and (7), the equilibrium production function (8) is

nonlinear in p = (py, -+ , itn)'. The joint density of y = (y1,--- ,y,)" is given by

flv,) = /f(ym,ﬁy)f(u)du

where f(y|u,d,) is the conditional density of y given p and f(u) is the joint density of p. As

f(y|Y,) involves n-dimensional integrals, it is computational intensive to estimate 9, by the

12



frequentist maximum likelihood method. To bypass this difficulty, we follow the approach
of Zeger and Karim (1991) to sample p together with ¥, from their joint posterior density
p(p, Vyly) o< fylp, 9y)m(p)m(9,) with the priors 7(p) and 7 (d,).

Third, d;; is likely to be endogenous. For example, in a coauthorship network, high-ability
researchers tend to work on many projects at the same time, and high-potential projects
are usually more demanding for researchers. Estimating Equation (8) without taking into
account potential endogeneity of d;; may incur a selection bias. To control for the endogenous
selection, we assume that, in the first stage of the game, agent i decides whether to participate

in project s according to

dis = II-('Z'ZS’Y + g:uz + W?s + Vs > 0)7 (9)

where z;5 is a vector of observables measuring compatibility between agent ¢ and project
s,% u; is an i.i.d.(0, 1) agent-specific random component, 7, is an i.i.d.(0, 1) project-specific
random component, and v;, is an i.i.d.(0, 1) error term independent of y; and 7s. Conditional
on observables, d;s and y, are correlated due to the agent-specific random component p; that
appears in both Equations (7) and (9). Furthermore, to model the correlation between d;,

and €, in Equation (8), we rewrite € as

€s = QT)s + Usg,

2

2) error term independent of 7. In this specification, if ¢ > 0 and

where ug is an i.i.d.(0, o
¢ > 0, then a researcher with higher ability (given by a higher y;) tends to participate in
more projects; and if ¢ > 0 and ¢» < 0, then a project with higher potential (given by a
higher 7,) has a higher threshold for researchers to participate in.

Let 6y = (7/,&,¢) and 0, = (N, ¢, 8, (,5,02)". Let f(d|p,n,04) denote the joint probabil-

SEquation (9) can be considered as a reduced form of a game, where an agent’s participation decision
may depend on the attributes of other agents. In the empirical illustration, z;s includes terms capturing the
similarity between agent ¢ and other agents collaborating in project s in terms of affiliation, alma mater, etc.

13



ity of d = [d;s] given p = (p1,-- -, pun) and n = (my,--- ,1n,), and f(y|d, u,n,6,) denote the
conditional density of y given d, y1, and . Then, y, , and 6 = (0, 0;)" can be sampled from
the joint posterior density p(u, n, 8|y, d) o< f(y|d, w, n, 0,) f(d|p, 0, 84)7 ()7 (n)7(8,)7(04) with
the priors 7(u), m(n), 7(0,) and 7(0,). The details of Bayesian estimation can be found in

Appendix B.

4 Empirical Study: Coauthorship Networks

4.1 Data

The data used for this study make extensive use of the metadata assembled by the RePEc
initiative and its various projects. RePEc assembles information about publications rele-
vant to economics from over 2,000 publishers, including all major commercial publishers
and university presses, policy institutions, and pre-prints (working papers) from academic
institutions.”

In addition, we make use of the data made available by various projects that build on
these RePEc data and enhance it in various ways. First, we take the publication profiles of
economists registered with the RePEc Author Service, which include what they have pub-
lished and where they are affiliated.® Second, we extract information about their advisors,
students, and alma mater, as recorded in the RePEc Genealogy project.” This academic ge-
nealogy data has been complemented with some of the data used in Colussi (2017).'% Third,
we use the New Economics Papers (NEP) project to identify the field-specific mailing lists

through which the papers have been disseminated.!! NEP has human editors who determine

the field in which new working papers belong. We obtain 99 distinct NEP fields. Fourth, we

"See http://repec.org/ for a general description of RePEc.

8RePEc Author Service: https://authors.repec.org/

9RePEc Genealogy project: https://genealogy.repec.org/

10We would like to thank Tommaso Colussi for sharing the data with us.
1NEP project: https://nep.repec.org/
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t.12 Finally, we use

use citations to the papers and articles as extracted by the CitEc projec
journal impact factors, as well as author and institution rankings from IDEAS.!?

Compared with other data sources, RePEc has the advantage of linking these various
datasets in a seamless way that is verified by the respective authors. Author identification
is superior to any other dataset as homonyms are disambiguated by the authors themselves
as they register and maintain their accounts. While not every author is registered, most are.
Indeed, 90% of the top 1000 economists as measured by their publication records for the
1990-2000 period are registered.'* We believe that the proportion is higher for the younger
generation that is more familiar with social networks and online tools and thus more likely
to register with online services.

In terms of publications, RePEc covers all important outlets and over 3,000 journals are
listed, most of them with extensive coverage. References are extracted for about 30% of
their articles (in addition to working papers) to compute citation counts and impact factors.
The missing references principally come from publishers refusing to release them for reasons
related to copyright protection. While the resulting gap is unfortunate, it is unlikely to result
in a bias against particular authors, fields, or journals. The exception may be authors who
are significantly cited in outlets outside of economics that may or may not be indexed in
RePEc (note that several top management, statistics, and political science journals are also
indexed).

To obtain a sample from RePEc that is appropriate for our analysis, we apply a series
of filters as follows. First, we select papers that had a first pre-print version in 2010-2012.
We choose 2010-2012 because it is old enough to give all authors a chance to have added the
papers to their profiles and for the papers to have been eventually published in journals; but
not too old for a good data coverage, as the coverage of RePEc becomes slimmer with older

vintages. Furthermore, we require all authors of the papers to be registered with RePEc and

12CitEc project: http://citec.repec.org/

I3IDEAS: https://ideas.repec.org/top/. For a detailed description of the factors and rankings, see
Zimmermann (2013).

Ynhttps://ideas.repec.org/coupe.html
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all authors to have the RePEc Genealogy information on where they studied. We drop all
duplicate or older versions of each paper from our sample. This gives us a sample of 6,673
papers written by 3,700 distinct authors for which we have complete data.

Next, as we use citations to measure research output, we drop 2,463 papers that do not
have any citations up to November 2018 when the data is extracted from the RePEc database,
as well as 658 authors who only work on these dropped papers without any citations. This
reduces to the sample size to 4,210 papers and 3,042 authors.!®

Finally, as we are interested in collaborations between researchers, we drop 621 authors
who wrote only single-authored papers in the sample period. This results in a final sample
of 3,589 papers written by 2,421 distinct authors.'6

In the empirical study, research output is measured by the number of citations of the
paper weighted by recursive discounted impact factors of the citing outlet.!” To capture
an author’s productivity, we use an author’s log lifetime citations (at the point of sample
collection), decades after receiving their Ph.D., dummy variables for being a male, having an
NBER affiliation, graduating from the Ivy League, and being a journal editor. Descriptive

statistics of the variables of interest can be found in Appendix C.

15Tn Appendix F, we conduct a robustness check by estimating the empirical model with a sample including
the 2,463 papers without any citations. The main result is qualitatively unchanged.

16In Appendix F, we conduct a robustness check by estimating the empirical model with a sample including
the 621 authors who wrote only single-authored papers in the sample period. The main result is qualitatively
unchanged.

1"The recursive impact factor R; of journal i is computed as the fixed point of the following system of

equations
Yier RiCij e P
R, = , Vie J, (10)
P Zj eJ R;P;

where J denotes the set of journals, C;; counts the number of citations in journal j to journal i, F; is the
number of all papers/articles in journal . It is an impact factor where every citation has the weight of the
recursive impact factor of the citing journal. All R; are normalized such that the average paper has an R;
of one. For the recursive discounted impact factor, each citation is further weighted by 1/T, where T is the
age of the citation in years.

16



4.2 Main Results

In the benchmark empirical model, we assume that the complementarity between researchers
is homogeneous, i.e., g;; = 1 for i # j in Equation (1), and the payoff from a coauthored
paper is not discounted, i.e., s = 1 in Equation (2). Table 1 collects the estimation results
of Equations (8) and (9), where column (A) reports the estimates of the production func-
tion ignoring endogenous project participation, column (B) reports the joint estimates of
the production and participation functions with an author-specific random component, and
column (C) reports the joint estimates of the production and participation functions with
both author- and project-specific random components.

Across all columns, we find that the estimated spillover effect (\) is significant and posi-
tive. When endogenous project participation is ignored, the estimated congestion effect (¢)
reported in column (A) is statistically insignificant. When endogenous project participa-
tion is controlled for, the estimated congestion effect (¢) becomes significant and positive.
More specifically, in column (B), we incorporate an author-specific random component to
control for endogenous project participation. The estimated coefficients (¢ and &) of the
author-specific random component suggest that a researcher with high ability is more likely
to participate in a project. Comparing the estimates of ¢ between columns (A) and (B)
indicates ignoring the participation equation with an author-specific random component
tends to underestimate the congestion effect because it fails to take into account that the re-
searchers simultaneously working on multiple projects are more likely to be high-ability ones.
In column (C), we also include a project-specific random component to further control for
endogenous project participation. The estimated coefficients (¢ and 1)) of the project-specific
random component suggest that a high-potential project holds a higher threshold for a re-
searcher to participate in. Compared with column (C), column (B) slightly overestimates
the congestion effect because it does not account for unobserved heterogeneity in project
potential or quality. In appendix D, we conduct some Monte Carlo simulation experiments

and observe the same pattern of bias as reported here.
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Table 1: Main Results

(A) (B) (€)
Exogenous Participation Endogenous Participation Endogenous Participation
w/ Author RE w/ Author & Project RE
Production
Spillover N) 0.0923*** 0.0979*** 0.0958***
(0.0165) (0.0182) (0.0185)
Congestion (¢) 0.0248 0.2238%** 0.144 7%
(0.0174) (0.0360) (0.0236)
Constant (Bo) _2.2087%¥* -3.0576%** -3.2404%%
(0.1642) (0.1873) (0.1728)
Log life-time citat. (B1) 0.44171%** 0.5507*** 0.5706***
(0.0254) (0.0256) (0.0242)
Decades after grad.  (f2) -0.3838%+* -0.4256%+* -0.4742%%%
(0.0310) (0.0303) (0.0289)
Male (Bs3) -0.1626%** -0.0137 -0.0178
(0.0548) (0.0506) (0.0497)
NBER connection (Ba) 0.2238%** 0.3535%** 0.4088***
(0.0397) (0.0400) (0.0364)
Ivy League connect. (fs) 0.3870%** 0.2385%** 0.2688***
(0.0369) (0.0416) (0.0385)
Editor (Bs) 0.1277%* 0.0250 -0.0337
(0.0546) (0.0590) (0.0577)
Author effect ©) 2.2966%** 2.6478*** 2.8023***
(0.0765) (0.0931) (0.0996)
Project effect () - - 1.2752%*
- - (0.5074)
Error term variance  (o2) 89.8957H** 08.2534%** 97.8927***
(2.2057) (2.3896) (2.4867)
Participation
Constant (70) - -9.9857HH* -10.6201%**
(0.1009) (0.1207)
Same NEP (71) - 1.3360%*** 1.5678%**
(0.1020) (0.1033)
Affiliation (72) - 6.8666%%* 6.8409%%*
(0.2955) (0.2883)
Gender (7s) - 1.5567#%* 1.8669%**
(0.0940) (0.1033)
Past coauthors (va) - 6.3132%** 6.7095%**
(0.0970) (0.1073)
Common co-authors  (7s) - 6.9941%** 7877 3K
(0.0602) (0.0897)
Author effect €3 - 1.0490%** 1.0002%**
(0.0936) (0.0983)
Project effect (¥) - - -2.9287**
- (0.1120)
Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participation. Column (B) jointly

estimates the production and participation functions with author random effects. Column (C) jointly estimates the
production and participation functions with both author and project random effects. We implement MCMC sampling
for 30,000 iterations and leave the first 1000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks ***(** *)
indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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Regarding the effect of author characteristics on project output, we find that the num-
ber of lifetime citations is a positive and significant predictor of research output (cf. e.g.,
Ductor, 2014), while experience (measured by decades after receiving Ph.D.) is significantly
negative.!® This finding mirrors Ductor (2014), who shows that career time has a negative
impact on productivity and it is consistent with the academics’ life-cycle effects documented
in Levin and Stephan (1991). Being affiliated with the NBER positively and significantly
impacts research output. Similarly, having attended an Ivy League university also positively
affects output.

From the estimation of project participation, we find that similarities in the research
(NEP) fields positively and significantly affect the matching between authors and projects
(Ductor, 2014). In terms of assortative matching between coauthors, belonging to the same
affiliation, having the same gender, being coauthors in the past, and sharing common coau-
thors all make matching more likely (cf. Freeman and Huang, 2015).1?

Finally, we check the condition given by Equation (4) holds for the estimated A and ¢.
In Appendix E; Figure E.1 plots the empirical distribution of equilibrium efforts given by
Equation (5) in Proposition 1. We find that the predicted equilibrium efforts are all positive,

alleviating the concern of corner solutions.

4.3 Robustness Analysis

We also consider two alternative specifications of the empirical model. First, we allow com-
plementarity between researchers to be heterogeneous. Researchers differ in their knowledge
bases and these differences can affect their complementarity when collaborating on a joint
project. In order to capture these heterogeneous complementarities, we define g;; in Equa-

tion (1) based on the Jaffe proximity measure of research fields (NEP) between each pair

8Following Rauber and Ursprung (2008) we have also estimated a polynomial of order five in decades
after Ph.D. graduation. The result shows that the coefficient of the first order is significantly negative, while
the remaining higher orders are insignificant.

19TIn Appendix F, we also experiment with alternative specifications of the participation equation. The
main result is qualitatively unchanged.
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of authors.??"2! The estimation results with heterogeneous complementarity are reported in
Table 2. We find the results are comparable with those reported in Table 1. In particular,
the spillover effect is positive and significant, and the bias of the congestion effect follows
the same pattern as the homogeneous complementarity case. It is worth pointing out that
the estimates of \ are a little larger than those reported in Table 1. This is because g;; based
on the Jaffe proximity measure is smaller than one and thus a larger spillover coefficient is
obtained in compensation.

In the second specification, we assume that the payoff is discounted by the number of
coauthors in a project, i.e., s = 1/|N;| in Equation (2).?? The estimation results are reported
in Table 3. Although the estimated spillover effects are larger than those reported in Table
1 due to the smaller value of d,, the main results are qualitatively unchanged.

In Appendix F, we perform additional robustness checks to gauge the sensitivity of the
estimation results. In Table F.1, we experiment with an alternative specification of the
participation equation. In Tables F.2 and F.3, we estimate the benchmark empirical model
with samples which also include authors who wrote only single-authored papers in the sample
period and papers without any citations. We find that the estimates are similar to those

reported in Table 1, indicating the robustness of our findings.

20 Jaffe (1986) introduces this measure for the analysis of technological proximity between patents. More
recently, Bloom et al. (2013) illustrates how “Jaffe similarity” affects firms’ profits with different patent
portfolios.

2From the authors’ NEP fields, we computed their research field proximity following Jaffe (1986) as

FTF;

7 J
VF Fi\/F]F;

where F; represents the NEP fields of author ¢ and is a vector whose kth component P;; counts the number
of papers author ¢ has in NEP field k£ divided by the total number of papers of that author with an attributed
field.

22However, Kuld and O’Hagan (2018) argue that the available empirical evidence suggests that the number
of co-authors causes very limited discounting of a published article.

gij =
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Table 2: Robustness Check: Heterogeneous Complementarity

(A) (B) (€)
Exogenous Participation Endogenous Participation Endogenous Participation
w/ Author RE w/ Author & Project RE
Production
Spillover N) 0.1679*** 0.1888*** 0.1840%***
(0.0264) (0.0248) (0.0275)
Congestion (¢) 0.0417** 0.2869*** 0.1958%**
(0.0157) (0.0405) (0.0248)
Constant (Bo) -2.2801%** -3.5719%** -3.5168%**
(0.1268) (0.2108) (0.1988)
Log life-time citat. (B1) 0.4271%** 0.6231%** 0.5937***
(0.0186) (0.0282) (0.0241)
Decades after grad.  (f2) -0.4015%** -0.5162%%* -0.4798%**
(0.0212) (0.0288) (0.0274)
Male (Bs3) 0.0353 0.0781 0.0742
(0.0490) (0.0507) (0.0559)
NBER connection (Ba) 0.2890%*** 0.4584*** 0.5000%**
(0.0341) (0.0342) (0.0359)
Ivy League connect. (fs) 0.3076%** 0.2444%** 0.2506%**
(0.0412) (0.0318) (0.0278)
Editor (Bs) -0.0557 0.0627 0.0144
(0.0453) (0.0465) (0.0546)
Author effect ©) 2.1473%** 2.6694*** 2.9050%**
(0.0709) (0.0985) (0.1197)
Project effect () - - 1.5678%+*
(0.5625)
Error term variance  (o2) 89.4745%** 96.3344%** 96.9670%**
(2.1668) (2.3263) (2.3472)
Participation
Constant (70) - -10.0378*** -10.8167***
(0.1028) (0.1148)
Same NEP (71) — 1.3428%** 1.6481%**
(0.1083) (0.1040)
Affiliation (72) - 6.9382%** 6.8972%**
(0.2997) (0.3159)
Gender (73) - 1.5850%** 1.9603%**
(0.0964) (0.1028)
Past coauthors (va) - 6.3553%*** 6.8359%**
(0.0972) (0.1111)
Common co-authors  (7s) - 7.0509%** 8.1579%**
(0.0628) (0.0812)
Author effect €3 - 1.2847#%* 1.1889%**
(0.0895) (0.0958)
Project effect (¥) - - -3.1438%**
- (0.1127)
Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participation. Column (B) jointly

estimates the production and participation functions with author random effects. Column (C) jointly estimates the
production and participation functions with both author and project random effects. We implement MCMC sampling
for 30,000 iterations and leave the first 1000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks ***(** *)
indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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Table 3: Robustness Check: Discounted Payoffs

(A) (B) (€)
Exogenous Participation Endogenous Participation Endogenous Participation
w/ Author RE w/ Author & Project RE
Production
Spillover N) 0.2999*** 0.3515*** 0.3354***
(0.0371) (0.0544) (0.0563)
Congestion (¢) 0.0225 0.2144%** 0.1512%**
(0.0116) (0.0391) (0.0246)
Constant (Bo) -2.5092%** -3.9907*** -3.1635%**
(0.1627) (0.2174) (0.2102)
Log life-time citat. (B1) 0.4433*** 0.6511%** 0.5567***
(0.0198) (0.0270) (0.0283)
Decades after grad.  (f2) -0.3900%** -0.5265%+* -0.4026%**
(0.0268) (0.0278) (0.0332)
Male (Bs3) 0.0318 0.1424%%* -0.0788
(0.0470) (0.0519) (0.0450)
NBER connection (Ba) 0.2650%** 0.5040%** 0.4829%**
(0.0365) (0.0387) (0.0356)
Ivy League connect. (fs) 0.2687#** 0.2104%** 0.1939%**
(0.0349) (0.0422) (0.0360)
Editor (Bs) -0.0542 0.0194 -0.0605
(0.0572) (0.0512) (0.0487)
Author effect ©) 2.2626%** 2.8629%** 2.8346%**
(0.0741) (0.1197) (0.1049)
Project effect () - - 1.0654**
(0.5662)
Error term variance (02) 89.4745%** 95.2468*** 102.5049%**
(2.1668) (2.3049) (2.5033)
Participation
Constant (70) - -10.0555%** -10.4989%**
(0.1024) (0.1141)
Same NEP (71) - 1.3444%%* 1.5049%**
(0.1027) (0.1069)
Affiliation (72) - 6.9548%%* 6.7633%**
(0.3133) (0.2807)
Gender (73) - 1.5938%** 1.7993%**
(0.0960) (0.1016)
Past coauthors (va) - 6.3785%** 6.6654%**
(0.0994) (0.1045)
Common co-authors  (7s) - 7.0664%** 7.8171%**
(0.0628) (0.0809)
Author effect €3 - 1.3102%** 1.0334%%*
(0.0887) (0.1031)
Project effect (¥) - - -2.8904***
- (0.1107)
Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participation. Column (B) jointly

estimates the production and participation functions with author random effects. Column (C) jointly estimates the
production and participation functions with both author and project random effects. We implement MCMC sampling
for 30,000 iterations and leave the first 1000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks ***(** *)
indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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5 Conclusion

In this paper, we analyze the equilibrium efforts of researchers who seek to maximize their
utility when involved in multiple, possibly overlapping projects in a bipartite network. We
show that both the spillover effect between collaborating researchers and the congestion effect
between concurrent projects play an important role in determining the equilibrium effort
level. To estimate the structural parameters of the model, we develop a Bayesian MCMC
procedure that accounts for endogenous selection of researchers into research projects. We
then bring our model to the data by analyzing the coauthorship network of economists
registered in the RePEc Author Service and find empirical evidence for both spillover and
congestion effects.

As our model has an explicit micro-foundation, it provides a formal framework for coun-
terfactual analysis. One could evaluate the importance of a researcher by hypothetically
removing him/her from the coauthorship network to see the resulting loss in aggregate re-
search output as in Ballester et al. (2006), or design an optimal funding scheme to maximize
aggregate research output as in Konig et al. (2019). We leave these counterfactual exercises

to future research.
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Online Appendix for “Collaboration in Bipartite Networks, with an
Application to Coauthorship Networks”
by Chih-Sheng Hsieh, Michael D. Konig, Xiaodong Liu, and Christian Zimmermann

A Proof of Proposition 1

Proof of Proposition 1. Let ¢;; = d;sc;5, where ¢;, is the latent effort level. Substitution

of Equation (1) into Equation (2) gives

Uz(g) - Z disés Z ajdjsgjs + % Z Z gjkdjsdk:sgjsgks + € (11)

seP jeN JEN keNM\{j}
1
3 Z dis@i + ¢Z Z disdit€isEit
seP s€EP teP\{s}

The first-order condition of maximizing utility in Equation (11) with respect to €;5 gives

dis 63041' + )\53 Z gijdjsgjs — Eis — (b Z ditgit = 0.
JEN\{i} teP\{s}

In matrix form, the first-order condition can be written as
D ®a)— (I, — L)e=0.

If pmax(L) < 1, the matrix I,, — L is positive definite. It follows by Lemmas 2 and 3 in
Bimpikis et al. (2019) that the unique equilibrium is given by the solution to the linear
complementarity problem and the inactive links (d;s = 0) are strategically redundant and
play no role in determining the equilibrium. Hence, it follows by a similar arguments as in
the proof of Theorem 1 in Bimpikis et al. (2019) that the game has a unique equilibrium

with the equilibrium effort levels are given by Equation (5). 1



B Bayesian Estimation

Since the likelihood function based on Equations (8) and (9) involves high-dimensional inte-
grals, it is computationally cumbersome to apply a frequentist maximum likelihood method
even when resorting to a simulation approach. As an alternative estimation method, the
Bayesian Markov Chain Monte Carlo (MCMC) approach can be more efficient for estimat-
ing latent variable models (cf. Zeger and Karim, 1991). We divide the parameter vector 6

and other unknown latent variables into blocks and assign the prior distributions as follows:

A~ N(0,0%),
~ N(0,03),
N(Ovzb’)v
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and p; ~ N(0,1) for i € N. We consider the normal and inverse gamma (ZG) conjugate
priors, which are widely used in the Bayesian literature (Koop et al., 2007). The hyper
parameters are chosen to make the prior distribution relatively flat and cover a wide range
of the parameter space, i.e., we set 03 = o} = 10, ¥3 = 10I, ¢ = 02 = 10, X, = 10001,
o7 = oy, = 1000, 7 = 2.2, and 15 = 0.1.

The MCMC sampling procedure combines the Gibbs sampling and the Metropolis-

Hastings (M-H) algorithm. It consists of the following steps:

1. Draw the latent variable u; using the M-H algorithm based on f(u;|y,d, @, u_;,n), for

2



3. Draw 7 using the M-H algorithm based on f(~v|y,d, 0\{~v}, 1, n).
4. Draw & using the M-H algorithm based on f({|y, d, 0\{&}, i, n).
5. Draw 1 using the M-H algorithm based on f(¢|y,d, 0\{¢'}, u, n).
6. Draw A using the M-H algorithm based on f(A|y,d, 0\{\}, i, n).
7. Draw ¢ using the M-H algorithm based on f(¢|y, d, 0\{¢}, i, n).
8. Draw f3 using the M-H algorithm based on f(8|y,d,0\{S}, i, n).
9. Draw ( using the M-H algorithm based on f(C|y, d,0\{C}, u, ).
10. Draw ¢ using the M-H algorithm based on f(s|y,d,0\{s}, u,n).

11. Draw o2 using the conjugate inverse gamma conditional posterior distribution.

We collect the draws from iterating the above steps and compute the posterior mean and

the posterior standard deviation as our estimation results.

C Data Description

To obtain a sample from RePEc that is appropriate for our analysis, we apply a series of
filters as follows.

First, we select papers that had a first pre-print version in 2010-2012. Furthermore,
we require all authors of the papers to be registered with RePEc and all authors to have
the RePEc Genealogy information on where they studied. We drop all duplicate or older

versions of each paper from our sample. This gives us a sample of 6,673 papers written by



Table C.1: Summary Statistics of Sample (I)

Min Max Mean S.D. Sample size

Papers

Weighted citation 0.0000 317.9515 3.7587 12.3858 6673
Number of authors (in each paper) 1 5 1.4160  0.6421 6673
Authors

Log lifetime citations 0 10.7634  5.3176  1.8428 3700
Decades after Ph.D. graduation -0.7 6.2000 1.0642  1.0676 3700
Male 0 1 0.8154  0.3880 3700
NBER connection 0 1 0.0889  0.2847 3700
Ivy League connection 0 1 0.1268  0.3327 3700
Editor 0 1 0.0476  0.2129 3700
Number of papers (for each author) 1 63 2.5538  2.7762 3700

Notes: This sample is constructed based on works that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.

Table C.2: Summary Statistics of Sample (II)

Min Max Mean S.D. Sample size

Papers

Weighted citation 0.0000 317.9515 5.9577 15.1682 4210
Number of authors (in each paper) 1 5 1.5124  0.6820 4210
Authors

Log lifetime citations 0 10.7634  5.5445  1.7358 3042
Decades after Ph.D. graduation -0.7 6.2000 1.0701  1.0447 3042
Male 0 1 0.8222  0.3824 3042
NBER connection 0 1 0.1019  0.3026 3042
Ivy League connection 0 1 0.1341  0.3408 3042
Editor 0 1 0.0516  0.2213 3042
Number of papers (for each author) 1 19 2.0930 1.7079 3042

Notes: This sample is constructed based on works that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.
In this sample, we further drop papers which do not have any citations up to November 2018.



Table C.3: Summary Statistics of Sample (I1I)

Min Max Mean S.D. Sample size

Papers

Weighted citation le-04 317.9515 6.4578 16.0868 3589
Number of authors (in each paper) 1 5 1.6010  0.7017 3589
Authors

Log lifetime citations 0 10.7634  5.7441  1.6782 2421
Decades after Ph.D. graduation -0.7 6.2000 1.1056  1.0372 2421
Male 0 1 0.8228  0.3819 2421
NBER connection 0 1 0.1136  0.3174 2421
Ivy League connection 0 1 0.1450  0.3522 2421
Editor 0 1 0.0566  0.2311 2421
Number of papers (for each author) 1 19 2.3734  1.8112 2421

Notes: This sample is constructed based on workss that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.
In this sample, we further drop papers which do not have any citations up to November 2018
and the authors who only wrote a single-authored paper in the sampling period.

3,700 distinct authors for which we have complete data. We call this sample: Sample (I).
This is the sample we used to obtain the estimates reported in Table F.2 in Appendix F.
Descriptive statistics of the variables of interest in Sample (I) are reported in Table C.1.

Next, we drop 2,463 papers that do not have any citations up to July 2018 when the
data is extracted from the RePEc database, as well as 658 authors who only work on these
dropped papers without any citations. This reduces to the sample size to 4,210 papers and
3,042 authors. We call this sample: Sample (II). This is the sample we used to obtain the
estimates reported in Table F.3 in Appendix F. Descriptive statistics of the variables of
interest in Sample (II) are reported in Table C.2.

Finally, we drop 621 authors who only wrote a single-authored paper in the sample
period. This results in a sample of 3,589 papers written by 2,421 distinct authors. We call
this sample: Sample (III). This is the sample we used to obtain the main results reported in

Section 4.2. Descriptive statistics of the variables of interest in Sample (III) are reported in

Table C.3.



D Monte Carlo Simulation

To show that the proposed Bayesian MCMC estimation approach in Appendix B can ef-
fectively recover the true parameters in Equations (8) and (9), we conduct a Monte Carlo
simulation with 100 repetitions. In each repetition, we generate an artificial bipartite col-
laboration network of 200 authors (n = 200) and 400 projects (p = 400). The data gen-
erating process (DGP) runs as follows: we first simulate dyadic binary exogenous variables
zis € {0,1} randomly with the probability P(z;; = 1) = 0.64; individual exogenous variable
x; from normal distribution N(0,4); and both author and project latent variables p; and
ns from N(0,1). Then, we generate the artificial collaboration network and project output
based on the participation function of Equation (9) and the production function of Equation
(8) with DGP parameters listed in Table D.1. In these artificial collaboration networks, each
author on average participates in 3.195 projects and the standard deviation equals 2.604.
Each project on average has 1.598 authors and the standard deviation is 1.621. The average
of artificial project outputs is 6.238 and the standard deviation is 26.502.

Following the empirical study in Section 4, we also explore three different model specifi-
cations to examine the misspecification biases on the parameter estimates. The simulation
results are summarized in Table D.1. In Column (A) of Table D.1, we intentionally ignore en-
dogenous project participation by estimating the production function of Equation (8) alone.
The simulation result shows that, while the estimated spillover effect (\) is essentially un-
biased, the estimated congestion effect (¢) is significantly downward biased by more than
100%, which is consistent with the our empirical finding. Moreover, omitting the project
latent variable 7, leads to a huge upward bias on the estimated error variance o2. In Column
(B), we take into account endogenous project participation by estimating Equations (8) and
(9) jointly, but still ignoring project latent variable 7,. The simulation result shows that
the estimation bias on congestion effect (¢) turns to positive from Column (A) to Column
(B), which is also in line with the observation in our empirical study. Finally, in Column

(C) we estimate the true DGP model and the simulation result confirms that the employed



Table D.1: Simulation results.

(A) (B) (©)

Exogenous Participation Endogenous Participation = Endogenous Participation

w/ Author RE w/ Author & Project RE
DGP Est. S.D. Est. S.D. Est. S.D.

Production

A 0.1000 0.0973 0.0098 0.0977 0.0087 0.0996 0.0011
¢ 0.1000  -0.0161 0.0442 0.1550 0.0823 0.1031 0.0139
Bo -0.5000 -1.1855 0.2889 -0.9935 0.2693 -0.4909 0.0464
b1 0.5000 0.6728 0.0876 0.6524 0.0860 0.4979 0.0114
¢ 0.5000 0.9596 0.3140 1.1193 0.3139 0.5019 0.0196
S 4.0000 4.0300 0.0655
o? 0.5000 15.1201 1.1774 15.3512 1.3009 0.3316 0.0431
Participation

Yo -5.5000 -5.3512 0.0876 -5.5317 0.0655
o1 1.0000 0.9988 0.0794 1.0090 0.0746
I3 0.5000 0.6910 0.1808 0.5266 0.0437
P -0.5000 -0.4960 0.0372

Bayesian MCMC approach can effectively recover all true model parameters.

E Estimated Equilibrium Efforts

Figure E.1 plots the empirical distribution of equilibrium efforts given by Equation (5) in

Proposition 1.
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Figure E.1: Distributions of equilibrium efforts. The top graph is based on Column A of
Table 1; the middle graph is based on Column B of Table 1; and the bottom graph is based
on Column C of Table 1.



F Additional Robustness Checks

In this section, we perform additional robustness checks to gauge the sensitivity of the
estimation results. In Table F.1, we experiment with an alternative specification of the
participation equation. In Tables F.2 and F.3, we estimate the benchmark empirical model
with Sample (I) and Sample (II) respectively (see Appendix C). We find that the estimates

are similar to those reported in Table 1, indicating the robustness of our findings.



Table F.1: Robustness Check: Alternative Participation Equations

(A) B) (©)
Homogeneous Heterogeneous Discounted
Complementarity =~ Complementarity Payoffs
Production
Spillover N 0.0944%** 0.2020%** 0.3616%**
(0.0189) (0.0216) (0.0625)
Congestion () 0.1550%** 0.2289%** 0.19171%**
(0.0273) (0.0153) (0.0389)
Constant (Bo) -2.9330%** -3.4404%%* -3.2743%4*
(0.2062) (0.1849) (0.2009)
Log life-time citat. (81) 0.5257#%%* 0.5928%** 0.5746%**
(0.0284) (0.0264) (0.0242)
Decades after grad.  (82) -0.4370%** -0.5163%** -0.4020%**
(0.0298) (0.0286) (0.0284)
Male (B3) -0.0320 0.0015 -0.1216**
(0.0541) (0.0485) (0.0521)
NBER connection (Ba) 0.4165%** 0.5636%** 0.4804***
(0.0327) (0.0386) (0.0381)
Ivy League connect. (fs) 0.26927%** 0.2619%** 0.1751%**
(0.0385) (0.0315) (0.0404)
Editor (Bs) 0.0023 0.0495 -0.0351
(0.0539) (0.0455) (0.0610)
Author effect © 2.6626%** 2.7133%%%* 2.7678%**
(0.1177) (0.1023) (0.1066)
Project effect (<) 1.4802%** 1.9140%** 1.1847%*
(0.5150) (0.4689) (0.5435)
Error term variance (o) 97.1196*** 91.0082%*** 08.0885***
(2.4054) (2.2493) (2.4668)
Participation
Constant (v0) -7.8888%** -7.9011%%* -7.8910%**
(0.0452) (0.0440) (0.0783)
Same NEP (1) 1.5496*** 1.5685*** 1.5562***
(0.0976) (0.0942) (0.0966)
Author effect €3] 0.2921%** 0.4066*** 0.3438***
(0.0804) (0.0720) (0.0805)
Project effect () -0.4620%** -0.5256%** -0.5138%**
(0.0814) (0.0733) (0.0791)
Sample size 3,589 papers and 2,421 authors

Notes: Column (A) assumes homogeneous complementarity. Column (B) allows for
heterogeneous complementarity using Jaffe’s similarity measure for the research fields
of collaborating authors. Column (C) considers the case where the payoff is discounted
by the number of coauthors in a project. We implement MCMC sampling for 30,000
iterations and leave the first 1000 draws for burn-in and use the rest of draws for
computing the posterior mean (as the point estimate) and the posterior standard
deviation (in the parenthesis). The asterisks ***(** *) indicate that the 99% (95%,
90%) highest posterior density range does not cover zero.
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Table F.2: Robustness Check: Sample (I)

(A) (B) (€)
Exogenous Participation Endogenous Participation Endogenous Participation
w/ Author RE w/ Author & Project RE
Production
Spillover N) 0.1743*** 0.1601*** 0.1612%**
(0.0082) (0.0085) (0.0097)
Congestion (¢) 0.2274%** 0.4274%** 0.4145%**
(0.0370) (0.0345) (0.0316)
Constant (Bo) -3.0803%** 4.1731%* -4.2633%%*
(0.1595) (0.1835) (0.1972)
Log life-time citat. (B1) 0.5289*** 0.6856*** 0.7142%**
(0.0219) (0.0242) (0.0258)
Decades after grad.  (f2) -0.4367H4* -0.5526%+* -0.5989%**
(0.0287) (0.0273) (0.0252)
Male (Bs3) -0.1894%** 0.1363** 0.0619*
(0.0403) (0.0508) (0.0355)
NBER connection (Ba) 0.2352%** 0.4422%** 0.3981***
(0.0343) (0.0265) (0.0282)
Ivy League connect. (fs) 0.4867*** 0.2906%** 0.3393%**
(0.0372) (0.0278) (0.0293)
Editor (Bs) -0.0080 0.1374%** 0.2583***
(0.0513) (0.0412) (0.0354)
Author effect ©) 2.4832%** 2.0141%** 2.0216%**
(0.0757) (0.0555) (0.0629)
Project effect () - - -0.1661
- - (0.7486)
Error term variance  (02) 60.3747+x* 65. 7751 %** 65.9307+%*
(1.0923) (1.1697) (1.1781)
Participation
Constant (70) - -10.6645%** -10.6869***
(0.0837) (0.1570)
Same NEP (71) - 1.4354%%%* 1.4589%**
(0.0780) (0.0769)
Affiliation (72) - 6.6128%** 6.6178%**
(0.2292) (0.2441)
Gender (73) - 1.7284%** 1.7320%**
(0.0794) (0.0793)
Past coauthors (va) - 6.3181%** 6.3392%**
(0.0748) (0.1122)
Common co-authors  (7s) - 7.1381%** 7.1922%%*
(0.0436) (0.1003)
Author effect €3 - 0.7854%** 0.7606***
(0.0458) (0.0478)
Project effect (¥) - - -1.8862%**
- (0.2191)
Sample size 6,673 papers and 3,700 authors

Notes: Column (A) estimates the production function ignoring endogenous project participation. Column (B) jointly

estimates the production and participation functions with author random effects. Column (C) jointly estimates the
production and participation functions with both author and project random effects. We implement MCMC sampling
for 30,000 iterations and leave the first 1000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks ***(** *)
indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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Table F.3: Robustness Check: Sample (II)

(A) (B) (€)
Exogenous Participation Endogenous Participation Endogenous Participation
w/ Author RE w/ Author & Project RE
Production
Spillover N) 0.0890*** 0.0976*** 0.0949%***
(0.0165) (0.0135) (0.0179)
Congestion (¢) 0.0450%** 0.291 7% 0.1217%**
(0.0147) (0.0332) (0.0194)
Constant (Bo) ~1.9979*** -2.6058%** -2.6224%%*
(0.1255) (0.1358) (0.1454)
Log life-time citat. (B1) 0.4035%** 0.4765%** 0.4860***
(0.0174) (0.0173) (0.0201)
Decades after grad.  (f2) -0.3851 7%+ -0.3510%** -0.3684%**
(0.0213) (0.0225) (0.0253)
Male (Bs3) -0.0620 0.1258*** -0.0426
(0.0452) (0.0410) (0.0373)
NBER connection (Ba) 0.2215%** 0.3113%%** 0.1912%**
(0.0266) (0.0344) (0.0333)
Ivy League connect. (fs) 0.3619%** 0.2691%** 0.2299%**
(0.0318) (0.0329) (0.0342)
Editor (Bs) -0.0656 -0.0022 0.0399
(0.0510) (0.0475) (0.0476)
Author effect ©) 1.8939%** 1.5781%** 2.0467***
(0.0535) (0.0518) (0.0850)
Project effect () - - 1.3828%**
- - (0.4739)
Error term variance  (02) 76.1799%%* 86.3026%** 89.0732%%*
(1.6805) (1.9230) (3.0510)
Participation
Constant (70) - -10.3408** -10.7291%**
(0.1013) (0.1371)
Same NEP (71) - 1.3330%** 1.5519%**
(0.0958) (0.1042)
Affiliation (72) - 7.0405%** 6.8927**
(0.2998) (0.2984)
Gender (7s) - 1.6649%** 1.8465%+*
(0.0959) (0.1101)
Past coauthors (va) - 6.3929%** 6.5954%**
(0.0915) (0.1073)
Common co-authors  (7s) - 7.1009%** 7.6119%**
(0.0551) (0.1187)
Author effect €3 - 0.85971%** 0.5138%**
(0.0595) (0.0749)
Project effect (¥) - - -2.1268%**
- (0.1067)
Sample size 4,210 papers and 3,042 authors

Notes: Column (A) estimates the production function ignoring endogenous project participation. Column (B) jointly

estimates the production and participation functions with author random effects. Column (C) jointly estimates the
production and participation functions with both author and project random effects. We implement MCMC sampling
for 30,000 iterations and leave the first 1000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks ***(** *)
indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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