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1 Introduction

Everybody has priors, Bayesians and non-Bayesians alike. The priors may
be vague and difficult to make explicit, but they are there and they may be
important. The purpose of this paper is to show that we can make priors
explicit from our knowledge of the data and the posterior, and to apply this
theory to the perception of climate sensitivity.

Imagine a group of people (the ‘committee’) with a collective prior, per-
haps based on knowledge and experience, perhaps on political beliefs, per-
haps on short-term profit. The committee meets privately and we have no
information about their discussions. But we do have scientific data (official
‘objective’ statistics and scientific results) and we do have access to their
published predictions or policy recommendations, which they present to the
public. In other words, we have the data and the posterior, but not the prior
which the committee does not reveal and possibly may not even be able to
formulate or quantify. Can we recover the prior from the data and the pos-
terior? Yes, this is indeed possible and we shall study the properties of the
recovered prior in some detail.

We apply this theory to the estimation of the equilibrium climate sensitiv-
ity (ECS), which is an important diagnostic in climate modeling. The data
come from various studies as listed and reported by the Intergovernmental
Panel on Climate Change (IPCC). The IPCC then formulates its own con-
clusions (the posterior). What we are interested in is to recover the prior
beliefs of the IPCC.

The idea of reversing Bayesian thought and — rather than obtain a pos-
terior from data and prior — recover the prior from data and posterior, does
not seem to have received much attention. The current paper attempts to
fill this gap. Of course, the list of possible applications is endless. A political
party uses scientific data and publishes reports. From these two sources we
can recover their priors. Do these conform to the party program? Scientists
use data and write papers. The results in these papers may well be influenced
by prior beliefs or non-scientific reasons. Can this influence be quantified?
Such questions can, in principle, be studied by the theory developed in this
paper.

In Section 2 we introduce the ECS and summarize the findings of the
IPCC: the posterior. In Section 3 we analyze how to recover the prior from
the data and the posterior within the framework of the normal distribution.
In Section 4 we consider the case when there is only one parameter of in-
terest, and extend the framework to monotonic reparametrizations of the
normal distribution, like the lognormal distribution. Next, in Section 5, we
discuss the data which result from fifteen studies used by the IPCC. Given
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the posterior and the data, we then recover and discuss the prior mean and
standard deviation (Section 6). Section 7 concludes. An Appendix discusses
the role of monotonic reparametrizations in general, and the lognormal dis-
tribution in particular.

2 Climate sensitivity, the reported posterior

When the radiation balance of the Earth is perturbed, the temperature will
change. By how much is measured by the equilibrium climate sensitivity

(ECS): the long-term temperature rise that is expected to result from a
doubling of the atmospheric CO2 concentration, usually relative to the pre-
industrial level (around 1750). It is a prediction of the new global mean near-
surface air temperature once the CO2 concentration has stopped increasing
and most of the feedbacks have had time to have their full effect. The ECS
is an important diagnostic in climate modelling, but it cannot be measured
directly and forms a large source of uncertainty. CO2 levels rose from 280
parts per million (ppm) in the eighteenth century (IPCC, 2013, p. 100) to
about 416 ppm by 2020, an increase of almost 50%. In the same period, the
Earth’s temperature rose by a little over one degree Celsius. The ECS will
be our parameter of interest, and we shall denote it by β.

In estimating β we rely exclusively on the Intergovernmental Panel on
Climate Change (IPCC) reports. So far, five so-called Assessment Reports
have appeared, the first in 1990, the fifth in 2013. In these reports we find
estimates (and precisions) of studies on the ECS (our data) and the IPCC’s
own estimates (our posterior). From this information we will attempt to
recover the IPCC’s priors.

In the fifth report, more precisely the Working Group I contribution
(IPCC, 2013), hereafter IPCC5, the authors state that ‘no best estimate
for equilibrium climate sensitivity can now be given because of a lack of
agreement on values across assessed lines of evidence and studies’ (IPCC5,
p. 16, footnote). But later in the same report they do provide estimates, as
follows:

‘. . . ECS is likely in the range 1.5℃ to 4.5℃ with high confi-
dence. ECS is positive, extremely unlikely less than 1℃ (high
confidence), and very unlikely greater than 6℃ (medium confi-
dence)’. (IPCC5, pp. 83–84)

The IPCC also provides a precise interpretation of terms like ‘extremely
unlikely’ and ‘medium confidence’ (IPCC5, p. 36), which differs slightly from
the interpretation in the previous Assessment Report (IPCC, 2007, p. 22) by
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explicitly taking into account the degree of ‘agreement’ in the team about the
evidence provided by each study. Given this interpretation, IPCC5 concludes
that

Pr(1.5 < ECS < 4.5) = 0.67,

Pr(ECS < 1.0) < 0.05, and

Pr(ECS > 6.0) < 0.10.

In addition (pp. 75 and 817), they summarize information of experiments by
the Coupled Model Intercomparison Project Phase 5 (CMIP5) who report
a range 2.1–4.7 for the ECS, without however stating the likelihood of this
range.

Table 1: Posteriors on climate sensitivity, Fifth Assessment Report

Lognormal approx. Probabilities for ECS (%)
b2 σ2 1.5–4.5 < 1.0 > 6.0 2.1–4.7

0.95 0.57 66.5 4.8 7.0 49.5
1.00 0.55 68.0 3.5 7.5 52.1
1.05 0.53 69.2 2.4 8.1 54.6
1.06 0.53 69.1 2.3 8.4 54.7
1.07 0.53 68.9 2.2 8.7 54.8

1.08 0.52 69.5 1.9 8.6 55.8
1.09 0.52 69.3 1.8 8.9 55.9
1.10 0.51 69.9 1.6 8.7 56.9
1.15 0.49 70.1 0.9 9.5 58.9

Assuming the ECS β to be lognormally distributed, so that log β ∼
N(b2, σ

2

2
), we seek combinations (b2, σ2) such that the posterior probabilities

closely match the probabilities in the IPCC report. This leads to Table 1,
where we have calculated the required possibilities for various credible values
of b2 and σ2. There is no unique lognormal distribution that fits our data,
but b2 = 1.07 and σ2 = 0.53 (in bold) seems a reasonable approximation and
is also in line with Hwang, Reynès, and Tol (2013, Figure 4) where b2 = 1.071
and σ2 = 0.527.

The selected posterior distribution, plotted in Figure 1, satisfies

Pr(1.5 < β < 4.5) = 68.9% (about 67%),

Pr(0 < β < 1.0) = 2.2% (less than 5%), and

Pr(β > 6.0) = 8.7% (less than 10%),
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Figure 1: Posterior lognormal distribution with b2 = 1.07 and σ2 = 0.53
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in accordance with the IPCC report’s conclusions. In addition, the interquar-
tile range is Pr(2.04 < β < 4.17) = 50% and there is a 1% probability of
β > 10.0. The skewness of the distribution is well illustrated by the fact that
mode and median of β are quite different: The mode is eb2−σ2

2 = 2.20, while
the median is eb2 = 2.92.

3 From posterior to prior under normality

In order to highlight the issue under simple conditions, we shall first assume
normality, which we shall modify later. We consider a parameter vector of
interest β and suppose that data are generated from a normal distribution

y|β ∼ N(Xβ,Ω), (1)

where X is a given n× k matrix of rank k and Ω is a positive definite n× n
matrix. A non-Bayesian frequentist would estimate β using the generalized
least-squares (GLS) estimator (which is also the maximum likelihood esti-
mator)

b0 =
(

X ′Ω−1X
)

−1

X ′Ω−1y (2)

with variance
Σ0 =

(

X ′Ω−1X
)

−1

. (3)
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A Bayesian, on the other hand, would wish to take prior knowledge about β
into account. Suppose this prior information is given by

β ∼ N(b1,Σ1), (4)

where Σ1 is positive definite. Then the posterior distribution of β is

β|y ∼ N(b2,Σ2), (5)

where
b2 = Wb1 + (Ik −W )b0, Σ2 =

(

Σ−1

1
+ Σ−1

0

)

−1

, (6)

and W = Σ
2
Σ−1

1
is a k × k weight matrix.

Although W is, in general, not symmetric, its eigenvalues are real and
lie between zero and one. In fact, letting Z = Σ

1/2
1

Σ−1

0
Σ

1/2
1

with eigenvalues
λi(Z) > 0 (i = 1, . . . , k), we see that

λi(W ) = λi(Σ
−1/2
1

Σ2Σ
−1/2
1

) =
1

λi(Σ
1/2
1

Σ−1

2
Σ

1/2
1

)
=

1

1 + λi(Z)
. (7)

Note that when the prior becomes uninformative, that is when Σ−1

1
→ 0,

then b2 → b0 and Σ2 → Σ0.
This is well-established basic Bayesian theory. But now consider the

opposite situation where the data and the posterior are available but not the
prior. Can we reveal the prior from the data and the posterior? In general
we can, and in the special case of normality we obtain the prior moments as

b1 = W−1b2 + (Ik −W−1)b0, Σ1 =
(

Σ−1

2
− Σ−1

0

)

−1

, (8)

with
W−1 = Σ

1
Σ−1

2
= Σ0(Σ0 − Σ2)

−1, (9)

which assumes implicitly an upper bound to the posterior variance, namely
Σ2 < Σ0 in the usual sense that Σ0 − Σ2 is positive definite. The prior
mean is thus a ‘weighted average’ of b2 and b0, but the eigenvalues of W−1

do not lie between zero and one. In fact λi(W
−1) = 1 + λi(Z) > 1 and

λi(Ik −W−1) = −λi(Z) < 0 for all i = 1, . . . , k.
The restriction Σ2 < Σ0 does not play a role in the usual Bayesian frame-

work where we go from data plus prior to posterior, because the underlying
variances Σ0 and Σ1 are unrestricted (apart from being positive definite) and
Σ2 will automatically satisfy the restriction. But it does play a role when
we go from data plus posterior to prior, because now the restriction is not
automatically satisfied. This has practical consequences as we shall see later.
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4 One parameter of interest under lognor-

mality

In the special but important case where we have only one parameter β of
interest, we write σ2

0
, σ2

1
, and σ2

2
instead of Σ0, Σ1, and Σ2. From the data

(without a prior) we obtain an unbiased estimator of β: b0 ∼ N(β, σ2

0
). If we

add a prior β ∼ N(b1, σ
2

1
), then we obtain the posterior β ∼ N(b2, σ

2

2
), where

b2 =
σ2

0
b1 + σ2

1
b0

σ2

0
+ σ2

1

, σ2

2
=

σ2

0
σ2

1

σ2

0
+ σ2

1

. (10)

In the reversed case that we are interested in we have an unbiased estimator
b0 ∼ N(β, σ2

0
) from the data and the posterior moments of β ∼ N(b2, σ

2

2
).

From these two ingredients we obtain the prior as β ∼ N(b1, σ
2

1
), where

b1 =
σ2

0
b2 − σ2

2
b0

σ2

0
− σ2

2

, σ2

1
=

σ2

0
σ2

2

σ2

0
− σ2

2

, (11)

under the restriction that σ2

2
< σ2

0
.

So far we have assumed normality because of its transparency in handling
Bayesian problems. But it happens frequently that the normality assumption
on β is not plausible. Then we need to search for a credible alternative, and
the simplest alternative is normality of a monotonic transformation, say h(β).
Given this transformation the same theory shows that if b0 ∼ N(h(β), σ2

0
) is

an unbiased estimator of h(β) from the data and h(β) ∼ N(b2, σ
2

2
) is the

posterior, then the prior can be recovered as

h(β) ∼ N(b1, σ
2

1
), (12)

where b1 and σ2

1
are given in (11). From the prior distribution of h(β) we

then obtain the prior distribution of β. The most important example is
h(β) = log β in which case the posterior and the prior are both lognormally
distributed; see the Appendix for details. This is the route that we shall
follow.

Defining αm and αv implicitly by

b2 = αm b0, σ2

2
= αv σ

2

0
, (13)

we can rewrite (11) as

b1 = κm b0, σ2

1
= κv σ

2

0
, (14)

where

κm =
αm − αv

1− αv
, κv =

αv

1− αv
(15)
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measure how far the prior is removed from the data and their effect on the
prior mean and variance, respectively. Note that αm is unrestricted but that
αv is restricted by 0 < αv < 1.

The two fractions κm and κv capture the essence of our story. First
consider κv, which relates to the prior variance. What matters here is whether
κv is small (strong prior information) or large (weak prior information). This
depends only on αv, not on αm. When αv is close to one, then the variance
σ2

0
in the data and the variance σ2

2
in the posterior are approximately equal,

so that the prior has only a small effect. This is represented by a large value
of κv and hence a large value of the prior variance σ2

1
. The prior is then

uninformative. But when αv is close to zero, then the data variance and the
posterior variance are not close at all, and the prior has a big effect. This
is represented by a small value of κv and hence a small value of the prior
variance σ2

1
. The prior is then informative.

The situation is quite different with κm. What matters here is not whether
κm is small or large, but rather whether κm is close to one or not. This will
depend on both αm and αv. It is clear that κm = 1 when αm = 1, irrespective
of the value of αv. Writing

1− κm =
1− αm

1− αv
, (16)

we see that the deviation of κm from one depends on the deviation of αm

from one relative to the deviation of αv from one. When αm is close to one
but αv is not, then the mean b0 in the data and the mean b2 in the posterior
are approximately equal, but the variance σ2

0
in the data and the variance

σ2

2
in the posterior are not approximately equal. In that case κm ≈ 1 and

the prior mean agrees with the data and the posterior. But when αv is close
to one but αm is not, then the variances σ2

0
and σ2

2
are approximately equal,

but the means b0 and b2 are not. In that case κm is large (in absolute value).
Naturally, for people with a very strong prior (σ2

1
≈ 0) we have αv ≈ 0, and

hence κm ≈ αm and b1 ≈ b2.

5 The underlying data: Estimating b0 and σ0

In addition to the posterior we need information on the data. Our data con-
sist of n = 15 studies mentioned in the IPCC5 report. Fourteen of these are
contained in Figure 10.20 (p. 925) and Box 12.2 (p. 1110) of the report, and
one study (Huber et al., 2011) is included in Figure 2 of Knutti, Rugenstein,
and Hegerl (2017) and referred to in various places of IPCC5.

The ith study produces a range (li, ui) (lower and upper bound) with an
associated probability pi (typically 90% or 95%) for the ECS β, our parameter
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of interest. Given the range (li, ui) and the associated probability Pr(li <
βi < ui) = pi we can identify the parameters of the associated lognormal
distributions, as follows. Since log βi ∼ N(yi, σ

2

0i) in the ith study, we have

Pr

(

log li − yi
σ0i

< zi <
log ui − yi

σ0i

)

= pi, zi ∼ N(0, 1), (17)

and hence

yi = log(liui)
1/2, σ0i =

log(ui/li)
1/2

qi
, Φ(qi) =

pi + 1

2
, (18)

where Φ denotes the c.d.f. of the standard-normal distribution. In this way
we end up with fifteen observations yi with associated standard deviations
σ0i; see Table 2. Our task is to find an estimator b0 ∼ N(log β, σ2

0
) based on

the fifteen data yi ∼ N(log β, σ2

0i). This task is not trivial as we shall see.
The IPCC5 report distinguishes between an instrumental period and

a palaeoclimatic period. The instrumental period is the short period in
the Earth’s long history where direct instrumental records on climate are
available, while the palaeoclimatic period is the long period preceding such
records. Of our fifteen studies some only use data from the instrumental
period (studies 1, 3, 5–9, 12, 13), some only from the palaeoclimatic period
(2, 4, 11, 14, 15), and some combine different lines of evidence (3, 10, 12).
Studies 3 and 12 appear in both the groups instrumental and combination.
This highlights the first of several problems: comparability.

The second problem is that the first study (Lindzen and Choi, 2011) has
a big impact and is in essence an outlier. The IPCC raises doubts about the
reliability of this study (IPCC5, pp. 923–924), but it has not removed the
study from their report. Not only is the revealed value of yi much lower than
in the other studies, but the effect is much strengthened by the fact that the
reported precision is high.

Third, we should take into account that the studies are correlated with
each other. They all estimate the same parameter, probably using similar
highly correlated data sets.

To gain further insight, let us draw the fifteen lognormal curves; see
Figure 2. From the figure several things become clear. First, that the first
study (with the highest peak) is an outlier. And second, almost beyond
belief, that what the data tell us is ambiguous in the extreme: The modes
range from 0.71 (1.89 if we exclude the first study) to 3.31, and the medians
from 0.74 (1.98 if we exclude the first study) to 3.41. To make any sense of
these data requires a strong prior.

Not only do we have to find an estimator b0 but also a standard deviation
σ0. One of the reasons why this is difficult is that σ0 should always be smaller
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Table 2: Data on climate sensitivity, Fifth Assessment Report

Study Bounds Lognormal approx.
pi li ui yi σ0i

1 Lindzen and Choi, 2011 95% 0.5 1.1 −0.30 0.20
2 Schmittner et al., 2011 67% 1.7 2.6

land and ocean data 90% 1.4 2.8 0.68 0.21
only ocean data 67% 1.5 2.5

90% 1.3 2.7
only land data 67% 2.8 4.1

90% 2.2 4.6
3 Aldrin et al., 2012 90% 1.2 3.5 0.72 0.33
4 Hargreaves et al., 2012 90% 1.0 4.2 0.72 0.44
5 Lewis, 2013 90% 2.0 3.6 0.99 0.18

incl. uncertainties 90% 1.0 3.0
6 Bender et al., 2010 95% 1.7 4.1 0.97 0.22
7 Otto et al., 2013 (2000–2009) 90% 1.2 3.9

Otto et al., 2013 (1970–2009) 90% 0.9 5.0 0.75 0.52
8 Schwartz, 2012 90% 1.2 4.9 0.89 0.43
9 Lin et al., 2010 90% 2.8 3.7 1.17 0.08
10 Libardoni and Forest, 2011 90% 1.2 5.3 0.93 0.45
11 Köhler et al., 2010 90% 1.4 5.2 0.99 0.40
12 Olson et al., 2012 95% 1.8 4.9 1.09 0.26
13 Huber et al. 2011 67% 2.9 4.0 1.23 0.17
14 Holden et al., 2010 67% 2.6 4.4

90% 2.0 5.0 1.15 0.28
15 Palaeosens, 2012 67% 2.2 4.8

Palaeosens, 2012 95% 1.1 7.0 1.02 0.47

than each of the individual standard deviations σ0i (more information leads
to higher precision), but larger than the posterior standard deviation σ2.
These two facts are not in agreement with each other, since σ0 must be
smaller than 0.08 (the smallest of the underlying standard deviations σ0i in
Table 2), while at the same time it must larger than σ2, which we have set
at 0.53; see Table 1.

In fact, this is an intriguing problem: we combine information and we
thus expect the standard deviation to decrease, but in fact it doesn’t. To
illustrate, suppose we have one observation x1 = 50 on an unknown param-
eter θ with standard deviation 4. We use this as our guideline until a new
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Figure 2: The fifteen studies, lognormal distributions

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

P
ro

b
ab

il
it

y
 d

en
si

ty

ECS

observation appears: x2 = 25 with standard deviation 3. A naive approach
would be to conclude that the updated estimate of θ is a weighted average of
x1 and x2, in this case 34 with standard deviation 2.4. This would conform
statistical theory, at least in the absence of correlation between x1 and x2.
But it would not convince, because there appears to be a conflict between the
two estimates. The naive approach works if we draw from the same popula-
tion, but in our case each study has used different (though correlated) data,
different methods, a different time period, and so on. Hence, there is not
only intra-study noise (captured by the reported standard deviations), but
also inter -study noise, which is not captured and not reported. Each study
behaves like the frog in the well-known Japanese proverb ‘a frog on the bot-
tom of a well,’ which relates the story of a frog living happily at the bottom
of a dark well, full of sweet water and buzzing insects, until a turtle tells him
about something outside, called the ocean. The problem is closely related to
the ‘prior-likelihood conflict’ in the Bayesian literature and to the ideas of
‘scientific ambiguity’ (Miller, Dietz, and Heal, 2013; Brock and Xepapadeas,
2019), ‘negative learning’ (Oppenheimer, O’Neill, and Webster, 2008), and
the combination of disparate lines of evidence (Cooke and Wielicki, 2018).

To understand the problem better let us realize that each of the fifteen
estimates comes from a different population, so the reported means and stan-
dard deviations are conditional on a ‘state’ Si. In fact, therefore, the studies
report the conditional moments E(yi|Si) and var(yi|Si) instead of the uncon-
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ditional moments

E yi = EE(yi|Si) var(yi) = Evar(yi|Si) + var(E(yi|Si)). (19)

To work with E(yi|Si) and var(yi|Si) instead of EE(yi|Si) and E var(yi|Si)
may be reasonable, but to ignore the variation in the conditional mean
var(E(yi|Si)) is not reasonable. This explains, at least in part, why the
reported variance seriously underestimates the true variance.

Since we have no knowledge of the states Si, we take a different route
based on credible scenarios. Since theory prescribes that σ0 > 0.53, we
consider three values of σ0: 0.6, 0.7, and 0.8. In addition, since ȳ = 0.87
if we include the first study and ȳ = 0.95 if we exclude it, we consider four
values of b0: 0.8, 0.9, 1.0, and 1.1.

Table 3: Estimates of b0 and σ0 from the data

quantiles
b0 σ0 mode 5% 50% 95%

0.6 1.55 0.83 2.23 5.97
0.8 0.7 1.36 0.70 2.23 7.04

0.8 1.17 0.60 2.23 8.30

0.6 1.72 0.92 2.46 6.60
0.9 0.7 1.51 0.78 2.46 7.78

0.8 1.30 0.66 2.46 9.17

0.6 1.90 1.01 2.72 7.29
1.0 0.7 1.67 0.86 2.72 8.60

0.8 1.43 0.73 2.72 10.13

0.6 2.10 1.12 3.00 8.06
1.1 0.7 1.84 0.95 3.00 9.50

0.8 1.58 0.81 3.00 11.20

Thus we shall consider twelve scenarios, where each scenario obeys the
theoretical restrictions and the combination of scenarios covers what we be-
lieve is a credible range of the data parameters. Table 3 presents the mode
and three quantiles (5%, 50%, and 95%) for the implied distributions. We
see that the median ranges from 2.23 to 3.00, which is a little narrower than
in the fourteen studies where the median ranges from 1.98 to 3.41 (if we
exclude the first study where the median is 0.74). The scenarios also allow
for a wide range of (right) tail behavior. The value β∗ of β which defines
the right tail (that is, where 5% of the distribution lies to the right of β∗)
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ranges from 5.97 to 11.20. Given the data (particularly, ȳ = 0.95) and the
restriction σ0 > σ2 = 0.53, our preferred estimate is (b0, σ0) = (1.0, 0.7) (in
bold), but we shall consider the whole spectrum of twelve scenarios when we
derive and analyze the priors in the next section.

6 Analysis of the prior moments

Given the moments (b0, σ0) from the data and (b2, σ2) from the posterior,
we can now discuss the revealed prior moments. The prior mean is given
by (11),

b1 =
b2 − αvb0
1− αv

, αv = σ2

2
/σ2

0
, (20)

and thus depends only on the posterior mean b2 (which we set at 1.07), the
data mean b0 (which ranges from 0.8 to 1.1), and on the ratio of σ2 = 0.53
and σ0 (which ranges from 0.6 to 0.8).

In contrast, the prior standard deviation, also given in (11), is

σ1 =
σ0σ2

√

σ2

0
− σ2

2

=
σ2√
1− αv

, (21)

which, given σ2 = 0.53, depends only on σ0 or alternatively on αv.
Table 4 shows the revealed prior means and standards deviations for

each of the twelve scenarios (four values of b0, three values of σ0). Given
(b2, σ2) = (1.07, 0.53) and the twelve selected pairs (b0, σ0), we present the
induced values of κm, κv, b1, and σ1.

Since b2 must lie in-between b0 and b1, it follows that b1 > 1.07 if b0 < 1.07
and b1 < 1.07 if b0 > 1.07. The lower is b0, the higher must be b1. If b0 = 0.8
then we need a high prior mean, leading to a prior median of 3.6℃ or more.
If the standard deviation in the data is relatively large (σ0 = 0.8), then the
standard deviation in the prior will be relatively small. But even then the
right tail is substantial with a 5% probability that the ECS will exceed 10℃
or worse. In our bolded scenario there is a 5% probability that the ECS will
exceed 12℃.

As discussed in Section 4, the story can be summarized in terms on the
key parameters κm and κv. What matters regarding κm is whether or not it is
close to one. When the mean b0 in the data and the mean b2 in the posterior
are approximately equal, but the variance σ2

0
in the data and the variance

σ2

2
in the posterior are not approximately equal, then κm ≈ 1 and the prior

mean agrees with the data and the posterior. But when the variances σ2

0

and σ2

2
are approximately equal, but the means b0 and b2 are not, then κm is

large (in absolute value). This is well illustrated in Table 4 where κm = 1.12
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Table 4: Estimates of prior moments b1 and σ1 for given
posterior moments (b2, σ2) = (1.07, 0.53)

data prior quantiles
b0 σ0 κm κv b1 σ1 mode 5% 50% 95%

0.6 2.54 3.55 2.03 1.13 2.12 1.18 7.61 48.84
0.8 0.7 1.79 1.34 1.43 0.81 2.17 1.10 4.19 15.91

0.8 1.60 0.78 1.28 0.71 2.18 1.12 3.60 11.53

0.6 1.86 3.55 1.67 1.13 1.48 0.83 5.33 34.24
0.9 0.7 1.44 1.34 1.30 0.81 1.90 0.96 3.66 13.91

0.8 1.34 0.78 1.20 0.71 2.02 1.04 3.33 10.66

0.6 1.32 3.55 1.32 1.13 1.04 0.58 3.74 24.01
1.0 0.7 1.16 1.34 1.16 0.81 1.66 0.84 3.20 12.16

0.8 1.12 0.78 1.12 0.71 1.87 0.96 3.08 9.86

0.6 0.88 3.55 0.96 1.13 0.73 0.41 2.62 16.83
1.1 0.7 0.94 1.34 1.03 0.81 1.45 0.74 2.80 10.64

0.8 0.95 0.78 1.05 0.71 1.73 0.89 2.85 9.12

is close to one when b0 = 1.0 is close to b2 = 1.07, while σ0 = 0.8 is not close
to σ2 = 0.53. At the other extreme, κm = 2.54 is not close to one, because
b0 = 0.8 is not close to b2 = 1.07, while σ0 = 0.6 is close to σ2 = 0.53.

The prior standard deviation satisfies σ1 > σ2 = 0.53 (as it must), but σ1

can be larger or smaller that σ0. In our set up, σ1 can only take three values:
0.71 (small), 0.81 (medium), or 1.13 (large), depending on whether σ0 equals
0.8 (large), 0.7 (medium), or 0.6 (small). Regarding κv what matters is
whether it is small (κv = 0.78, strong prior information) or large (κv = 3.55,
weak prior information). When the standard deviations σ0 in the data and
σ2 in the posterior are approximately equal, then we see from Table 4 that
the prior has only a small effect. This is represented by a large value of κv

(3.55) and hence a large value of the prior variance σ1 (1.13). The prior is
then uninformative. But when the standard deviation in the data and the
posterior are not close, then the prior has a big effect. This is represented
by a small value of κv (0.78) and hence a small value of the prior standard
deviation σ1 (0.71). The prior is then informative.

So, what do these results tell us about the unknown prior of the IPCC?
And in particular, how strong is this prior in view of the fact that a strong
prior seems to be required to make any sense of the data.

Let us compare our prior with the conclusions (the posterior) of the pre-
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vious IPCC report (IPCC, 2007). One would expect that the posterior of the
previous study serves as the prior in the next study, at least approximately.
The fourth report concludes about the ECS:

‘It is likely to be in the range 2.0℃ to 4.5℃ with a best esti-
mate of about 3.0℃, and is very unlikely to be less than 1.5℃.
Values substantially higher than 4.5℃ cannot be excluded, but
agreement of models with observations is not as good for those
values.’ (IPCC, 2007, p. 12)

If we fit a lognormal distribution with mean 1.1 and standard deviation 0.4,
then these statements translate to a median of 3.0 and

Pr(2.0 < ECS < 4.5) = 0.69 > 0.67 (likely),

Pr(ECS < 1.5) = 0.04 < 0.10 (very unlikely), and

Pr(ECS > 4.5) = 0.16,

which seems about right.
The posterior mean 1.10 from the previous report is a little lower than the

prior mean in the current report (say, 1.16), but it is comparable. The same
is true for the implied median, which is 3.0 in the previous report, and now a
little higher, say 3.2. The main difference is in the standard deviation, which
is 0.4 in the posterior distribution of the previous report and about 0.7 in the
prior distribution of the current report. It appears that the IPCC scientists
have agreed a priori on a value for the ECS between 3℃ and 4.0℃, while
judging the occurrence of a real disaster much more likely than the posterior
in the previous report predicts. For example, while Pr(ECS > 6.0) equals
4.2% for the posterior in the previous report and 8.7% for the posterior in the
current report, the revealed prior gives a probability range between 14.8%
(b0 = 1.05, σ0 = 0.71) and 58.3% (b0 = 2.03, σ0 = 1.13). These high numbers
reflect the a priori view of the IPCC scientists; they are not based on new
information becoming available in the current report.

In Figure 3 we plot the four representative lognormal distributions of β
for the data (b0 = 1.00, σ0 = 0.70), the prior (b1 = 1.16, σ1 = 0.81), the
posterior (b2 = 1.07, σ2 = 0.53), and the posterior from previous report
(b∗

2
= 1.10, σ∗

2
= 0.40). These four graphs summarize our story. The smaller

the variance of the lognormal distribution, the higher the top. The posterior
b∗
2
from the previous reports has the smallest variance, hence the highest top

and the smallest probability of a really large temperature. There is a large
discrepancy between the posterior b∗

2
of the previous report and the prior b1

of the current report, showing dynamic inconsistency. The main difference
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Figure 3: Distributions of β based on data b0, prior b1, posterior b2,
and previous report b∗
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between the conclusions in the previous and the current report is that un-
certainty has increased. Why has uncertainty increased in the presence of
many new scientific studies, often claiming rather precise predictions? This
can only be because the IPCC’s prior judgement has become more cautious
and less optimistic, perhaps rightly so, than the previous posterior justifies.

7 Conclusions and further work

In this paper we have tried to reveal the prior, given information about the
data and the posterior. We do so in the context of the normal distribu-
tion and an extension (reparametrization) based on a monotonic transforma-
tion of the normal distribution, in our case the lognormal distribution. The
(log)normality assumption can be relaxed without changing the underlying
theory, but the expressions would be become less transparent.

We developed the theory and we applied this theory to climate sensitiv-
ity, more precisely to the prior views of the IPCC panel towards the value
of this parameter. It appears that the IPCC scientists have agreed a priori

on a value for the ECS between 3℃ and 4.0℃, while judging the occurrence
of a real disaster much more likely than the posterior in the previous report
predicts. Our application assumes that the IPCC behaves in a Bayesian way
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and thinks in terms of priors and posteriors. This may not be so. But it
doesn’t matter because we are all Bayesians in the sense that we all have
priors. Scientific Bayesians have both explicit and implicit priors; scientific
frequentists only have implicit priors. But we all have priors and the purpose
of this paper has been to make these priors explicit. Of course, the field of
application of the ideas developed in this paper is not confined to climate is-
sues. It can be used more generally to determine people’s biases, for example
politicians or scientists.

There are at least two further closely related questions worth investi-
gating. First, suppose that our observations stretch over several, say two,
periods. In both periods we have data and posteriors, and we can recover
the priors in periods 1 and 2. Dynamic consistency requires that the prior
in period 2 is the posterior in period 1. But is it? If it is, then the agent
is consistent or rational in this Bayesian updating scheme. But if it isn’t,
then the agent is not consistent. One can easily imagine a situation where
the agent remains too loyal to their original prior, which one may call ‘prior
stubbornness’ or ‘bunching’. This stubbornness may be politically motivated
and is related to the theory of learning. It may continue until some bound
has been reached (a tipping point), after which the prior is adjusted and
moves to a new level. In fact, it should be possible to derive a measure for
such stubbornness.

Second, we may consider the situation where there is not one but several,
say two, agents over several, say two, periods. The data available to the
two agents are the same, but their posteriors are not, and hence their priors
are also different. Under what conditions would their priors converge in this
setting?

Appendix: The lognormal distribution

Recall the fundamental formula for ‘completing the square’,

(y − β)2

σ2

0

+
(β − a1)

2

σ2

1

=
(β − a2)

2

σ2

2

+
(y − a1)

2

σ2

0
+ σ2

1

, (22)

where

a2 =
σ2

0
a1 + σ2

1
y

σ2

0
+ σ2

1

, σ2

2
=

σ2

0
σ2

1

σ2

0
+ σ2

1

.

Multiplying both sides by −1/2 and taking exponentials gives

f(y; β, σ2

0
) f(β; a1, σ

2

1
) = f(β; a2, σ

2

2
) f(y; a1, σ

2

0
+ σ2

1
), (23)

17



where

f(x;µ, σ2) =
1

σ
√
2π

exp−1

2

(

x− µ

σ

)2

denotes the normal density. This, of course, is just Bayes’ formula

f(y|β) f(β) = f(β|y) f(y)

and shows that a normal likelihood plus a normal prior results in a normal
posterior.

Now let g denote the lognormal density

g(x;µ, σ2) =
h′(x)

σ
√
2π

exp−1

2

(

h(x)− µ

σ

)2

(x > 0).

where h(x) = log x and consequently h′(x) = 1/x, Then it follows immedi-
ately from (22) that, for β > 0,

f(y; h(β), σ2

0
) g(β; a1, σ

2

1
) = g(β; a2, σ

2

2
) f(y; a1, σ

2

0
+ σ2

1
). (24)

Hence, a normal likelihood plus a lognormal prior results in a lognormal pos-
terior, so that prior and posterior are conjugate distributions. The function
h can be any monotonic transformation of x, not necessarily log x.

Another way of arriving at this result is to realize that the lognormal
distribution is not really a new distribution but rather a reparametrization.
The parameter of interest remains β, but the analysis is performed on log β
(more generally on h(β)). So we have a normal likelihood with mean log β
and a normal prior on log β, resulting in a normal posterior on log β.
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